Compressed Natural Gas (CNG) Motor Vehicle Fuel Specifications

May 19, 2010

California Environmental Protection Agency

Air Resources Board

Overview

Background
Current Situation
Studies and Results
Possible Considerations
Next Steps

Alternative Fuels Regulations

ARB alternative fuel regulations, 1992

 Title 13, CCR, §2290 -2293.5

 Includes compressed natural gas (CNG) specifications

 Title 13, CCR, §2292.5

 Last discussed in 2005

88 mol%

CNG Specifications

Methane (min.) Ethane (max.)

Other Specs.

Hydrocarbons

6 mol%C3+higher (max.) 3 mol% C6+higher (max.) 0.2 mol% Hydrogen (max.) 0.1 mol% Carbon Monoxide (max.) 0.1 mol% 1.0 mol% Oxygen **Inert Gases** 1.5 - 4.5 mol% Sulfur (max.) 16 ppmv Water, Particulates, Odorant

California Public Utilities Commission Pipeline Specifications (Ex. SoCalGas Rule 30)

WI	1279 - 1385
Heating Value	990 - 1150
CO ₂ (max)	3% vol
H₂S (max)	4 ppm
H ₂ O (max)	7 lbs/MMSCF
Inerts (max)	4% vol

Source: Rule No. 30 Southern California Gas Company

Current Situation

North American pipelined gas generally meets CARB specifications
 A portion of potential LNG supplies generally exceeds specifications
 A portion of in-state gas does not meet current CARB specifications

California Natural Gas Supplies

Imported via Interstate Pipeline 87%
 Southwest 41%
 Midwest 24%

■ Canada 22%

California Production 13%
 Central/Southern CA 8%
 Northern CA 5%

Source: CEC 2007

92% of CA Current Supply Generally Meets CNG MV Specifications

CA Gas Wells

CA Associated Gas 8%

Note: Does not include potential LNG shipments

Source: CEC 2006

Primary Reasons for Off-Specification Natural Gas

 Associated gas
 Byproduct of oil production
 Produced from gas fields in Southern and Central CA
 Potential imports of LNG

Gas Quality Trends

Imported Pipelined Gas

 Slight variation of gas quality over time

 Potential LNG Imports

 May cause decrease in pipeline gas quality
 In-state Production

 Slight degradation of gas quality over time


Imported Pipelined Gas Quality Fuel Composition – Northern CA

	19	999	2009		
	Malin	Topock	Malin	Topock	
Methane	94.9	96.12	95.93	95.86	
Ethane	3.15	1.69	2.17	1.79	
C3+	0.20	0.27	0.33	0.57	
C6+	0.01	0.01	0.01	0.02	
Inerts	1.65	1.9	1.55	1.75	
MN*	98.7	101.9	95.3	95.31	
WI*	1340.1	1333.4	1341.13	1335.64	

* MN and WI are not a part of CARB specifications

Source: PG&E 1997-2000, 2008-2009

California Natural Gas Pipelines

Imported Pipelined Gas Quality Fuel Composition – Central & Southern CA

	1999	9	2009			
	Ehrenberg Topo		Ehrenberg	Topock		
Methane	TBD	TBD	95.77	96.38		
Ethane	TBD	TBD	1.96	1.55		
C3+	TBD	TBD	0.5	0.44		
C6+	TBD	TBD	0.03	0.02		
Inerts	TBD	TBD	1.73	1.61		
MN*	TBD	TBD	100	101		
WI*	TBD TBD		1337.37	1335.37		

* MN and WI are not a part of CARB specifications

Source: SoCalGas 1997-2000, 2008-2009

Associated Gas Generally Does Not Meet CNG Specifications

Heavy in non-methane hydrocarbons
Exceeds ethane and C3+ specifications
Higher energy content that may cause engine problems

Associated Gas Production Areas Primarily in Southern & Central CA

San Joaquin Valley (SJV)

Fresno, Kern, Kings, Tulare

South Central Coast (SCC)

