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Problem Statement

* The current certification test, the ISO-8178 Type C 8-mode
test, provides inaccurate estimates of some off-highway
equipment contributions to emission inventories.

o Transient results differ from steady-state results because of
factors such as the acceleration and deceleration rates
encountered in the actual operation of the vehicle

e One set of weighting factors created for the 8-mode test is
meant to represent all off-highway equipment

-steady-state equipment (pumps, generators, etc.)
-transient eguipment (loaders, street sweepers, etc.)



Global Objective

e To measure emissions from off-road equipment, operating
IN steady-state and transient modes, for emission inventory
models



Specific Objectives

Derive transient cycles for selected off-road vehicles that
accurately represent their “real world” operations

Determine if raw CO, emissions (measured in-field) can be
used to accurately predict engine power output

Determine the effects of cycle re-creation accuracy and
cycle nature on brake-specific emissions results

Operate both engines on |SO-8178 8-mode Type C tests
and compare the weighted brake-specific results with
Integrated transient results



Approach

Investigate the feasibility of power inference from raw
CO, emissionsin preliminary laboratory tests

Collect raw CO, emissions and engine speed data during
Infield operation

Predict the in-use engine power from infield CO,

emissions, and develop an appropriate transient test cycle
for each vehicle

Use the transient cycle developed from the infield data to
measure emissions in the laboratory using a full-flow
dilution tunnel



Test Vehiclesand Engines
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John Deere 444 Rubber-Tired L oader
John Deere 6059 Engine

-Naturally-Aspirated
-Inline Six-Cylinder
-59 Liter

-111hp @ 2375rpm
-281ft-Ibs @ 1010rpm

-pre-1996
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Test Vehiclesand Engines

Elgin Series P Streetsweeper
John Deere 4039T Engine

-Turbocharged
-Inline Four-Cylinder
-39 Liter
-114hp @ 2100rpm
-300ft-lbs @ 1710rpm
-post-1996



Test Vehiclesand Engines
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Komatsu PC400L C3 Excavator

Komatsu S6D 125-1 Engine
-Turbocharged
-Inline Six-Cylinder
-11.05 Liter
-250 hp @ 1800 rpm
-745 ft-Ibs @ 1350 rpm
-pre-1996



Caterpillar 3508B TA Engine
-Turbochar ged
-V-8 Cylinder
-35Liter
-850 hp @ 1800rpm
-post-1996



Test Vehiclesand Engines
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Caterpillar 3508B TA Engine
-Turbochar ged
-V-8 Cylinder
-35Liter
-850 hp @ 1800rpm
-post-1996



Caterpillar D11 Dozer with a 3508 V-8
Engine Operating at a Strip Minein WV
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MEMS and RPM 100 on a CAT D11 Dozer
with a 3508 V-8 Engine




RPM-100 Packaged for the In-field Emissions
M easur ement from the D-11 Dozer

Sample Conditioning 12VDC Pumps
System '
12VDC Power
Supply
Quartz Crystal

M icrobalance




Schematic of the
WV U Mobile Emissions M easurement System
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MEMS Sample Flow Schematic
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Infield Data Acquisition System

e Solid-state NDIR

= o Exhaust sample transfer
O _ system
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Multigas Analyzer

“Toaster”

Solid state Non-Dispersive
Infrared (NDIR) HC, CO,
and CO, Detection

Electrochemical Cell NO
and O, Detection

TTL-Type Signal Input
for Engine Speed
M easurement



Preliminary Torqgue I nference Testing

Testing was performed on an on-highway Cummins
|SM 370 diesel engine that was available in the EERL

Five engine load cycles were run while raw emissions
were collected with the Sensors AMB-11 (motored, idle,
25%, 50%, 75%, and 100%)

CO,/load curves were created for different speed points
(970rpm, 1160rpm, 1500rpm, 1800rpm, and 2200rpm)

Torque was estimated for the ISM 370 operating on a pre-
determined load-step cycle from this data



