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Abstract 1 

    UNMIX and Positive Matrix Factorization (PMF) solutions to the Chemical Mass Balance 2 

(CMB) equations were applied to chemically speciated PM2.5 measurements from 23 sites in 3 

California’s San Joaquin Valley to estimate source contributions. Six and seven factors were 4 

determined by UNMIX for the low_PM2.5 period (February to October) and high_PM2.5 period 5 

(November to January), respectively. PMF resolved eight factors for each period that 6 

corresponded with the UNMIX factors in chemical profiles and time series. These factors are 7 

attributed to marine sea salt, fugitive dust, agriculture-dairy, cooking, secondary aerosol, motor 8 

vehicle, and residential wood combustion (RWC) emissions, with secondary aerosol and RWC 9 

accounting for over 70% of PM2.5 mass during the high_PM2.5 period. A zinc factor was only 10 

resolved by PMF. The contribution from motor vehicles was between 10 – 25% with higher 11 

percentages occurring in summer. The PMF model was further evaluated by examining 1) site-12 

specific residuals between the measured and calculated concentrations, 2) comparability of motor 13 

vehicle and RWC factors against source profiles obtained from recent emission tests, 3) edges in 14 

bi-plots of key indicator species, and 4) spatiotemporal variations of the factors’ strengths. These 15 

evaluations support the compliance with model assumptions and give a higher confidence level 16 

to source apportionment results for the high_PM2.5 period.  17 

 18 
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Introduction 1 

 Persistent high particulate matter (PM) concentrations in California’s San Joaquin Valley 2 

(SJV) (1,2) stimulated initiation of the California Regional PM10/PM2.5 Air Quality Study 3 

(CRPAQS, 3). CRPAQS, and the associated Fresno Supersite (4), to identify the causes of 4 

elevated PM levels and to evaluate means for remediation. An important CRPAQS objective is 5 

to quantify source contributions to annual and high PM concentrations.  6 

Presented here are results from the Positive Matrix Factorization (PMF) and UNMIX 7 

solutions to the Chemical Mass Balance (CMB) equations (5) for PM2.5 (PM with aerodynamic 8 

diameter <2.5 µm) source apportionment. These results can be compared with the single sample 9 

effective variance solution (6) to the CMB equations and/or source contribution estimates from 10 

source-oriented models so that a “weight of evidence” approach can be used to develop cost-11 

effective control strategies (7). Owing to the special topography and meteorology of the SJV and 12 

the predominance of area and mobile emissions, urban and rural sites are influenced by similar 13 

sources, but by differing amounts. This allows the application of receptor models to multiple-site 14 

measurements over seasonal monitoring periods during which the emission rates and source 15 

profiles are reasonably constant. This analysis: 1) demonstrates the applicability of PMF and 16 

UNMIX to spatially as well as temporally distributed measurements, and 2) evaluates the 17 

consistency and reliability of PMF and UNMIX solutions in preparation for comparison with 18 

other receptor- and source-oriented models.  19 

Ambient Observations 20 

 The CRPAQS ambient network covered a region ~600 km long by 200 km wide between 21 

Bodega Bay on the northwest California Coast and Edwards Air Force Base in the Mojave 22 

Desert (Figure 1). Site characteristics and measured parameters are described in the supporting 23 

information (Table S-1) and Chow et al. (3). Twenty-four hour sampling based on the U.S. EPA 24 

sixth-day compliance schedule was carried out from 12/2/1999 to 2/3/2001. During the winter of 25 

2000–2001, intensive observation periods (IOPs) obtained speciated PM2.5 measurements five 26 

times a day in the urban areas of Fresno (FSF) and Bakersfield (BAC) and at non-urban Angiola 27 

(ANGI), Bethel Island (BTI), and Sierra Nevada Foothills (SNFH) sites on 15 days selected by 28 

forecast (3). Most sites reported >90% data recovery between 1/1/2000 and 1/31/2001. 29 
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 Chow et al. (3) and Rinehart et al. (8) describe the PM2.5 spatiotemporal characteristics. 1 

