Transport Refrigerators Technology Assessment

September 3, 2014 Sacramento, California

California Environmental Protection Agency

Overview

- Background
- Key Performance Parameters/Development Goals
- Technologies Evaluated
 - Costs / Economics
 - Deployment Challenges
- Conclusions and Recommended Next Steps
- Contacts

Background

>>> Definition, Population, Manufacturers

What is a TRU Genset?

Hapag-Lloyd

TRU Background

Operational Characterization – TRUs
 Powered by integral diesel engine (8 to 38 hp)
 Capable of cooling or heating
 Programmable for continuous or start-stop

Fleet Characterization

Private Carriers (groceries, foodservice)

- Short-haul
- Regional

Commercial Carriers (truckload, LTL)

- Regional
- Long-haul
- Leasing/Rental

TRU Background

Multi-Temp, Multi-Compartment Refrigerated Trailer

Single-Temp, Single-Compartment Refrigerated Trailer

California TRU Population

Manufacturers

TRU Manufacturers

- Carrier Transicold (~50% market share)
- □ Thermo King (~50%)
- □ Kingtec (<1%)
- Zanotti (<1%)</p>

TRU Genset Manufacturers

- Carrier Transicold (unknown market shares)
- Thermo King
- Hewitt Equipment
- MEC

Key Performance Parameters

>>> Development Goals

Key Performance Parameters

Duty cycle

- Noise
- Durability/Reliability
- Range
- Payload Impacts
- Fuel Infrastructure
- Cost/ROI
- Safety

Technologies Evaluated

>>> H R 4

How They Work, Technology Readiness, Cost/Economics, Advantages, Key Performance Parameters Issues and Deployment Challenges for Each

Green Technologies Evaluated

- All-Electric Plug-In/Battery Transport Refrigerators
 - Used historically (plug-in without batteries) as refrigerated trailer cold storage at distribution centers and grocery stores
 - Cold plate temperature control extends range
- Hydrogen Fuel Cell Power electric power for:
 - □ All–Electric Transport Refrigerators
 - Refrigerated Shipping Containers
- All-Electric Battery/Plug-In/Solar Transport Refrigerators

Green Technologies Evaluated (cont'd)

- Cryogenic Temperature Control (Liquid N₂, CO₂)
- Alternative-Fueled Engine Transport Refrigerators
 - Compressed Natural Gas (CNG)
 - Liquefied Natural Gas (LNG)
 - Liquefied Petroleum Gas (LPG)
- Advanced Power Plants
 - HCCI/PCCI
- Tier IV+ New Off-Road CI Engine Emissions Standards for <25 hp categories</p>

All-Electric Plug-In/Batteries

How Does It Work?

All-Electric TRs

- All-Electric Transport Refrigerator
 - OEM All-Electric Models
 - Diesel TRU Conversions to All-Electric
- Electric Power Plug Infrastructure at DC
 - Stationary cold storage
 - Charge batteries
 - □ Freeze eutectic cold plates for on-road operation
- On-Road Operation powered by vehicle alternator, batteries/inverter

Electric Power Plug Infrastructure

Parking Space Plugs Loading Dock Plugs THIRD DURING THE PARTY OF THE P

Batteries

Absorbed Glass Mat Deep Cycle Batteries

- Lead-Acid
- Heavier
- Lower cost

Advanced Batteries

- Lithium-Ion
- Higher energy density (lighter/smaller)
- Higher cost
 (but coming down fast)

Eutectic Cold Plates

- Sheet metal shell
- Refrigerator evaporator coil inside shell
- Filled with eutectic salt solution/gel
- Sized around van size & intended cargo
- Mounted in cargo area
- Refrigerator freezes eutectic solution/gel
- Electric fans blow air across plates to absorb heat load

Evaporator coil connections

18

All-Electric TRs

Technology Readiness

All-Electric Truck Refrigerators commercially available

□ Manufacturers: Thermo King (model B-100)

Capable of stationary (plug-in) and on-road operation (vehicle alternator and batteries)