Engine Load (Ib-t)

Results of Torque Inference Testing
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Cycle Development

Collect infield CO./engine speed data
Remove engine from the vehicle

Install and instrument the engine on an eddy-current dynamometer test
bed

Produce an engine speed/load-CO, matrix

Use this matrix data to determine the |oads encountered during the
collection of infield datato create the full test cycle speed/load
setpoints

Shorten the full infield cycle while maintaining similarity

Operate the engine according to the created cycle while collecting raw
CO./engine speed data on the dynamometer

Compare the continuous data traces collected in the laboratory to the
infield data traces

Adjust and repeat the dynamometer test on the new cycle
Continue iteration until convergence criteriais met



Callect In-field CO/Engine Speed Data

v

Create L oad/Engine Speed-CO,
Matrix
Inthe Laboratory

v

Use Matrix/Previous Cycle Results
to Create/Adjust Dynamometer
Speed/L oad Setpoints <

Exercise Engineon the Test Bed According to

the Created Setpoint File while Collecting
Raw Emissions/Engine Speed Data

Compareln-field and Laboratory Results

through Correlation and Compareto
Predetermined Correlation Criteria

| |

If Correlation MeetsCriteria If Correlation Does Not Meet Criteria

v

Run Final Transient Cycleand
Collect Full-Flow Emissions Data




Rubber-Tired Loader Full and Shortened
Infield Cycles
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Rubber-Tired Loader Full and Shortened
Infield Cycles
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Engine Speed/L oad-CO, matrix for the
John Deere 6059 Loader Engine




Engine Speed

Shortened Cycle

Full Cycle

% Difference

Comparison of Engine Speed Discretized
Average Load Values between the Full and
Shortened In-field Loader Cycles

(RPM) Average Load Average Load
(ft-1bs) (ft-1bs)

750 36.1 41.2 -12.47
850 100.4 95.6 4.99
950 73.8 59.5 24.10
1050 128.1 113.8 12.57
1150 109.4 98.8 10.71
1250 106.4 98.6 7.96
1350 115.8 114.3 1.26
1450 123.4 119.4 3.36
1550 116.4 119.5 -2.58
1650 124.0 119.8 3.49
1750 114.6 119.2 -3.85
1850 125.7 127.1 -1.03
1950 114.5 122.5 -6.50
2050 117.3 116.1 1.00
2150 95.3 100.3 -5.04
2250 100.3 104.7 -4.17
2350 103.1 106.0 -2.73
2450 140.5 134.6 4.37
2550 94.4 89.0

2650

1.4

1.4
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CO, Correlation for the First and Final
|terations of the Loader Cycle
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Engine Speed Correlation for the First and
Final Iterations of the Loader Cycle
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Comparison of Normalized WVU and EPA

L oader Cycles

EPA Loader Cycle

Time (3]
Shortened WV U Loader Cycle
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Comparison of Normalized WVU and EPA

L oader Cycles
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Cycle Nor malization

Cycle normalization provides a means of evaluating various engines
that may be used for specific vehicle applications

measured | oad
maximum |oad achievableat that particul ar speed

Normalized Load =

measured speed- curbidlespeed
gsc - curbidlespeed

NormalizedSpeed =

gsc (governed central speed) = the speed on a power map greater than
max power at which 50% of max power is achieved
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Engine Speed (fpim)

Streetsweeper Full and Shortened Infield
Cycles
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Streetsweeper Full and Shortened Infield
Cycles
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CO, Correation for the First and Final
|ter ations of the Street Sweeper Cycle
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CO, and Engine Speed Correlation for Two
Repeat Runsof the Final Loader Transient

Cycle
A . \' it
Repeat Test CO, Correl atlon | Repeat Test Engl ne Sp%d Correl atlon
R? = 0.95 R? = 0.97
Trendline Slope = 0.97 Trendline Slope = 0.97
Y -Intercept = 0.2 % Y -Intercept = 27 rpm
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CO, and Engine Speed Correlation for the
Desired vs. Achieved Speed/L oad Setpoints
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Regression Criteria for Certification
Transient Cycle Test Validity as Outlined
In the CFR 40 Part 86 Subpart N

