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• Air quality models are indispensable part of air quality
management.
– The main tool to evaluate the effectiveness of different control

strategies.

• They possess more information than we generally use.
– Local sensitivity coefficients, i.e. derivatives.
– More dimensions to look at.

• First-order sensitivity analysis does not capture non-
linearities.
– Viewed as limitation.

• A high-order sensitivity analysis technique is developed.

Air quality modeling (contd.)



The idea of sensitivity analysis

• How does the model respond to a change in an
independent parameter?

– Almost any modeling practice is, in essence, an effort to address
this question directly or indirectly.

• In air quality modeling the sensitivity question is
addressed directly to:

– Quantify the atmospheric response to emissions control,

– Find the uncertainty in the response,
– Perform inverse modeling and data assimilation,
– Etc.



Brute-force sensitivity analysis

• Approximates the derivative as the sensitivity parameter approaches
zero:

• One-at-a-time perturbation of each sensitivity parameter.

• Pros and cons:
– Easy to do,
– One additional run for each additional sensitivity parameter,
– Noisy for small perturbations,
– Unrealistic for large perturbations.
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Brute-force sensitivity analysis (contd.)
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DDM sensitivity analysis

• Decoupled Direct Method (Dunker, 1981 and 1984): Sensitivity
equations are derived and integrated decoupled from concentrations.
– The only direct sensitivity technique that has been applied in 3-D air

quality models [DDM-3D (Yang et al., 1997)],
– Drawbacks of the brute-force sensitivity analysis avoided.
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• DDM-3D is easy to implement because for the most part
the same numerical routines are used to integrate the
sensitivities.

• Chemistry discretization:

– Matrix inversion is done only once for each grid cell and time step.

DDM: computational efficiency
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First-order sensitivity coefficients (slopes) cannot describe the
non-linearities in the response -- 2nd order (curvature) or higher-
order coefficients are required.

Sensitivity Parameter

Response

How to address non-linearity?
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Calculation of higher-order derivatives

High-order Decoupled Direct Method (HDDM):



Chemistry discretization in HDDM:

Calculation of higher-order derivatives (contd.)
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Method test results

• Multiscale Air Quality
SImulation Platform (MAQSIP)
– Some modifications from the

original model, inputs: e.g., BCs,
mass conservation scheme,

– Results shown for CB-IV, SAPRC-
99 results to come soon.

• SARMAP modeling domain and
episode (August 2-6, 1990).



Simulated ozone: SAPRC-99 vs. CB-IV



DDM vs. BF: 1st order derivative, midnight

25% perturbation in domain-wide NO emissions



DDM vs. BF: 1st order derivative, noon

25% perturbation in domain-wide NO emissions



DDM vs. BF: 2nd order derivative, midnight

25% perturbation in domain-wide NO emissions

Brute-force HDDM



DDM vs. BF: 2nd order derivative, noon

25% perturbation in domain-wide NO emissions

Brute-force HDDM



• Better agreement between BF and (H)DDM for the 1st

order sensitivity coefficients than 2nd order:
– 2nd order brute-force approximation is more susceptible to

numerical noise.
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• A concave ozone response at high ozone concentration is
unlikely.
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Non-linearity: where, why?



Non-linearity: where, why? (contd.)
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Non-linearity: where, why? (contd.)



Higher order derivatives (domain-wide NO)



Higher order derivatives (domain-wide VOC)



• One way to test the accuracy of the calculated derivatives:

• More accurate Taylor expansion:
– Higher-order terms,
– Smaller perturbation.

• Not the most accurate scaling method (Kramer et al., 1984)
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Taylor series expansion: 50% reduction in NO



Taylor series expansion (contd.)
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Cross-derivatives (domain-wide NO/VOC)



• For more than one sensitivity parameter:
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Taylor series expansion: combined perturbation



Taylor series expansion (contd.)
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Ozone Isopleths (peak location), 2 PM

1st day 2nd day



Ozone Isopleths (peak location), 2 PM (contd.)

3rd day 4th day



Ozone Isopleths, peak location (1-6 PM)

1 PM 2 PM 3 PM

4 PM 5 PM 6 PM



Ozone Isopleths, different regimes (2 PM)

NOx-limited VOC-limited



Summary

• HDDM provides an efficient tool for the calculation of  high-
order sensitivity coefficients.

• Higher-order sensitivity analysis can, to a large extent,
explain the non-linearities in atmospheric response, e.g.
ozone isopleths.

• Most of the improvement in accuracy is achieved by adding
the 2nd order coefficients (curvature).

• Non-linear behavior in photochemistry usually happens at the
time/location of a transition between different chemical
regimes.

• The location and time of the peak ozone is usually subject to
a high degree of non-linearity. This is potentially important
for the case of NOx control in an urban plume.



What should be done? What can be done?

• Higher-order sensitivity analysis is a completely unexplored
territory. More research to come.

• Higher-order derivatives become unrealistically large --
should investigate the numerical limitations.

• Despite efficiency of HDDM, calculating higher derivatives
of too many sensitivity parameters will be costly.

• HDDM provides us with new approach to old problems:
– Cost-effectiveness analysis of control strategies,
– Inverse modeling of non-linear systems,

– Uncertainty analysis of organic reactivities,
– And in general, description of any non-linearity, e.g. ozone isopleths.
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