California’s GHG Emissions Budget: Measurements, Inverse Modeling, and Carbon Isotopes
This page updated April 6, 2011
ARB Research Seminars
Wednesday, April 6,
2011
3:00 pm - 4:30 pm, PST
Sierra Hearing Room, Second Floor
1001 I Street, Sacramento
Webcast is Cancelled for this Seminar
California’s
GHG Emissions Budget:
Measurements, Inverse Modeling, and Carbon Isotope
Parts I & II
Marc L. Fischer, Ph.D.
Lawrence Berkeley National Laboratory
and
Sally Newman, Ph.D.
California Institute of Technology
A sustainable global environmental future will require mutually agreed
upon, verifiable commitments to reducing anthropogenic greenhouse gas
(GHG) emissions to the atmosphere. Supporting a vision for verified
emissions reductions in California, we are collaborating with CARB and
other institutions to quantify net GHG emissions at local to regional
scales. The work is directly relevant to current GHG scoping plan
measures including the Low Carbon Fuel Standard, Landfill Methane
Controls, Sulfur Hexafluoride Emissions Reductions, High Global Warming
Potential Management, among others. The spatial distribution and
temporal variations in emissions are estimated using a combination of
atmospheric measurements and inverse model optimizations that quantify
emissions by balancing information in the measurements against
information supplied by atmospheric transport simulations, each
weighted by their respective uncertainties. In collaboration with
university, state, and federal partners, multi-species measurements are
being made over California from tower networks, aircraft campaigns, and
satellite platforms. GHG transport simulations are computed using
high-resolution data-driven a priori GHG emission maps and a carefully
evaluated model for atmospheric transport.
In this talk we describe several examples of the multi-species
approach. With current support from the California Energy
Commission and in collaboration with the National Oceanic and
Atmospheric Administration (NOAA), GHG measurements are made at a
tall-tower in the Central Valley near Walnut Grove, California. The
measurements include all major GHG species (CO2, CH4,
N2O, and industrial gases with high global warming potential
[HGWP]), selected isotopes (e.g., 13CO2, 14CO2,
13CH4), and combustion and transport
tracers (e.g., CO, VOCs, and 222Rn). Specific to methane, we are
conducting a collaborative analysis with CARB using data from a CARB
network of CH4 measurements in the Central Valley. Initial results
suggest that the ratio of actual-to-inventory CH4
emissions varies by region from 1 to 2 with typical statistical
uncertainties of 10-20% (1 sigma) in several well-sampled regions.
Specific to N2O, a spatially limited
data set from Walnut Grove suggests N2O emissions are
significantly higher (factor of 3 +/- 1 ) than inventory estimates. In
collaboration with NOAA and Lawrence Livermore National Laboratory, a
combination of periodic radiocarbon 14CO2 and continuous CO2,
and CO measurements suggest it may be possible to track fossil fuel
derived CO2 to distinguish biospheric
and fossil CO2 exchange. In an initial application of this
technique, we find approximate agreement between inventory estimates of
fossil fuel CO2 emissions from
Sacramento and those inferred from atmospheric measurements. Specific
the HGWP gases, an initial analysis of selected industrial GHGs (e.g.,
SF6 and halo carbons) show high correlations with CO,
suggesting it may also be possible to quantify their emissions.
Taken together, this body of work shows the potential for comprehensive
regional GHG emissions measurements for mixed rural and urban areas in
California. Potentially valuable future collaborative work in other
areas will also be discussed.
Since over 50% of people now live in cities, which are known to have
elevated concentrations of CO2 in
their atmospheres (urban CO2 dome
effects), it is important to understand the systematics of temporal and
spatial variations of urban CO2
concentrations and sources. Our 12 year on-going time series for CO2,
including its stable isotopes (and 14CO2
for the last 4 years), on the Caltech campus in Pasadena addresses this
need by providing information about temporal variability over many time
scales, from interannual through seasonal and weekly to diurnal.