All-Electric Trailer Refrigerators – commercially available

- Carrier Transicold (Vector 8100), Electric Reefer Solutions (conversions)
- Capable of stationary operation (plug-in)
- On-road operation (umbilical power from tractor in design/demonstration phase)

Technology Readiness (cont'd)

Cold Plates – commercially available

- In use for over 20 years, unknown number in use in CA (less than 1%)
- Manufacturers: Dole Refrigerating Co. (USA), many foreign companies
- Numerous suppliers: Johnson Truck Bodies, Kidron/Hackney, others

Advanced Batteries – commercially available

- Recent rapid technology advances due to electric vehicle, consumer electronics, power tool, medical, and defense markets
- Longer life, greater energy density, reduced weight
- Higher cost (coming down fast)

- >99% made with lithium ion (Li-ion) chemistry
- Use in demonstration in transport refrigeration in planning phase

Economics – Truck

Conventional <u>truck</u> TRU costs

- □ Capital cost: \$12,000 to \$18,000
- □ Fuel Cost: ~\$3,744/yr at 0.6 gal/hr, 1560 hr/yr, \$4/gal
- □ Maintenance: ~\$1,650 per year at \$0.90/hr, 1560 hr/yr

Technology Costs

Capital Costs: Depends on customer application

- OEM all-electric models: Unknown
- Conversions: ~\$6,000 more (installed, with AGM batteries)
- □ Fuel Cost for Generator Load: ~\$624
- □ Maintenance: ~\$390 per year
- Electric plug infrastructure: Unknown

Savings

Operating Cost savings: ~\$4,380/yr

Economics – Trailer

Conventional <u>trailer</u> TRU costs

- □ Capital cost: \$20,000 to \$30,000
- □ Fuel cost: \$6,400/yr at 0.8 gal/hr, 2,000 hr/yr, \$4/gal
- □ Maintenance: ~\$1,700 per year at \$0.85/hr, 2000 hr/yr

Technology Costs

- Capital Costs: Depends on customer application
 - OEM all-electric models: Unknown
 - Unit Conversions: \$10,000 \$13,000
 - Advanced batteries: \$500 per kW-hr
- □ Maintenance: ~\$390/yr
- Electric plug infrastructure:
 - ~\$6,000 per loading dock space
 - ~\$7,200 per parking area pedestal

Savings

- □ Fuel/energy: ~40% to 70% reduction
- Maintenance: ~\$1,300/yr

All-Electric TRs Technology Advantages

- Quiet Operation
- ✤ Fewer Moving Parts → Reduced Repair, Maintenance, and Downtime
- Zero Tail Pipe Emissions
 - Zero GHG
 - Zero criteria pollutants

Key Performance Parameter Issues & Deployment Challenges

- Range Limited to return-to-base fleets
- Electric Power Infrastructure Costs
- Charge Time (batteries and/or cold plates)
- Cargo Space Impacts (cold plates/fans)
- Cargo Weight Impacts (cold plates and/or batteries)
- ROI/Payback More data needed
- Safety Procedures (high voltage power plugs)
- All-Electric Trailer Refrigerator Needs System Integration for On-Road Operation

Transport Refrigerators

Hydrogen Fuel Cell-Power

How Does it Work?

Hydrogen fuel cell stack

Balance of plant components

- Radiators, fans, filters
- □Air compressor, intercooler, humidifier
- DC/AC Inverter
- DC/DC converters
- Hydrogen storage tank for full day operation

All-electric transport refrigerator

Hydrogen Fuel Cell TRs Nuvera Fuel Cell System for Trailer

Hydrogen Fuel Cell TRs

Technology Readiness

Pilot Demonstration Phase

Pacific Northwest National Laboratory – FC Power Units for All-Electric Trailer Refrigeration

Nuvera Fuel Cells – Fuel cell system & on-site hydrogen reformer Thermo King – Refrigeration system Sysco Foodservices – Riverside, CA & HEB Grocery, San Antonio, TX Report due mid-2015

