Temporal and Spatial Variations of PM$_{2.5}$ during CRPAQS Winter Intensives

Judith C. Chow, John G. Watson, L.-W. Antony Chen, and Douglas H. Lowenthal

Desert Research Institute
Reno, NV

Richard J. and Susan J. Countess

Countess Environmental
Westlake Village, CA

presented at the
CRPAQS Data Analysis Meeting
Sacramento, CA
March 9, 2004
Bethel Island
Sierra Nevada Foothills
Fresno
Angiola
Bakersfield

Intensive Operating Periods

• Four IOPs
 – Dec. 15-18, 2000
 – Jan. 4-7, 2001

• Five sampling periods during each IOP
 – 0000 to 0500 PST
 – 0500 to 1000 PST
 – 1000 to 1300 PST
 – 1300 to 1600 PST
 – 1600 to 2400 PST
Commonly Applied Chemical Analysis Methods

<table>
<thead>
<tr>
<th>Observables</th>
<th>Chemical Analysis Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>- Gravimetric Analysis</td>
</tr>
<tr>
<td>Elements (Na to U)</td>
<td>- X-Ray Fluorescence (XRF)</td>
</tr>
<tr>
<td>Anions (Cl(^{-}), NO(_3)^{-}, SO(_4)^{2-})</td>
<td>- Ion Chromatography (IC)</td>
</tr>
<tr>
<td>Ammonium (NH(_4)^{+})</td>
<td>- Automated Colorimetry (AC)</td>
</tr>
<tr>
<td>Soluble Sodium (Na(^{+}))</td>
<td>- Atomic Absorption Spectrophotometry (AAS) (flame or graphite)</td>
</tr>
<tr>
<td>Soluble Potassium (K(^{+}))</td>
<td></td>
</tr>
<tr>
<td>Carbon (OC, EC)</td>
<td>- Thermal/Optical Reflectance (TOR)</td>
</tr>
</tbody>
</table>
Spatial Variations of 24-hr PM$_{2.5}$

- Concentration (µg/m3)
- Bethel Island
- Sierra NV Foothills
- Fresno
- Angiola
- Bakersfield

Components:
- Unidentified mass
- Trace elements
- Ammonium nitrate
- Ammonium sulfate
- Elemental carbon
- Organic material
- Crustal material
PM$_{2.5}$ Material Balance at Bethel Island

0000-0500 PST
- Unidentified mass, 0%
- Trace elements, 4%
- Crustal material, 2%
- Ammonium nitrate, 40%
- Organic material, 46%
- Ammonium sulfate, 1%
- Elemental carbon, 12%

PM$_{2.5}$ measured/calculated mass = 21.1 / 22.1 µg/m3

0500-1000 PST
- Unidentified mass, 0%
- Trace elements, 4%
- Crustal material, 2%
- Ammonium nitrate, 40%
- Organic material, 46%
- Ammonium sulfate, 1%
- Elemental carbon, 12%

PM$_{2.5}$ measured/calculated mass = 22.3 / 23.8 µg/m3

1000-1300 PST
- Unidentified mass, 2%
- Trace elements, 5%
- Crustal material, 2%
- Ammonium nitrate, 55%
- Organic material, 30%
- Ammonium sulfate, 0%
- Elemental carbon, 6%

PM$_{2.5}$ measured/calculated mass = 33.3 / 34.4 µg/m3

1300-1600 PST
- Unidentified mass, 0%
- Trace elements, 4%
- Crustal material, 2%
- Ammonium nitrate, 66%
- Organic material, 30%
- Ammonium sulfate, 3%
- Elemental carbon, 6%

PM$_{2.5}$ measured/calculated mass = 31.3 / 34.4 µg/m3

1600-2400 PST
- Unidentified mass, 5%
- Trace elements, 2%
- Crustal material, 1%
- Ammonium nitrate, 48%
- Organic material, 34%
- Ammonium sulfate, 1%
- Elemental carbon, 10%

