|
The challenges of meeting the aggressive targets for AB32 and the constraints of SB1368 require a broad and inclusive
approach to carbon emissions reduction. Carbon capture and sequestration (CCS) is a critical technology pathway
for the state of California in achieving steep GHG reductions. It involves the capture, separation, and compression
of CO2 from industrial flue streams to high concentrations (~95%). It then involves transportation of CO2, usually
by pipeline, to sequestration sites, where it is injected into deep geological formations. These formations must
have demonstrable injectivity, capacity, and long-term effectiveness in order qualify as viable storage sites.
A great deal of knowledge and experience comes from direct sequestration experience, but also analogous industrial
activities such as acid gas disposal, CO2 enhanced oil recovery, oil and gas exploration and production, and natural
gas storage. Enough is known about the physics, chemistry, and operation of potential sites to safely and effectively
characterize, develop, operate, monitor, and close a large-scale CCS project.
CCS technology will be particularly helpful in managing emissions from coal plants out of state under SB1368. However,
California's mix of power generation and industry also provides major opportunities for CCS that will help achieve
AB32 goals and protect the state economy. There are four major sector where CCS could have a major role
-Refineries: Capturing GHG emissions form refineries would help to meet low-carbon fuel standards, reduce criteria
pollutant emissions, and increase production without emissions. It would also help retain this key state industry.
The hydrogen plants from refineries provide pure streams of CO2 that could be readily sequestered at very low costs.
-Cement: Cement manufacturing inherently creates CO2, and cement plants have high concentration emissions. The
absence of CCS will drive CA cement manufacturers offshore, both increasing cost of materials in state and increasing
net emissions overall.
-Gas-fired power generation: California uses baseload natural gas for power and accounts for approximately 7% of
total annual state greenhouse gas emissions and 32% of the state's annual greenhouse gas emissions from electricity
generation. Using post-combustion capture or oxy-fired combustion, CCS is viable for many of these plants today
and could dramatically reduce this sector's emissions.
-Biofuels: Ethanol production also creates pure streams of CO2 ready for injection underground. Sequestration of
these streams would further reduce the carbon footprint of biofuels by nearly 35%. In addition, application of
CCS to biomass electrical production can create a NEGATIVE emissions power plant.
The activities discussed cost more than the free release of greenhouse gases, which will increase wholesale and
retail costs for electricity and products in the state. The cost of CCS implementation is comparable to new-builds
for biofuels, wind, and new nuclear, and as such should be considered among options for emissions management. Thankfully,
the state is endowed with a terrific sequestration resource, large geological formations well suited to indefinite
storage of CO2. |
| |
|
|
S. Julio Friedmann, Ph.D., is currently appointed as Carbon Management Program Leader
for Lawrence Livermore National Laboratory, he leads initiatives and research into carbon capture, carbon storage,
and fossil fuel recovery and utilization. In this role, he has submitted Congressional testimony for the US Senate
and California and Wisconsin State Assemblies and testified before the House Energy and Commerce Committee. Published
in Foreign Affairs and the New York Times, he has worked with the EPA, USGS, many private companies, many NGOs,
and Dept. of Energy. Dr. Friedmann was invited by MIT to join their team on the Future of Coal Energy Report and
helped assemble the National Petroleum Council report on the future of oil and gas in the US. Recently, he played
major roles in the AB1925 document on CCS to the California state assembly and the World Resources Institute draft
guidelines for site characterization, operation, and closure. Dr. Friedmann's research interests include carbon
sequestration, underground coal gasification, hydrocarbon systems, deep-water depositional systems, basin &
range tectonics and sedimentation, sequence stratigraphy, and landslide physics. A native of Rhode Island, he has
worked in California, Washington, Utah, Wyoming, Colorado, Spain, Ireland, the North Sea, Nigeria, Angola, Venezuela,
Azerbaijan, and Australia.
Dr. Friedmann received his B.S and M.S. degrees from M.I.T., followed by a Ph.D. at the Univ. So. California. After
graduation, he worked for five years as a senior research scientist in Houston, first at Exxon and later ExxonMobil.
Dr. Friedmann next worked as a research scientist at the University of Maryland, affiliated with the Joint Global
Change Research Institute (JGCRI) at the Univ. of Maryland, and the Colorado Energy Research Institute at Colorado
School of Mines. |
|
For more information on this
Seminar please contact:
Elizabeth Scheehle at (916) 324-0621 or send email to: escheehl@arb.ca.gov
|
| |
|
|
|
For a complete listing of
the ARB Chairman's Series and the related documentation for each one of the series please check this page
|
|