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Three-Dimensional Air Quality Model

M. §. BERGIN,#% A. G. RUSSELL,*8 AND
I.B. MILFORD!"

Department of Mechanical Engineering, Carnegie Mellon
Unriversity, Pittsburgh, Pennsylvania 15213, and Department
of Mechanical Engineering, University of Colorado, Boulder,
Colorado 80309

Accurate quantification of the ozene-forming poiential,
termed “reactivity”, of voltaile arganic compounds (VOCs)
is critical for correctly assessing the impacts of emissions
on air quality, As reactivity-based regulations are being
-more carefully considered for urban ozone control strate-
gies, the uncertzinties in our ahility to quantify reactivity are
gainingimportance. This study utilized a three-dimensional
air quality model to examine the uncertainty in reactivity
guantification resulting from a set of reaction rate constant
uncertainties. A previous study identified the set of rate
constants that were most critical for single-cell mods!
czone predictions. With the detailed airshed model,
uncertainties in rate constants for aldehyde photolysis,
nitric acid formation, and decomposition of peroxy acstyl
nitrate (PAN) and peroxy propiony! nitrate plus higher
PAN analogues (PPN} exhibited the greatest impact on
relative compound reactivity values. Forthe cempoundsand
reactions examined, the combined responses to 2o changes

in reaction rate constants were approximately 15% of the
predicted relative reactivity values, with the reactivities

of ethylbenzene and toluene exhibiting the greatestresponse.
The choice of reactivity quantification measures and the
air quality models used had a greater impact on relative
reactivity predictions than did the rate constant uncer-
tainties.

Introduction

The atmospheric chemistry of urban ozone precursors, oxides
of nitrogen (NO,), and volatile organic compounds (VOCs)
is nonlinear and is influenced by local meteorology and
ambient conditions, which makes ozone behavior difficult
to predictand control. Despite great efforts in ozone contral,
many major urban areas continue to exceed the National
Ambient Air Quality Standard (NAAQS) for tropospheric
ozone (1), In response, regulatory control strategies are
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becoming increasingly stringent and costly. Previous studies
have shown that in many areas the ozone NAAQS cannot be
met without sigrificant reductions of both NO, and VOC
ernissions. The ability to identify which emissions reductions
would most effectively reduce pollution would help in
mirimizing costs. VOCs have historically been regulated as
a single class of compounds, i.e., by limiting the total mass
of VOC emitted, regardless of the composition. Research
has shown that the hundreds of individual species included
in the VOC dlass (mosty hydrocarbons and oxygenated
hydrocarbons) can each have substantally differing effects
on ozone formation {2—4). Thus, more direct use of the
ozone-forming potential of VOCs, termed “reactivity”, is
rapidly gaining attention because potentially more effective
control strategies could be developed by incorporating these
reactivity values into regulatory policy (4—6).

One such reactivity-based policy is part of the California
Clean Fuels/Low Emissions Vehicles Regulations (7). Inthese
regulations, a reactivity scale based on a maximum incre-
mental reactivity (MIR) (7, 8) value for compounds or
compound classes is used to calculate the total reactivity of
alternative fuel vehicle emissions. This scale was developed
over a wide range of meteorological inputs and background
concentrations using a detailed chemical mechanism, the
Statewide Air Pollution Research Cemnter 1990 (SAPRCS0)

mechanism (9), incorporated into a single-cell or “box” air

quality model.

The use of the MIR scale in regulations led to a number
of concerns about the quantification of compound reactivity.
One such concern addressed the level of physical detail
accounted for by the box mode! in the quaniification of
reactivity. To examine this issue, two reactivity studies have
been conducted (10, I11) using a comprehensive three-
dimensional {3D) urban air quality model: the Carnegie/
California Institute of Technology (CIT) model (12, 13), which
accounts for a high degree of physical complexity. One of
these studies (1) incorporated the SAPRCS0 mechanism in
the CIT model 50 the results could be directly compared to
the regulatory MIR scale. The resulting version of the CIT
modei is referred to as the CIT-S90. ‘

A second serious concern about VOC reactivity quanti-
fication is that uncertainties, particularly in the chemical
mechanism, may have significant effects on the calculation
of reactivity values. As experimental methods evolve, more
refined parameters become available for modeling purposes.
For example, a recent study by Donahue et al. {14) suggests
that estimates of the rate constant for NO: + OH — HNO;3
used for modeling of the lower troposphere are overestimated

~ by approximately 30%. The findings of the Donahue et al.

study exemplify the importance of examining the effects of
chemical mechanism uncertainty on ozone and incremental
reactivity predictions.  Identification of which parameters
have the greatest impact allows efforts to focus on refining
the measurements of those parameters and will provide a
measure of confidence in the interpretation of current model
predictions.

