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Introduction

• California considers mass and reactivity of
VOC in regulating some sources

• Relies on concept of maximum incremental
reactivity (“MIR”), based on work of Carter
with 0-D box model

• 3-D grid-based models provide more realistic
representation of atmosphere
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Objectives

• Use 3-D air quality models with online
sensitivity analysis to assess reactivity
of individual VOC

• Compare results from 3-D models to
Carter’s MIR scale

• Conduct formal uncertainty analysis



Approach

• SAPRC-99 mechanism with 30 individual
VOC represented explicit ly

• DDM-3D (Yang et al., 1997) used to calculate
sensitivity of ozone to emissions of VOC

• Monte Carlo analysis to propagate input
uncertainties through modeling system



Model Application

• South Coast Air Basin

– 24-25 June 1987 (SCAQS)

• Central California

– 2-6 August 1990 (SJVAQS/AUSPEX)

• Use previously defined model inputs for
meteorology and emissions







Calculating Reactivity

• Sensitivity Coefficient from DDM-3D:

• Absolute Incremental Reactivity:
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Relative Reactivity

• AIR from 3-D model varies by location

– Coastal/mid-basin sites not affected
by increases in downwind emissions

• Define relative incremental reactivity:
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Reactivity Rankings

• Sort compounds from highest to lowest
based on Carter MIR

• Plot RIR from 3-D modeling for each
compound

• Expect RIR to decrease monotonically







Uncertainty Analysis

• Treat 33 input parameters as uncertain:

– Chemical rate coefficients

– Oxidation product yields

– Emissions of CO, VOC & NOx

– Deposition velocities for O3 and NO2

• Use trajectory model and Monte
Carlo/LHS to get output uncertainties



Absolute Incremental Reactivities
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Central California

• Used different 3-D model (MAQSIP)

• Considered many reactivity metrics:

– 1 hr vs. 8 hr ozone

– MIR vs. MOIR conditions

– Population exposure

• Long modeling period (2-6 Aug 1990)
for larger region incl. Bay Area & SJV
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Comparison of 3-D Metrics



Comparison of 3-D Metrics
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Summary

• Reactivity more robust on relative rather
than absolute basis

– less site-to-site variability

– typical RIR uncertainty 20-35%

• Reactivity metrics derived from 3-D
modeling similar to Carter MIR scale

• Spatial distribution of emissions can be
important (lg. point sources, biogenics)



Summary (continued)

• HOx radical initiators (esp. C4-C5

alkenes and HCHO) have variable RIR

• Acetaldehyde shows negative reactivity
at upwind boundaries because PAN
formation competes with NO 2 photolysis

• RIR increases downwind for some low-
reactivity compounds


