POLLUTION PROCESSING BY RADIATION FOGS DURING THE CALIFORNIA REGIONAL PM10/PM2.5 AIR QUALITY STUDY (CRPAQS)

J. Collett, T. Lee, and H. Chang
Atmospheric Science Department, Colorado State University

Pierre Herckes
Chemistry Department, Arizona State University

Funding:
San Joaquin Valleywide Air Pollution Study Agency and NSF
SJV fogs

- Dense, widespread radiation fogs occur during winter
 - Moist air trapped in valley by thermal inversion
 - Radiative cooling produces fogs
- Fogs affect particles by
 - Production of non-volatile solute mass
 - Scavenging and deposition

Evaporation

Gases

Fog Drops

Fog Drops

Deposition

Particles
Past Studies of SJV fogs - I

- Nitrate and ammonium typically major species
 - pH high
 - Important organic carbon contributions
 - Nitrite and sulfate also present
 - Composition variable in time and space
Past Studies of SJV fogs - II

- Deposition of inorganic ions important
 - sulfate production ~ balances sulfate deposition
- How do fogs process OC?
Fog Measurements
CRPAQS Fog Episodes

- Several fog episodes
- Shallow fog layer
- Large drops
CRPAQS Fog Organics

- Organic carbon is key component of CRPAQS fogs
- ~75% of OC is dissolved
- Fogs process soluble and insoluble OC

n-alkanoic acids - Angiola, 12/17/00

[Graph showing n-alkanoic acids with ng/mL on the y-axis and C9 to C26 on the x-axis, with blue for insolubles and red for solubles]
CRPAQS Fog Organics - II

- Many organic compounds present
 - PM source tracers
- Lots of high molecular weight material
Fog Dissolved Organic Carbon Composition

- MW > 1000
- 1000 > MW > 500
- Formaldehyde
- Formate
- Acetate
- Diacids (C2-C5)
- n-alkanes (C11-C40)
- n-alkanoic acids (C9-C33)
- PAH + oxy-PAH
- Other MW < 500

 DICARBOXYLS
 Levoglucosan
 DON
Drop size dependence

- Most species enriched in small drops
 - NO_2^- is an exception
- Can impact
 - Deposition
 - Aqueous chemistry
Fog Deposition

- Deposition velocity, $V_d = \text{Flux}/C$
- Much faster than dry deposition
- Removal $\sim 1 \, \mu\text{g/m}^3\cdot\text{hr}$
New PM production

- High pH promotes rapid rxn. of dissolved SO$_2$ to
 - sulfate
 - hydroxymethanesulfonate

\[\text{Typical Fog Conditions} \]
Summary

• Fogs interact strongly with aerosol particles and soluble trace gases
 – Nitrogen dominated
 – 100s of organic species
 – Distributed between solution and insoluble fraction
• Main effect of fogs on PM is scavenging and removal
 – Can reduce airborne concentration by >1 \(\mu g/m^3 \cdot hr \)
 – Dep velocities depend on solute distribution across drop size spectrum
 – SOA production?
Acknowledgements

• CSU
 – S. Kreidenweis, G. Kang, E. Sherman
• Carnegie Mellon
 – S. Pandis
• Funding
 – National Science Foundation
 – San Joaquin Valleywide Air Pollution Study Agency
CRPAQS Fog Deposition

- Fog event fluxes range from 10s to 1000s of µg/m²
- Assuming a 100 m deep fog, concentrations would decrease typically
 - ~ 0.5 µg/m³/hr sulfate
 - ~ 1 µg/m³/hr nitrate
 - ~ 1 µg/m³/hr ammonium
 - ~ 0.7 µgC/m³/hr TOC
- Remember, fog solutes can be volatile or non-volatile

<table>
<thead>
<tr>
<th>Sample Start Date</th>
<th>Sample Time (hour)</th>
<th>NO₃⁻ (µg/m²)</th>
<th>SO₄²⁻ (µg/m²)</th>
<th>NH₄⁺ (µg/m³)</th>
<th>TOC (µgC/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/18/00</td>
<td>9.0</td>
<td>2246</td>
<td>1223</td>
<td>2627</td>
<td>952</td>
</tr>
<tr>
<td>12/19/00</td>
<td>2.3</td>
<td>127</td>
<td>50</td>
<td>203</td>
<td>72</td>
</tr>
<tr>
<td>1/15/01</td>
<td>2.0</td>
<td>51</td>
<td>22</td>
<td>71</td>
<td>75</td>
</tr>
<tr>
<td>1/17/01</td>
<td>7.8</td>
<td>393</td>
<td>174</td>
<td>526</td>
<td>309</td>
</tr>
<tr>
<td>1/21/01</td>
<td>3.0</td>
<td>774</td>
<td>173</td>
<td>448</td>
<td>312</td>
</tr>
<tr>
<td>1/25/01</td>
<td>2.5</td>
<td>37</td>
<td>26</td>
<td>70</td>
<td>66</td>
</tr>
<tr>
<td>1/31/01</td>
<td>3.8</td>
<td>592</td>
<td>251</td>
<td>463</td>
<td>452</td>
</tr>
<tr>
<td>2/1/01</td>
<td>1.7</td>
<td>96</td>
<td>71</td>
<td>101</td>
<td>113</td>
</tr>
</tbody>
</table>
Particle and gas scavenging

- Particles scavenged by nucleation, diffusion, impaction, interception
- Soluble gases partition to drop
CMU Modeling (Fahey and Pandis)

• Fog model reasonably predicts
 – Bulk fog composition
 – Size-dependence
 – Deposition fluxes