Criteria Speed Torque

Slope of Regression Line, m 0.970-1.030 0.83-1.03
Coefficient of Determination, R 0.9700 0.8800
Regression liney intercept, b +-50rpm +-15ft-Ib




Test Cycles

John Deere 444 Loader Elgin Streetsweeper

- |SO-8178 8-mode - |SO-8178 8-mode
- Transient tests on final - Transient tests on final
loader cycle sweeper cycle

- Transent tests on finad
loader cycle



Weighted Brake-Specific 8-M ode Results
for the John Deere 6059 L oader Engine




Brake-Specific Transient Resultsfor the
John Deere 6059 L oader Engine




Comparison of Welghted 8-mode and
Integrated Transient Emissionsfor the
John Deere 6059 Loader Engine

8-Mode Steady State vs.
Transent Test Results

 HC increased 545%
e COincreased 311%
e CO, Increased 105%
«= ¢ NO, Increased 227%
= o PM increased 177%




Weighted Brake-Specific 8-Mode Results for the
John Deere4039T Street Sweeper Engine

Concentration {gfbhp-hr)

ZO21000
Constituent

MO0
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Concentration (g/bhp-h

Brake-Specific Transient Resultsfor the
John Deere 4039T Street Sweeper Engine

6—‘/

5—/ .

3_/ _

2 / -

1—/

0.5
O_
HC
CO .
C0O2/1000 Transient

NOx

Constituent
PM



ration (g/bhp-hr)

12-‘

8.50
/ 5.65
6 /
24 1.95
A
1.00
2 41.85
HC

Comparison of Welghted 8-mode and
Integrated Transient Emissionsfor the
John Deere 4039T Street Sweeper Engine

]
/

Constituent

8-Mode Steady State vs.
Transient Test Results

 HC increased 290%
e COincreased 205%
e CO, increased 78%
* NO, increased 109%
e PM increased 94%



Comparison of Street Sweeper Results Operating
on the First and Final Street Sweeper Cycles

Final Iteration vs. First
|ter ation Results

« HC increased 2%
e CO decreased 5%
e CO, decreased 1%
e NO, decreased 2%
 PM decreased 7%

i
COEM

Erniesions Constifisent



Comparison of Street Sweeper Results
Operating on the Final Street Sweeper and
L oader Cycles

Sweeper Tested on
Sweeper Cyclevs.
Sweeper Tested on
L oader Cycle Results

e HC decreased 27%
e COincreased 93%
e CO, decreased 10%
* NO, increased 32%
* PM increased 51%




Excavator Operations




Komatsu S6D125-1 Excavator Engine
Weighted and Average Transient Test Results
(g/bhp-hr)

Transent
Cyclel
Results

Transient
Cycle 2
Results

Transient
Cycle 3
Results

% Diff
Cyclelto
8-Mode

% Diff
Cycle2to
8-Mode

% Diff
Cycle3to
8-Mode

1.202

1.145

1.100

-51.7

-54.0

-55.8

0.915

0.871

0.853

-64.1

-65.8

-66.5

538.43

533.49

525.59

-11.7

-12.5

-13.8

5.366

5.390

5.327

-35.0

-34.7

-35.5

0.277

0.280

0.332

-56.2

-55.7

-47.5




L oad Factor and Cycle Length Data

Sweeper Excavator Excavator  Excavator  Excavator
on Loader 1 2 3 EPA

Cycle L oader Sweeper

L oad
Factor
Cycle
L ength ()

57.8 33.7 57.8 78.7 78.4 73.9 74

1144 1226 1144 650 645 646 1198




Average Load and Speed Factorsfor All
Vehiclesand Test Cycles
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Comparison of Steady-State Dynamometer
Test Resultswith the Current Off-Road
Diesel Emissions Standards