Ventura, Santa Barbara, San Luis Obispo

South Coast Basin

Los Angeles, Orange, San Bernardino

Source: Department of Conservation 2001

Associated Gas Fuel Composition

	Fresno	Kern	Kings	Santa Barbara	San Luis Obispo	Ventura
Methane	86.19	93.83	86.19	91.28	88.42	92.48
Ethane	8.35	1.84	8.35	4.08	5.41	4.22
C3+	2.43	2.76	2.43	2.78	4.23	1.39
C6+	0.02	0.07	0.02	0.04	0.04	0.02
Inerts	3.01	1.49	3.01	1.83	1.88	1.89
MN*	80	86.63	80	85	78	90
WI*	1352	1367	1352	1366	1385	1351

NOTE: North American Pipeline Gas Composition Methane %: 95-96, MN: 95-100, WI: 1330-1345

In-State Production vs. CNG Specs

	In State	CARB Spec
Methane	86.19 - 93.83	88 – 98.5
Ethane	1.84 - 8.35	0 - 6
C3+	1.39 - 4.23	0 - 3
C6+	.0207	0 - 0.02
Inerts	1.49 - 3.01	1.5 - 4.5
MN*	78 - 90	81** - 108
WI*	1351 - 1385	1280 - 1385

* MN and WI are not a part of CARB specifications

** MN 81 is the practical low value, MN 72 is the theoretical low value

Potential LNG Imports Generally Do Not Meet Specifications

- Potentially exceeds ethane and C3+ specifications
- May not meet inert specifications
- Higher energy content may cause engine problems

Potential LNG Imports Gas Quality Fuel Composition

	Tangguh	Malaysia	Sahkalin		
Methane	96.3	91.23	93.765		
Ethane	2.6	4.3	3.45		
C3+	0.7	4.36	2.53		
C6+	0	0	0		
Inerts	0.4	0.12	0.26		
MN*	101.4	79.0	90.2		
WI*	1372	1422	1397		

* MN and WI are not a part of CARB specifications

Source: 2009 Publicly Available Gas Quality Data

Imports vs. CNG Specs

	LNG Imports	CARB Spec
Methane	84.83 - 96.33	88 – 98.5
Ethane	2.6 - 13.39	0 - 6
C3+	0.7 - 4.30	0 - 3
C6+	0 - 0.04	0 - 0.02
Inerts	0 - 0.4	1.5 - 4.5
MN*	75.09 - 101.4	81** - 108
WI*	1372 - 1424.5	1280 - 1385

* MN and WI are not a part of CARB specifications

** MN 81 is the practical low value, MN 72 is the theoretical low value

Discussion

Assessment of the Current CNG Specifications

Current CNG Specifications

- Supports Low-Emission/Clean Fuels Program and Regulations
- Reflects quality of imported and in-state produced NG at time when specs were established
- Based on available technologies at that time
 Developed in consultation with industry and other interested parties

Assessment

Disadvantages of the CNG Specifications

Some in-state and LNG supplies do not comply

- Current engine technologies have evolved
- Limits availability of on-spec CNG fuel in some areas in CA

Restricts expansion of the NGV market

No trading within HC specs

CNG Studies and Test Programs

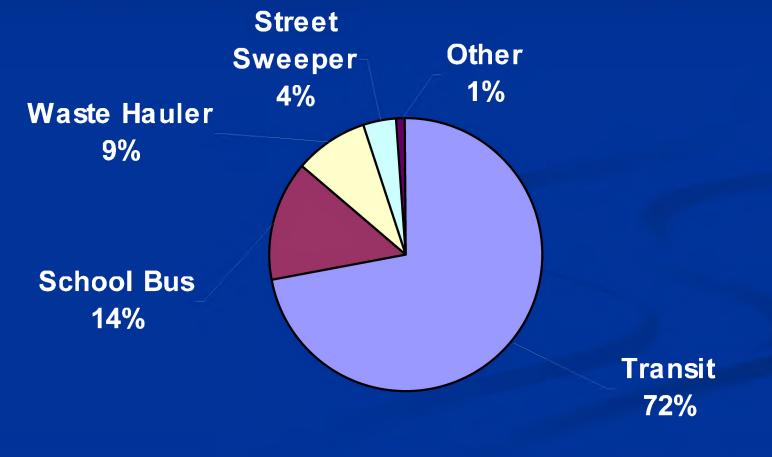
- I. SoCalGas and SDG&E Heavy-Duty CNG Vehicle Report, 2008
- II. SwRI Heavy-Duty Natural Gas Engine Study, 2009
- III. Sierra Research Statistical Analysis of SwRI HD Natural Gas Engine Study, 2009
- IV. SwRI Light-Duty Natural Gas Vehicle Study, 2010
- V. Sierra Research Statistical Analysis of SwRI LD Natural Gas Vehicle Study, 2010
- VI. CE-CERT HD & LD Natural Gas Engine and Vehicle Study, 2010

