

LCFS Draft Report and California GREET Analysis Comments

Ben Knight, Ryan Harty Honda R&D Americas, Inc 7Nov08

LCFS Summary of Comments

ltem	Report	Comment	Old Value	Suggested Value	New WTT gCO2e/MJ
California Average Electricity WTT Result	Electricity http://www.arb.c a.gov/fuels/lcfs/0 42308lcfs_elec.p df	 The heating content of coal is incorrect in the Fuel_Specs sheet, resulting too high electricity CO2 content. → This change would impact all fuel pathways that use California Average Electricity in the ca_greet1.7v98. 	15,421,670 BTU/ton (ca_greet1.7v98 Fuel_Specs Sheet)	19,546,300 BTU/ton (GREET Default). This is the same as the California GREET 1.8 model.	128.8gCO2 e/MJ for Electricity
Liquid Hydrogen from Natural Gas WTT Result	North America Hydrogen http://www.arb.c a.gov/fuels/lcfs/0 72908lcfs_hydro gen.pdf	The efficiency of hydrogen liquefaction is incorrectly calculated in the Fuel_Prod_TS sheet, resulting in too high electricity use for liquefaction, and too high CO2 content for hydrogen.	62.5% Efficiency (based on 12.5kWh electricity per kg of hydrogen liquefied) (ca_greet1.7v98 Fuel_Prod_TS sheet)	72.7% Efficiency (based on 12.5kWh electricity per kg of hydrogen liquefied) or GREET1.8 Default. (Actual process may be more efficient - ARB should request data from Air Products and Chemicals Inc)	129.2gCO2 e/MJ for Liquid Hydrogen
Fuel Cell Vehicle Energy Economy Ratio	The Draft Regulation for the California Low Carbon Fuel Standard http://www.arb.c a.gov/fuels/lcfs/1 01008lcfsreg_dr aft.pdf Appendix A3 p40	 The EER of Fuel Cell Vehicles is too low. 1) It is based on vehicles that are not "2010" intent. 2) The fuel economy listed is adjusted, combined. FCX Clarity is a MIDSIZE Sedan, designed to be a fuel cell vehicle, and should be used to set the EER. 	2.2	EER of FCV should be 3.0 FCX Clarity Unadjusted Combined Fuel Economy = 85.8mpkg=87.9mpgge Midsize sedan 2010 CAFÉ average Unadjusted combined fuel economy = 29.0mpg. 87.9/29.0=3.03	
Electric Vehicle Energy Economy Ratio	The Draft Regulation for the California Low Carbon Fuel Standard http://www.arb.c a.gov/fuels/lcfs/1 01008lcfsreg_dr aft.pdf Appendix A3 p40	 The EER of EVs is too high. 1) It is based on very small, limited utility vehicles (2 seat, short range, no trunk space, etc) 2) The fuel economy listed is unadjusted UDDS, or even press release material, not EPA tested values. 3) The fuel economy figures cited for some of the vehicles do not include charger efficiency, which is typically about 85%. 	4.1	EER of EV should be 3.5 Include the charger efficiency of 85%. 4.07*85%=3.5. US DOE GREET uses 3.5. CEC(2007) uses 3.6. RAV4 EV compared to RAV4 Gasoline version = 3.5	

Other General Comments

- ARB needs to reconsider the reports that were done with the greet1.7ca_v98 model.
 - Any report that uses California Average Mix grid electricity will be incorrect
- ARB should post an as-modified, documented GREET model for each of the reports. Every report lists several modifications to the base model. It is almost impossible to independently check the report or the accuracy of the model.
- All changes to GREET should be documented and explained.
- We only reviewed a few reports, and not as thoroughly as possible. All LCFS reports and GREET modifications should be independently verified and agreed to by another agency (UCDavis, UCBerkely, etc) before becoming the basis for policy decisions.
- ARB should a do a Compressed Hydrogen report.
 - The assumption of liquid hydrogen delivery is inconsistent with the expected predominant methods of hydrogen delivery in the near, mid, and long term.
 - Delivery of compressed hydrogen to vehicles from on-site SMR (such as Burbank), on-site SMR from Renewable Bio-Methane (Fountain Valley), on-site Electrolysis from Renewables (Shell West Los Angeles, CSULA, SMUD, AQMD), etc will form the majority of delivered hydrogen in the future.
- When considering an EER table, consistency in reference data is very important
 - GREET uses midsize vehicle as a base
 - Make sure the source and nature of the fuel economy data is explicitly known and directly comparable
 - Ie) unadjusted hot UDDS, unadjusted combined, etc. Make sure the test mode is known
 - Unadjusted combined is best for comparison
 - Do not use press release or otherwise unverified data
 - Make sure the EV fuel economy data is the plug-to-wheels fuel economy
 - Chargers are approximately 85% efficient.
 - Some EVs also have large charging losses due to battery cooling and conditioning during charging, and this needs to be captured in the plug-to-wheels efficiency.
 - Use the harmonic average rather than an arithmetic average to calculate fuel economy with appropriate city/highway ratios (55% of driving city, 45% highway).