PM2.5 concentrations varied with elevation. While the valley floor experienced annual PM2.5 up 2 

to 30 µg/m
3
, concentrations generally decreased to <5 µg/m

3
 at the surrounding coastal, 3 

mountain, and desert monitors. For non-urban sites in the SJV, elevated PM2.5 in late fall and 4 

winter was mostly driven by ammonium nitrate (NH4NO3), while carbonaceous material 5 

exacerbated PM2.5 pollution in urban areas such as Modesto (M14), Visalia (VCS), Fresno (FSF), 6 

and Bakersfield (BAC). Regional transport occurs aloft at night through a valley-wide layer that 7 

is decoupled from a shallow (20-30 m) nighttime surface layer during winter (2) and through a 8 

well-defined daytime northwest-to-southeast flow during non-winter periods (9). 9 

 Based on these analyses, CRPAQS samples have been divided into low_PM2.5 (February to 10 

October) and high_PM2.5 (November to January) periods (3) that approximately correspond to 11 

the winter and non-winter emissions and climatological regimes. The high_PM2.5 period 12 

contributed 50–75% of annual PM2.5 at within-valley sites (lower elevation) with the highest 13 

contributions found in the urban areas. For three desert sites outside the SJV—China Lake 14 

(CHL), Mojave (MOP), and Olancha (OLW)—the high_PM2.5 period contribution was <25% of 15 

the annual average, consistent with a limited transport from the SJV to the Mojave Desert during 16 

winter. 17 

Multivariate Receptor Models 18 

 UNMIX (10,11) and PMF (12,13) solve the CMB equations and are therefore subject to the 19 

same derivation of CMB from physical principles with its underlying assumptions. Cit, the 20 

concentration of the i
th

 chemical species measured at time or location t, is the linear sum of 21 

contributions from a number of independent sources or factors: 22 

 
it

j

jtijit ESFC +=∑  (1) 23 

Fij is the fractional abundance of the i
th

 species in the j
th

 source type, Sjt is the normalized 24 

contribution of the j
th

 source at time and/or location t, and Eit represents the error between the 25 

measured and calculated ambient concentrations. 26 

 Receptor models such as PMF and UNMIX estimate Fij and Sjt by minimizing: 27 
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where the weighting factor, σit, intends to represent the magnitude of Eit. Although ambient 1 

measurement precisions are often used for σit (as in this study), this is an underestimation as most 2 

of the uncertainty originates from variability in the emissions (6). UNMIX and PMF limit 3 

solutions of Eq. (2) to nonnegative Fij and Sjt. The resolved UNMIX and PMF factors should be 4 

associated with emission sources by comparing the Fij with measured source profiles. 5 

 When Cit are available from several times and locations, it is possible to expand Eq. (1) to a 6 

three-way factor analysis (14,15). Such analyses contain a large number of factors and often 7 

require additional constraints to stabilize the solutions. Source emissions are also assumed to be 8 

reasonably similar for the range of sample times and locations.  9 

 UNMIX v2.3 software applied in this study limits itself to seven factors, while a newer 10 

version (UNMIX v5, currently in beta testing) sets no limit. These UNMIX v2.3 results are 11 

equivalent to those obtained from the beta version. EPA PMF v1.1 (16) software was applied 12 

because it selects random initial points for multiple runs and allows bootstrap testing to evaluate 13 

the uncertainty of rotational freedom (17). When running in a robust mode, PMF adapts the 14 

Huber influence function, a technique for iterative reweighting of the input data values to lessen 15 

the influence of extreme values (18).  16 

 UNMIX and PMF have been previously applied to many PM2.5 source apportionment 17 

studies (19-24), but their results do not always agree (23,24). Differences are attributed to:  1) 18 

different strategies for treating uncertainties and seeking the best fit; 2) different constraints on 19 

factor rotational freedom; and 3) different practitioner preferences. Applying both models to the 20 

same measurements and reconciling their source contribution estimates with each other and 21 

source-oriented models (e.g., 25) provides the basis for the weight of evidence approach. 22 

