Emissions of Toxic Pollutants from Compressed Natural Gas and Ultra-low Sulfur Diesel - Fueled Transit Buses

Norman Y. Kado, Robert A. Okamoto, Paul A. Kuzmicky, Reiko Kobayashi, Alberto Ayala, Michael E. Gebel, Paul L. Rieger, Christine Maddox, and Leo Zafonte
Overall Objective

Investigate the regulated and toxic pollutant emissions from heavy-duty vehicles with and without control technologies.
Project Aims

- Investigate toxic emissions for CNG and ULSD-fueled heavy duty diesel vehicles
- Investigate the effect of after-treatment control technologies on emissions
- Investigate the effect of test cycles on emission rates
- Investigate ultrafine PM emissions
Study is a “snap-shot” of the fleet and not a fleet average
Research Team

- Dept. Environmental Toxicology, UC Davis; Dept. Environmental Engineering, UC Davis.

Contributing:
- South Coast AQMD, UCLA
Experimental Design

Emissions

Gaseous

PM - Toxics

VP - Toxics

Chemical

Chemical

Bioassay

Chemical

Bioassay
Vehicle Configurations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel w/ OC</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Diesel w/ DPF</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CNG no OC</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>CNG w/ OC</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
Vehicles and After-Treatments

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Model Yr</th>
<th>Engine Make</th>
<th>After-Treatment (Study)</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>1998</td>
<td>DDC-S50</td>
<td>DOC (1a)</td>
<td>ULSD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OC-DPF (1a)</td>
<td></td>
</tr>
<tr>
<td>CNG 00</td>
<td>2000</td>
<td>DDC-S50G</td>
<td>None (1a & 1b)</td>
<td>CNG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OC (1b)</td>
<td></td>
</tr>
<tr>
<td>CNG 01</td>
<td>2001</td>
<td>Cummins-Westport C-Gas Plus</td>
<td>OC (1b)</td>
<td>CNG</td>
</tr>
</tbody>
</table>
Catalyzed Diesel Paticulate Filter (DPF) for DDC 50 Diesel (Johnson-Matthey, Inc)
Oxidative Catalyst for CNG DDC S50G Engine
Fuels

- Ultra-Low Sulfur Diesel (ULSD)
 - < 15 ppm sulfur
- Compressed Natural Gas (CNG)
 - Methane (mole %): > 88%
Measurements
Phases 1a & 1b

- Regulated pollutants (TPM, THC/NMHC, NOx, NO₂, CO, CO₂)
- On-site, VOC-GC analyses c matching off-site analyses
- Elemental/Organic Carbon
- Elements
- PM size-segregated mass (1a only), PM number & size
Toxic Pollutant Measurements

- Polycyclic Aromatic Hydrocarbons (PAHs)
- Carbonyls, BTEX, 1,3 Butadiene
- Bioassay - mutagenicity
Sampling
Central Business District (CBD) Cycle

![Graph showing Central Business District (CBD) Cycle]

- Time (seconds)
- Speed (mph)

The graph illustrates the speed variation over time, with the y-axis representing speed in miles per hour (mph) and the x-axis representing time in seconds.
PM Emissions – CBD

PM Emissions

Vehicle Configuration

<table>
<thead>
<tr>
<th>Emissions (mg/mile)</th>
<th>Diesel (OC)</th>
<th>Diesel (DPF)</th>
<th>CNG.00</th>
<th>CNG.00 (OC)</th>
<th>CNG.01 (OC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>119 +/- 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CO Emissions - CBD

CO Emissions

Vehicle Configuration

Diesel (OC) Diesel (DPF) CNG.00 CNG.00 (OC) CNG.01 (OC)

Emissions (mg/mile)

0 4 8 12
Polycyclic Aromatic Hydrocarbons

Particle Associated PAHs
- Benzo[ghi]perylene
- Dibenz[ah]anthracene
- Indeno[1,2,3-cd]pyrene
- Perylene
- Benzo[a]pyrene
- Benzo[e]pyrene
- Benzo[k]fluoranthene
- Benzo[b]fluoranthene
- Chrysene
- Benz[a]Anthracene

Semi-Volatile PAHs
- Pyrene
- Fluoranthene
- Methyl Phenanthrene
- Anthracene
- Phenanthrene
- Fluorene

Volatile PAHs
- Dimethyl naphthalene
- Acenaphthene
- Acenaphthene
- Acenaphthene
- Dimethyl naphthalene
- Biphenyl
- 1-methyl naphthalene
- 2-methyl naphthalene
- Naphthalene

Expected PAH phase distribution in ambient and exhaust samples
Polycyclic Aromatic Hydrocarbons

PM-PAHs - CBD

Vehicle Configuration

Emissions (ug/mi)

Diesel (OC) Diesel (DPF) CNG.00a CNG.00b CNG.00 (OC) CNG.01 (OC)