The study described here extends the prior CIT-S90
reactivity study and presents the results of an uncertainty
analysis performed on the chemical mechanism for the three
reactivity scales developed during the previously described
study. Aboxmodelwasusedin aprevious formal uncertainty
analysis to identify those rate constants that contributed the
greatest ameount of uncertainty to the ozone formation
predictions (15). The CIT-330 mode] was then used to
exarnine the impact of those critical rate constant uncertain-
ties onreactivity quantification using a 3D model. There are
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TABLE 1. SAPRCY0 Mechanism Characteristics, As
implemented with the CIT Model for Reactivity Studies

chemical species

transported 71
steady-state 15
censtant 5
explicit VOCs 33
total 81
reactions

photolytic 20
totai 203

fundamental differences between box and 3D models that
could strongly impact the effect of chernical mechanism
uncertainties on ozone predictions. Box rmodels can be
applied to a large number of scenario ¢conditions and used
with detailed statistical methods, while a 3D model accounts
for a much higher degree of physical detail (i.e., effects of
multiday transport, spatial and temporal varations of
emissions, and cloud cover) and provides more detailed
metrics for evaluation.

A key limitation of the uncertainty analysis performed
here is that it was confined to uncertainties in rate parameters
in the SAPRC mechanism. neglecting other mechanism

uncertainties such as those in product yields and, more

breadly, in mechanism formulation (e.g., degree of explicit-
ness or omission of important reactions or species). Only
reaction rate constants were examined in this study because
they are believed 10 be the source of the largest fraction of
identifiable uncertainty in the mechanism (16). Beyond the
chemical mechanism, the study did nct attempt to treart
uncertainties in the simulation conditions or the emissions
estimates for which reactivities are calculated. Additionaily,

itislikely that uncertainties in input conditions forindividual

scenarios, particularly emissions and metecrclogy fields, have
an impact on compound reactivity quantification, especially
on those affected by photolysis rates. However, how this
might effect the relative ranking of reactivity has been less
clear.

Methods

The CIT air quality model (12, 13) follows the evolution of
chemical species in the atmosphere, providing spatial and
temporal predictions of pollutant concentrations for given
conditions over aspecified time interval. Input datarequired
by the mode!l include local meteorological conditions such
as wind, temperature, and solar radiation; the domain
topography; initial and boundary conditions of species
concentrations; and anthropogenic and biogenic species
emnissions. Some of the main model components include
caleulatons for advection, turbulent diffusion, and deposition
and a chemical reaction mechanism that calculates the
production and destruction of species.

For the previous CIT-590 reactivity study (11) and this
uncertainty study, the chemical mechanism used, SAPRCS0,
was made explicit for 33 VOCs. The basic mechanism
characteristics are shownin Table 1. The modelwasapplied
to the Los Angeles air basin for both studies because of the
serious ozone problem there, the quality of input data
available, and the application of the MIR scale in California
for regulatory use. Data inputs such as meteorology and
emissions were adopted from the August 1987 episode of the
South Coast Air Quality Study (17, 18). Although itisgenerally
acknowledged that the mobile source organic emissions are
underpredicted in this data set (13}, the inventory was not
enhanced for this study. It has been previously shown that
the use of two inventories with very different levels of VOC
and NOileads to similar reactivity quantification results {19).

In the previous reactivity study (11), the model was used
to calculare incremental reactivities for 26 organic com-
pounds plus carbon monoxide. Species reacivity was
determined by first modeling ozone formation using a base
emission inventory and then simulating the effects of
increasing the ernissions of one species. Emissions of most
organic species were increased by 20% of the total emitted
VOCs {on a molar basis) in each grid cell each hour to account
forihe spatial and temporal variations in emissions. Carbon
monoxide was increased by 100% of the VOCs. These two
sets of ozone predictions, base and perturbed, are then
compared to calculate the reactivity of that species, which
can be defined in a number of ways. One benefit of using
2 3D model rather than a box model is that a variety of air
quazlity impacts can be examined. This provides a more
realistic and comprehensive analysis of the atmospheric
response to the spatial and temporal variations of emissions,
multiday effects, and spatial distribution of pollutant impacts.
With a 3D model, these impacts can also be correlated with
the human population distribution (e.g., as a measure of
exposure impact).

