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Accurate quantification of the ozone-forming potential,
termed “reactivity”, of voltaile organic compounds WOOs)
is critical for correctly assessing the impacts of emissions
on air quality. As reactivity-based regulations are being
more carefully considered for urban ozone control strate-
gies, the uncertainties in our ability to quantify reactivity are
gaining importance. This study utilized a three-dimensional
air quality model to examine the uncertainty in reactivity
quantification resulting from a set of reaction rate constant
uncertainties. A previous study identified the set of rate
constants that were most critical for single-cell model
ozone predictions. With the detailed airshed model,
uncertainties in rate constants for aldehyde photolysis,
nitric acid formation, and decomposition of peroxy acatyl
nitrate (PAN) and peroxy propionyl nitrate plus higher
PAN analogues (PPN) exhibited the greatest impact on
relative compound reactivityvalues. Forthe compounds and
reactions examined,the combined responsesto2achanges
in reaction rate constants were approximately 15% of the
predicted relative reactivity values, with the réactivities
of ethylbenzene and toluene exhibiting the greatestresponse.
The choice of reactivity quantification measures and the
air quality models used had a greater impact on relative
reactivity predictions than did the rate constant uncer-
taintias.

Introduction
Theatmosphericchemistryofurbanozoneprecursors,oxides
of nitrogen(NO,3, andvolatile organiccompounds(VOC5)
is nonlinearandis influencedby local meteorologyand
ambientconditions,which makesozonebehaviordifficult
to predictandcontrol. Despitegreateffortsin ozonecontrol,
manymajor urban areascontinueto exceedtheNational
Ambient Air Quality Standard(NAAQS) for tropospheric
ozone (1). In response,regulatorycontrol strategiesare
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becomingincreasinglysningentandcostly. Previousstudies
haveshownthat in manyareastheozoneNAAQS cannotbe
met without significant reductionsof both NOr andVOC
emissions.Theabilityto identifywhichemissionsreductions
would most effectively reducepollution would help in
minimizing costs. VOCshavehistoricallybeenregulatedas
asingleclassof compounds,i.e., by limiting thetotal mass
of VOC emitted, regardlessof thecomposition. Research
hasshownthatthehundredsof individual speciesincluded
in the VOC class (mostly hydrocarbonsand oxygenated
hydrocarbons)caneachhavesubstantiallydifferingeffects
on ozone formation (2—4). Thus, more direct useof the
ozone-formingpotential of VOCs, termed“reactivity”, is
rapidlygainingattentionbecausepotentiallymoreeffective
controlstrategiescouldbedevelopedbyincorporatingthese
reactivityvaluesinto regulatorypolicy (4—6).

Onesuchreactivity-basedpolicy is partof theCalifornia
CleanFuels/LowEmissionsVehiclesRegulations(7). In these
regulations,a reactivityscalebasedon amaximumincre-
mental reactivity (MIR) (7, 8) value for compoundsor
compoundclassesis usedto calculatethetotal reactivityof
alternativefuelvehicleemissions.Thisscalewasdeveloped
overawiderangeof meteorologicalinputsandbackground
concentrationsusing a detailedchemicalmechanism,the
StatewideAir Pollution ResearchCenter 1990 (SAPRC9O)
mechanism(9), incorporatedinto asingle-cellor “box” air
quality model.

Theuseof theMm scalein regulationsledto anumber
ofconcernsaboutthequantiflcationofcompoundreactivity.
One such concernaddressedthe level of physical detail
accountedfor by the box model in the quantificationof
reactivity. To examinethis issue,two reactivitystudieshave
beenconducted(10, 11) using a comprehensivethree-
dimensional (3D) urbanair quality model: theCarnegie!
CaliforniaIristitute ofTechnology(CIT) model(12,13),which
accountsfor ahigh degreeof physicalcomplexity. Oneof
thesestudies(11) incorporatedtheSAPRC90mechanismin
the CIT model sotheresultscouldbedirectlycomparedto
the regulatoryMIR scale. Theresultingversionof the CIT
model is referredto as theCIT-S90.

A secondseriousconcernaboutVOC reactivityquanti-
fication is that uncertainties,particularlyin the chemical
mechanism,mayhavesignificanteffectson thecalculation
of reactivityvalues. As experimentalmethodsevolve,more
refinedparametersbecomeavailableformodelingpurposes.
For example,arecentstudyby Donahueetal. (14)suggests
thatestimatesof therate constantfor NO2 + OH — HNO3usedfor modelingofthelowertroposphereareoverestimated

by approximately30%. Thefindings of theDonahueeta!.
studyexemplifytheimportanceofexaminingthe effectsof
chemicalmechanismuncertaintyon ozoneandincremental
reactivitypredictions. Identification of which parameters
havethegreatestimpactallowseffortsto focus on refining
the measurementsof thoseparametersandwill providea
measureof confidencein theinterpretationof currentmodel
predictions.