PM$_{2.5}$ measured/calculated mass = 37.4 / 35.5 µg/m3

0000-2400 PST
- Unidentified mass, 0%
- Trace elements, 3%
- Crustal material, 2%
- Ammonium nitrate, 48%
- Organic material, 38%
- Ammonium sulfate, 1%
- Elemental carbon, 10%

PM$_{2.5}$ measured/calculated mass = 28.0 / 28.3 µg/m3
PM$_{2.5}$ Material Balance at Sierra Nevada Foothills

0000-0500 PST
- Unidentified mass: 0%
- Trace elements: 4%
- Crustal material: 3%
- Ammonium nitrate: 34%
- Organic material: 58%
- Ammonium sulfate: 1%
- Elemental carbon: 9%

PM$_{2.5}$ measured/calculated mass = 12.0 / 13.1 µg/m3

1000-1300 PST
- Unidentified mass: 0%
- Trace elements: 5%
- Crustal material: 4%
- Ammonium nitrate: 49%
- Elemental carbon: 5%
- Ammonium sulfate: 1%
- Organic material: 39%

PM$_{2.5}$ measured/calculated mass = 18.8 / 19.7 µg/m3

1600-2400 PST
- Unidentified mass: 1%
- Trace elements: 3%
- Crustal material: 2%
- Ammonium nitrate: 47%
- Elemental carbon: 8%
- Ammonium sulfate: 1%
- Organic material: 39%

PM$_{2.5}$ measured/calculated mass = 26.5 / 26.3 µg/m3

0500-1000 PST
- Unidentified mass: 0%
- Trace elements: 6%
- Crustal material: 5%
- Ammonium nitrate: 40%
- Elemental carbon: 9%
- Ammonium sulfate: 1%
- Organic material: 52%

PM$_{2.5}$ measured/calculated mass = 12.2 / 13.8 µg/m3

1300-1600 PST
- Unidentified mass: 0%
- Trace elements: 5%
- Crustal material: 3%
- Ammonium nitrate: 64%
- Elemental carbon: 5%
- Ammonium sulfate: 5%
- Organic material: 39%

PM$_{2.5}$ measured/calculated mass = 21.4 / 25.7 µg/m3

0000-2400 PST
- Unidentified mass: 0%
- Trace elements: 4%
- Crustal material: 3%
- Ammonium nitrate: 47%
- Elemental carbon: 8%
- Ammonium sulfate: 2%
- Organic material: 43%

PM$_{2.5}$ measured/calculated mass = 18.9 / 20.0 µg/m3
PM$_{2.5}$ Material Balance at Fresno

0000-0500 PST
- Unidentified mass, 7%
- Trace elements, 2%
- Crustal material, 1%
- Ammonium nitrate, 25%
- Organic material, 53%
- Ammonium sulfate, 0%
- Elemental carbon, 12%

PM$_{2.5}$ measured/calculated mass = 75.2 / 69.9 µg/m3

1000-1300 PST
- Unidentified mass, 0%
- Trace elements, 4%
- Crustal material, 2%
- Ammonium nitrate, 60%
- Organic material, 31%
- Ammonium sulfate, 6%
- Elemental carbon, 4%

PM$_{2.5}$ measured/calculated mass = 57.8 / 61.3 µg/m3

1600-2400 PST
- Unidentified mass, 12%
- Trace elements, 1%
- Crustal material, 1%
- Ammonium nitrate, 29%
- Organic material, 45%
- Ammonium sulfate, 1%
- Elemental carbon, 10%

PM$_{2.5}$ measured/calculated mass = 96.9 / 84.9 µg/m3

0500-1000 PST
- Unidentified mass, 0%
- Trace elements, 3%
- Crustal material, 1%
- Ammonium nitrate, 38%
- Organic material, 47%
- Ammonium sulfate, 0%
- Elemental carbon, 11%

PM$_{2.5}$ measured/calculated mass = 48.5 / 49.0 µg/m3

1300-1600 PST
- Unidentified mass, 0%
- Trace elements, 4%
- Crustal material, 2%
- Ammonium nitrate, 59%
- Organic material, 29%
- Ammonium sulfate, 11%
- Elemental carbon, 5%