CNG Studies and Test Programs

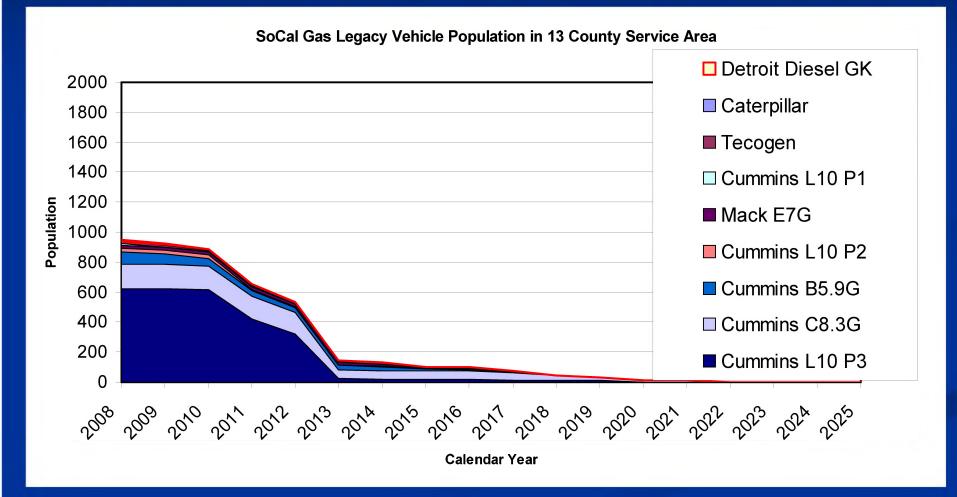
- SoCalGas and SDG&E Heavy-Duty CNG Vehicle Report, 2008
- II. SwRI Heavy-Duty Natural Gas Engine Study, 2009
- III. Sierra Research Statistical Analysis of SwRI HD Natural Gas Engine Study, 2009
- IV. SwRI Light-Duty Natural Gas Vehicle Study, 2010
- V. Sierra Research Statistical Analysis of SwRI LD Natural Gas Vehicle Study, 2010
- VI. CE-CERT HD & LD Natural Gas Engine and Vehicle Study, 2010

I. Heavy-Duty CNG Vehicle Report (SoCalGas & SDG&E)

Comprehensive survey, inventory and assessment of all HD CNG engines in operation in 13 counties at end of 2008


Objective

 Compile inventory of all HD CNG engines in 2008 and estimate changes over time


Assumptions

- Test engines classified as MD or HD CNG engines used not including LD OEM
- "Legacy fleet" vehicles defined as engines that cannot operate on sub-MN 80 fuel

I. HD CNG Vehicle Report - Results 2008 Heavy-Duty CNG Engine Fleet Types

I. HD CNG Vehicle Report - Results "Legacy Fleet" CNG Engines in Operation Through 2025

I. ARB Staff's Observations

Information based on 2008 survey
 Scope specific to SoCalGas and SDG&E service territories (13 counties)
 Engine expected life based on operator feedback
 Does not include LD OEM vehicles
 "Legacy fleet" vehicle definition - vehicle engine cannot run on MN < 80
 Based on manufacturer specs

CNG Studies and Test Programs

- I. SoCalGas and SDG&E Heavy-Duty CNG Vehicle Report, 2008
- II. SwRI Heavy-Duty Natural Gas Engine Study, 2009
- III. Sierra Research Statistical Analysis of SwRI HD Natural Gas Engine Study, 2009
- IV. SwRI Light-Duty Natural Gas Vehicle Study, 2010
- V. Sierra Research Statistical Analysis of SwRI LD Natural Gas Vehicle Study, 2010
- VI. CE-CERT HD & LD Natural Gas Engine and Vehicle Study, 2010