Plug Power – Fuel cell system

Carrier Transicold

Sysco Foodservices - Long Island, NY

Air Products (hydrogen produced off-site, supplied via tube trailer) Report due mid-2015

Sandia National Laboratories – Containerized Portable FC Gensets for Multiple Refrigerated Shipping Containers

Hydrogenics Corp. – Fuel cell system Young Bros./Foss Maritime Co. – Port of Honolulu Hydrogen supply – TBD Report due mid–2015

Economics

- Costs will be clearer when demonstrations are completed
 - Capital cost
 - Per unit unknown
 - Fueling infrastructure (additional) unknown
 - Federal investment tax credit (30%) available until 2016
 - Maintenance unknown, less than diesel TRU
- Savings
 - □ Fuel consumption 2X more efficient than diesel engine
 - Maintenance expected to be less than diesel engine

Return on Investment

Payback period – unknown

Technology Advantages

- Quiet Operation
- ✤ Fewer Moving Parts → Reduced Repair, Maintenance, and Downtime
- Zero Tail Pipe Emissions
 - Zero GHG
 - Zero criteria pollutants

Key Performance Parameter Issues & Deployment Challenges

- Limited to return-to-base fleets until broader hydrogen fueling infrastructure available
- Cost/ROI/Payback unknown until demonstrations completed
- Need second generation design demonstrations
- Need funding for large-scale distribution center demonstration
- Need infrastructure development along major transportation corridors to support regional and long-haul deployment

Transport Refrigerators

All-Electric/Battery/Plug-In/Solar

How Does it Work?

- Solar panels cover van roof
- Solar charge controller
- On-Board battery system (AGM)
- DC to AC Inverter
- High efficiency all-electric transport refrigerator

High thermal efficiency van construction

Technology Readiness

Pilot Demonstration Phase

Pilot demonstrations completed in UK

University of Southampton/Sainsbury Groceries

□ Three units tested (1997–2000)

- Next generation demonstration in the U.S.
 - Currently in planning phase
 - Need system integration and optimization with updated higher efficiency components

Economics

Conventional trailer TRU costs

- Capital cost: \$20,000 to \$30,000
- Fuel cost: \$6,400/yr at 0.8 gal/hr, 2,000 hr/yr, \$4/gal
- Maintenance: \$1,700/yr at \$0.85/hr, 2,000 hr/yr

All-electric, solar costs

- Capital cost: ~\$50,000 (UK demonstration included high-efficiency refrigerator and van insulation, batteries)
- Electric power infrastructure (battery charger) unknown
- □ Energy cost: ~\$1,000-\$1,200/yr
- Maintenance: ~\$400/year (UK demonstration)

Savings

- Fuel energy savings: ~\$5,300/yr
- Maintenance: ~\$1,300 per year

Technology Advantages

Quiet Operation

- ✤ Fewer Moving Parts → Reduced Repair, Maintenance, and Downtime
- Zero Tail Pipe Emissions
 - Zero GHG
 - Zero criteria pollutants

All-Electric/Solar TRs

Key Performance Parameters & Deployment Challenges

- Range: Limited to return-to-base fleets
- High capital costs
- Electric power plug infrastructure costs
- Cargo space impacts (thicker van insulation)
- Cargo weight impacts (added insulation, batteries and PV panels may not be offset by engine removal)
- Needs high-efficiency refrigerator and high thermal efficiency van construction (insulation)
- Long payback period expected

Transport Refrigerators

Cryogenic Temperature Control

How Does it Work?