In this study, asin previous similar studies (10, 11), several
Teactivity measures were examined including effect on peak
ozone, population-weighted potential exposure, and spatial
exposure. Peak ozone is defined simply as the maximum
ozone concentration in parns per million {ppm) predicted in
the modeling domain using each emissions inventory. The
predicted peak ozone forms relatively far downwind of Los
Angeles in an area with a relatively high ratio of VOC to NO,
concentrations, which is therefore not as sensitive to VOC
emissions as is most of the urban basin, Population-weighted
exposure i3 calculated as the population residing in the
modeling grid location times the ozone concentration, -
summed for each hour that the concentration is over the
threshold value (i.e., 0.09 or 0.12 ppm for ozone). The two
threshold results are then averaged. Spatial exposure is the
summation of the grid cells with ozone concentrations
exceeding the threshold value times the concentration for
each hour over the threshold. The units are ppm-grid-h, or
km?ppme-h (one grid is 25 km? in area). The two threshold
results are also averaged for this metric. A more detailed
description of these reactivity measures is presented else-
where (11). .

To present reactivity measures in a more relative sense
and to better compare meastres between the zero- and three-
dimensional model results, reactivities were norrmalized to
that of a suite of compounds representative of exhaust
emnissions from motor vehicles operated on industry-average
gasoline. The use ofasuite of compounds for normatization
rather than a single compound reduces the possible bias
that can result if the normalizing species does not respond
ina way representative of most compounds and also reduces
the uncertainty in the calculation of the relative reactivities
(4, 20). Afurther advantageis thatit allows directcompariscn
of the reactivity of each compound to that of emnissions from
a major source. _

In this study, the normalized reactivity for each species,
NR;, is defined as

R; (P = Pyasd 1 C;

NR, = B = F (1)
composite J .
Z{E‘(P 7~ P hase)]

J 7

Here, NR; is the normalized reactivity of species R is the
carbon-based reactivity of species i or the normalizing
composite; P is the air quality metric of interest (e.g., peak
ozome or an exposure value) corresponding to emissions of
species 7, of composite species j, or of the base case; C; is the
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TABLE 2. Composite Cemposition Used for Normalizing Beactivities and Airshed Calculated Reactivities

normalized relative reactivity

no. of fraction in composite av threshold exposure
species Carbons {ppmC per ppmC) peak O3 population-weighted spatial
carbon rmonoxide 1 0.000 0.05 0.02 0.03
ethane 2 0.126 0.20 0.03 0.05
benzene 6 0.000 0.04 0.05 0.06
methyl tert-butyl ether 5 0.052 0.35 0.14 0.19
2,2 A4-trimethylpentane 8 0.000 0.44 0.14 0.20
butane 4 0.003 0.57 Q.16 0.25
methanal 1 ¢.oco . 0.51 0.24 0.27
methyl ethyl ketone 4 0.004 0.64 0.21 0.33
2-methylpentane & 0.000 0.71 0.24 0.35
ethanol 2 0.056 1.06 0.30 0.48
ethyl tert-butyl ether 6 0.010 0.85 0.41 0.56
toluene 7 0.060 —0.10 0.35 0.37
ethylbenzene 8 0.047 —0.08 0.38 0.38
methylcyclopentane =] 0.141 1.17 0.45 0.66
2-methyl—1-butene 5 0.003 . 1.03 1.05 1.08
o-xylene 8 0.032 0.57 1.3¢ 1.24
2-methyl—2-butene 5 0.055 1.21 1.24 1.35
2-methylcyclopentene 8 0.001% 1.65 1.34 1.50
m,p-xyleng 8 0.121 0.69 1.84 1.62
ethene 2 0.109 1.73 1.15 1.45
1,2, 4-trimethytbenzene 9 0.035 1.06 2.67 1.83
acetaldehyde 2 0.012 2.32 1.18 1.76
isoprene 5 0.000 2,08 2.03 2.04
propicnaldehyde + higher aldehydes 3 0.006 281 1.35 2.07
propene 3 0.009 2.08 1.64 1.83
1,3-butadiene 4 0.086 2,53 2.27 2.35
formaldehyde 1 0.011 1.50 1.98 2.83