Source and Receptor Characteristics 23 

 Potential sources of PM2.5 in the SJV are summarized in the supporting information along 24 

with expected chemical markers. For California, area sources, including road/fugitive dust, 25 

residential and agriculture burning, construction, and cooking, account for about 76% of primary 26 

statewide PM2.5 emissions (Table S-2). Approximately half of the remaining directly emitted 27 

PM2.5 (12%) originates from on-road and off-road engine exhaust. Source activities are spatially 28 

inhomogeneous but, as noted earlier, mixing within the SJV takes place within a day during 29 

summer and over a few days during winter (2,3,9). 30 
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 Each site had from 60 to 77 days of speciated PM2.5 measurements (Table S-3). Though 1 

PMF and UNMIX do not specify a minimum number of samples, the stability of their solutions 2 

increases with the number of samples. The sample sets must have a large variation in source 3 

contributions among different samples. The chemical profiles of the contributing sources should 4 

remain relatively constant within a source type but differ substantially between source types. The 5 

CRPAQS PM2.5 dataset meets these requirements because area and mobile source profiles are 6 

reasonably consistent, in the aggregate, throughout the SJV (i.e., not site-specific); and there is a 7 

large expected variability between source contributions by sampling time and location (26).  8 

 Mineral processing, gas-fired electricity production, oil and gas extraction, and agricultural 9 

processing are important stationary sources in central California, but their primary PM2.5 10 

emission rates are small compared to those of area and mobile sources (Table S-2). Some 11 

CRPAQS sites were located within or next to dairies (FEDL), oilfields (FEL), and agricultural 12 

operations (HELM). PMF and UNMIX are expected to identify profiles of these specific sources 13 

and estimate much higher contributions from them at the nearby locations than at more distant 14 

receptors. This situation is analogous to these and other factor models identifying a fireworks 15 

factor that only contributes on the Fourth of July (e.g., 27).   16 

 Emission factors and chemical profiles of the area and mobile sources are expected to differ 17 

between seasons. Motor vehicle cold starts are more prevalent during the winter season. Wood 18 

stoves and fireplaces are only used during winter, while agricultural burning and wildfires are 19 

more prevalent during warm non-winter periods. The large change of temperature and relative 20 

humidity from summer to winter alters the thermodynamic equilibrium between particle-phase 21 

and gas-phase pollutants and possibly modifies the factors representing secondary aerosol 22 

composed of NH4NO3, ammonium sulfate [(NH4)2SO4] and organic matter. To ensure uniformity 23 

of source profiles, the UNMIX and PMF analyses were limited to 23 “within-valley” sites 24 

identified in Figure 1. The low_PM2.5 and high_PM2.5 periods that contain a total of 929 and 670 25 

samples, respectively were analyzed separately.  26 

Results and Discussion 27 

 Magliano et al. (28) used a nine-source single-sample effective variance solution to explain 28 

81–91% of winter 1995 PM2.5. Source types included two geological (i.e., road dust and 29 

construction), three secondary aerosol (i.e., NH4NO3, (NH4)2SO4, OC), vegetative burning, 30 
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vehicle exhaust, industry (oilfield), and marine emitters. Industry and construction contributed 1 

minor fractions (<0.1%) at urban and rural sites. Schauer and Cass (29) estimated similar source 2 

contributions for multi-day composites during winter 1995, but they resolved the motor vehicle 3 

portions into gasoline and diesel contributions and the vegetative burning portions into 4 

hardwood, softwood, and cooking contributions.  5 

UNMIX and PMF Analysis.  6 

 PM2.5 mass was not used as input to either model to obtain factors, but it was used to 7 

apportion PM2.5 to the factors. Initial UNMIX trials used nitrate (NO3
-
), sulfate (SO4