The study describedhere extendsthe prior CIT-S90
reactivitystudy andpresentsthe resultsof anuncertainty
analysisperformedonthechemicalmechanismfor thethree
reactivityscalesdevelopedduringthepreviouslydescribed
study.Aboxmodelwasusedin apreviousformaluncertainty
analyststo identifythoserateconstantsthatcontributedthe
greatestamount of uncertainty to the ozone formation
predictions(15). The CIT-590 model was then used to
examinetheimpactof thosecriticalrateconstantuncertain-
tieson reactivityquantificationusinga3D model. Thereare
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TABLE 1. SAPRC9O Mechanism Characteristics, As
implementedwith the CIT Mode! for Reactivity Studies

chemical species
transported 71
steady-state 15
constant 5
explicit VOCs 33
total 91

reactions
. photolytic 20 -

total 203

4

‘~1

-J

In the previous reactivity study (11), the model was used
to calculate incremental reactivities for 26 organic com-
pounds plus carbon monoxide. Species reactivity was
determined by first modeling ozone formation using a base
emission inventory and then simulating the effects of
increasing the emissions of one species. Emissions of most
organic species were increased by 20% of the total emitted
VOCs (on amolar basis) in each grid cell each hour to account
forthe spatial and temporalvariations in emissions. Carbon
monoxide was increased by 100% of the VOCs. These two
sets of ozone predictions, base and perturbed, are then
compared to calculate the reactivity of that species, which
can be defined in a number of ways. One benefit of using
a 3D model rather than a box model is that a variety of air
quality impacts can be examined. This provides a more
realistic and comprehensive analysis of the atmospheric
response to the spatial and temporal variations of emissions,
inultiday effects, and spatialdistribution ofpollutantimpacts.
With a 3D model, these impacts can also be correlated with
the human population distribution (e.g., as a measure of
exposure impact).

Inthis study, as inprevious similar studies (10,11),several
reactivity measureswere examined including effect on peak
ozone, population-weighted potential exposure, and spatial
exposure. Peak ozone is defined simply as the maximum
ozone concentration inparts per million (ppm) predicted in
themodeling domain using each emissions inventory. The
predicted peak ozone forms relatively far downwind of Los
Angeles in an area with a relatively high ratio ofVOC to NO1concentrations, which is therefore not as sensitive to VOC
emissions as is most ofthe urbanbasin. Population-weighted
exposure is calculated as the population residing in the
modeling grid location times the ozone concentration,
summed for each hour that the concentration is over the
threshold value (i.e., 0.09 or 0.12 ppm for ozone). The two
threshold results are then averaged. Spatial exposure is the
summation of the grid cells with ozone concentrations
exceeding the threshold value times the concentration for
each hour over the threshold. The units are ppm-grid-h, or
km2-ppm-h (one grid is 25 km2 in area). The two threshold
results are also averaged for this metric. A more detailed
description of these reactivity measures is presented else-
where (11).

To present reactivity measures in a more relative sense
and to better comparemeasures between the zero- andthree-
dimensional model results, reactivities were normalized to
that of a suite of compounds representative of exhaust
emissions frommotorvehicles operated on industry-average
gasoline. The use ofasuite of compounds fornormalization
rather than a single compound reduces the possible bias
that can result if the normalizing species does not respond
inawayrepresentative ofmost compound~and also reduces
theuncertainty in the calculation ofthe relative reactivities
(4,20). A furtheradvantageis that it allows directcomparison
ofthe reactivity of each compound to that of emissions from
a major source.

In this study, the normalized reactivity for each species,
NR1, is defined as

CP1 —

NR1= = (1)
Rcomposize

- ~CP)Pbase)

Here, NR~is the normalized reactivity of species i; R is the
carbon-based reactivity of species i or the normalizing
composite; P is the air quality metric of interest (e.g., peak
ozone or an exposure value) corresponding to emissions of
species 4 ofcomposite speciesj, or of the base case; Qis the

fundamental differences between box and 3D models that
could strongly impact the effect of chemical mechanism
uncertainties on ozone predictions. Box models can be
applied to a large number of scenario conditions and used
withdetailed statistical methods, while a3D model accounts
for a much higher degree of physical detail (i.e-, effects of
multiday transport, spatial and temporal variations of
emhsions, and cloud cover) and provides more detailed
metrics for evaluation.

