Airborne Particle Effects on the Respiratory System of Sensitive Animals and Asthmatic Humans

Kent E. Pinkerton, Ph.D.
University of California, Davis
Rationale

- Studies suggest an association between ambient particulate matter and increased morbidity in individuals with allergic airway disease.

- Brown Norway rats can serve as a model of allergic airway disease due to a strong Th2 response following sensitization and challenge with OVA.
Study Objective One

To establish a model of airway reactivity in the Brown Norway rat through a process of sensitization and repeated challenge with ovalbumin.
Approach

- Characterize airway reactivity in BN rats sensitized and challenged with OVA
- Quantify intraepithelial cell mucosubstance content of the airways
- Measure changes in eosinophils and mast cells in the lungs
- Measure the degree of inflammation present in the lungs (centriacinar regions)
Activity Time-line

sensitization aerosolized ovalbumin airway challenges animals studied

DAY

10 13 16 19 21 24 27
EC200RL Assay: the effective concentration of methacholine required to double lung resistance
Effects of Ovalbumin Sensitization and Aerosol Challenge on Airway Hyperresponsiveness in Brown Norway Rats

* significantly different from control and sensitized/not challenged groups
Histochemical Staining of Central Airway

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Sensitized</th>
<th>Challenged</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB/PAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Left Lung Corrosion Cast
Epithelial Cell Volume of the Central Airway

Epithelial Volume

<table>
<thead>
<tr>
<th>Condition</th>
<th>Volume/Surface Area (BL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>~5 ± 1 µm²/µm³</td>
</tr>
<tr>
<td>sensitized</td>
<td>~8 ± 1 µm²/µm³</td>
</tr>
<tr>
<td>sens + chall</td>
<td>~14 ± 2 µm²/µm³</td>
</tr>
</tbody>
</table>

*Significant difference compared to control and sensitized conditions.
Alcian Blue/Periodic Acid Schiff Staining of Central Airway Epithelium

EPITHELIUM OF PROXIMAL AIRWAY
Control Animal H&E Stain

Challenged Animal H&E Stain
Volume of Intracellular Mucosubstances of the Central Airway

Mucosubstance Volume

Volume/Surface Area (BL) (µm³/mm²)

- control
- sensitized
- sens + chall

* Significant difference
Perivascular (PV) Mast Cells and Eosinophils
Number of PV Mast Cells

Mast Cells

control sensitized sens + chall

Number/Basal Length (mm)
Number of PV Eosinophils

Eosinophils

Number/BL Length (mm)

control sensitized sens + chall
Study Objective Two

- To determine the most optimal conditions for a model of allergic airways in the Brown Norway rat by repeated weekly challenges with ovalbumin.
Activity Time-line

- Sensitization
- Aerosolized ovalbumin airway challenges
- Animals studied

DAYS: 14, 21, 28, 35
EC200RL: The effective dose required to double lung resistance
Central Airway Wall Composition
Volume of Mucin Present Within the Central Airways of Brown Norway Rats

The table below provides the volume of mucin (in um²) measured in different groups and weeks.

<table>
<thead>
<tr>
<th>Group</th>
<th>FA (--)</th>
<th>FA/S (*)</th>
<th>Challenged Wk 1</th>
<th>Challenged Wk 2</th>
<th>Challenged Wk 3</th>
<th>Challenged Wk 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>um² mucin</td>
<td>0.563</td>
<td>0.485</td>
<td>0.514</td>
<td>1.405</td>
<td>1.388</td>
<td>1.323</td>
</tr>
<tr>
<td>std err</td>
<td>0.176</td>
<td>0.162</td>
<td>0.203</td>
<td>0.41</td>
<td>0.145</td>
<td>0.268</td>
</tr>
<tr>
<td>n</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

FA/S () indicates a significant difference compared to the FA (--) group.*
Effects of OVA on Eosinophils and Mast Cells

![Graph showing changes in Eosinophils and Mast Cells in the epithelium of the airway over weeks 1 to 4.](image-url)
Eosinophil Increases Following OVA Challenges

Eosinophils and Mast Cells in the Submucosa of the Airway

Groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td></td>
</tr>
<tr>
<td>FA/S</td>
<td></td>
</tr>
<tr>
<td>Challenged Week 1</td>
<td></td>
</tr>
<tr>
<td>Challenged Week 2</td>
<td></td>
</tr>
<tr>
<td>Challenged Week 3</td>
<td></td>
</tr>
<tr>
<td>Challenged Week 4</td>
<td></td>
</tr>
</tbody>
</table>

[Bar chart showing eosinophil and mast cell percentages across different groups and weeks.]
Blood Vessel Scoring of Perivascular Cell Influx

None (0)
Mild (+)
Moderate (+++)
Severe (++++)
High Levels of Inflammation in Perivascular Space

Percentage of Sites with Inflammation

Perivascular Space
Percentage of Sites with Inflammation

Percentage of Sites Involved

FA FA/S Challenged Week 1 Challenged Week 2 Challenged Week 3 Challenged Week 4

Groups
Cellularity in the Perivascular Space

Groups:
- FA
- FA/S
- Challenged Week 1
- Challenged Week 2
- Challenged Week 3
- Challenged Week 4

Percent
Mast Cells

Mast Cells in the Perivascular Space

- FA
- FA/S
- Challenged Week 1
- Challenged Week 2
- Challenged Week 3
- Challenged Week 4

Percent
Eosinophils

Eosinophils in the Perivascular Space

Percent

Groups

FA
FA/S
Challenged Week 1
Challenged Week 2
Challenged Week 3
Challenged Week 4
Transverse Lung Tissue Sections
Centriacinar Region (BADJ) Scoring
Centriacinar Regions

Centriacinar Regions
Percentage of Sites with Inflammation

Groups
- FA
- FA/S
- Challenged Week 1
- Challenged Week 2
- Challenged Week 3
- Challenged Week 4

Percentage of Sites Involved

p<0.05 compared with FA control
p<0.05 compared with FA/S control
Study Objective Three

- To determine if exposure to PM will alter airway reactivity, lung inflammation, the immune response and epithelial injury in Brown Norway rats sensitized and challenged with OVA.
Hypotheses

- OVA-specific serum IgE and eosinophilic inflammation will be increased in an allergic model and may be changed by PM exposure immediately following allergen challenge.