PM$_{2.5}$ measured/calculated mass = 43.3 / 47.9 µg/m3

0000-2400 PST
- Unidentified mass, 3%
- Trace elements, 2%
- Crustal material, 1%
- Ammonium nitrate, 36%
- Organic material, 46%
- Ammonium sulfate, 2%
- Elemental carbon, 10%

PM$_{2.5}$ measured/calculated mass = 68.9 / 66.7 µg/m3
PM$_{2.5}$ Material Balance at Angiola

0000-0500 PST
- Unidentified mass, 5%
- Trace elements, 2%
- Crustal material, 2%
- Organic material, 17%
- Elemental carbon, 4%
- Ammonium sulfate, 1%
- Ammonium nitrate, 68%

PM$_{2.5}$ measured/calculated mass = 40.7 / 38.8 µg/m3

0500-1000 PST
- Unidentified mass, 4%
- Trace elements, 2%
- Crustal material, 2%
- Organic material, 20%
- Elemental carbon, 5%
- Ammonium sulfate, 1%
- Ammonium nitrate, 67%

PM$_{2.5}$ measured/calculated mass = 38.2 / 36.8 µg/m3

1000-1300 PST
- Unidentified mass, 1%
- Trace elements, 3%
- Crustal material, 5%
- Organic material, 16%
- Elemental carbon, 3%
- Ammonium sulfate, 3%
- Ammonium nitrate, 70%

PM$_{2.5}$ measured/calculated mass = 51.9 / 51.6 µg/m3

1300-1600 PST
- Unidentified mass, 3%
- Trace elements, 0%
- Crustal material, 6%
- Organic material, 19%
- Elemental carbon, 3%
- Ammonium sulfate, 2%
- Ammonium nitrate, 67%

PM$_{2.5}$ measured/calculated mass = 59.7 / 59.4 µg/m3

1600-2400 PST
- Unidentified mass, 13%
- Trace elements, 1%
- Crustal material, 6%
- Organic material, 15%
- Elemental carbon, 3%
- Ammonium sulfate, 1%
- Ammonium nitrate, 60%

PM$_{2.5}$ measured/calculated mass = 69.8 / 60.6 µg/m3

0000-2400 PST
- Unidentified mass, 1%
- Trace elements, 2%
- Crustal material, 5%
- Organic material, 17%
- Elemental carbon, 3%
- Ammonium sulfate, 3%
- Ammonium nitrate, 65%

PM$_{2.5}$ measured/calculated mass = 54.6 / 50.6 µg/m3
PM$_{2.5}$ Material Balance at Bakersfield

0000-0500 PST
- **Unidentified mass, 2%**
- **Crustal material, 2%**
- **Trace elements, 2%**
- **Ammonium nitrate, 52%**
- **Elemental carbon, 9%**
- **Ammonium sulfate, 0%**

PM$_{2.5}$ measured/calculated mass = 66.0 / 64.5 µg/m3

1000-1300 PST
- **Unidentified mass, 0%**
- **Crustal material, 3%**
- **Trace elements, 3%**
- **Ammonium nitrate, 80%**
- **Elemental carbon, 4%**
- **Ammonium sulfate, 1%**

PM$_{2.5}$ measured/calculated mass = 68.0 / 78.4 µg/m3

1600-2400 PST
- **Unidentified mass, 14%**
- **Crustal material, 2%**
- **Trace elements, 2%**
- **Ammonium nitrate, 49%**
- **Elemental carbon, 7%**
- **Ammonium sulfate, 0%**

PM$_{2.5}$ measured/calculated mass = 90.0 / 77.8 µg/m3

0500-1000 PST
- **Unidentified mass, 0%**
- **Crustal material, 2%**
- **Trace elements, 2%**
- **Organic material, 30%**
- **Ammonium nitrate, 59%**
- **Elemental carbon, 8%**
- **Ammonium sulfate, 0%**