A key limitation of the uncertainty analysis performed
here is that itwas confined to uncertainties in rateparameters
in the SAPRC mechanism; neglecting other mechanism
uncertainties such as those in product yields and, more
broadly, in mechanism formulation (e.g., degree of explicit-
ness or omission of important reactions or species). Only
reaction rate constants were examined in this study because
they are believed to be the source of the largest fraction of
identifiable uncertainty in the mechanism (16). Beyond the
chemical mechanism, the study did not attempt to treat
uncertainties in the simulation conditions or the emissions
estimates for which reactivities are calculated. Additionally,
his likelythat uncertainties in input conditions for individual
scenarios, particularly emissions and meteorologyfields, have
an impact on compound reactivity quantification, especially
on those affected by photolysis rates. However, how this
might effect the relativeranking of reactivity has been less
clear.

Methods

The CIT air quality model (12, 13) follows the evolution of
chemical species in the atmosphere, providing spatial and
temporal predictions of pollutant concentrations for given
conditions over a specified time interval. Input data required
by the model include local meteorological conditions such
as wind, temperature, and sOlar radiation; the domain
topography; initial and boundary conditions of species
concentrations; and anthropogenic and biogenic species
emissions. Some of the main model components include
calculations for advection, turbulentdiffusion, and deposition
and a chemical reaction mechanism that calculates the
production and destruction of species.

For the previous CIT-S90 reactivity study (11) and this
uncertaintystudy, the chemical mechanism used, SAPRC9O,
was made explicit for 33 VOCs. The• basic mechanism
characteristics are shown inTable 1. The modelwa~applied
to the Los Angeles air basin for both studies because of the
serious ozone problem there, the quality of input data
available, and the application ofthe MIR scale in California
for regulatory use. Data inputs such as meteorology and
emissions were adopted from theAugust l98Tepisode of the
South CoastAir QualityStudy (17,18). Although itis generally
acknowledged that the mobile source organic emissions are
underpredicted in this data set (13), the inventory was not
enhanced for this study. It has been previously shown that
the use of two inventories with very different levels ofVOC
andNO1leads to similarreactivityquantificationresults (19).
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TABLE 2. Composite Composition Used for Normalizing Reactivities and Airshed Calculated Reactivities

normalized relative reactivity

TABLE 3. Normalized Bias and Standard Deviation between
Metrics for Each Model

CIT Model population, spatial
peak, spatial
peak, popululation

box model MIR, LA MIR
MIR, MOIR
MOIR, LA MIR

biasiNS) SD

TABLE 4. Normalized Bias and
Metrics and Models

.

population exposure

Standard Deviati
•

CIT model

on between

spatial exposure peak ozone
box model bias(NB) SD bias(NB) SD bias(NB) SD

MIR
LA MIR
MOIR

—0.16 0.24
—0.09 0.20
—0.3 0.42

0.05 0.09
0.12 0.17

—0.10 0.24

0.26 0.56
0.32 0.65
0.12 0.35

number of carbon atoms in a molecule of species 1; andf~
is the carbon fraction of speciesj in thecomposite mixture.
The composition of thenormalizing mixture is given in Table
2.

Table 2 also shows three reactivity scales predicted for
the 27 compounds examined. In theprior CIT-S90 reactivity
study (11), two photolytic rate constants were calculated using
transposed cross sections and yields. For this reason, the
reactivity scales and scale comparisons were recalculated
and are presented here- The two rate constants represent
the photolytic decomposition of two classes of unknown
aromatic fragmentation products: APG1, formed from
benzene, tetralin, andnaphthalenes; andAFG2, formed from
aromatics containing alkyl groups. These reactions mainly
affect predictions of the chemical behavior of aromatic
compounds.

TABLE 5. Regression Results for the Exposure versus MIll

and Peak Ozone versus MOIR Measures

slope intercept

population to MIR 0.81 0.88 0.04
MlRto population 0.92 0.15
population to MOIR 0.74 0.95 —0.02
MOIR to population 0.78 0.27
spatial to MIR 0.97 0.98 0.04
MIR to spatial 0.99 —0.01
spatial to MOIR 0.96 1.09 —0.06
MOIR to spatial 0.88 0.10
peak to MIR 0.60 0.78 . 0.26
MIR to peak 0.77 - 0.19
peak to MOIR 0.80 1.01 0.05
MOIR to peak 0.79 0.16
MiRto MOIR 0.94 1.09 —0.08
MOIR to MIR 0.86 0.13