Cycles observed include annual and semi-annual periods reflecting
biospheric processes and a strong weekly period that can only reflect
anthropogenic activities. Combining the CO2
mixing ratio data (both flask samples collected mid-afternoon and
continuous measurements) with the isotopes and other components such as
CO gives compelling evidence regarding the emissions of locally emitted
CO2, both magnitude and allocation to
different sources. 13C compositions give information regarding
sources, specifically distinguishing between natural gas and petroleum,
whereas the combined total CO2 and
14C record documents temporal variations in biogenic, including
biofuels, versus all fossil fuel sources. 14CO2
is absent from fossil fuel emissions and therefore the amount of this
present in air is a measure of the relative proportion of modern and
ancient sources. Indeed, the 14C content of the CO2
can be useful for monitoring emissions of ethanol-rich gasoline
specified through the Low Carbon Fuel Program. We have used the
Keeling plot method for 13C vs 1/CO2
of flask samples to confirm that the inventories of fossil fuels burned
in 1972–1973 and 2002–2003, according to State records, are
consistent with 13CO2 compositions
during each time period, taking into account the changing ratios of
natural gas:petroleum burned and the countries of origin of the
petroleum. Little biogenic CO2
(<20%) can be included in the mid-afternoon local emissions
inventory. CO/CO2 ratios (CO
from the University of Houston) and 14CO2
values from the CalNex-LA campaign of 15 May – 15 June, 2010, indicate
that this conclusion is still valid. However, the fraction of
locally added CO2 varies from 50% in
the very early morning to 100% mid-day, according to analysis of
continuous measurements of CO/CO2
during this time period. It is important to initiate on-going,
continuous, high-precision CO measurements in Pasadena in order to
monitor the significant diurnal variations in the sources of CO2
emissions and understand how these vary on longer time scales.
In order to start to understand the spatial variations of the CO2
urban dome in the Los Angeles basin, we initiated flask sampling on
Palos Verdes peninsula in 2009 and continuous monitoring of CO2
mixing ratios in 2010. Since this site overlooks the ocean and
experiences a dominant sea breeze it should dominantly sample the
marine boundary layer air coming into the LA Basin. Thus far, CO2
mixing ratios here are lower than or the same as in Pasadena,
supporting the use of this site as background for the LA Basin.
Marc L. Fischer, Ph.D.,, is a staff scientist with the Atmospheric Sciences Department at the Lawrence Berkeley National Laboratory and an associate scientist in the Department of Geography and Environmental Studies at California State University East Bay. Dr. Fischer’s research focuses on measurements and modeling of human-ecosystem-atmosphere processes involving trace gases with an emphasis drivers, responses, and feedbacks to global change. Fischer’s work includes field and laboratory trace gas and meteorological measurements, development of spatiotemporally resolved maps of trace gas emissions for the State of California and the continental US, trace gas, and regional inverse modeling of trace gas exchanges between the land surface and atmosphere. Dr. Fischer received his Ph.D. degree in Physics from the University of California, Berkeley in 1991. Dr. Fisher has co-authored over 40 papers in refereed journals. Dr. Fisher is an active member of the American Geophysical Union and other scientific societies, and has (co)-chaired workshops and government-university research meetings.
Sally Newman, Ph.D., is a Member of the Professional Staff at
the California Institute of Technology. Dr. Newman's research
interests include variations in the abundance and sources and sinks of CO2 in urban regions. Dr. Newman has
been studying CO2 in the Los Angeles Basin since 1998, the
longest continuous urban record. The focus has been on
understanding sources of CO2 emissions and the processes controlling
cycles in the observed record on various time scales. She
participated in the CalNex-LA ground campaign in 2010 and is involved
with the effort to initiate mega-city CO2 monitoring in Los Angeles. Dr.
Newman received her bachelor’s degree in Geology-Chemistry from
Wellesley College and her Doctorate in Earth Sciences from Scripps
Institution of Oceanography, University of California, San Diego.
Dr. Newman came to Caltech as a post-doctoral fellow to learn stable
isotope techniques from pioneer Sam Epstein.
For information on this seminar
please contact:
Jing-Kuang Hsu, Ph.D., at
(916) 323-5774 or send email
to : yhsu@arb.ca.gov
For further information on these
seminars please contact:
Peter Mathews at (916)
323-8711 or send email to:
pmathews@arb.ca.gov
For a complete listing of seminars and
their related
documentation please
check this page
Main
Seminar Series Page
Research
Activities