II. Heavy-Duty Engine Study (Southwest Research Institute - SwRI)

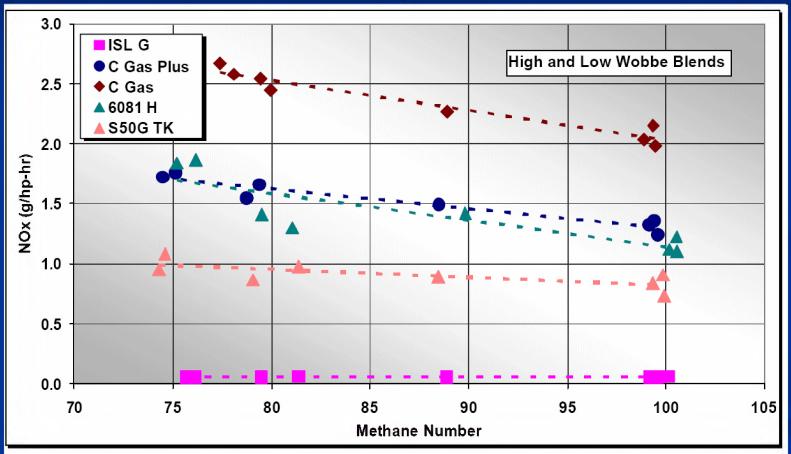
<u>Objective</u>

Test five HD natural gas engines for emissions and engine performance impacts using fuels of varying MN and WI

Test Engines

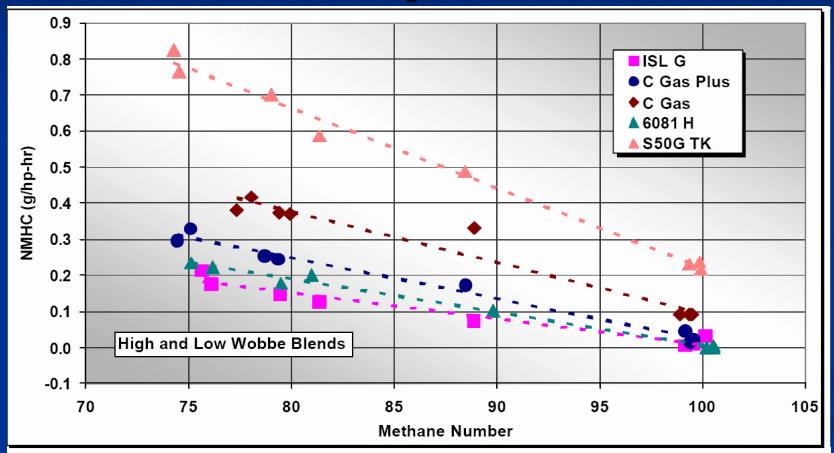
- 1. 2007 Cummins ISL G
- 2. 2006 Cummins C Gas Plus
- 3. 2005 John Deere 6081H
- 4. 1999 Detroit Diesel Series S50G TK
- 5. 1998 Cummins C Gas

II. SwRI Heavy-Duty Engine Study


Test Fuels

MN of the NG blends ranged from MN 75 to MN 100. Both high and low WI blends were tested at each MN.

TABLE 2. TARGET CNG COMPOSITIONS SUPPLIED BY SCG


Methane Number	thane Number 75		78 ⁻¹		80		89	100			
Wobbe Level		Low	High	Low	High	Low	High	-	Low	Mid	High
Wobbe Index		1363	1385	1353	1385	1347	1385	1333	1302	1337	1375
Methane	% vol	85.3	86.5	87.1	88.8	88.3	90.3	90.5	93.7	95.6	97.7
Ethane	% vol	4.6	4.6	3.2	3.2	2.2	2.2	4.0	1.5	1.5	1.5
Propane	% vol	6.1	6.2	5.7	5.8	5.5	5.7	2.0	0.8	0.8	0.9
Nitrogen	% vol	4.0	2.7	4.0	2.2	4.0	1.9	3.5	4.0	2.1	0.0
¹ Methane number 78 fuel was tested with the 1998 model year Cummins C Gas engine only.											

