Polycyclic Aromatic Hydrocarbons (PAHs): Sources of Ambient Quinones and Identification
and Atmospheric Reactions of Polar Products of Selected Aromatic Hydrocarbons

This page finalized August 9, 2007.

Chair’s Air Pollution Seminar

     

Thursday, September 6, 2007
1:30 p.m. - 3:30 p.m.
Coastal Hearing Room, Second Floor
1001 I Street, Sacramento

This event is being Webcast, click here to view
Webcast viewers: Please send your questions during broadcast to: coastalrm@calepa.ca.gov
Presentation is available at this link

     

 Polycyclic Aromatic Hydrocarbons (PAHs):
Sources of Ambient Quinones
and
Identification and Atmospheric Reactions of Polar Products
of Selected Aromatic Hydrocarbons

     

Janet Arey, Ph.D., and Roger Atkinson, Ph.D.

Air Pollution Research Center
University of California Riverside

     

It has been hypothesized that much of the high morbidity and mortality associated with fine particulate matter is due to quinones, such as 9,10-phenanthrenequinone, which have the ability to form reactive oxygen species (ROS) and cause oxidative stress. During this experimental program, we used the facilities and expertise available at the Air Pollution Research Center, University of California, Riverside, to investigate atmospheric reactions of alkylnaphthalenes and phenanthrene and to assess their potential to contribute to the ambient PAH-quinone burden.

Based on our measured yields, calculations suggest that daytime OH radical-initiated and nighttime NO3 radical-initiated reactions of gas-phase phenanthrene will be significant sources of 9,10-phenanthrene-quinone in ambient atmospheres. In contrast, the ozone reaction with phenanthrene is unlikely to contribute significantly to ambient 9,10-phenanthrenequinone. The high yield (>30%) of 9,10-phenanthrenequinone from the NO3 radical-initiated reaction implies the potential for high concentrations of this quionone to be formed in areas where nighttime NO3 radical chemistry is important, such as Southern California.Hydroxyl radical-initiated reactions of naphthalene, naphthalene-d8, 1- and 2-methylnaphthalene (1- and 2-MN), 1- and 2-ethylnaphthalene (1- and 2-EN) and the 10 isomeric dimethylnaphthalenes (DMNs) were conducted in a large volume Teflon chamber with analysis by atmospheric pressure ionization - mass spectrometry (API-MS).

Quinone products were very minor, but the major products were ring-opened dicarbonyls that are 32 mass units higher in molecular weight than the parent compound, one or more ring-opened dicarbonyls of lower molecular weight resulting from loss of two -carbons and associated alkyl groups, and ring-containing compounds that may be epoxides. The isomer-specific identifications and, importantly, the genotoxicity of these novel oxygenated species should be determined as well as their presence in ambient atmospheres. Gas-phase NO3 radical-initiated reactions of naphthalene, the MNs, ENs and DMNs were conducted, and for the first time, the dimethylnitronaphthalene and ethylnitronaphthalene isomers formed were identified and their yields measured.

Radical-initiated reactions of a mixture of ENs/DMNs proportioned to mimic ambient concentrations gave profiles of the ENNs and DMNNs expected to be formed from OH and NO3 radical-initiated reactions. Comparing these ENN/DMNN profiles with those from ambient samples collected in Mexico City, Mexico, Riverside, and Redlands, California, it is apparent that the nitro-PAH formation in Mexico City was dominated by OH radical reaction, while the ENN/DMNN profiles from Southern California could only be explained by the occurrence of nighttime NO3 radical chemistry. This research suggests that nighttime NO3 chemistry can be a significant source of toxic nitro-PAHs and PAH-quinones in ambient atmospheres.