2-
), 8 

ammonium (NH4
+
), ammonia (NH3), soluble sodium (Na

+
), soluble potassium (K

+
), organic 9 

carbon (OC), elemental carbon (EC), total carbon (TC), thermal carbon fractions (OC1–OC4, OP, 10 

and EC1–EC3 quantified by the IMPROVE_TOR protocol (30)), and silicon (Si) measurements. 11 

Na
+
, K

+
, and Si are the indicators for marine air intrusion, vegetative burning, and fugitive dust, 12 

respectively. High temperature EC (EC2, EC fraction evolved at 700 ºC in an oxidative 13 

environment) dominates the PM emission from diesel engines but is a minor component of 14 

gasoline emission and wood smoke (31,32). Although >80% of the variability in both 15 

high_PM2.5 and low_PM2.5 samples would be explained by seven principle components, no 16 

feasible solutions were found by UNMIX. By applying the UNMIX “OVERNIGHT” option to 17 

evaluate all possible combinations, 6-factor and a 7-factor solutions were found for the 18 

low_PM2.5 and high_PM2.5 periods, respectively, using common species NO3
-
, NH4

+
, total 19 

ammonium (T-NH3 = NH3 + NH4
+
), Na

+
, K

+
, OC, EC2, EC, TC, and Si, and an additional 20 

species OC1 for the high_PM2.5 period only. Signal/noise ratios and strengths in both solutions 21 

were ~2 or higher.  22 

 PMF included 27 species that were above lower quantifiable limits (LQL) for at least 50% 23 

of the samples plus the eight thermal carbon fractions (Table S-3). Eight-factor solutions were 24 

determined by PMF with the robust mode for both the high_ and low_PM2.5 periods. FPEAK and 25 

FKEY are often adjusted to rotate PMF factors toward known source profiles or contributions 26 

(e.g., 33,34). EPA PMF v1.1 software does not contain FPEAK or FKEY options, but the 27 

uncertainty in PMF solutions can be estimated using a bootstrapping technique coupled with a 28 

method to account for rotational freedom (16). Figure 2 presents the PMF factors with upper and 29 

lower bounds determined from the 5
th

 and 95
th

 percentiles of 100 bootstrap values. The median Q 30 
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values were 20858 (low_PM2.5 period) and 18964 (high_PM2.5 period), compared to ideal values 1 

of 31586 (low_PM2.5 period) and 22780 (high_PM2.5 period). The ideal Q is the number of Cit, 2 

assuming that the model contains only measurement uncertainty that has been accurately 3 

determined (i.e., Eit/σit = 1). The Q analysis implied seven or eight factors for both periods. 4 

Eight-factor models were selected for a better comparison of their profiles with UNMIX factors 5 

and measured source profiles from recent emission tests. 6 

 The contribution of each factor to PM2.5 was estimated by an unweighted multiple linear 7 

regression with zero intercept against the factor scores (Sjt) (e.g., 35,36). The regression 8 

correlations were high; r = 0.92(UNMIX)/0.96(PMF) and 0.79(UNMIX)/0.87(PMF) for the 9 

high_ and low_PM2.5 period, respectively. The UNMIX factors were paired with the PMF factors 10 

by ranking correlations of each of the UNMIX factors with each of the PMF factors in time 11 

series. Each UNMIX factor correlated well (e.g., r > 0.8 for most cases) with one and only one 12 

PMF factor (Table S-4), so there was no ambiguity in matching the pairs. Figure 2 compares the 13 

UNMIX and PMF factors. Their common species agree within the PMF bootstrap uncertainties. 14 

 Based on source markers, seven common factors resolved by UNMIX and PMF for the high 15 

