Prepared for Western States Petroleum Association (WSPA)

Report on CWT-CWB for California Regulatory Support

May 17, 2013





Solomon Associates M<sup>3</sup> – Measure. Manage. Maximize.<sup>®</sup>

Two Galleria Tower, Suite 1500 • 13455 Noel Road Dallas, Texas 75240 • 972-739-1700

# Table of Contents

| 1.0  | Use R  | estrictions                                                                | 1-1          |
|------|--------|----------------------------------------------------------------------------|--------------|
| 2.0  | The C  | complexity-Weighted Barrels (CWB) Methodology for California Refineries    | 2-1          |
|      | 2.1    | Background                                                                 | 2-1          |
|      | 2.2    | CWB Robustness in Allocating Emission Allowances                           | 2-2          |
|      | 2.3    | CWB versus CWT                                                             | 2-4          |
|      | 2.4    | CWB Boundary Conditions                                                    | 2-5          |
|      | 2.5    | CWB Calculations                                                           | 2-8          |
|      | 2.6    | Solomon's Calculation of CO <sub>2</sub> e Emissions                       | 2-12         |
| Appe | ndix A | Roles of Solomon in Supporting CWB/CWT Application in Regulatory Use       | A-1          |
| Appe | ndix B | Comparison Matrix                                                          | B-1          |
| Appe | ndix C | Comparison of CWB and CWT Factors for Process Units (CA-CV Solomon EU-CWT) | WB vs<br>C-1 |
| Appe | ndix D | Solomon Definition of Standard Refining Process Units and CWB Factors      | D-1          |
| Appe | ndix E | Example for Calculating Total CWB for a Refinery (CA-CWB)                  | E-1          |
| Appe | ndix F | Example for Calculating Total CWT for a Refinery (Solomon EU-CWT)          | <b>F-1</b>   |
| Appe | ndix G | Glossary and Solomon Units of Measure                                      | G-1          |

## 1.0 Use Restrictions

This report ("the Report") is delivered under the agreement between HSB Solomon Associates LLC (Solomon) and Western States Petroleum Association (WSPA), containing information for the Complexity-Weighted Barrels methodology for California refineries (CA-CWB<sup>TM</sup>). WSPA may use part or all information contained in this Report to the purpose ("the Purpose") of implementing the CA-CWB methodology within the State of California for State carbon emission regulations, such as for California Air Resources Board (CARB) Greenhouse Gas Emissions Mandatory Reporting Regulation (MRR) advocacy, in allocating emission allowances under California's greenhouse gas (GHG) cap-and-trade program, AB-32.

Within the State of California and limited to the Purpose, WSPA has unrestricted use of the Report and methodologies described therein, whether in verbal or written form (physical, electronic, or otherwise), in communicating with third parties.

## 2.0 The Complexity-Weighted Barrels (CWB) Methodology for California Refineries

Both of the Complexity-Weighted Barrels methodology  $(CWB^{TM})$  and the Complexity-Weighted Tonnes methodology  $(CWT^{TM})$  are proprietary to Solomon. Under each individual Consulting Service Agreement, Solomon grants the client, typically a regional Industry Association, limited rights to use or promote the CWB or CWT methodology for the purpose of GHG regulations only.

Under the Agreement between Solomon and Western States Petroleum Association (WSPA), Solomon conveys the ownership of the CA-CWB<sup>TM</sup> methodology to WSPA. The analysis and calculations presented in the Report are based on the definitions and input data in Solomon's *Fuels Refinery Performance Analyses (Fuels Study)* and the *Worldwide Paraffinic Lube Refinery Performance Analysis (Lube Study)*. The lower heating value (LHV) was used in all energy calculations.

At the discretion of WSPA while working with Air Resources Board (ARB), the content of the methodologies within, including factors<sup>1</sup>, calculations, and data collection protocol, may be modified for California refineries, since the CA-CWB methodology was originally developed for accommodating the entire refining industry around the world.

### 2.1 Background

Over the past decade, Solomon has developed several methods for benchmarking greenhouse gas (GHG) emissions performance. Unlike simplified approaches which are based solely on raw material input or product output volumes, Solomon's GHG benchmarking metrics take into account the process unit configuration and complexity of each individual refinery. The Carbon Emissions Index (CEI<sup>TM</sup>) is Solomon's proprietary and most rigorously calculated benchmarking metric for assessing a refinery's carbon dioxide-equivalent (CO<sub>2</sub>e) emissions relative to a carbon dioxide (CO<sub>2</sub>) emissions standard.

