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Gasoline/Diesel PM Split Study

Obijective:

® To quantify the relative contribution of PM emissions from gasoline- and
diesel-powered engines in the South Coast Air Basin

® Examine range of uncertainties that may be associated with sample
collection, chemical analysis and source apportionment

Sources of Uncertainty and Variations in Cl/S| Apportionment:
® Emissions Characterization
— Variability in abundance of “marker species”, normal versus high emitter
— Test cycle and condition (ambient temperature)
¢ Ambient Measurements
— Spatial variations and temporal variations (diurnal, weekday and seasonal)
— Atmospheric transformations
¢ Measurement Methods
— Sampling methods
— Analytical methods (e.g., thermal/optical OC and EC)
¢ Application of CMB Receptor Model
— Derivation of composite profiles and uncertainties
— Choice of source profiles
— Choice of fitting species
— Presentation of results




Vehicle Profiles — Carbon Fractions by IMPROVE-TOR
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Black Carbon Emissions Rates During UDC
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Mobile Sampling — Photoacoustic BC and DustTrak PM,, .
Parking Lot After Sporting Event

Rose Bowl after Soccer Game, Fri 7/14/01 2030-2208
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Concentration (ug/m3)

Gas Diesel PM Split Study
Mobile Sampling — Photoacoustic BC and DustTrak PM, .

Freeway, Monday 7/9/01 1045-1326
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Distributions of OC and EC fractions (IMPROVE) at
Azusa, Los Angeles N. Main and Source Locations
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STN versus IMPROVE EC for Cl and SI Exhaust Samples
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Scatterplot of STN-TOT EC Versus IMPROVE-TOR EC
for Ambient Samples (ug/sample)
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Sensitivity of CMB Apportionments to Carbon Measurement Protocol
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Sensitivity of Apportionments to Use of EC in CMB Fit
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Emission Rates of Particulate PAH
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Concentrations of Particulate PAH in Lubrication Oil

Samples Taken from Test Vehicles
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Steranes in Lubrication Oil Samples

Concentration (ug/g of oil) Fraction of Sum of Steranes
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Steranes in Vehicle Exhaust Profiles
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Hopanes in Lubrication Oil Samples

Concentration (ug/g of oil) Fraction of Sum of Steranes
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Total Carbon Source Contributions
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Elemental Carbon Source Contributions
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Variations 1n Source Contribution Estimates (Percent of Total)
Azusa and Los Angles Weekday Ambient Samples

Compression-lgnition Spark-lgnition
IMPROVE STN STN no PAH | IMPROVE STN STN no PAH

TC

Mean 40.9 30.8 31.3 6.6 9.4 11.4

Std Dev 3.7 3.0 2.7 1.3 3.3 3.5

Std Err 1.2 1.0 0.9 0.4 1.0 1.1
ocC

Mean 221 15.8 16.1 7.4 10.4 12.2

Std Dev 2.6 2.0 1.9 1.7 3.6 3.7

Std Err 0.8 0.6 0.6 0.5 1.1 1.2
EC

Mean 90.3 93.3 65.9 4.5 5.2 7.2

Std Dev 3.3 3.4 5.9 1.0 2.1 2.0

Std Err 1.0 1.1 1.9 0.3 0.7 0.6




to TC by Profile
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Variations in CI Exhaust Contributions to TC by Profile
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Factors Affecting Apportionment of CI/SI Exhaust

CI apportionments were mainly dependent upon EC. CI contributions were greater with
IMPROVE.

SI apportionments were most sensitive to PAHs ( indeno[123-cd]pyrene,
benzo(ghi)perylene, and coronene) and steranes and hopanes. EC had little effect on SI
apportionment.

— EC emission for SI vehicles were minimal except in cold start and hard accels.

— “Marker” PAHs were present in used SI engine lubrication oil in similar proportions but
concentrations tended to increase with age of the oil.

— Most of the SI apportionment was associated with the high emitter profile. Apportionment
varied with specific high-emitter profile.

— Removing PAHs from the fit increased SI contributions relative to CI.

CI and SI apportionments varied with location and time.
— CI vehicles were the dominant mobile source of EC and TC at Azusa and LANM.
— More equal apportionment at other locations that are more regionally representative.

— SI vehicles were the dominant mobile source of OC and EC in locations and times with
minimal truck traffic.

Alternative methods for deriving composite profiles and uncertainties had minor effect
on apportionment.



Implications

Emissions of black carbon and PM were low for most SI
vehicles except in cold start mode and during hard
accelerations. Effect of test cycle?

CI vehicles were the dominant source of EC. EC is a

reasonable surrogate of PM emissions from CI vehicles
in the SoCAB.

A larger fraction of the SI source contribution to OC was
attributed to high emitters. Existing control programs do
not address high PM emitting vehicles.

Spatial and temporal variations in relative CI and SI
apportionments were large. Must consider purpose of
sampling and source apportionment (compliance with
ambient standards, reconciliation with emission inventory
data, exposure assessment).



Implications

® PM concentrations and exposures were higher on and
adjacent to major roadways with high volume of diesel
truck traffic. Exposures were also higher when following
high-emitting gasoline vehicles. Existing monitoring
programs do not account for these higher exposures.

® Motor vehicles were significant contributors to semi-
volatile organic compounds. These compounds are not
routinely measured.

Significant fraction of the organic carbon during summer
in the SOCAB could not be apportioned to directly-emitted
PM emissions from motor vehicles. What are the
relative contributions of SI and CI exhaust to
secondary organic aerosols?
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