TABLE 3. Normalized Bias and Standard Deviation hetween
Metrics for Each Modei

bias(NRB) SD

CIT Model population, spatial -0.21 0.22
peak, spatial 0.22 0.52
peak, popululation 0.39 0.67
box model MIR, LA MIR 0.07 0.12
MIR, MCIR —0.15 0.27
MOIR, LA MIR 0.22 0.37

TABLE 4, Normalized Bias and ‘Standani Deviation hetween
Metrics and Models ' ‘

CIT model
population expostre  spatial exposure peak ozone
box mode|  bias(NB) SO hias(NB) SD bias{NB} SD
MiR =0.16 0.24 0.05 008 0.26 0.56
LA MIR -0.09 0.20 012 G617 032 0.65
MOIR —-0.3 0.42 -0.10  0.24 0.12 0.35

number of carbon atoms in a molecule of species §; and f
is the carbon fraction of species f in the composite mixture.
The composition of the normalizing mixture is given in Table
2.

Table 2 also shows three reactivity scales predicted for
the 27 compounds examined. Inthe prior CIT-S90 reactivity
study (11}, two photolytic rate constants were calculated using
transposed cross sections and yields. For this reason, the
reactivity scales and scale comparisons were recalculated
and are presented here. The two rate constants represent
the photolytic decomposition of two classes of unknown
aromatic fragmentation products: AFGl, formed from
benzene, tetralin, and naphthalenes; and AFG2, formed from
arematics containing aliyl groups. These reactions mainly
affect predictions of the chemical behavior of aromatic
compounds.
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TABLE 5. Regression Results for the Expesure versus MIR
and Peak Gzone versus MOIR Measures

B2 slope intercept
population to MIR 0.8 0.88 0.04
MIR to population 0.82 0.15
population to MOIR 0.74 0.85 -0.02
MOIR to population 0.78 0.27
spatial to MIR 0.97 0.98 0.04
MIR to spatial 0.99 =0.01
spatial to MOIR, 0.96 1.08 —-0.08
MOIR to spatial 0.88 0.10
peak to MIR 0.60 0.78 0.26
MIR to peak 0.77 0.19
peak to MOIR 0.80 1.01 0.05
MOIR to peak 0.79 .16
MIR to MOIR 0.94 1.09 —3.08
MOIR 10’ MIR 0.86 0.13

As in previous studies conducted with airshed models
(10, 11} as well as box models (2, 8, I5), species reactivities
are found to differ by over an order of magnitude. Tables
3-5 show the recalculated relationships between airshed

" and box model reactivity predictions. In these tables, three

boxmodel scales (8) are shown for comparison. MIR denotes
the average maximum incremental reactivity scale developed
from calculations of 39 scenarios developed for different
cities, and MOIR denotes a similar 39 scenario-average scale
for maximum ozone incremental reactivity, which is based
on peak ozone. LA MIR denotes a maximum incremental
reactivity scate developed for conditions in Los Angeles (one
of the 39 scenarios). In Tables 3 and 4, the normalized bias
between metrics x and y (from either model), NBzy, was
calculated as

25 25

1 1
%y = EZRR&W = '2—522

=1 =1

R,.— R

Ly
NB ———) {2)
R+ Ry,




'(szg)l.]E 8. SAPRCID Reaction Sets Considered in Uncertainty Analysis [% of Total Ungertainty and ofk fram Box Model Study

influential reaction
NO; + OH — HNO3 '
NO;+hr=—NO+0
Qz+ NO—NO; + 02

BCHO + hv — CCHO + ROz-R + ROz + CO + HO,
HCHO + hv — 2HQ, + CO

CCO-0z + NQ — CO; + Ny + HCHO + RC2-R + RO;
CzC0 + NO — CCHO + ROz—R + €Oz + NOz + RO,

CCO—-0Q7 = NO; —PAN
C2C0—03 + NQO»— _PPN

PAN — CCO—-0, + NOz + RCOz
PPN — C2CO0—07 + NOz + RCC4

AFG1 + hv —HQO2 + HCOCO—-0;
AFG2 + hy —HOy + C0 4+ CCO-0:+ RCOs

MEQH + OH — HO; + HCHO

% of total uncertainty alk? description set
32.1 0.265 NOz+ HO 1
10 0.26% NO2 Photolysis 2