In the CEI methodology, standard emissions are in large part derived from Solomon's proprietary Energy Intensity Index<sup>TM</sup> (EII<sup>®</sup>) standard energy. CEI is calculated by the following equation:

$$CEI = \frac{CEICO_{2}eActual}{CEICO_{2}eStd.} \times 100$$

where

- CEI CO2eActual is Solomon's calculation of CO2-equivalent (CO2e) emissions incurred
- *CEI CO*<sub>2</sub>*eStd.* is the CO<sub>2</sub>*e* emissions standard for the refinery

<sup>&</sup>lt;sup>1</sup> It was suggested that the current CWB factor for coke calciners is not appropriate for California refineries, and will not be used for determining the allocation. Instead, coke calciners will receive allocation separately from refineries via a unique efficiency benchmark in cap-and-trade Regulation Section 10395 (Table 9-1). The determination of an appropriate benchmark for California coke calciners will be developed separately.

Solomon's calculation of  $CO_2e$  emissions (*CEI CO<sub>2</sub>eActual*) are based on the detailed energy balance data (including actual energy types and quantities for imported, exported, and produced energy, as well as gas compositions) and process data (including process unit types, operating conditions, fresh feed compositions and characteristics, and product yields), reported in Solomon's *Fuels Study* and *Lube Study*. The CO<sub>2</sub> emissions equivalent for each fuel type is determined by multiplying the quantity of energy consumed (expressed in MBtu) by the appropriate CO<sub>2</sub> emission factor (CEF) in tonnes of CO<sub>2</sub> equivalent per MBtu, or tonne CO<sub>2</sub>/MBtu. The description of Solomon's calculation of CO<sub>2</sub>e emissions can be found in Section 2.6.

The concept of CWB was originally developed during an Emissions Allocation Study for WSPA around 2008. In this study, it was found that a Process-Based Model, i.e., a model based on specific refinery configuration using actual process unit yields or throughput, was superior to a simplistic approach based on actual barrels of total refinery product only (referred as the Simple Barrels Method) for achieving fairness and equity in allocations. This was accomplished by appropriately accounting for processing complexity (operating intensity) of a refinery. The CA-CWB methodology described in this report is based specifically on Complexity-Weighted Throughput Barrels (CWTB, referred as CWB hereafter), which is a modified version of the original Process-Based Model on the basis of throughput.

The CA-CWB methodology was developed with the objectives of minimal data requirements, simplicity, and suitability for public disclosure for the purpose of equitably allocating carbon emission allowances. The CWB factors were developed based on Solomon's proprietary EII methodology. Simplification was achieved by combining process units according to operating characteristics of more than 200 refineries operating in Organization for Economic Co-operation and Development (OECD) countries that participated in Solomon's *Fuels Study* and *Lube Study* for operating year 2006.<sup>2</sup> This data is sufficient to estimate both combustion- and process-related emissions at each refining site. Solomon has applied the CWB methodology for both fuels and lubricants refineries around the world and has found it to be sufficiently robust to benchmark the entire range of refining process configurations.

### 2.2 CWB Robustness in Allocating Emission Allowances

The robustness of Solomon's CWB methodology in allocating carbon emission allowances is determined in a regression analysis for the correlation between Solomon's calculation of CO<sub>2</sub>e emissions (based on actual energy balance data) and CWB, for the following three peer groups:

- OECD refineries
- US refineries
- US California (CA) refineries

Figures 1a–1d (page 2-3) show the distribution of total CO<sub>2</sub>e emissions (including indirect emissions arising from imported steam and electricity) vs calculated CWB for approximately 200 OECD refineries in operating years 2004, 2006, 2008, and 2010, with an  $r^2$  coefficient (the coefficient of determination) in regression for all three peer groups. The intercept of the fitted lines was forced to the origin (0, 0) in each chart, with an  $r^2$  coefficient ranging between 0.96 and 0.98 for all peer groups in all study years, as summarized in Table 1 (page 2-4). This indicates a strong predictability of CO<sub>2</sub>e emissions by calculating the CWB. A certain degree of deviation from the distribution is anticipated, due to variance in emission efficiency among refineries in each peer group. A wide range of OECD refineries are covered in the