- Detection of a PM effect on airway reactivity and cell permeability may be enhanced in a Brown Norway rat model of allergic airway disease.

- Ammonium nitrate and carbon are the two most prevalent forms of PM in California.
Exposure

Day 0: Sensitization (OVA subQ)

Day 14: Challenge (OVA aerosol)

Exposure: (6 hr/day x 2 days)

PM

FA
Assays

- Serum IgE: OVA-specific
- PFT: Airway responsiveness (MC)
- BAL: Protein, total cell number, and differential
- Cell permeability: Ethidium homodimer-1
- Cell proliferation: BrdU
PM Composition

- Ammonium nitrate 150 µg/m³
- Carbon black 100 µg/m³
- Particle size (MMAD) 1.0-1.5 µm
Photomicrograph of Collected Ovalbumin Particles
Photomicrograph of Collected PM Particles
PM Samples for Carbon Analysis
Ion Chromatograms of PM Particle Samples during exposure PM 41
OVA-Specific Serum IgE

% Positive Control

N/C S S/C

FA PM
Pulmonary Airway Responsiveness

![Graph showing EC 200 RL for FA and PM.](image-url)
Protein in BAL

![Bar chart showing protein levels in BAL](image)
Eosinophils in BAL

- FA
- PM

Percent

S
S/C
Epithelial Cell Permeability
Cell Permeability

![Graph showing relative scoring for E+D-1 cell staining]

- **Relative Scoring for E+D-1**
- **Cell Staining**

- **S**:
 - FA
 - PM

- **S/C**:
 - FA
 - PM
Mucin Volume of Airway Epithelium
Epithelial Cell DNA Synthesis

FILTERED AIR

PARTICULATE MATTER

100 μm

20 μm
Airway Epithelial Labeling

Percent BrdU Positive Cells

S

S/C

FA
PM

*
Histological Analysis, Eosinophils
Exposure

Day 0
Sensitization (OVA subQ)
Day 14
Challenge (OVA aerosol)

Days 15-17
Exposure (6 hr/day x 3 days) FA & PM

Days 18-19
Non-Exposure (2 days)

Days 20-22
Exposure (6 hr/day x 3 days) FA & PM

Days 23-24
Non-Exposure (2 days)
mRNA Levels in Lung Tissues of BN Rats Exposed to FA or PM

OVA-Sensitized/Challenged Brown Norway Rats

![Graph showing mRNA levels in lung tissues of BN rats exposed to FA or PM](image-url)
Study Objective Four

- To determine the effects of exposure to PM in human asthmatic volunteers on airway biopsy tissue gene expression for a panel of cytokines.
Tissue: IL-12p35 mRNA

Data: mean ± SE

↓ Ct = ↑ expression
In-Vivo Control Allergen PMA

PCR Cycles

Tissue: IL-15 mRNA

Data: mean ± SE

↓ Ct = ↑ expression
In-Vivo Control Allergen PMA

Tissue: IL-10 mRNA

Data: mean ± SE

↓ Ct = ↑ expression

PCR Cycles

In-Vivo Control Allergen PMA
Conclusions

- Brown Norway rats can serve as a reasonable model of allergic airway disease following a single sensitization and challenge with OVA.
- PM may serve as an adjuvant and increase systemic levels of IgE following sensitization and challenge in Brown Norway rats.
- Airway hypersensitivity was not changed by sensitization and challenge in this model. Exposure to carbon and ammonium nitrate PM may actually decrease response to MC challenge.
Conclusions

- Airway epithelial cell permeability to ethidium homodimer-1 in our model may increase following two days of exposure to carbon and ammonium nitrate particles (N.S.)

- Significant increases in airway epithelial cell BrdU labeling occur in this model of allergic airway disease following exposure to carbon and ammonium nitrate PM (p<0.05)

- Centriacinar alveolitis may be increased by PM exposure in a Brown Norway rat model of allergic airway disease (N.S.)
Conclusions

- Human airway biopsies can be used to examine gene expression for the variety of different cytokines.

- Gene expression of cytokines within human airways is not significantly altered following acute exposure to carbon and ammonium nitrate PM.

- IL-5 gene expression in Brown Norway rats is transiently altered following acute exposure to carbon and ammonium nitrate PM.

- Combined animal and humans studies can be used to provide new insights on potential mechanisms of the health effects of PM on the respiratory system.
Acknowledgements

- Ed Schelegle
- Charles Plopper
- Laurel Gershwin
- Lisa Miller
- William Walby
- Valerie Mitchell
- Maria Suffia
- Julian Recendez
- Andrew Goodyear
- Marzieh Shafii
Exposure

Sensitization (OVA subQ)

Challenge (OVA aerosol)

Exposure (6 hr/day x 3 days) FA & PM

Non-Exposure (2 days)

Exposure (6 hr/day x 3 days) FA & PM

Non-Exposure (2 days)

DAYS

0 14 15-17 18-19 20-22 23-24