As in previous studies conducted with airshed models
(10, 11) as well as box models (2, 8, 15), species reactivities
are found to differ by over an order of magnitude. Tables
3—5 show the recalculated relationships between alrshed
and box model reactivity predictions. In these tables, three
boxmodel scales(S) are shown for comparison. MIR denotes
the average maximumincremental reactivityscale developed
from calculations of 39 scenarios developed for different
cities, and MOIR denotes a similar39 scenario-average scale
for maximum ozone incremental reactivity, which is based
on peak ozone. LA MIR denotes a maximum incremental
reactivity scale developed for conditions in Los Angeles (one
of the 39 scenarios). In Tables 3 and 4, the normalized bias
between metrics x and y (from either model), NBx,>,, was
calculated as

1 25 1 25 ~ —

NB~~= —ERR~~,~= —E2 0
~ ~ R

1~
+

no. of fraction in composite
species carbons (ppmC per ppmC) peak 03 population-weighted spatial

av threshold exposure

carbon monoxide 1 0.000 0.05 0.02 0.03
ethane 2 0.126 0.20 0.03 0.06
benzene 6 0.000 0.04 0.05 0.06
methyl tert-butyl ether 5 0.052 0.35 0.14 0.19
2,2,4-trimethylpentane 8 0.000 0.44 0.14 0.20
butane 4 0.003 0.57 0.16 0.25
methanol 1 0.000 - 0.51 0.24 0.27
methyl ethyl ketone 4 0.004 0.64 0.21 0.33
2-methylpentane 6 0.000 0.71 0.24 0.35
ethanol 2 0.056 1.06 0.30 0.48
ethyl tert-butyl ether 6 0.010 0.85 0.41 0.56
toluene 7 0.060 —0.10 0.35 0.37
ethylbenzene g 0.047 —0.06 0.38 0.38
methylcyclopentane 6 0.141 1.17 0.45 0.66
2-methyl—1-butene 5 0.009. 1.03 1.06 1.08
o-xylene 8 0.039 0.57 1.39 1.24
2-methyl—2-butene 5 0.055 1.21 1.24 1.35
3-methylcyclopentene 6 0.001 1.66 1.34 1.50
m,p-xylene 8 0.121 0.69 1.94 1.52
ethene 2 0.109 1.73 1.15 1.45
1,2,4-trimethylbenzene 9 0.035 1.06 2.67 1.83
acetaldehyde 2 0.012 2.32 1.18 1.76
soprene 5 0.000 2.09 2.03 2.04
propionaldehyde + higher aldehydes 3 0.006 2.81 1.35 2.07
propene 3 0.009 2.06 1.64 1.93
1,3-butadiene 4 0.096 2.53 2.27 2.35
formaldehyde 1 0.011 1.50 1.98 2.63

—0.21
0.22
0.39
0,07

—0.15
0.22

0.22
0.52
0.67
0.12
0.27
0.37

(2)
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TABLE 5. SAPRC9O Reaction Sets Considered in Uncertainty Analysis 1% of Total
(20)]

influential reaction

RCHO + hy — CCHO + ROrR + R02 + CO + HO2HCHO ÷hv— 2HO2 + CO

CCO—02 + NO — CO2 ÷NO2 ÷HCHO + ROrR + RO2C2CO + NO — CCHO + RO2—R + 002 ±NO2 + R02
CCO—O~+ NO2 — PAN
C2CO—O2+ N02—JPN
PAN — CCO—O2 + NO2 + RCO3PEN — 0200—02+ NO2 + RCO3AFG1 + by — HO2 + HCOCO—02
AFG2 + hr HO2 + CO + 000—02 + RCO3
MEOH + OH—HO2 + HCHO

% of total uncertainty

NO2 ±OH — HNO3
NO2 + hv — NO + 0
03 ÷NO — NO2 + 0~

0.9
9.7

Uncertainty and ajk from Box Model Study

descriptiona/fe

32.1 0.265 NO2 + HO
10 0.265 NO2 Photolysis

5.1 0.193 02 ÷NO

0.343 aldehyde photolysis
0.342

7.1 0.764 percxyacyl + NO
1.5 0.764

0.671 peroxyacyl ±NO20.67 1
0.696 PAN, PEN decomposition
0.696
1.332 AFG1/AFG2 photolysis

6.3 1.332
0 0.481 methanol + OH

5.4
1.6
5.0
1.2

‘Normalized uncertainty, a/k, where a is the la Uncertainty of rate constant k. bAPG1 represents unknown aromatic fragmentation products
formed from benzene, tetralin, and naphthlenes. AFG2 represents unknown aromatic fragmentation products formed from aromatics containing
alkyl groups.