Diesel (OC) 45
Polycyclic Aromatic Hydrocarbons

SV-PAHs - CBD

Vehicle Configuration

Emissions (ug/mi)

Diesel (OC) Diesel (DPF) CNG.00a CNG.00b CNG.00 (OC) CNG.01 (OC)

265
Polycyclic Aromatic Hydrocarbons

V-PAHs - CBD

Vehicle Configuration

Diesel (OC) Diesel (DPF) CNG.00a CNG.00b CNG.00 (OC) CNG.01(OC)

Emissions (ug/mi)

405 196
Mutagenic Potency

Specific Activity (Potency) - CBD

Vehicle Configuration

Specific Mutagenic Activity (Rev/ug)

0 10 20 30

Diesel (OC) Diesel (DPF) CNG.00a CNG.00b CNG.00 (OC) CNG.01(OC)
Mutagen Emissions - CBD

Mutagen Emissions

Vehicle Configuration

Emissions (rev/mi x 10^5)

Diesel (OC) Diesel (DPF) CNG.00a CNG.00b CNG.00 (OC) CNG.01(OC)

PM SV
HYDROCARBON ANALYSIS

- Tedlar Bag Sampling
- Onsite GC to limit hold time
- SOP # MLD 102/103
 GC/FID Analysis w/cryo-trapping
 Speciation of C2-C12+
- Report:
 Benzene, Toluene, Ethyl Benzene, Xylenes (BTEX)
 and
 1,3 Butadiene
- GC/MS Confirmation of BTEX
Mid Range Chromatogram (T03013; 04/20/01)
Diesel fueled bus no trap, CBD cycle

C2 Hydrocarbons
< 15% of NMHC

Propane/Propene
< 5% of NMHC

n-Alkanes (C9+)

Benzene

Toluene
Mid Range Chromatogram (T03130; 06/07/01)
CNG fueled bus, CBD cycle

C2 Hydrocarbons
~ 70% of NMHC

Propane/Propene
~ 20% of NMHC

n-Butane Isopentane Benzene Toluene
Partial Light End Chromatogram - (04/20/01)
CNG fueled bus; CBD cycle

Isopentane

Pentane

1,3 Butadiene
Total BTEX and Benzene Emission (CBD Cycle)
(Error bars represent 1 std dev of replicate measurements)
(Tunnel blank value = average of mass emissions/miles per cycle)
1,3 Butadiene Average Emission (CBD Cycle)
(Error bars represent 1 std dev of replicate measurements)
(Tunnel blank value = average of mass emissions/miles per cycle)

1,3 Butadiene was not detected for any vehicle configuration or tunnel blank except CNG.00 Without OxiCat
Carbonyl Analysis

- Heated line Sampling
- DNPH Coated Silica Cartridges
- SOP # MLD 104
 Extraction with Acetonitrile
 HPLC analysis w/ UV Detection
 13 Target Compounds
Average Carbonyl Emissions (CBD Driving Cycle)
(Error bars for carbonyl sum derived from 1 std dev of replicate runs)
(Tunnel blank value = average of mass emissions/miles per cycle)

Both OxiCat and DPF usage show large reduction in formaldehyde
Summary

- DPF reduces PM, CO, HC, NMHC, EC, OC, elements
- DPF also reduces carbonyls, VOCs, PM-bound and semivolatile PAHs, and PM-bound and semivolatile mutagen emissions
- CNG catalyst reduces PM, OC, CO, HC, NMHC, CH$_4$
- CNG catalyst also reduces carbonyls, VOCs, semivolatile PAHs, and PM-bound and semivolatile mutagen emissions
Summary

• NO\textsubscript{X} from CNG engines approximately 50% lower than NO\textsubscript{X} from diesel engine

• DPF-equipped bus has NO\textsubscript{X} emissions that contain 50% NO\textsubscript{2}

• Although not shown, test cycle differences are seen

• After-treatment durability and deterioration and vehicle maintenance were not evaluated
Acknowledgements

We wish to thank Mindy Salazar, Julia Sandoval, T.S. Yeung, Shiou-mei Huang, Richard Ling, Lyman Dinkins, Norma Castillo, Jack Horrocks, Keshav Sahay, George Gatt, John Karim, Jim Shears, Namita Verma, Wayne McMahon, Mark Fuentes, Bart Croes, Hector Maldonado, Richard Bode, Richard Corey, Linda Smith from the ARB.
Acknowledgements

We also are grateful to: Keith Stiglitz, Fred Gonzalez, and Harvey Porter of CAVTC; Geraldine Navarro, Kelsie Takasaki, Bernice Cheng, Mary Manaloto from UC Davis; Brit Holmen, UConn; Steve Barbosa of the SCAQMD. We also thank: LACMTA, So. Cal Gas Co., BP/ARCO, Detroit Diesel, San Bernardino Rapid Transit. We thank the Air Resources Board and SCAQMD for their support.