Cryogenic Fluid Cooling

- \Box Usually liquid N₂ (R-728) or CO₂ (R-744)
- Vents to atmosphere
- Direct injection into cargo space, or
- Indirect cooling via heat exchanger
- Components
 - Sprayers (direct) or heat exchangers (indirect)
 - Eans circulate air
 - Cryogen tank (330 to 1100 liters)
 - Controls & flow regulators

Cryogenic TRs Direct Verses Indirect Systems

Direct cryogenic refrigeration with liquid nitrogen sprayer

Cryogenic TRs

Technology Readiness

Widely Available in Europe Over 2,000 units in use from 5 manufacturers Pilot Demonstrations in US In–N–Out Burger tested indirect system (1999 to 2000 SCAQMD funded study) Sysco Foods-Texas tested indirect system (2000) Safeway-Northern California tested both indirect and direct systems (early 2000's) - still operating Produce and frozen dairy fleets in Utah demonstrated indirect system (2013 to 2014) - test phase in-progress Manufacturers: Air Liquide (Blueeze), Reflect Scientific (Cryometrix), ecoFridge (natureFridge), Linde (Frostcruise), Thermo King (CryoTech)

Economics

Conventional Trailer TRU Costs

- □ Capital cost: ~\$20,000 to \$33,000
- Fuel cost: \$6,400/yr at 0.8 gal/hr, 2,000 hr/yr, \$4/gal
- □ Maintenance: ~\$1,700 per year at \$0.85/hr, 2,000 hr/yr

Technology Costs

- Capital cost: \$15,000 to \$35,000 per unit
- □ Fuel infrastructure cost: \$1,500/mo (single station lease)
- Fuel cost (cryogenic fluid): \$3,840 to \$14,400/yr at 24 to 40 liters/hour, 1,600 to 2400 hours/year, and \$0.10-\$0.15/liter
- □ Maintenance: ~\$100/yr at \$0.05/hr, 2,000 hr/yr

Savings:

- Fuel: Depends on cryogenic fluid cost
- Maintenance: ~\$1,600/yr

Technology Advantages

- Very quiet operation
- Rapid cool downs
- Rapid temperature recovery after door openings
- Less product dehydration
- No high GWP refrigerant
- ✤ Fewer Moving Parts → Reduced Repair, Maintenance, and Downtime
- Minimized defrosting needs
- Reduced emissions (criteria and GHG)

Cryogenic TRs

Key Performance Parameter Issues & Deployment challenges

- Range: Limited to return to base operations
- Cost and availability of cryogenic fluid
- Cost of cryogenic "fuel" dispensing infrastructure
- Refueling of cryogenic fluid tanks takes longer than conventional refueling
- Need power source for fans
- Direct systems produce oxygen deficient atmosphere in the van (safety systems/procedures required)

Transport Refrigerators

Alternative-Fueled Engine

How Does it Work?

- Various configurations:
 - Dedicated fuel designs (spark-ignited)
 - Dual fuel pilot injection
 - After-market conversion kits

Alt-Fuel-Powered TRs Technology Readiness

Pilot Demonstration

LNG:

CR England – Truck tractor demonstration (end of 2014)

CNG:

□ Kohler Engines – truck TRU field demonstration (2015)

Kwik Trip – Negotiating with Thermo King & Carrier Transicold

North America Repower – Adapting from tractors to TRUs

LPG:

Lister Petter – Interested in TRU market

Economics

Capital cost – \$9,000 to \$15,000 for rebuild (includes fuel tank)

□ Fueling infrastructure – \$800,000 to \$1,845,000

Maintenance – Less soot and metal in lube oil

- Less frequent oil changes
- 30% to 40% longer engine life

Savings:

- □ Fuel consumption 20% to 35% lower
- Maintenance Expected to be less than diesel engine

Return on Investment:

Payback period – More data needed

Alt-Fuel-Powered TRs Natural Gas Fueling Stations

Publically Accessible Natural Gas Stations (Heavy Duty)

- CNG (490)
- LNG (57)

Alt-Fuel-Powered TRs

Technology Advantages

Reduced Emissions 20% to 35% Lower Fuel Cost Offset by 8% greater fuel consumption (diesel gallon equivalent basis) Quieter

- Meets Duty Cycle
- 30% to 40% Longer Engine Life

Alt-Fuel-Powered TRs

Key Performance Parameter Issues & Deployment Challenges

- Cost and space required for fuel tanks
- Range limited by on-board fuel tank size
- Cost of home-base fueling infrastructure
- Limited to return-to-base fleets
 - Fuel infrastructure on transportation corridors inadequate for long-haul
- Potential payload impact for dual-fuel systems
 - Requires two fuel tanks (weight)
- Not currently available for trailer transport refrigeration

Smaller engines available for trucks

Transport Refrigerators

Advanced Power Plants HCCI/PCCI

How Does it Work?