200

150

100

50

0

‘50

.100

FIGURE 1. Percent change in base ozone predictions from rate constant uncertainty tests.

z

Here, RR1~~,the reactivityratio, isa function of the predicted
reactivity, R, for species I from the metrics x andy. NB1.~is
the average ofthese reactivity ratios predictedbythe metrics
for 25 ofthe 27 species (ethylbenzene and toluene values are
omitted in this comparison because theirnegative reactivities
cause the denominator to approach zero). In both the
previous reactivity analysis and the recalculated analysis,

•r the normalized bias is generally low and the correlation for
the 27 species, shown in Table 5, between the box model
reactivities and those calculated with the airshed model is

high. Airshed reactivities based on spatial exposure show a
strong correlation with the box model MIR scale as well as
the strongest airshed metric correlation with the box model
MOIR scale. Airshed reactivities based on peak ozone
sensitivity are significantly different from those based on
exposure metrics and from the box model MIRs, although
they show similar trends. Peak ozone-based reactivities are
well correlated with the box model peak ozone reactivities
(MOIR). For a more complete description of the CIT model
application and metric comparison, please refer to Bergin et

set

1
2
3
4

5

6

7

8

9

0
+

0z

c
C

0.

Sz

0~

U

~0

0z
+

0

0.

0z
+

C

Cz
+

C

0~

c

C.

0

0
0

z

+

C

0~

0
.0
0,

C

C

VOL. 32. NO. 5, ~99~/ENVIRONMENTAL SCIENCE & TECHNOLOGY • 697



Normalized fleaclivity

ro
01 ~) UI

CO

(0 01 a Ca

6
Cii

carbon monoxide

cilia no

be acno

mcihyl-i-buiylcllier

teluene

elhylbcnzcne

2,2,4 triincihyipcnlanc

buianc

methanol

methyl cIltyl kelone

2-mcthylpcn lane

ciii nnol

cihyi-t-butylcthcr

rnclhylcyclopcntane

o-xylene

mp-xylcne

2-mctltyl- I-butcne

1.2.4 lriniclhylbcnzenc

2-lncihyl’2-bnlcnc

chic no

3-mcthylcyclopenlenc

acciaidchyde

propene

prop ion a Id cit ydc+ liighc

- soprenc

1,3 buladiene

fortnaldcltydc

Normalized ReactivIty

in ro
pa
CM

(0
03 CM

x+ di. o • ~

wwwto-0-0>zz
o o Di > 0) CC CC E 0 0
‘< ‘< z, a a CNN~m.
00 ‘OZ

0aan z
~ 0

+ + n
zzo~

:13 ~

0
C.
5-

a..

6
CM

0
0 CCI

0~
to
03

0z
C
:13
0
2

Ca
2

r
cii
0
Ca
2
0
In
RI
-I
0
0
I
I
0r
0
0

C
0
r
03
10

2
0
C’

(0
(0
CC

1~

ww
00xx
00a 0.
me

.4-

0
0 iii

U

0

2

-o
-o
2
0
CC00

V
0
Di

0

o.~.O.

0~0~0>22
‘3ttt~&00
+ 0 0 CD N N

z~ ,?~ ~ -o +
R ~0 ~

CO Di ~
+ + g e.
ZZaC’o o~
CU

a

cnthoti monoxide

ethanc

bensenc

nehltyl—l-butylelltcr

tolitene

clhtylbcnzcne

2,2,4 Irimelhylpenhane

butane

methanol

methyl ethyl ketone

2’ melhy Ipe n Ca no

- ethanol

elhyl-t-huoylcther

methyicyclopentane

o-xylcttc

mp-xyleno

2-methyl-I -bulene

12.4 lriinctltylbenzcne

2-mc Ih yl-2-b u he no

ethic no

3-mc thylcyc lope n to no

acelaideltyde

propene

prop io n a Id oh ydei-liighcr

iseprene

1.3 buladicnc

rornaldeltydo

.

+

+.

— .

•1~

S

p.

is!-

N

p. ;~)



3.5

a

2.5
:1.

>
0
C,

~0
a
N

‘; 1.5
E
0
=

0.5

0

-0.5

eq
eq

FIGURE 2. (a) Effect of 2o’ rate constant perturbations on normalized reactivities based on spatial exposure. (b) Effect of 2o’ rate constant
perturbations on normalized reactivities based on population exposure. (c) Effect of2orate constant perturbations on normalized reactivities
based on peak ozone.

al. 1995 (11).