5.1 4.193 0O + ND 3
0.9 0.343 aldehyde photolysis 4
8.7 0.342
7.1 0.764 peroxyacyl < NO 5
1.5 0.764
5.4 0.671 peroxyacyl + NO2 (3
1.6 0.5671
5.0 0.698 PAN, PPN decomposition 7
1.2 0.696 :

1.332 AFG1/AFG2 photolysis 8
8.3 1.332
0 0.481 methanal + OH 9

? Normaiized uncertainty, o/k, where o is the 1o uncenainty of rate constant k. ® AFG1 represents unknown aromatic fragmentation products
formed from benzene, tetralin, and naphthienes. AFG2 represents unknown aromatic fragmentation produsts formed fram arornatics containing

alkyl groups.
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FIGURE 1. Percent change in base ozone predictions from rate constant uncertainty tests.

Here, RR;x,, the reactivity ratio, is a function of the predicted
reactivity, R, for species { from the metrics x and y. NBgyis
the average oi these reactivity ratios predicted by the metrics
for 25 of the 27 species (ethylbenzene and toluene values are
omitted in this compazison because their negative reactivities
cause the denominator to approach zero). In both the
previous reactivity analysis and the Tecalculated analysis,
the normalized bias is generally low and the correlation for
the 27 species, shown in Table 5, between the box model
reactivities and those calculated with the airshed modei is

high. Airshed reactivities based on spaiial exposure showa

strong correlation with the box mode] MIR scale as well as
the strongest airshed metric correlation with the box model
MOIR scale. Airshed reactivities based on peak ozone
sensitivity are significantly different from those based on
exposure metrics and from the box model MiRs, although
they show similar trends. Peak ozone-based reactivities are
well correlated with the box model peak ozone reactivities
(MOIR). For a more complete description of the CIT model
application and metric comparison, please refer to Bergin et
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FIGURE 2. {a} Effect of 27 rate constant perturbations on normalized reactivities hasad on spatial exposure. {b) Effect of 2o rate constant
perturhations on normalized reactivities based on population exposure. {c) Effect of 27 rate constant perturbations on normalized reactivities

based on peak czone.
al. 1995 (11).

Identificatiun‘ of Critical Rate Constants

Major sources of uncertainty in the reactivity scales presented
above, as well as in the MIR and MOIR scales, include reaction
rate constants and speciation product parameters used in
the chemical mechanism. The effect of uncertainty in
reaction rate constants on reactivity guantification was
targeted for a formal sensitivity study (15), usingaboxmodel
with the SAPRC90 chemical mechanism 1o simulate the
average of the 3¢ modeling scenarios that were used to create
the MIR and MOIR scales. AMonte Carlo analysis with Latin
Hypercube Sampling was applied to examine the effects of
uncertainties in the rate parameters of the SAPRC90 mech-
anism on ozone formation predictions and on incremental
reactivities of selected organic species. The results of this
boxmodet study were used to identify areduced set of critical
rate parameters for uncertainty analysis with the CIT-S80
model. This approach takes advantage of both the formai
sensitivity analysis made practical by the lower computational
requirements of a box model and the greater physical and
temporal representation made possible by the 3D medel,
allowing us to examine in detail the potential uncertainty
impacts in reactivity quantification on a specific real-world
pollution episode.

Estimates of uncertainty in the rate parameters of the
SAPRC mechanism were compiled (21) largely from reviews
by NASA (22) and IUPAC (23) panels. Becausethese estimates
are subjective, the larger of the NASA or IUPAC uncertainty
estimates was adopted if the panels disagreed. Possible
correlation between uncertainties in some parameters was
neglected in the box model study, as uncertainties were

assumed to beindependent across parameters. Forexample,
the peroxyacyl+ NO and the peroxyacyl + NOz rate constants
were measured as a ratio for development of the chemical
mechanism. However, because they are not perfectly
cormelated, they were treated independently in the uncertainty
study. Itshould be noted that this is a conservative approach, .
and the prediction sensitivities to these rate constant
uncertainties would likely decrease if these reactions were
coupled during the uncertainty test. Further details on the
uncertainty compifation and box model simulations are
available elsewhere {15, 20).