II. SwRI HD Study – NOx Results

FIGURE 94. HOT-START AVERAGE BRAKE-SPECIFIC NO_X RESULTS VERSUS TEST FUEL METHANE NUMBER FOR ALL TEST ENGINES AND FUELS

II. SwRI HD Study – NMHC Results

FIGURE 95. HOT-START AVERAGE BRAKE-SPECIFIC NMHC RESULTS VERSUS TEST FUEL METHANE NUMBER FOR ALL TEST ENGINES AND FUELS

5/18/2010

II. SwRI HD Study – Results

- NOx and NMHC increased as MN decreased for older engines
- PM showed no significant trends for all engines
- CO increased as MN decreased for some engines
- Fuel consumption increased with lower WI fuels
- Slight changes in engine performance
- No engine knock or auto ignition

II. SwRI HD Study – Results (cont.)

 Changes in MN resulted in significant emission variation for some pollutants
 WI had a slight effect on some regulated emissions

II. ARB Staff's Observations

Tested fuels ranged in MN
 MN tested: MN 75, 78, 80, 89, 100
 High and Low WI tested at each MN
 Test engines serviced and repaired before emissions testing

CNG Studies and Test Programs

- I. SoCalGas and SDG&E Heavy-Duty CNG Vehicle Report, 2008
- II. SwRI Heavy-Duty Natural Gas Engine Study, 2009
- III. Sierra Research Statistical Analysis of SwRI HD Natural Gas Engine Study, 2009
- IV. SwRI Light-Duty Natural Gas Vehicle Study, 2010
- V. Sierra Research Statistical Analysis of SwRI LD Natural Gas Vehicle Study, 2010
- VI. CE-CERT HD & LD Natural Gas Engine and Vehicle Study, 2010

5/18/2010

III. Statistical Analysis of SwRI HD Engine Study (Sierra Research Inc)

Objectives

 Identify statistically significant relationships between MN, WI, engine emissions

<u>Assumptions</u>

- CNG fuel used at the lowest MN and highest WI under the:
 - Current prescriptive CARB CNG regulations (MN 72.4, WI 1385)
 - Performance-based CNG regulation proposed by SoCalGas and SDG&E (MN 75, WI 1385)

III. HD Statistical Analysis – Results

Maximum Theoretical Change in 2008 NOx and NMHC Emissions (TPD)

		NOx Change			NMHC Change	
County	Total NOx Inventory	Existing Regª	Proposed Reg⁵	Total NMHC Inventory	Existing Reg ^a	Proposed Reg⁵
San Diego	166	0.144	0.133	152	0.076	0.068
Los Angeles	482	0.346	0.325	336	0.381	0.340
Orange	136	0.067	0.062	117	0.085	0.076
Riverside	83	0.075	0.070	62	0.153	0.137
San Bernardino	91	0.019	0.018	72	0.038	0.034
Ventura	44	0.009	0.008	47	0.005	0.004
Santa Barbara	38	0.001	0.001	35	0.000	0.000
Kern	58	0.003	0.003	14	0.002	0.002
Kings	29	0.001	0.001	18	0.000	0.000
Tulare	45	0.016	0.014	45	0.015	0.013
Fresno	110	0.001	0.000	82	0.000	0.000
San Luis Obispo	21	0.001	0.001	23	0.001	0.001
Imperial	37	0.000	0.000	30	0.000	0.000
13-County Total	1340	0.683	0.636	1033	0.756	0.675
5/18/2010						43

III. HD Statistical Analysis – Results

Maximum Theoretical Change in 2018 NOx and NMHC Emissions (TPD)

		NOx Change			NMHC Change	
County	Total NOx Inventory	Existing Reg ^a	Proposed Reg⁵	Total NMHC Inventory	Existing Reg ^a	Proposed Reg⁵
San Diego	113	0.011	0.01	133	0.063	0.056
Los Angeles	330	0.05	0.045	277	0.35	0.312
Orange	95	0.06	0.055	102	0.075	0.067
Riverside	55	0.038	0.035	55	0.137	0.122
San Bernardino	66	0.007	0.006	65	0.026	0.023
Ventura	32	0.004	0.004	42	0.005	0.004
Santa Barbara	29	0	0	31	0	0
Kern	48	0	0	12	0.001	0
Kings	18	0.001	0.001	17	0	0.001
Tulare	31	0.008	0.007	42	0.013	0.012
Fresno	72	0	0	75	0	0
San Luis Obispo	15	0	0	21	0.001	0
Imperial	29	0	0	29	0	0
13-County Total	933	0.179	0.163	901	0.671	0.597
5/18/2010						44