Identification of Critical Rate Constants
Major sources ofuncertainty in the reactivityscales presented
above, aswell as in the MIR and MOIR scales, include reaction
rate constants and speciation product parameters used in
the chemical mechanism. The effect of uncertainty in
reaction rate constants on reactivity quantification was
targeted for a formal sensitivity study (15), usingabox model
with the SAPRC9O chemical mechanism to simulate the
average ofthe 39 modeling scenarios thatwere used to Create
theMlRandMOlRscales. AMonteCarlo analysiswithLatin
Hypercube Sampling was applied to examine the effects of
uncertainties in the rate parameters ofthe SAPRC9O mech-
anism on ozone formation predictions and on incremental
reactivities of selected organic species. The results of this
box model studywere used to identify a reduced set ofcritical
rate parameters for uncertainty analysis with the CIT-S90
model. This approach takes advantage of both the formal
sensitivity analysis made practical bythe lower computational
requirements of a box model and the greater physical and
temporal representation made possible by the 3D model,
allowing us to examine in detail the potential uncertainty
impacts in reactivity quantification on a specific real-world
pollution episode.

Estimates of uncertainty in the rate parameters of the
SAPRC mechanism were compiled (21) largely from reviews
byNASA (22) and IUPAC (23)panels. Because these estimates
are subjective, the larger of the NASA or IUPAC uncertainty
estimates was adopted if the panels disagreed. Possible
correlation between uncertainties in some parameters was
neglected in the box model study, as uncertainties were

assumedto be independent across parameters. For example,
the peroxyacyl + NO and the peroxyacyl + NO2 rate constants
were measured as a ratio for development of the chemical
mechanism. However, because they are not perfectly
correlated. theyweretreated independently in the uncertainty
study. It should be notedthat this isa conservative approach,
and the prediction sensitivities to these rate constant
uncertainties would likely decrease if these reactions were
coupled during the uncertainty test. Further details on the
uncertainty compilation and box model simulations are
available elsewhere (15, 20).

Rate constants of 12 ofthe 203 mechanism reactions were
found in the box model study to be responsible for ap-
proximately 86% of the total uncertainty caused by rate
constants inpredicted ozone concentrations (15). The same
set of rate constants also accounts for much ofthe estimated
uncertainty in MIR and MQIR values (15). Some of the 12
reactions behave very similarlyand so were grouped for this
study, resulting in eight sets of reactions to be examined in
this uncertainty analysis. Table 6 provides a listing of these
reactions, first-order estimates oftheir uncertainty contribu-
tion to total ozone predictions (% of total uncertainty), the
assumed normalized rate constant uncertainty (c/k) from
the box model study, and the reaction set description used
here, In addition to these 12 rate constants, which were
influential oncompound reactivities in general, rate constants
for the primary oxidation reactiotis of individual organic
compounds were found to be influential for the reactivity of
that particular compound (15). For example, the rate
constant of the reaction for methanol with the hydroxyl
radical is influential on the calculation of the reactivity of
methanol. Reactivities of the more slowly reacting organic
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compounds, such asmethanol, were shown bythe boxmodel
study to be especially sensitive to the rate constants for their
initial oxidation reactions. To keep computational require-
ments reasonable, initial oxidation parameter affects on
reactivities were calculated with the CIT-S90 only for the
illustrative case of methanol, Which is also listed in Table 6.

Effects of Rate Constant Uncertainties on Reactivity
Quantification
To examine the effect of rate constant uncertainty, reactivity
scales were developed for perturbations in each of the first
seven targeted rate constant sets in Table 6, which can then
be compared to the nominal reactivity scales. Sensitivity of
reactivity quantification of sixaromatiCs to the uncertainty
in the lumped aromatic ring fragment destruction reactions
(AFG1/AFG2 photolysis) is also examined, as is the sensitivity
ofmethanol reactivity quantification to the methanol + OH
rate constant. The methanol uncertainty effectwas included
in the sensitivity study because ofmethanol’s importance to
alternative fuels discussions. However, because methanol
is not a common compound in the emissions inventory, is
relatively unreactive, and is not a reaction product of other
species, the sensitivityof the reactivities ofthe other26 species
to the methanol + OH rate constant was not examined.

The effect of rate constant uncertainty was calculated by
increasing the nominal rate constant(s) of interest by twice
the reported uncertainty, resulting in the ‘perturbed” rate
constant(s):

kper = (2(c/k) ± flk~
0

where kper is the perturbed rate Constant, c/k = normalized
rate constant uncertainty (shown in Table 3), and knom is the
nominal rate constant.