LCFS Electricity Report Error

California Environmental Protection Agency

Detailed California-Modified GREET Pathway for California Average Electricity

Stationary Source Division Release Date: April 16, 2008 Version 1.0

http://www.arb.ca.gov/fuels/lcfs/042308lcfs_elec.pdf

LCFS Electricity Report Error

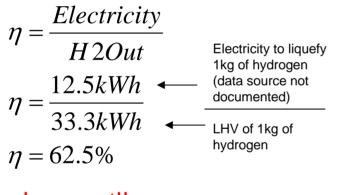
- The greet1.7ca_v98 contains an undocumented change to the heating value of coal in the Fuel_Specs sheet.
 - Electricity CO2 result is much higher on the greet1.7ca_v98 model than the ca_greet1.8b model.
 - This change would impact all fuel pathways that use California Average Electricity and the ca_greet1.7v98, so those reports should be corrected.

	greet1.7ca_v98	ca_greet1.8b	Greet1.8 Default
Coal Heating Value	15,421,670 BTU/ton (This is wrong!)	19,546,300 BTU/ton	19,546,300 BTU/ton
Electricity gCO2e/kWh (at the plug)	592g/kWh using ARB Mix in CA	464g/kWh using ARB Mix in CA	CA-453g/kWh US-776g/kWh

 This would result in corrected California Average Electricity of 128.8g/MJ

LCFS Liquid Hydrogen Report Error

California Environmental Protection Agency
Detailed GREET Pathway for Liquid Hydrogen from North American Natural Gas
Stationary Source Division Release Date: July 18, 2008 Version 1.0
DRAFT


Based on report from: http://www.arb.ca.gov/fuels/lcfs/072908lcfs_hydrogen.pdf

LCFS Liquid Hydrogen Report Error

- The Liquid Hydrogen Report to determine the carbon content of liquid hydrogen contains an error:
 - The efficiency of hydrogen liquefaction is incorrectly calculated, resulting in extremely high calculated electricity use.
 - The source of the liquefaction energy data (12.5kWh/kg) is not documented.

Definition of Liquefaction Efficiency (Used in CA_GREET1.7v98Model Fuel_Prod_TS Sheet)

Definition of Liquefaction Efficiency (Used by GREET)

$$\eta = \frac{EnergyOut}{EnergyIn} = \frac{H2Out}{H2In + Electricity}$$
$$\eta = \frac{33.3kWh}{33.3kWh + 12.5kWh}$$
$$\eta = 72.7\%$$

Incorrect!!

- If the calculation error is corrected and no other changes made, the CO2 content of liquid hydrogen changes from 153.1gCO2e/MJ to 129.2gCO2e/MJ, and the total WTW energy use changes drastically!
- 72.7% is better than GREET default, but ARB should also request data from industry.

See General Comments - why is the focus on liquid hydrogen delivery, when this is not the goal of the industry?

Vehicle EERs

FCV EER – 2008 FCX Clarity

2008 FCX Clarity Fuel Economy	Miles per kg of hydrogen			Miles per gasoline gallon equivalent		
Results as Tested By EPA	City	Hwy	Combined	City	Hwy	Combined
Unadjusted (Raw test data)	86.1	85.4	85.8	88.2	87.5	87.9
Adjusted (0.78xHWY, 0.9xCity)	77.49	66.6	72.2	79.4	68.3	74.0
Label Value	77	67	72	79	68	74

EPA uses 1gge=1.0245kg Hydrogen

- FCX Clarity is the only **midsize** FCV tested by EPA.
- Average **midsize** car Unadjusted CAFÉ fuel economy is about 29.0miles/gallon.
- UNADJUSTED fuel economy is 88.2miles/gge city 87.5 miles/gge hwy = 87.9 miles/gge combined.
- EER of FCV should be 87.9/29.0 = 3.03
- Previous FCVs should not be used to calculate EERs because
 - a) these are very immature relative to today's vehicles
 - Technology was expected to improve greatly from 2003-2005 levels.
 - b) there will be none of these vehicles on the ground in 2010