PM$_{2.5}$ measured/calculated mass = 57.6 / 58.9 µg/m3

1300-1600 PST
- **Unidentified mass, 0%**
- **Crustal material, 3%**
- **Trace elements, 2%**
- **Organic material, 24%**
- **Elemental carbon, 3%**
- **Ammonium nitrate, 6%**
- **Ammonium sulfate, 6%**

PM$_{2.5}$ measured/calculated mass = 61.2 / 72.6 µg/m3

0000-2400 PST
- **Unidentified mass, 1%**
- **Crustal material, 2%**
- **Trace elements, 2%**
- **Organic material, 28%**
- **Elemental carbon, 7%**
- **Ammonium nitrate, 58%**
- **Ammonium sulfate, 1%**

PM$_{2.5}$ measured/calculated mass = 71.9 / 70.9 µg/m3
Elevated PM$_{2.5}$ mass coincides with elevated nitrate and OC

- **Mass**
 - Y-axis: Mass Concentration (µg/m3)

- **NO$_3^-$**
 - Y-axis: Nitrate Concentration (µg/m3)

- **OC**
 - Y-axis: Concentration (µg/m3)

Legend:
- Black: Angiola
- Pink: Bakersfield
- Green: Bethel Island
- Blue: Fresno
- Purple: Sierra NV
Crustal species are elevated at the Angiola and Bakersfield sites.
Example of a Nitrate Episode – IOP 3 (Jan. 4-7, 2001)

- **Bethel Island**
 - Concentration (µg/m³)
 - Time of Day (PST)

- **Sierra Nevada Foothills**
 - Concentration (µg/m³)
 - Time of Day (PST)

- **Fresno**
 - Concentration (µg/m³)
 - Time of Day (PST)

- **Angiola**
 - Concentration (µg/m³)
 - Time of Day (PST)

- **Bakersfield**
 - Concentration (µg/m³)
 - Time of Day (PST)

Legend:
- Unidentified Mass
- Trace elements
- Ammonium nitrate
- Ammonium sulfate
- Elemental carbon
- Organic material
- Crustal material

Analysis:
- The concentration of nitrate and related compounds varies throughout the day, with peaks observed during certain times.
- The highest concentrations are typically observed during the afternoon hours (1300-1600 PST).
- Trace elements and unidentified mass show lower concentrations compared to other components.

Conclusion:
- Nitrate episodes are a significant contributor to air pollution, particularly in urban and industrial areas.
- Understanding the temporal dynamics of these episodes is crucial for effective air quality management.
Diurnal Variations by Species – IOP 3 (Jan. 4-7, 2001)

- **Mass**
- **Organic Carbon**
- **Nitrate**
- **Elemental Carbon**

Locations:
- Angiola
- Bakersfield
- Bethel Island
- Fresno
- Sierra NV

Concentration (µg/m³) Time periods:
- 0000–0500
- 0500–1000
- 1000–1300
- 1300–1600
- 1600–2400

Concentration ranges:
- Mass: 0–200 µg/m³
- Organic Carbon: 0–100 µg/m³
- Nitrate: 0–100 µg/m³
- Elemental Carbon: 0–10 µg/m³
PM$_{2.5}$ nitrate accounts for \sim50% of mass at all sites except Fresno during IOP 3 (Jan. 4-7, 2001)

- **Bethel Island**
 - Unidentified Mass
 - Trace elements
 - Ammonium nitrate
 - Ammonium sulfate
 - Elemental carbon
 - Organic material
 - Crustal material

- **Sierra Nevada Foothills**

- **Fresno**

- **Angiola**

- **Bakersfield**

- **Bethel Island**
 - Measured mass and species (µg/m³)
 - PM2.5 Mass
 - Nitrate
 - Organic Carbon
 - Elemental Carbon

- **Sierra Nevada Foothills**
 - Measured mass and species (µg/m³)

- **Angiola**
 - Measured mass and species (µg/m³)

- **Fresno**
 - Measured species (µg/m³)

- **Bakersfield**
 - Measured species (µg/m³)
 - Measured mass (µg/m³)
Regional- and Urban-Scale Influences