----- o -----

During this experimental program, we have used the facilities and expertise available at the Air Pollution Research Center, University of California, Riverside, to investigate the atmospheric chemistry of selected aromatic hydrocarbons found in California's atmosphere. Experiments were carried out in large volume (5800 to 7500 liter) chambers with analysis of reactants and products by gas chromatography (with flame ionization and mass spectrometric detection) and in situ Fourier transform infrared spectroscopy. The gas chromatographic analyses included the use of Solid Phase MicroExtraction (SPME) fibers coated with derivatizing agent for on-fiber derivatization of carbonyl-containing compounds, with subsequent gas chromatographic (GC) analyses of the carbonyl-containing compounds as their oximes. This technique was especially useful for the identification and quantification of 1,2-dicarbonyls and unsaturated 1,4-dicarbonyls, some of which are not commercially available and most of which and do not elute from gas chromatographic columns without prior derivatization.

We showed that the OH radical-initiated reaction of 3-methyl-2-butenal in the presence of NO is a good in situ source of gaseous glyoxal which can be routinely used for calibration of the SPME fiber sampling for the quantitative analysis of glyoxal from other reaction systems (and this reaction is now being used by other research groups for that purpose). We have observed the formation of a series of 1,2-dicarbonyls and unsaturated 1,4-dicarbonyls from the OH radical-initiated reactions of toluene, o-, m- and p-xylene and 1,2,3-, 1,2,4- and 1,3,5,-trimethylbenzene. The observation of these products as their di-oximes shows that they are indeed present in their dicarbonyl form and not as isomeric furanones.

The second major task involved investigation of the dependence of the formation yields of selected products of the OH radical-initiated reactions of toluene, naphthalene and biphenyl as a function of the NOx concentration; specifically, formation of glyoxal from naphthalene and formation of 3-nitrotoluene, 1- and 2-nitronpahthalene and 3-nitrobiphenyl from toluene, naphthalene and biphenyl, respectively. We measured the formation yields of glyoxal from the reaction of OH radicals with naphthalene as a function of the initial NOx concentration, using the photolysis of methyl nitrite in air to generate OH radicals in the presence of NOx and the dark reaction of O3 with 2-methyl-2-butene to generate OH radicals in the absence of NOx. We showed that glyoxal is a first-generation product, with no obvious evidence for a change in the glyoxal formation yield with initial NOx concentration over the range <0.1-5 ppmv.

A more direct investigation of the effect of NOx on product formation was initiated by studying the formation of 3-nitrotoluene, 1- and 2-nitronaphthalene and 3-nitrobiphenyl from the OH radical-initiated reactions of toluene, naphthalene and biphenyl, respectively. Analytical methods and procedures were developed to analyze for these nitro-aromatics at the low concentrations expected to be formed from these reactions, and the procedures developed were used to study formation of 3-nitrotoluene from the toluene reaction. Our results are in excellent agreement with laboratory kinetic data concerning the functional form of the dependence of the 3-nitrotoluene formation yield on NOx concentration over the range 0.02-10 ppmv, showing that we have a quantitative understanding of the reactions involved in 3-nitrotoluene formation.

     
Janet Arey, Ph.D., has been at the Air Pollution Research Center at the University of California, Riverside since 1982 and has been a faculty member in the Department of Environmental Sciences and the Interdepartmental Graduate Program in Environmental Toxicology at UCR since 1990. Dr. Arey is the author or co-author of over 150 publications dealing with the atmospheric chemistry of organic compounds.

Roger Atkinson, Ph.D., is a Research Chemist at the Air Pollution Research Center and a Professor in the Department of Environmental Sciences and the Department of Chemistry at UCR . Dr. Atkinson is the author or co-author of over 300 technical publications dealing with the atmospheric chemistry of volatile organic compounds.

For more information on this Seminar please contact:
Ralph Propper at (916) 323-1535 or send email to:
rpropper@arb.ca.gov

     

For a complete listing of the ARB Chairman's Series and the related documentation for each one of the series please check this page

 Note: for a print friendly version of this page please click on the "Print Friendly" option at the very top of this page.

     
 

Main Seminar Series Page

 
 

Research Activities

 
     

preload