III. Statistical Analysis of SwRI HD Engine Study – Results

Results

- Slight increase of NMHC and NOx from present
- Maximum theoretical increase of NMHC and NOx under current CARB specs is larger than increase under performance-based reg (MN 75/80 and WI 1385)
- The magnitude of impacts decline over time

Conclusion

Performance regulation based on MN 75/80 and WI 1385 does not have potential to increase emissions above levels that could already occur under existing CARB specs

III. ARB Staff's Observations

 Potential impacts based on theoretical limit
 Lowest MN and highest WI under current CNG specs (MN 72.4, WI 1385)
 MN and WI were not evaluated as independent variables

CNG Studies and Test Programs

- I. SoCalGas and SDG&E Heavy-Duty CNG Vehicle Report, 2008
- II. SwRI Heavy-Duty Natural Gas Engine Study, 2009
- III. Sierra Research Statistical Analysis of SwRI HD Natural Gas Engine Study, 2009
- IV. SwRI Light-Duty Natural Gas Vehicle Study, 2010
- V. Sierra Research Statistical Analysis of SwRI LD Natural Gas Vehicle Study, 2010
- VI. CE-CERT HD & LD Natural Gas Engine and Vehicle Study, 2010

5/18/2010

IV. Light-Duty Vehicle Study (SwRI)

Objective

 Determine the emissions and fuel economy (FE) for six CNG fuel blends on a test vehicle over the FTP-75 and UC driving cycles

5/18/2010

IV. SwRI LD Vehicle Study

Test Vehicle2003 Honda Civic GX

Test Fuels

 Six test fuels blends of varying MN (68-89) and WI (1333-1390) were produced by SwRI as specified by SoCalGas

Fuel blends represent worst-case NG scenarios under theoretical standards as well as typical fuel compositions found in the region

IV. SwRI LD Vehicle Study -Results

- Average FTP-75 NOx emissions were 50% of the certification standard
- CO emissions were about 10% of the certification standard
- NMHC results were well below the NMOG standard

IV. ARB Staff's Observations

 LD vehicle technologies can operate on various fuel blends with minimal impacts
 Consistent with expectations

CNG Studies and Test Programs

- I. SoCalGas and SDG&E Heavy-Duty CNG Vehicle Report, 2008
- II. SwRI Heavy-Duty Natural Gas Engine Study, 2009
- III. Sierra Research Statistical Analysis of SwRI HD Natural Gas Engine Study, 2009
- IV. SwRI Light-Duty Natural Gas Vehicle Study, 2010
- V. Sierra Research Statistical Analysis of SwRI LD Natural Gas Vehicle Study, 2010
- VI. CE-CERT HD & LD Natural Gas Engine and Vehicle Study, 2010

V. Statistical Analysis of SwRI LD Vehicle Study (Sierra Research Inc)

<u>Objective</u>

Analyze the data obtained from the LD Vehicle Test Program

V. LD Statistical Analysis - Results

Summary of Findings on Emissions and Fuel Economy Changes Due to CNG Fuel Formulation

	FTP Composite	UC Drive Cycle		
тнс	Emissions Decreased	No Fuel Effect		
NMHC	Emissions Increased Max Effect + 0.002 g/mi (MN 68 fuel)	Emissions Increased Max Effect + 0.002 g/mi (MN 68 fuel)		
со	Emissions Increased Max Effect + 0.043 g/mi (MN 80 High WI)	No Fuel Effect		
NOx	Emissions Decreased	No Fuel Effect		
CO2	Emissions Increased up to 4.0 g/mi	No Fuel Effect		
FE	No Fuel Effect	FE increased up to 0.7 mpg (MN 80 High WI)		
5/18/2010		54		

V. Statistical Analysis of LD Vehicle Study – Results

Findings

- Analysis found some instances of statistically significant relationships between MN, WI, and vehicle emissions
 - MN generally had a greater impact on emissions than WI