BR1143-47863				
Compare Cars Mileage Tips	Prices Will Vary	Important? MPG	Alt Fuels, Etc. Incentive	
U.S. Department of Energy	Print the Fuel Econor	my Guide U.S. E	nvironmental Protection Agency	
Hybrid Vehicles	Fuel Cell Vehicles 2008 Honda FCX Clarity 2009 Toyota FCHV-adv			
Diesel Vehicles & Fuels		CIED	PHOTO NOT	
Flex-Fuel Vehicles		-	AVAILABLE	
Alternative Fuels				
Energy Requirements	Fuel Economy			
Energy Requirements	City (miles/kg) ¹	77	TBD	
Energy Efficient	Highway (miles/kg) ¹	67	TBD	
Technologies	Range	280	TBD	
Electric Vehicles	relicio Characteri, tics ¹			
	Vehicle Class	Midsize Car	Sport Utility Vehicle	
Evel Cell Veldeler	Fuel Type	Hydrogen	Hydrogen	
Fuel Cell Vehicles	Motor	DC Brushless 100kW ¹	AC Induction 90kW ¹	
Current Models	Type of Fuel Cell F	roton Exchange Membran	e Proton Exchange Membrane	
Benefits	Energy Storage Device	288V Lithium Ion ¹	274 V Ni-MH ¹	
How They Work	Availability ²	Southern California	TBD	
News & Info	¹ kW - kilowatts; V - Volts; kg ·	· kilogram		
Challenges				
Fuel Cell Links	² The Honda FCX Clarity will be leased to private individuals in select Southern California areas.			
	Honda's FCX Web Site			

http://www.fueleconomy.gov/feg/fcv_sbs.shtml

EV EER - 2002 RAV4 EV

- 2002 Toyota RAV4 EV is similar in size and weight to a • midsize car, and was produced in similar gasoline and EV versions.
- Rav4 EV
 - Unadjusted City FE=125miles/gge
 - Unadjusted Hwy FE=100miles/gge
 - Unadjusted Combined FE=112miles/gge
 - This includes the charging loss. EPA runs the vehicle until the battery is empty, and then charges the battery and measures the amount of electricity.
- Rav4 Gasoline (estimates based on adjusted values)
 - Unadjusted_City_FE=25mpg/0.9=27.8mpg
 - Unadjusted_Hwy_FE=31mpg/0.78=39.7mpg
 - Unadjusted Combined FE=32.1mpg
 - This is higher than the CAFÉ 28.5mpg vehicle, but both the RAV4 EV and RAV4 Gasoline versions are lower weight as well.
- EER of EV should be $112/32.1=3.49 \rightarrow 3.5$.
- Also if the charging efficiency is included in the ARB • calculations, 4.07x85%=3.5

www.fueleconomv.gov

http://www.fueleconomy.gov/feg/calculatorSelectEngine.jsp?year=2002&make=Toyota&model=RAV4 EV

Note on Combined Fuel Economy Calculations and FuelEconomy.gov

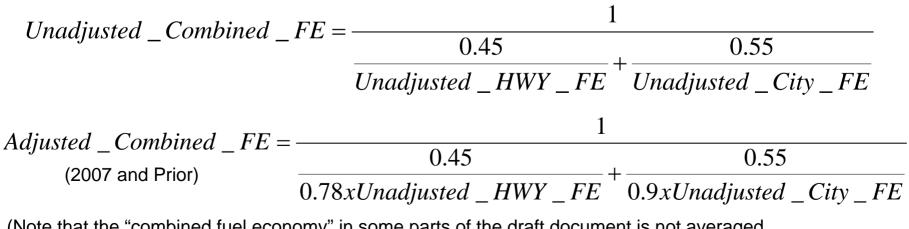
www.fueleconomy.gov

• The fueleconomy.gov data cannot be compared directly between different vehicles and different model years without some correction. The figures are listed using different adjustment factors.

Model Year	EV	FCV	Gasoline Vehicle
2007 and Before	Unadjusted Unadjusted City Unadjusted HWY	Adjusted 0.9xUnadjusted City 0.78xUnadjusted HWY	Adjusted 0.9xUnadjusted City 0.78xUnadjusted HWY
2008	(none listed)	Adjusted 0.9xUnadjusted City 0.78xUnadjusted HWY	5 Mode Adjusted 5 Modes Or MPG based equation
2009	(none listed) (EPA, SAE and CARB are considering what to do)	EPA is considering now.	5 Mode Adjusted 5 Modes Or MPG based equation

Fuel Economy Figures Given on fueleconomy.gov are:

Fuel economy figures are only directly comparable when using the same test modes and adjustment metrics! Otherwise we are comparing apples, oranges, and bananas!



Note on Fuel Economy Calculations

For 2007 and prior model years, the values quoted on the fueleconomy.gov site for gasoline vehicles and fuel cell vehicles are "adjusted" values, whereas the numbers for EVs are "unadjusted." The adjustment is:

Adjusted_City_FE=0.9 x Unadjusted_City_FE Adjusted_Hwy_FE=0.78 x Unadjusted_HWY_FE

To make an unadjusted, combined fuel economy number, take the city and highway raw fuel economy scores and **average harmonically**:

(Note that the "combined fuel economy" in some parts of the draft document is not averaged harmonically (such as the CNG vehicle fuel economy).