PM2.5 period are: 1) marine (Na
+
); 2) fugitive dust (Si); 3) agriculture-dairy (T-NH3, OC); 4) 16 

cooking (K
+
, OC, EC); 5) secondary aerosol (NO3

-
, NH4

+
, OC); 6) motor vehicle (OC, EC2, EC); 17 

and 7) residential wood combustion (K
+
, Cl

-
, OC1, OC, EC). The extra factor from PMF contains 18 

a high zinc (Zn) content and could be related to brake and tire wear (37). For the low_PM2.5 19 

period, the six common factors are 1) marine; 2) fugitive dust; 3) agriculture-dairy; 4) cooking; 5) 20 

secondary aerosol; and 6) motor vehicle exhaust. The additional two factors from PMF are Zn 21 

and another secondary aerosol factor featuring (NH4)2SO4. 22 

Larger discrepancies between the UNMIX and PMF profiles occur for the marine factor 23 

during the high_PM2.5 period (Figure 2), but neither model apportions PM2.5 mass to this factor. 24 

PMF consistently allocates carbon and silicon to the agriculture-dairy factor for the low_PM2.5 25 

period, while UNMIX does not. Contribution estimates for these minor factors may contain 26 

higher uncertainties. The residential wood combustion (RWC) factor appears only during the 27 

wintertime high_PM2.5 period, and the sulfate factor appears only during the non-winter 28 

low_PM2.5 period. This is consistent with the expected seasonal variations of these sources; i.e., 29 

residential heating demand increases during the winter while sulfate is more efficiently formed 30 
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during summer. The OC/EC ratio in the motor vehicle (MV) factor is lower (1.2 by PMF and 1.7 1 

by UNMIX) for the high_PM2.5 period than for the low_PM2.5 period (2.8 by both PMF and 2 

UNMIX. Cadle et al. (38) report a similar seasonal trend of OC/EC ratio for Denver, CO. 3 

Annual average PM2.5 concentrations are well explained within ±1%  by both UNMIX and 4 

PMF factors (Table 1). Secondary aerosol, RWC, and vehicle contributions account for ~90% of 5 

the PM2.5 mass during the high_PM2.5 period if the Zn factor is classified as a mobile source 6 

contribution. UNMIX and PMF achieve similar source contribution estimates and are consistent 7 

with Magliano et al. (28) and Schauer and Cass (29) for winter 1995. The portion of PM2.5 from 8 

secondary aerosol and RWC are much lower for the non-winter (low_PM2.5) period while the 9 

portions due to fugitive dust and marine aerosol are larger compared to the winter period. 10 

Evaluation of Source Contribution Estimates  11 

Figure 3 compares the PMF MV and RWC factors with measured source profiles. RWC 12 

samples were collected at a residential fireplace chimney burning Sierra Nevada hardwood (oak) 13 

or softwood (juniper), commonly-available fuels throughout the SJV (39). The MV samples were 14 

acquired in Las Vegas, NV during December 2003 (40) in source-dominated environments with 15 

gasoline-powered vehicles or diesel engines. Las Vegas receives California-grade fuels by 16 

pipeline from California refineries, and vehicle mixes are similar to those in California. The 17 

source samples were analyzed for the same species using the same methods as applied to the 18 

receptor samples. Contamination from road dust were removed from the MV samples by CMB 19 

using known geological source profiles (41). Figure 3 includes profiles based on two to four 20 

replicate measurements. Since both RWC and MV source profiles represent winter conditions, 21 

they are only compared with the PMF factors for the high_PM2.5 period.  22 

 The OC/EC ratio in PMF MV is 1.2, compared to 1.9 in the gasoline and 1.2 in the diesel 23 

profiles. The EC2/EC ratio of PMF MV (0.80) is also closer to diesel (0.85) than to gasoline 24 

exhaust (0.32). The gasoline source profile contains a substantial abundance of gaseous NH3 (2.8 25 

times the PM2.5 mass), Na
+
, and K

+
, which are not as abundant in the diesel and PMF MV 26 

profiles. The PMF-derived MV profile appears to represent a combination of diesel and gasoline 27 

emissions with a dominating influence from diesel. A clear edge in the OC versus EC scatter plot 28 