Conclusion

The variations in NG quality had little impact on emissions from the vehicle studied

V. ARB Staff's Observations

Test fuels ranged in MN
 MN tested: MN 68, 75, 80, 89
 High and Low WI tested at each MN

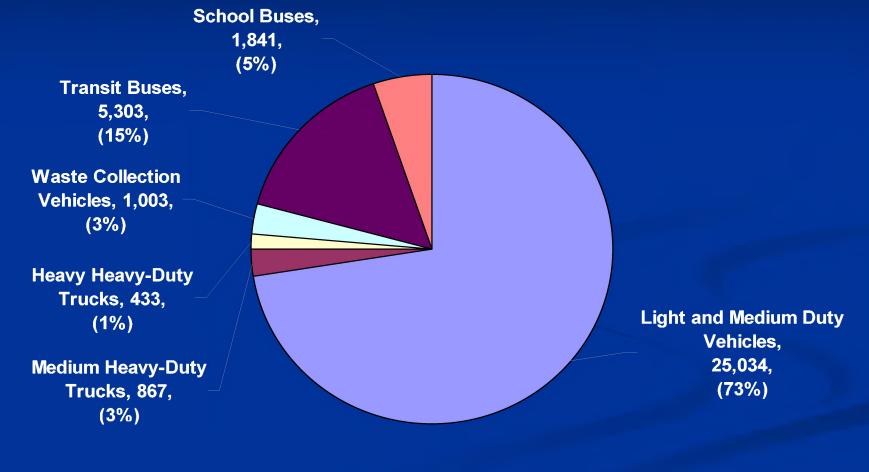
CNG Studies and Test Programs

- I. SoCalGas and SDG&E Heavy-Duty CNG Vehicle Report, 2008
- II. SwRI Heavy-Duty Natural Gas Engine Study, 2009
- III. Sierra Research Statistical Analysis of SwRI HD Natural Gas Engine Study, 2009
- IV. SwRI Light-Duty Natural Gas Vehicle Study, 2010
- V. Sierra Research Statistical Analysis of SwRI LD Natural Gas Vehicle Study, 2010
- VI. CE-CERT HD & LD Natural Gas Engine and Vehicle Study, 2010

VI. CE-CERT HD and LD Natural Gas Engine and Vehicle Study (CEC, CE-CERT)

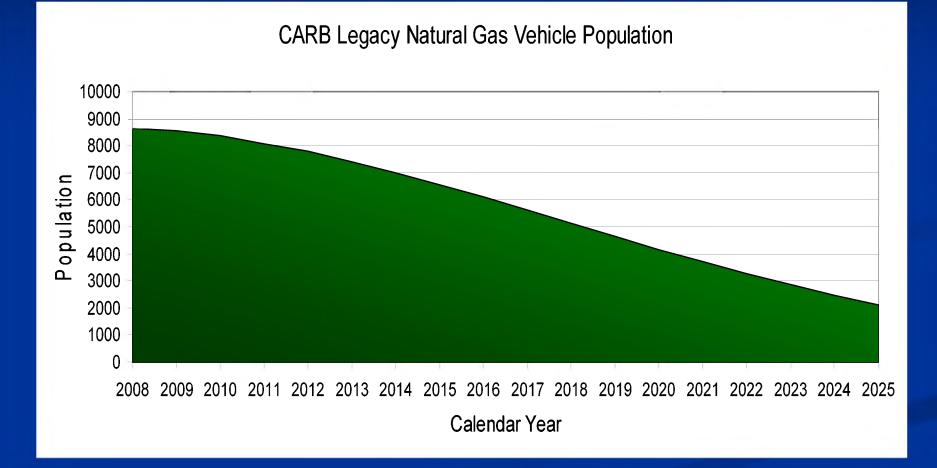
Objective

 Address impacts of using broader range of NG compositions, such as those expected with greater introduction of LNG


VI. CE-CERT HD and LD

Overall Test Program: Light-Duty Testing CNG Vehicle Testing – 2 test vehicles, 4 test fuels Heavy-Duty Testing CNG Vehicle Testing – 3 test vehicles, 5 test fuels ■ LNG Engine Testing – 1 test engine, 3 test fuels Status - Testing to be completed Discuss at next CNG public meeting

III. ARB Staff's Observations


Test fuels based on range of MN, WI and various fuel compositions
 MN 83 – 96
 WI 1330-1436
 High/Low Ethane
 Engines and vehicles tested as-is

2008 CA Natural Gas Vehicle Population

Source: 2008 DMV 5/18/2010

Legacy CNG Engines in Operation

5/18/2010

Discussion

Consider Changes to the CNG Fuel Regulation?