PM CO HC NOy
(g/bhp-hr) | (g/bhp-hr) | (g/bhp-hr) | (g/bhp-hr)
1996 Std. 0.40 8.5 1.0 6.9
Street Sweeper 0.47 5.65 1.95 11.67

L oader 0.50 8.91 4.77 26.51
Excavator 0.63 2.55 2.50 8.26




Emission Factorsfor Test Vehicles

Vehicle L oader Street Sweeper Excavator Track-type
Tractor

Mode Y ear <1995 1995+ 1987 2001
Total Hours 2756 6841 3263 2750

HC (g/hp-hr) 1.12 1.30 1.01 0.35
CO (g/hp-hr) 3.74 4,12 4,56 0.97
NOX (g/hp-hr) 9.31 10.13 11.83 6.54

0.83 1.03 0.68 0.17




Percentage of Total Cycle Time Spent

In Each Speed Range for the
John Deere 6059 L oader Enaine
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Per cent Load vs. Percent Total Intermediate
Speed Timefor the
John Deere 6059 L oader Engine
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Percent Load vs. Percent Total Rated Speed
Timefor the John Deere 6059 L oader Engine
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Percentage of Total Cycle Time Spent in
Each Speed Rangefor the
John Deere 4039T Street Sweeper Engine
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Per cent Load vs. Percent Total Intermediate
Speed Timefor the
John Deere 4039T Street Sweeper Engine
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Percent Load vs. Percent Total Rated Speed
Timefor the John Deere 4039T
Street Sweeper Engine
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Speed Range Char acterization for the Komatsu
S6D125-1 Engine: Excavator Cycle 1 (Digging)

Percentage of Total Cycle Time (%)
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L oad Range Characterization for
1900-2000 rpm Speed Range for Komatsu
S6D125-1 Engine: Excavator Cycle 1 (Digging)
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L oad Range Characterization for
2000-2100 rpm Speed Range for Komatsu
S6D125-1 Engine: Excavator Cycle 1 (Digging)
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Speed Range Characterization for Komatsu
S6D125-1 Engine: Excavator Cycle 2 (Hauling)
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L oad Range Characterization for
1900-2000 rpm Speed Range for Komatsu
S6D125-1 Engine: Excavator Cycle 2 (Hauling)
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L oad Range Characterization for
2000-2100 rpm Speed Range for Komatsu
S6D125-1 Engine: Excavator Cycle 2 (Hauling)
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S6D125-1 Engine: Excavator Cycle 3 (

Percentage of Total Cycle Time (%)

Speed Range Characterization for Komatsu
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L oad Range Characterization for 1900-2000 rpm
Speed Range for Komatsu S6D125-1 Engine:
Excavator Cycle 3 (Trenching)
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L oad Range Characterization for 2000-2100 rpm
Speed Range for Komatsu S6D125-1 Engine:
Excavator Cycle 3 (Trenching)
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Conclusions

Brake-specific 8-mode emissions results were much higher
than transient test results and are not an accurate indication

of in-use vehicle emissions

Cycle nature has a considerably larger effect on emissions
results than an accurate recreation of the infield cycle

For cycle development, refinement of dynamometer
setpoints has little effect on full-cycle integrated results but
the differences could be large on second-by-second or
other discrete cycle section

On-board testing in the field would be more representative

of actual performance than steady-state testing on the
vehiclestested in atest cell



Recommendationsfor Future Resear ch

Continued assessment of new, up-coming technologies

|nvestigate the use of manufacturer-supplied BSCO, data
for adirect power prediction from infield data

Investigate the use of the MEMS system for the infield
testing of electronically-controlled equipment

Incorporate the use of a miniature, real-time particulate
matter measurement device for collection of infield PM

Investigate fuel-specific data presentation to eliminate the
need to quantify torque in the field

Adopt very strict acceptance criteriafor portable emissions
measurement systems--more so than laboratory-grade
Instruments.
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