- Homogeneous charge compression ignition (HCCI): thermal auto ignition of a premixed air-fuel without flame propagation
- Aka Premixed charge compression Ignition (PCCI)
- Low combustion temperatures produce extremely low nitrogen oxides (NO_x) emissions
- Lean premixed combustion results in near zero particulate matter (PM) depending on the fuel used

HCCI/PCCI-Powered TRs

How It Works

fuel injector

Hot-Flame Region: NOx & Soot Conventional Diesel

Low-Temperature Combustion: Ultra-Low Emissions (<1900K)

HCCI/PCCI

HCCI/PCCI-Powered TRs

Not Homogenous

Colors represent imperfect fuel air mixture within HCCI event (homogenous would be single color)

Technology Readiness

Bench Phase

- Sandia National Labs
 - Fundamental modeling
- Lawrence Livermore National Labs
 - Conversion of single-cylinder engine to HCCI to develop controls for six-cylinder engine using CNG
- Lawrence Berkeley National Labs
 - Conversion of single cylinder diesel CI to diesel HCCI
 Demonstrate capability for the TRU application
 - Expected to begin Q4 of 2014
 - Results estimated for 2015

HCCI/PCCI-Powered TRs

Economics

Capital cost - unknown

Maintenance – unknown

Savings

Fuel consumption – More data needed; however, tests show greater efficiency with HCCI

Maintenance – unknown

Return on Investment

Payback period - unknownExpected to be similar to current engines

Key Performance Parameter Issues & Deployment Challenges

- Cold start HCCI requires heated air intake
- Instable with quick load changes
- Auto-ignition event controls needed
- Prone to knock
- High in-cylinder peak pressures
- High HC and CO emissions
- Bench and pilot demonstrations needed

Tier IV+ New Off-Road CI Engine Emissions Standards for <25 HP

- Current Tier 4 standards for PM do not meet TRU ATCM's Ultra-Low-Emission TRU In-Use Performance Standards (ULETRU)
- ARB research contract to evaluate feasibility, cost-effectiveness, and necessity of advanced PM and NO_x after-treatment
 Report due in 24 months
- Results important to TRU program
 Need near-zero criteria pollutant emissions for all TRU engine horsepower categories

Conclusions

Most Promising TR Technologies, Next Steps

Transport Refrigerators

Conclusion: Most Promising TR Technologies

Hydrogen fuel cell-powered refrigerator

All-Electric high-efficiency refrigerator and AC/DC alternator with power control unit, shore power plugs, and batteries

Cryogenic temperature control

Recommended Next Steps

Hydrogen Fuel Cell All-Electric Transport Refrigerators

Monitor ongoing field demonstrations
 Coordinate with US EPA/US DOE

All-Electric Transport Refrigerators

Encourage trailer system integration/demonstrations for on-road operations

Cryogenic Temperature Control

Monitor U.S. demonstrations in progress

Encourage infrastructure development and quick fill technologies

Encourage control systems and safety procedures

Contacts

- Truck Sector Lead:
 - Kim Heroy-Rogalski <u>kheroyro@arb.ca.gov</u>
- Transport Refrigerator Team:
 - Rich Boyd <u>rboyd@arb.ca.gov</u>
 - Rod Hill <u>rhill@arb.ca.gov</u>
 - Renee Coad <u>rcoad@arb.ca.gov</u>
 - Carolyn Craig <u>ccraig@arb.ca.gov</u>
 - Ziv Lang <u>zlang@arb.ca.gov</u>
 - Chris Popovich <u>cpopovic@arb.ca.gov</u>
 - Submit comments by Oct. 1 to: <u>http://www.arb.ca.gov/msprog/tech/comments.htm</u>