Rate constants of 12 of the 203 mechanism reactions were
found in the box model study to be responsible for ap-
proximately 86% of the total uncertainty caused by rate
constants in predicted ozone concentrations (15). The same
set of rate constants also accounts for much of the estimated
uncertainty in MIR and MOIR values (15). Some of the 12
reactions behave very similarly and so were grouped for this
study, resulting in eight sets of reactions to be examined in
this uncertainty analysis. Table 6 provides a listing of these
reactions, first-order estimates of their uncertainty contribu-
tion to total ozone predictions (% of total uncertainty), the
assumed normalized rate constant uncertainty (¢/k) from
the box model study, and the reaction set description used
here, In addition to these 12 rate constants, which were
influential on compound reactivities in general, rate constants
for the primary oxidation reactions of individual organic
compounds were found to be influential for the reactivity of
that particular compound {15). For example, the rate
constant of the reaction for methanol with the hydroxyl
radical is influential on the calculation of the reactivity of
methanol. Reactivities of the more slowly reacting organic
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compounds, such as methanol, were shown by the box model
study to be especially sensitive to the rate constants for their
initial oxidation reactions. To keep compurtational require-
ments reasonable, initial oxidation parameter affects on
reactivities were calculated with the CIT-S90 ondy for the
illustrative case of methanol, which is also listed in Table 6.

Effects of Rate Constant Uncertainties on Reactivity
Quantification

To exarnine the effect of rate constant uncertainty, reactivity
scales were developed for perturbations in each of the first
seven targeted rare constant sets in Table 6, which can then
be compared to the nominal reactivity scales. Sensitivity of
reactivity quanrification of six aromatics to the uncertainty
in the lumped aromatic ring fragment destruction reactions

(AFG1/AFG2 photolysis) is also examined, as is the sensitivity

of methanol reactivity quantification ta the methanol + OH
rate constant. The methanol uncertainty effect was inciuded
in the sensitivity study because of methanol’s irnportance to
alternative fuels discussions. However, because methanol
is not a2 commeon compound in the emissions inventory, is
relasively unreactive, and is not a reaction product of other
species, the sensitvity of the reactivities of the other 26 species
to the methanol + OH rate constant was not examined.

The effect of rate constant uncertainty was calculated by
increasing the nominal rate constant(s) of interest by twice
the reported uncertzinty, resulting in the “perturbed” rate
constant(s):

Kper = 201E) + Dpom

where kpe; is the perturbed rate constant, o/k = normalized
rate constant uncertainty {showr in Table 3), and kpom is the
nominal rate constant.

Of note, the previcusly menticred study by Donahue et
al. (I4) suggests that the current recommended vaiues,
including those used in SAPRC90, overestimated the NO; +
OH rate constant by approximately 30% for standard
temperature and pressure conditions in the lower tropo-
sphere.

After modification to the chemical mechanism of each
specific rate constant(s), a 3-day model simulation was
conducted with the base inventory and each of the 27
perturbed emissions inventories (which have an incremental
arnount of the VOC of interest added to the base inventory).
The results from the simulations using the perturbed
inventories and the base inventory were then used to calculate
new compound reactivities, which were normalized to the
compound suite described above. A comparison was then
made between the predicted reactivityscales calculated using
the nominal rate constants versus the perturbed rate
constants, for each set of rate constants and for each of
thethree reactivity measures considered. Thus, seven sets
of sensitivity simulations were used to recalculate the
reactivities of all 27 species being studied, one additional set
of sensitivity simulations was used to recalculate the reac-
tivities of the six aromatic species being studied, and one
additional set of simulations was conducted for methanol.
Of note, even with the reduced set of parameters, this type
of analysis is computationally intensive.

Airshed Model Uncertainty Analysis Results and
Discussion

Before examining the effects of rate constant uncertainty on
VOC reactivity values, the effects on base ozone predictions
are examined. Figure 1 shows the percent change in base
ozane predictions caused by the targeted rate constant
uncertainties, as measured by peak ozone, population
exposure, and spatial exposure. For example, when the
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model is run with nominal reaction parameters (i.e., the base
run), resulting predicted peak ozene is 3.17¢ ppm. After
increasing the NO; + OH rate constant by twice the estimated
uncertainty i2{o/k) as defined above], predicted peak ozone
is0.153 ppm, 2 14.7% decrease. Theimpactcfthe transposed
photolysis rates was examined for two of the reaction sets:
NO; photolysis and AFG1/AFG2 photolysis. The percent
change in base ozone predictions from the same targeted
rate constant uncertainties previously calculated using a box
model for MIR and MOIR conditions (16) are shown for
comparison-