Disadvantages of the CNG Specifications

Relatively inflexible

Does not allow trading within HC specs

Some in-state and LNG supplies do not comply

- Current engine technologies have evolved and can use a broader range of NG compositions
- Limits availability of on-spec CNG fuel in some areas in CA
- Restricts expansion of the NGV market

Possible Approaches

Adopt alternative performance based standards? Potential performance metrics: MN and WI Others?

Potential Advantages of Performance Approach

Increases flexibility

- Allows trading within HC spec
- Increase of compliant fuels without loss of benefits

Potential Metrics for Performance Approach

Methane Number (MN)
Wobbe Index (WI)

Methane Number (MN)

Similar to Octane Number

- Experimentally derived relationship between fuel composition and engine performance (knock)
- Established index to prevent engine knock
- Some engine manufacturers require minimum MN

Methane Number (MN)

Equation:
 MN = 1.624 * MON – 119.1
 MON = (20.17 * H/C³ – 173.55 * H/C² + 508.4 * H/C – 406.14)
 H/C = (mol % Hydrogen / mol % Carbon)

Source: SwRI 1992

5/18/2010

Wobbe Index

Measure of fuel interchangeability with respect to energy content and metered air/fuel ratio Wobbe Index = Higher Heating Value

√relative density

Changes in Wobbe Index affect the engine's metered air/fuel ratio and power output

5/18/2010

CNG Specifications

Methane (min.) Ethane (max.) C3+higher (max.) C6+higher (max.) Hydrogen (max.) Carbon Monoxide (max.) Oxygen **Inert Gases** Sulfur (max.) Water, Particulates, Odorant

88 mol% 6 mol% 3 mol% 0.2 mol% 0.1 mol% 0.1 mol% 1.0 mol% 1.5 - 4.5 mol% 16 ppmv

5/18/2010

Hydrocarbons

Other Specs.

CNG Specifications with possible MN and WI

	High CH4 High Inerts	High CH4 Low Inerts	Max C2 and Min Inerts (C3 only)	Max C2 and Min Inerts (C3 Equal)	Max C2, C3, & C6 Min Inerts
Methane	95.5	98.5	89.5	89.5	89.3
Ethane	0	0	6	6	6
C3+	0	0	3	3	3
C6+	0	0	0	0	0.2
Inerts	4.5	1.5	1.5	1.5	1.5
MN*	108	108	82.36	77.86	72.83
WI*	1278.8	1333.5	1380.4	1391.5	1409

* MN and WI are not a part of CARB specifications

Note: CPUC pipeline specifications allow WI 1385 in the pipeline

What is the Best Approach?

- Should an alternative performance standard be adopted?
 - Appropriate to use Methane Number (MN)?
 - Appropriate to use Wobbe Index (WI)?
 - Appropriate to use both MN and WI?
- Tiered Approach
 - Time frame for implementation?
- Any other approaches?

Discussion

Next Steps

Next Steps

Next Steps

Evaluate comments
Develop proposals based on comments
Evaluate proposals

Pros/Cons
Impacts

Discuss at next public meeting

Next Steps

Schedule

Public Meeting
Comments due by
Additional Meetings
Board Hearing

May 19, 2010 June 3, 2010 July – Aug 2010 Fall 2010

Contact Information

Floyd Vergara Manager, Industrial Section (916) 327-5986 fvergara@arb.ca.gov Aubrey Sideco Lead Staff, Industrial Section (916) 324-3334 asideco@arb.ca.gov

Stephen d'Esterhazy Industrial Section (916) 323-7227 sdesterhaz@arb.ca.gov Cody Livingston Off-Road Diesel Analysis Section (916) 324-0585 clivings@arb.ca.gov

http://www.arb.ca.gov/fuels/altfuels/cng/cng.htm

5/18/2010

Thank You