Of note, the previously mentioned study by Donahue et
al. (14) suggests that the current recommended values,
including those used in SAPRCSO, overestimated the NO2 +
OH rate constant by approximately 30% for standard
temperature and pressure conditions in the lower tropo-
sphere.

After modification to the chemical mechanism of each
specific rate constant(s), a 3-day model simulation was
conducted with the base inventory and each of the 27
perturbed emissionsinventories (which have an incremental
amount ofthe VOC ofinterest added to the base inventory).
The results from the simulations using the perturbed
inventories andthe base inventorywere then used to calculate
new Compound reactivities, which were normalized to the
compound suite described above. A comparison was then
madebetween the predicted reactivityscales calculated using
the nominal rate constants versus the perturbed rate
constants, for each set of rate constants and for each of
thethree reactivity measures considered. Thus, seven sets
of sensitivity simulations were used to recalculate the
reactivities of all 27 species being studied, one additional set
of sensitivity simulations was used to recalculate the reac-
tivities of the six aromatic species being studied, and one
additional set of simulations was conducted for methanol.
Of note, even with the reduced set of parameters, this type
of analysis is computationally intensive.

Airshed Model Uncertainty Analysis Results and
Discussion
Before examining the effects ofrate constant uncertainty on
VOC reactivity values, the effects on base ozone predictions
are examined. Figure 1 shows the percent change in base
ozone predictions caused by the targeted rate constant
uncertainties, as measured by peak ozone, population
exposure, and spatial exposure. For example, when the

model is runwith nominal reaction parameters (i.e., the base
run), resulting predicted peak ozone is 0.179 ppm. After
increasingthe NO2 + OH rate constantbytwice the estimated
uncertainty [2(c/k) as defined abovel, predicted peak ozone
is 0.153 ppm, a 14.7% decrease. Theimpactofthe transposed
photolysis rates was examined for two of the reaction sets:
NO2 photolysis and AFG1/APG2 photolysis. The percent
change in base ozone predictions from the same targeted
rate constant uncertainties previously calculated using abox
model for MIR and MOIR conditions (15) are shown for
comparison.

As can be seen in Figure 1, population exposure is the
metricthatis mostsensitive tothe rate constant uncertainties,
followed by spatial exposure, the box model metrics, and
then peak ozone. In particular, as measured by population
exposure, NO2 photolysis, peroxyacyl + NO, and PAN and
PPN decomposition rate constant uncertainties caused more
than a 100%increase in ozone exposure predictions over the
base run. Most uncertainties caused at least a 50% change
from the base predictions of population exposure. The
probable reason for this metric sensitivity is that these rate
changes cause ozone formation to occur earlier in the
simulation, while the polluted air mass is still in very
populated areas, rather than further downwind where the
population is relatively sparse. A slight spatial shift can lead
to a large difference in population exposure. The sensitivity
of the spatial exposure metric is likelydue to slight changes
in ozone levels in grid cells that are very near the threshold
concentrations (0.12 and 0.09 ppm). The largest change for
this metric is in response to the NO2 photolysis rate constant
uncertainty, which caused a 75% increase in the predicted
exposed area. All the other rate constant uncertainties
examined caused less than a 50% change in the spatial
exposure predicted value. The responses of the two box
model metrics, MIR and MOIR, generally fall between the
grid model spatial exposure and peak ozone metriC~,more
closely aligning with peak ozone. Peak ozone is clearly the
least sensitive grid model measure to the targeted rate
constant uncertainties, with the largest impact being less
than 20%. Overall, the NO2 photolysis rate constant had the
largest effect on ozone prediction for all grid model metrics,
whileN02+ OH had the largest impact on boxmodel metrics.
The reaction sets lead to the same directional changes in
ozone predictions for all metrics (decreases for NO2 + OH,
peroxyacyls + NO2, and 03 + NO; increases for all others,)
It is important to note that, while theuncertainty effects on
base ozone predictions is an absolute measure; the effects
on relative comparisons ofcompoundreactivity maybe quite
different.

For the set of27 VOCs examined, Figure 2a—c compares
normalized reactivity predictions from the base case run,
each rate constant perturbation run, and the box model MIR
and/or MUIR scales discussed previously. Figure 3a—c
compares the same information for the six aromatics with
the AFG photolysis uncertainty runs. Species on they-axis
are listed in order ofincreasing base reactivity as measured
by spatial exposure. Figure 2a,b, the spatial and population
exposure predictions respectively, show the best general
agreement with the box model scales. Figure 3a—c exhibit
essentially the same relative reactivity rankings for each
metric with both the box and airshed models.