As can be seen in Figure 1, population exposure is the
metric that is most sensitive to the rate constant uncertainties,
followed by spatial exposure, the box model metrics, and
then peak ozone. In particular, as measured by population
exposure, NO; photolysis, peroxyacyl + NO, and PAN and
PPN decomposition rate constant uncertainties caused more
than a 100% increase in ozone exposure predictions over the
base run. Most uncertainties caused at least a 50% change
from the base predictions of population exposure. The
probable reason for this metric sensitivity is that these rate
changes cause ozone formation to occur earlier in the
simulation, while the polluted air mass is still in very
populated areas, rather than further downwind where the
population is relatively sparse. Aslight spatial shift canlead
to a large difference in population exposure. The sensitivity
of the spatizl exposure metric is likely due to slight changes
in ozone levels in grid cells that are very near the threshold
concentrations {(0.12 and 0.09 ppm}. The largest change for
this metric is in response to the NO; photelysis rate constant
uncertainty, which caused a 75% increase in the predicted
exposed area. All the other rate constant uncertainties
examined caused less than a 50% change in the spatial
exposure predicted value. The responses of the two box
mode} metrics, MIR and MOIR, generally {all between the
grid model spatial exposure and peak ozone metrics, more
closely aligning with peak ozone. Peak ozone is clearly the
least sensitive grid model measure to the targeted rate
constant uncertainties, with the largest impact being less
than 20%. Overail, the NO; photolysis rate constant had the
largest effect on ozone prediction for all grid model metrics,
while NO;+ OH had the largest impact on box model metrics.
The reaction sets lead to the same directional changes in
ozone predictions for all metrics (decreases for NO; + OH,
peroxyacyls + NO,, and O3 + NO; increases for all others.)
It is important to note that, while the uncertainty effecis on
base ozone predictions is an absolute measure; the effects
onrelative comparisons of compound reactivity may be quite
different. o ‘ -

For the set of 27 VOCs examined, Figure 2a—c¢ compares
normalized reactivity predictions from the base case run,
each rate constant perturbation run, and the box model MIR
and/or MOIR scales discussed previously. - Figure 3a—c
compares the same information for the six aromatics with
the AFG photolysis uncertainty runs. Species on the y-axis
are listed in order of increasing base reactivity as measured
by spatial exposure. Figure 2a,b, the spatial and population
exposure predictions respectively, show the best general
agreement with the box model scales. Figure 3a—c exhibit
essentially the same relative reactivity rankings for each
metric with both the box and airshed models.

The rate constants to which the reactivities of most
compounds are the most sensitive appear to be dependent
on the metric examined. Both exposure measures (Figure
2a,b) appear to be most sensitive to the change in aldehyde
photolysis rates, with some compounds showing sensitivity
to changes in the NO, + OH and the peroxyacyls + NO; rate
constants. Looking at reactivities based on peak ozone
(Figure 2¢), rate constants for PAN and PPN decomposition,
NO» photolysis, peroxyacyls + NO,, and the NO, + OH
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FIGURE 3. Normalized reactivity impact of AFGT/AFG2 photolysis une

reactions all appear to have some effect. Comparing Figure
2, panels a—c, it can be seen that the overall range of
reactivities from the rate constant uncertainty calculations
is often smaller than the differences in reactivity between
metrics, particularly between the exposure metrics and the
peak metric. Another interesiing feature to note in these
figures is that the MIR and MOIR reactivities for many
compounds fall outside of the rate constant uncertainty range
of the CIT-390 metrics; however, the relative ranking is similar,

Formaldehyde exhibits the highest reactivity sensitivity to
uncertainty of alt the tested compounds as measured by each,
metric.

To summarize the uncertainty results, Figure 4 shows the
normalized standard deviation (NSD) of the calculated
reactivities for each compound and metric. NSD is defined
here as the standard deviation of the reactivity values
predicted from each rate constant uncertainty run divided
by the base-predicted reactivity value, multiplied by 100%.

