A key step in assessing human health risks from air pollutant emissions is evaluating pollutant transport
from sources to receptors. Conventionally, this step employs modeling techniques with substantial data
requirements. This presentation will discuss the concept of dose fractions for describing source-to-receptor relationships.
The concept facilitates comparing the exposures to pollutant emissions released from different sources or under
different circumstances. Using dose fractions, preliminary health risk assessments for air pollutant sources can
be more easily conducted. Further advances could assist in the development of control strategies that more efficiently
reduce human exposure to air pollutants.
In the context of this presentation, dose fraction is defined as pollutant mass inhaled by an exposed
individual per unit pollutant mass emitted from a source. A cumulative population dose fraction is also
defined to describe the total fraction of an emitted pollutant inhaled by all members of the exposed
population. Typical population dose fractions for an urban area from emissions outdoors are ~10 to the 6th to ~10
to the 3rd. Population dose fractions associated with emissions in buildings or in moving vehicles are typically
much higher, ~10 to the 3rd to ~10 to the 1st .
As an illustration of the concept, magnitude estimates are developed of the exposure in the South Coast
Air Quality Management District to 14 pollutants from motor vehicles and environmental tobacco
smoke (ETS). For acetaldehyde and PM2.5, population doses from ETS exceed those from cars by
about an order of magnitude. These two source classes cause comparable population doses for
acrolein, benzo(a)pyrene, 1,3-butadiene, formaldehyde, and styrene. Motor vehicles dominate ETS as
a source of exposure to BTEX compounds (benzene, ethylbenzene, toluene, and xylenes) and carbon
monoxide. Ongoing work aims to refine our estimates of dose fractions from motor vehicles. We will
begin work in the fall on applying the dose fraction to explore the environmental health impact of
distributed electricity generation. |