(Figure 4) corresponds to the PMF MV factor, and this supports a consistent MV source profile 29 

within the SJV. Strict emissions regulation and periodic compliance testing in Nevada and 30 
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California could account for the low influence of gasoline engine exhaust on ambient PM2.5. 1 

Increasing the number of factors does not distinguish the gasoline from diesel exhaust 2 

contributions. Zn is found in both diesel and gasoline profiles, possibly owing to deterioration of 3 

the galvanized exhaust systems. PMF attributed most of the Zn to a separate factor. Reducing the 4 

number of factors in PMF does not merge this factor with the MV factor. 5 

 OC/EC ratios for softwood and hardwood burning are 8.1 and 12.4, respectively, compared 6 

to 3.3 in the PMF RWC profile (Figure 4). The OC/EC ratio is known to vary with fuel and 7 

burning conditions (32). The PMF RWC factor contains more abundant NO3
-
 and NH4

+
 than the 8 

measured wood burning profiles, but the NH3 abundances are close. The K
+ 

abundance in the 9 

PMF RWC factor is comparable to that of the measured hardwood burning profile. Among 10 

carbon fractions, OC1 and POC show larger deviations between the measured profiles and PMF 11 

factors.  12 

 The PMF MV and RWC factors combined explain 10.4 µg/m
3
 TC or ~82% of the measured 13 

value, including 28% from MV and 54% from RWC. When the Zn factor is included, motor 14 

vehicles contribute up to 31% of TC, in better agreement with the UNMIX estimate (36% of TC). 15 

 The difference between measured and calculated species concentration divided by the 16 

measurement uncertainty, i.e., scaled residual, is a useful performance measure. Data with scaled 17 

residual > 4 or < -4 are downweighted in the PMF analysis with robust mode and therefore have 18 

low impacts on the source apportionment results. For the high_PM2.5 period, PMF determines 19 

PM2.5 scaled residuals within ±4 for ~80% of the data (Figure 5a). The sign and magnitude of the 20 

scaled residual vary by site, but no outlier sites or spatial trends are identified from Figure 5a. 21 

The low_PM2.5 period, however, contains three outliers, ANGI, FSF, and BAC (Figure 5b), 22 

where PMF underestimates the PM2.5 mass for >60% of the data. This substantial unapportioned 23 

mass implies unknown sources and/or different source profiles at these sites.  24 

 The PMF factors explain TC and NO3
-
 concentrations well for the high_PM2.5 period (see 25 

Figure S-2 in the supporting information); for every site, the scaled residuals are mostly within 26 

±4. Broader distributions of scaled residuals for TC and NO3
- 
are found during the low_PM2.5 27 

period. PMF underestimates TC at ANGI, FSF, and BAC, which is consistent with the situation 28 

for PM2.5 mass. PMF also underestimates NO3
- 
at FSF and BAC for the low_PM2.5 period. PMF 29 
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explains source markers such as Si, K
+
, and EC concentrations reasonably well across all sites 1 

for both periods (Figure S-2). 2 

 Adsorption of organic vapors on quartz-fiber filters that is under-corrected by blank 3 

subtraction inflates OC and TC concentrations, the ratio of OC to other species, and PM2.5 mass 4 

closure by differing degrees (42). Better PM2.5 mass closures (closer to 100%) are found at ANGI, 5 

FSF, and BAC during the low_PM2.5 period (3). This partially explains why the three sites are 6 

forced into outliers in the receptor modeling that combines all sites together. Moreover, the 7 

fraction of volatilized NO3
-
 was the highest at FSF and BAC during the low_PM2.5 period (3). 8 

Variability of the organic and nitrate sampling artifacts are not part of the analytical uncertainty 9 

considered in Eq. (2). Source apportionment for the high_PM2.5 period is likely more reliable, 10 

since the sampling artifacts are relatively minor compared to high ambient TC and NO3
-
 11 

concentrations. 12 

Spatial and Temporal Variations  13 

 Figure 6 compares the PMF contributions among different sites during the high_PM2.5 14 

period. Similar comparisons for the low_PM2.5 period are in the supporting information (Figure 15 