The rate constants to which the reactivities of most
compounds are the most sensitive appear to be dependent
on the metric examined. Both exposure measures (Figure
2a,b) appear to be most sensitive to the change in aldehyde
photolysis rates, with some compounds showing sensitivity
to changes in the NO2 + OH and the peroxyacyls + NO2 rate
constants. Looking at reactivities based on peak ozone
(Figure 2c), rate constants for PAN and PPN decomposition,
NO2 photolysis, peroxyacyls + NO2, and the NO2 + OH
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FIGURE 3. Normalized reactivity impact of AFGI/AFGZ photolysis uncertainty.

reactions all appear to have some effect. Comparing Figure
2, panels a—C, it can be seen that the overall range of
reactivities from the rate constant uncertainty calculations
is often smaller than the differences in reactivity between
metrics, particularly between the exposure metrics and the
peak metric. Another interesting feature to note in these
figures is that the MIB and MOIR reactivities for many
compounds fall outside of the rate constantuncertaintyrange
ofthe CIT-S90 metrics; however, the relative ranking is similar.

Formaldehyde exhibits the highest reactivity sensitivity to
uncertainty of all the tested compounds as measured by each
metric.

To summarize the uncertaintyresults, Figure 4 shows the
normalized standard deviation (NSD) of the calculated
reactivities for each compound and metric. NSD is defined
here as the standard deviation of the reactivity values
predicted from each rate Constant uncertainty run divided
by the base-predicted reactivity value, multiplied by 100%.
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It should be noted that the 2(a/k) rate constant changeswere
all positive, so the spread of reactivity predictions for the
rate constants tested is represented in this figure, not the
direction of response. As shown in Figure 4, only a few
compounds exhibit NSD values greater than 20%, a low
response to 2(alk) changes in the rate constants studied, For
peak ozone, two aromatics—ethylbenzene and toluene—
exhibit unusually high NSDs, —gS% and — 104%, respectively.
This is caused by the NO2 + OH reaction rate constant
uncertainty, as can be seen in Figure 2c, and is magnified
because the compound reactivities are close to zero. These
two compounds also respond differently when comparing
reactivities between models and metrics. One reason for
this is that the impacts ofthe organic nitrates (PAN and PPN)
formed by these compounds are affected by the spatial
representation ofpollutant distributions in the model used,
which is different between single-cell and airshed models.
For example, the peak ozone metric predicts slightlynegative
reactivities for these compounds, but the exposure metrics
predict slightly positive reactivities. Other compounds with
high NSDs for some metrics include 1,2,4-trimethylbenzene,
which is fairly reactive and also an aromatic; ethane and
benzene, which have vetylowreactivities;and methanol and
formaldehyde, forwhich the key rate constant estimates have
recently been improved (24).

In summary, results indicate that the use of different
metrics in determining compound reaclivities as well as the
differences between single-cell andairshed model predictions
have a larger impact on relative reactivity predictions than
do rate constant uncertainties for the compounds and
reactions examined. Compound reactivity values as calcu-
lated using the three metrics explored here responded
differently to rate constant uncertainties. The population-
weighted metrics respond more to changes that impact ozone
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in the most densely populated areas, which are also in the
more dense source regions. For example, the NO2 + OH rate
constant is important in this region due to the high NO2concentrations as well as to the OH limitation in oxidizing
VOC. Further downwind, other reactions start to have an
increasing impact, e.g., radical—radical reactions and the
PAN decomposition/formationrates. The peakozone metric
is more sensitive to those uncertalntles but also is impacted
by numerical limitations (due to the advection solver) since,
often, the change found was very smalland the brute-force
differencing loses accuracy. Additionally, our uncertainty
analysis results indicate that a rather small set of rate
constants are influential, presenting a limited number of
specific opportunities forincreasing confidence in gas-phase
chemical mechanisms, One significant step is revisions
recently made to the SAPRC mechanism to incorporate new
recommendations for PAN chemistry and HCHO photolysis
reactions (24). Also, asmallnumberofcompoundsexhibited
large responses to the rate constant uncertalnties, in par-
ticular ethylbenzene and toluene. Because toluene and
ethylbenzene lead to organic nitrate formation, these com-
pounds may increase or decrease ozone concentration
predictions, depending on the metric examined, the nominal
rate constant value, and the local conditions. Changes in
ozone predictions as measured by different metrics and the
responses of these metrics to rate constant uncertainties are
critical when considering howto measure ozone impacts for
evaluating potential control strategies and in assigning federal
standards.
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