<table>
<thead>
<tr>
<th>Dates</th>
<th>Bethel Island</th>
<th>Foothills</th>
<th>Fresno</th>
<th>Angiola</th>
<th>Bakersfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP 1
Dec. 15-18</td>
<td>mix</td>
<td>carbon</td>
<td>mix</td>
<td>nitrate</td>
<td>mix</td>
</tr>
<tr>
<td>IOP 2
Dec. 26-28</td>
<td>carbon</td>
<td>carbon</td>
<td>carbon</td>
<td>nitrate</td>
<td>mix</td>
</tr>
<tr>
<td>IOP 3
Jan. 4-7</td>
<td>nitrate</td>
<td>nitrate</td>
<td>mix</td>
<td>nitrate</td>
<td>nitrate</td>
</tr>
<tr>
<td>IOP 4
Jan. 31-Feb. 1</td>
<td>nitrate</td>
<td>mix</td>
<td>carbon</td>
<td>nitrate</td>
<td>carbon</td>
</tr>
</tbody>
</table>
Comparison of material balance at Bethel Island and Sierra Nevada Foothills during winter 2000-01

- Unidentified mass
- Trace elements
- Ammonium nitrate
- Ammonium sulfate
- Elemental carbon
- Organic material
- Crustal material
Comparison of material balance at Fresno during winter 1999-2000 and winter 2000-01

Unidentified mass
Trace elements
Ammonium nitrate
Ammonium sulfate
Elemental carbon
Organic material
Crustal material
Comparison of material balance at Angiola during winter 1999-2000 and winter 2000-01

- Unidentified mass
- Trace elements
- Ammonium nitrate
- Ammonium sulfate
- Elemental carbon
- Organic material
- Crustal material
Comparison of material balance at Bakersfield during winter 1999-2000 and winter 2000-01
Comparison of PM$_{2.5}$ mass at Bethel Island and Sierra Nevada Foothills during winter 2000-01
Comparison of PM$_{2.5}$ mass at Fresno during winter 1999-2000 and winter 2000-01
Comparison of PM$_{2.5}$ mass at Angiola during winter 1999-2000 and winter 2000-01
Comparison of PM$_{2.5}$ mass at Bakersfield during winter 1999-2000 and winter 2000-01
Fresno urban increment to PM$_{2.5}$ nitrate at Angiola during winter 1999-2000 and winter 2000-01
Bakersfield urban increment to PM$_{2.5}$ nitrate at Angiola during winter 1999-2000 and winter 2000-01
Conclusions

- Ammonium nitrate and carbonaceous aerosol account for 85–95% of PM$_{2.5}$ mass
 - Ammonium nitrate accounts for 35–65% of PM$_{2.5}$ mass (9–43 µg/m3)
 - Carbonaceous aerosol accounts for 20–56% of PM$_{2.5}$ mass (10–38 µg/m3)
- Temporal variations (>20x) exceeded spatial variations (~3–4x) for major constituents over 15 IOP days, indicative of meteorological influences
- Similar 24-hr-average PM$_{2.5}$ mass (~70 µg/m3) at the two urban sites
 - High carbonaceous aerosol (56%) at Fresno
 - High ammonium nitrate (59%) at Bakersfield
Conclusions (continued)

- Urban sites peak during nighttime (1600-2400 PST), carry over to early morning period (0000-0500 PST); lowest during early morning (0500-1000 PST) or afternoon (1300-1600 PST)
- Non-urban sites experience gradual concentration increases from 1000 PST to 2400 PST, with lowest during early morning (0500-1000 PST)
- Nitrate and sulfate increase ~threefold from north to south, peaking at Bakersfield
Conclusions (continued)

- Higher PM$_{2.5}$ mass and longer episodes occurred during December 1999 and January 2001 than occurred during December 2000 and January 2000

- Carbon abundances were higher during winter 2000/2001 than during winter 1999/2000 at Fresno and Bakersfield

- Regional-scale PM$_{2.5}$ (especially nitrate) dominated PM$_{2.5}$ mass at Fresno and Bakersfield