S-3). There is no clear spatial trend for the marine contribution during the high_PM2.5 period, 16 

though during the low_PM2.5 period the distribution of marine contributions is consistent with 17 

lower elevation and frequent land-sea exchange in the northern SJV. 18 

 During the high_PM2.5 period, higher contributions from fugitive dust occurred south of 19 

FSF with the highest contribution observed at ANGI. This may be explained by the nearby 20 

unpaved road and extensive tilling and harvesting of cotton fields in the area. 21 

 Contributions from agriculture-dairy are high in some rural areas and relatively minor at 22 

urban sites such as FSF, S13, and BAC. The largest contribution in the agriculture-dairy 23 

distribution (Figure 6) represents the dairy site (FEDL), where the NH3 concentration was at 24 

least an order of magnitude higher than at any other site. This factor would probably not appear 25 

in PMF or UNMIX if this source-oriented site was unavailable. 26 

 The RWC factor dominates at urban sites, including Fresno, Bakersfield, Modesto, Merced, 27 

Visalia, and Sacramento, and is a low contributor at non-urban sites such as ANGI. The cooking 28 

factor shows a similar spatial distribution. The urban influence of the MV factor is less than that 29 

of RWC and cooking. Even rural sites could be impacted by major highways such as I-5 and CA-30 
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99 that are major north/south arterials. Farm equipment and other non-road engines are also used 1 

throughout the SJV. Contributions of the MV factor at FSF, FREM, and FRES that are in 2 

commercial (rooftop), roadside, and residential microenvironments, respectively in Fresno are 3 

2.7, 4.7, and 4.8 µg/m
3 

PM2.5 for the high_PM2.5 period, compared with a more uniform RWC 4 

contribution of 24 – 27 µg/m
3
. 5 

 Secondary aerosol contributions are highest in the southeastern SJV with little urban-rural 6 

contrast (Figure 6). This factor also contains substantial OC that is possibly of secondary origin 7 

in winter (e.g., 43). The source of factor Zn is thought to be mobile-related, though its spatial 8 

distribution is somewhat between the RWC and MV factors. 9 

 Figure 7 shows the monthly PMF factor contributions averaged over the network. The 10 

reconstructed mass agrees with the measured PM2.5 within ±10% even for the low_PM2.5 period. 11 

A rapid increase in PM2.5 concentration from October to November results from increasing 12 

influences from RWC and secondary aerosol. These two factors also dominate the monthly highs 13 

in January 2001 (over 85 µg/m
3 

at FSF and BAC). Secondary aerosol is the most important 14 

factor everywhere except at FSF, where RWC was a large contributor at times during the winter. 15 

The secondary nitrate contribution decreases rapidly after January and reaches its lowest level 16 

between June and September.  17 

Although dust contributes to no more than 20% and 5% of PM2.5 mass for the low_ and 18 

high_PM2.5 period, respectively, it was the dominant factor in the SJV between August and 19 

September 2000 (monthly contribution: 2.7 and 2.0 µg/m
3 

PM2.5, respectively). The cooking 20 

factor does not show a clear seasonal trend, but was high in January 2000. Since this factor 21 

shares three major indicators, K
+
, OC, and EC, with RWC, some overlaps of its contribution with 22 

RWC are expected during the high_PM2.5 period. The cooking factor may be influenced by other 23 

types of burning during the low_PM2.5 period, such as agricultural burning and forest fires. 24 

Besides K
+
, EC2 is the most influential marker for distinguishing MV from the RWC 25 

contributions. Inclusion of organic markers specific to RWC, MV, and cooking in the receptor 26 

models should improve the resolution (29,44). This would require measurement of organic 27 

compounds on hundreds of individual samples, which is not yet practical using extractive 28 

methods, but it may be possible using thermal methods with more specific detectors (45). 29 
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Figure Captions 1 