VOL. 22, NC. 5, 1998 / ENVIRONMENTAL SCIENCE & TECHNOLOGY = 701




&0
GQJ...,....A. ..........................................................................
A
7
2 A A A
= L}
SZO-*-I-‘- ................. : ........... g A AT R R
- . A 2 s @ u
L 2 L] *
E) i1 -*,".:.l-l'!l.l..
= i N ] . . =% . ———e . W :
Z 0 ; — e — B y — : :
Q
«
c
e«
0
L2
Q
5'40" ..................................................................................
=
]
B <1 I T T
2
2
E.aoi ................................................................ e e
T
& ® Population Exposure
OO - e e L u Spatial Exposure
A Peak Ozone
A
B T+ T S
-140
L T N . T~ T T | D~ ST S N~ SN« NN SNNNY AN - SN+ NN SN+ NN SN - S S - - T )
= a4 @ = -] L)
$ 332t FE ST EEETEEEEEEEEEZSEZEOE RS
oEEEEﬁc‘gEBE;_ﬂ:ahzgsﬁc—;g'ngu.-cﬁ
g @ > 2 2 2 s X 22 T > & ¥ ¥ =& £ ¢ B = 5 I § &£ =
2 F £ = E = = £ &5 ¢ & =~ £ 4 g = = 3 2 3 3
E &2 E = B £ 5 B = 2 3 = 3 ol -
= - = = = = POy - 2 = "~ 2
3 = s 3 5 3 z B £ 3 £ g = 3 - &
£ = E = E = g E B = = =
E = = g £ =
S = 2 o 2 = s F = =
= 2 El ¢ 2 A S oa D =
c :1: = & - £ 2
o - ™ g‘
=3

FIGURE 4. Effect of 20 rate constant perturbations on normalized reactivities for CIT metrics.

Itshould be noted that the 2(¢/ k) rate constant changes were
all positive, so the spread of reactivity predictions for the
rate constants tested is represented in this figure, not the
direction of response. As shown in Figure 4, only a few
compounds exhibit NSD values greater than 20%, a low
response o 2(o/ k) changes in the rate constants studied. For
peak ozone, two aromatics—ethylbenzene and toluene—
exhibitunusually high NSDs, —89% and —104%, respectively.
This is caused by the NO, + OH reaction rate constant
unecertainty, as can be seen in Figure 2¢, and is magnified
because the compound reactivities are close to zero. These
two compounds also respond differently when comparing
reactivities between models and metrics. One reason for
this is that the impacts of the organic nitrates (PAN and PPN}
formed by these compounds are affected by the spatial
representation of poilutant distributions in the model used,
which is different between single-cell and airshed models.
For exampie, the peak ozone metric predicts slightly negative
reactivities for these compounds, but the exposure metrics
predict slightly positive reactivities. Other compounds with
high NSDs for some metricsinclude 1,2,4-trimethylbenzene,
which is fairly reactive and also an aromatic; ethane and
benzene, which have very low reactivities; and methanol and
formaldehyde, for which the key rate constant estimates have
recently been improved (24).

In summary, results indicate that the use of different
metrics in determining compound reactivities as well as the
differences between single-cell and airshed model predictions
have a larger impact on relative reactivity predictions than
do rate constant uncertainties for the compounds and
reactions examined. Compound reactivity values as calcu-
lated using the three metrics explored here responded
differently to rate constant uncertainties. The population-
weighted metrics respond more to changes that impact ozone
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in the most densely populated areas, which are also in the
more dense source regions. Forexample, the NO,+ OH rate
constant is important in this region due to the high NO:
concentrations as well as to the OH limitation in oxidizing
VOC. Further downwind, other reactions start to have an
increasing impact, e.g., radical—radical reactions and the
PAN decomposition/formationrates. The peakozone metric
is more sensitive to those uncertainties but also is impactad
by numerical limitations (due to the advection solver) since,
often, the change found was very small and the brute-force
differencing loses accuracy. Additonally, our uncertainty
analysis results indicate that a rather small set of rate
constants are influential, presenting a limited number of
specific opportunities for increasing confidence in gas-phase
chemical mechanisms. One significant step is revisions
recenily made to the SAPRC mechanism to incorporate new
recommendations for PAN chemistry and HCHO photolysis
reactions (24). Also, a small number of compounds exhibited
large responses to the rate constant uncertainties, in par-
ticular ethylbenzene and toluene. Because tcluene and
ethylbenzene lead to organic nitrate formation, these com-
pounds may increase or decrease ozone concentration
predictions, depending on the mmetric examined, the nominal
rate constant value, and the local conditions. Changes in
ozone predictions as measured by different metrics and the
responses of these metrics to rate constant uncertainiies are
critical when considering how to measure ozone impacts for
evaluating potential control strategies and in assigning federal
standards. ‘
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