ATOFMS Measurements at Urban and Rural Locations: Comparison of Single Particle Size and Composition

Xueying Qin and Kimberly A. Prather, UCSD
Prakash V. Bhave, U.S. EPA
Overview

- Quantification of ATOFMS measurement
- Application of quantification method to field measurements
Field Campaign

- Participated in CRPAQS winter program
- Ambient sampling in Fresno and Angiola
 - Fresno: urban site, total of 1,861,319 particles
 - Angiola: rural site, total of 2,099,788 particles
 - different chemical matrices due to aging effect
- Goal: quantitatively compare ambient particle size and chemical composition in urban and rural locations
Aerosol Time-of-Flight Mass Spectrometer (ATOFMS)

- Diode Pumped Nd:YAG Lasers
- Ellipsoidal Mirrors
- PMTs
- Particles

- $C_nH_m^+$, (Fe, V, Pb)$^+$
- $C_nH_m^-$, Nitrates, sulfates, phosphates, chloride
Can ATOFMS Provide Quantitative Information?

- ATOFMS unscaled counts capture ambient particle concentration information

- Scale ATOFMS unscaled particle counts with reference measurements
 - Mass: scale with MOUDI
 - Number: scale with APS
ATOF-M vs. BAM

\[R^2 = 0.79 \]

Scale with APS

- Compare ATOFMS counts with APS # concentrations (size range 0.5-2.5 \(\mu m\))

- Scaling factor \((f)\):
 - \(f = \text{APS Counts} / \text{ATOFMS Counts}\)
 - exponential regression and polynomial regression
 - when \(Da < 1.783\ \mu m\):
 \[\varphi = C_1 \cdot e^{(D_a \cdot C_2)}\]
 - when \(Da \geq 1.783\ \mu m\):
 \[\varphi = C_3 \cdot D_a^2 - C_4 \cdot D_a + C_5\]
Scaled Mass Concentration

- Convert ATOFMS counts into mass conc.
 - assume all particles are spherical
 - assume uniform density of 1.3 g·cm$^{-3}$
- Calculate scaling factor for individual particle
- Scaled ATOFMS mass concentration – ATOF-N:

$$m_{scaled_ATOFMS} = \sum_i \phi_{Da,i} \cdot m_i$$
ATOF-N vs. BAM

Fresno

\[R^2 = 0.73 \]

Angiola

\[R^2 = 0.80 \]
PM2.5 Measurements

• Fresno Site

 Nephelometer (NEPH) Aethelometer (AETH)
 Beta attenuation monitor (BAM)
 Tapered element oscillating microbalance (TEOM)
 Dust aerosol monitor (DAM)
 ATOFMS mass conc. scaled with APS (ATOF-N)

• Angiola Site

 NEPH AETH BAM ATOF-N
Fresno PM2.5 Measurements Comparison

<table>
<thead>
<tr>
<th>R2</th>
<th>BAM</th>
<th>TEOM</th>
<th>DAM</th>
<th>NEPH</th>
<th>AETH</th>
<th>ATOF-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAM</td>
<td>1.00</td>
<td>0.86</td>
<td>0.93</td>
<td>0.75</td>
<td>0.79</td>
<td>0.73</td>
</tr>
<tr>
<td>TEOM</td>
<td>0.86</td>
<td>1.00</td>
<td>0.59</td>
<td>0.60</td>
<td>0.94</td>
<td>0.57</td>
</tr>
<tr>
<td>DAM</td>
<td>0.93</td>
<td>0.59</td>
<td>1.00</td>
<td>0.70</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>NEPH</td>
<td>0.75</td>
<td>0.60</td>
<td>0.70</td>
<td>1.00</td>
<td>0.58</td>
<td>0.78</td>
</tr>
<tr>
<td>AETH</td>
<td>0.79</td>
<td>0.94</td>
<td>0.53</td>
<td>0.58</td>
<td>1.00</td>
<td>0.59</td>
</tr>
<tr>
<td>ATOF-N</td>
<td>0.73</td>
<td>0.57</td>
<td>0.73</td>
<td>0.78</td>
<td>0.59</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Angiola PM2.5 Measurements Comparison

<table>
<thead>
<tr>
<th></th>
<th>R2</th>
<th>BAM</th>
<th>NEPH</th>
<th>AETH</th>
<th>ATOF-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAM</td>
<td>1.00</td>
<td>0.92</td>
<td></td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td>NEPH</td>
<td>0.92</td>
<td>1.00</td>
<td></td>
<td>0.77</td>
<td>0.88</td>
</tr>
<tr>
<td>AETH</td>
<td>0.60</td>
<td>0.77</td>
<td>1.00</td>
<td></td>
<td>0.63</td>
</tr>
<tr>
<td>ATOF-N</td>
<td>0.80</td>
<td>0.88</td>
<td>0.63</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Fresno Temporal Variation of Chemical Types

[Graph showing mass concentration over time for different chemical types]
Fresno Temporal Variation of Chemical Types

The graph shows the temporal variation of chemical types in Fresno. The x-axis represents the date and time, starting from January 9th to February 4th. The y-axis represents the mass fraction ranging from 0% to 100%. Different chemical types are indicated by various colors and line styles:
- SVOC (brown)
- Biomass (purple)
- AgedOC (tan)
- AgedSalt (light blue)
- FreshSalt (red)
- Dust (dark blue)
- Ecoc (green)
- NH4_30_OC (orange)
- UnClass (magenta)

The graph illustrates how the mass fraction of each chemical type changes over time, providing insights into the temporal variation of chemical types in Fresno.
Conclusions

- ATOFMS is able to provide size resolved, high temporal resolution, and quantitative information on ambient PM composition.

- Carbonaceous particles account for more than 80% of the PM2.5 mass fraction in both Fresno and Angiola during the winter.

- Higher fraction of fresh biomass emissions in Fresno.

- Episodic periods with high amounts of ammonium and nitrate particles in Angiola.

- Diurnal variation of particle chemistry
 - Fresno: SVOC, biomass and aged OC peak at night. EC/OC and NH$_4$NO$_3$-OC peak during the day.
 - Angiola: PM with high levels of ammonium nitrate peak during day.

- To understand chemical variability and transformations will begin making comparisons with models (M. Kleeman, UC Davis).
Acknowledgements

Dr. Jeffrey R. Whiteaker Dr. Keith R. Coffee
Dr. George Khairallah Dr. David T. Suess

The Prather Group
San Joaquin Valley Air Pollution District
California Air Resources Board
Angiola Temporal Variation of Chemical Types

- Biomass
- AgedOC
- AgedSalt
- Dust
- Ecoc
- w/ NH4NO3
- UnClass

Mass Concentration (ug m⁻³)

Graph showing the temporal variation of chemical types with specific dates and concentration levels.
Angiola Temporal Variation of Chemical Types