Figure 1. Ambient PM2.5 sampling network for CRPAQS. Sites in bold are included in this study. 2 

(ACP: Angels Camp; ALT1: Altamont Pass; ANGI: Angiola; BAC: Bakersfield; BODG: 3 

Bodega Marine Lab; BRES: Bakersfield Residential; BTI: Bethel Island; CARP: Carrizo Plain; 4 

CHL: China Lake; CLO: Clovis; COP: Corcoran; EDI: Edison; EDW: Edwards Air Force Base; 5 

FEDL: Dairy; FEL: Fellows; FELF: Foothills above Fellows; FREM: Fresno Roadside; FRES: 6 

Fresno Residential; FSF: Fresno; HELM: Helm-Central Fresno County; KCW: Kettleman City; 7 

LVR1: Livermore; M14: Modesto; MOP: Mojave-Poole; MRM: Merced; OLD: Oildale-Manor; 8 

OLW: Olancha; PAC: Pacheco Pass; PIXL: Pixley Wildlife Refuge; PLE: Pleasant Grove; S13: 9 

Sacramento; SELM: Selma; SFA: San Francisco; SNFH: Sierra Nevada Foothills; SOH: 10 

Stockton-Hazelton; SWC: Southwest Chowchilla; TEH2: Tehachapi Pass; VCS: Visalia Church 11 

St.)   12 
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Figure 2. UNMIX (vertical lines) and PMF (bars) factor profiles for (a) high_PM2.5 and (b) 14 

low_PM2.5 periods, in terms of average contributions to PM2.5 mass and fitting species. The 15 

upper and lower triangle represents the upper and lower bounds of the PMF factor contribution, 16 

respectively, determined from the 95
th

 and 5
th

 percentile bootstrapping values. RWC = residential 17 

wood combustion. 18 

 19 

Figure 3. Comparisons of PMF motor vehicle (MV) and residential wood combustion (RWC) 20 

factors with measured source profiles (normalized to average source contributions during 21 

CRPAQS). The uncertainties of PMF factors are those in Figure 2 while the uncertainties in 22 

measured profiles are determined from the standard deviation of averages from different emitters 23 

within the source type. 24 

 25 

Figure 4. OC versus EC for all samples and by site collected during the high_PM2.5 period. Solid 26 

lines indicate the OC/EC ratios in the MV, RWC, and cooking PMF factors. 27 

 28 

Figure 5. Cumulative PMF scaled residuals (difference between calculated and measured PM2.5), 29 

by site, for the high_PM2.5 and low_PM2.5 periods. The vertical lines indicate scaled residuals of 30 



 15 

±4; i.e., the difference between calculated concentration from the measured value is four times 1 

the measurement uncertainty. 2 

 3 

Figure 6. Spatial distributions of temporally averaged PMF factor contribution estimates for the 4 

high_PM2.5 period (Nov. – Jan.). The distribution of marine factor during the low_PM2.5 period 5 

is also presented (last panel). 6 

 7 

Figure 7. Monthly PMF factor contribution estimates averaged over the 23 CRPAQS sites. 8 
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Figure 2b 1 
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Figure 5.  
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Table 1. Fractional contributions of UNMIX and PMF factors to PM2.5 during winter and non-

winter periods.  

 

Contribution to 

PM2.5 

High_PM2.5  

(Nov.––––Jan.) 

Low_PM2.5  

(Feb.––––Oct.) 

Factors UNMIX
 

PMF
 

UNMIX 
 

PMF 

Marine 0% 0% 10% 7% 

Fugitive Dust  3% 5% 16% 19% 

Agriculture-dairy 2% 2% 5% 4% 

Cooking 5% 3% 5% 9% 

Secondary 

Aerosol 
51% 48% 38% 36% 

Motor Vehicle 15% 10% 25% 13% 

Residential Wood 

Combustion 
24% 23%   

Secondary 

Aerosol II 
-  - 7% 

Zinc - 9% - 6% 
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