<sup>&</sup>lt;sup>2</sup> Excludes refineries located in Eastern Europe, Greece, and Mexico.

analysis, processing crude oil from 17,000 b/d to over 700,000 b/d; the complexity of these refineries (indicated by a ratio of total Equivalent Distillation Capacity<sup>TM</sup> (EDC<sup>TM</sup>) of the refinery to its crude unit capacity) ranging from 3.5 to over 25. California refineries are typically more complicated than average, requiring more extensive processing facilities downstream of the crude unit for upgrading the products. The average complexity (Configuration Factor) for all 12 California refineries in Solomon's 2010 Fuels Study was 17, versus the US average of 13 or the worldwide average of 11.7. It is thus particularly important to take processing complexity into account for equitably allocating emission allowances for California refineries.

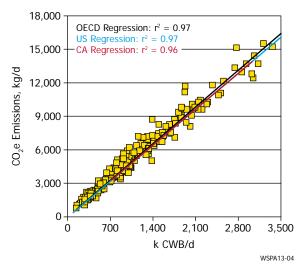



Figure 1a. 2004 OECD Refineries Total Emissions vs CWB

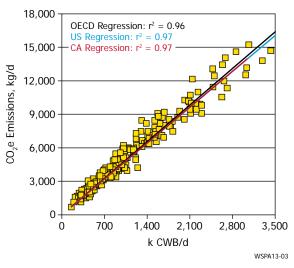



Figure 1b. 2006 OECD Refineries Total Emissions vs CWB

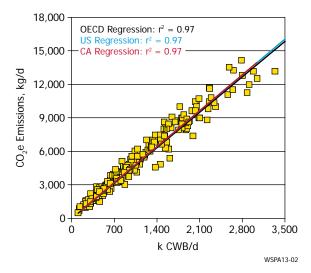



Figure 1c. 2008 OECD Refineries Total Emissions vs CWB

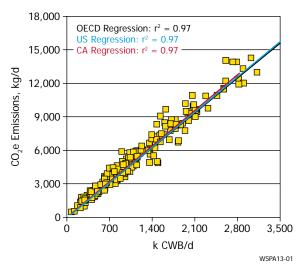



Figure 1d. 2010 OECD Refineries Total Emissions vs CWB

|                               | Operating<br>Year 2004 | Operating<br>Year 2006 | Operating<br>Year 2008 | Operating<br>Year 2010 |
|-------------------------------|------------------------|------------------------|------------------------|------------------------|
| Number of OECD Refineries (1) | ~200                   | ~200                   | ~200                   | ~200                   |
| r <sup>2</sup>                | 0.97                   | 0.96                   | 0.97                   | 0.97                   |
| Number of US Refineries       | 88                     | 86                     | 86                     | 80                     |
| 2                             | 0.97                   | 0.97                   | 0.97                   | 0.97                   |
| Number of CA Refineries       | 11                     | 12                     | 12                     | 12                     |
| <sup>2</sup>                  | 0.96                   | 0.97                   | 0.97                   | 0.97                   |

Table 1.Summary of r<sup>2</sup> in Regression Analysis for OECD, US, and US California Refineries in 2004–2010

<sup>(1)</sup> Excludes refineries located in Eastern Europe, Greece, and Mexico.

### 2.3 CWB versus CWT

Both of Solomon's CWB and its equivalent in metric unit, CWT, are intended for use as a reliable greenhouse gas (GHG) intensity metric or as a basis for GHG allocations in the regulatory arena. The CWT method was developed for refineries located in countries using metric units of measure, while the CWB method was developed for American refineries, measuring refinery throughput in barrels.

For the CWB or CWT application in regulations, Solomon works through local or regional Industry Associations, and conveys the ownership of the methodology to the Industry Association for working with regulators for legislation. Under each agreement, Solomon grants rights for use and promote the CWB or CWT methodology, limited to the specific region, and for the particular purpose of regulatory use only. After the official transfer of ownership, the Industry Association may work directly with regulators for modifying the content of the methodologies as needed. The potential roles and responsibilities of Solomon during the collaboration with an Industry Association, before and after the transfer of ownership of the CWB or CWT methodology, are briefly summarized in Appendix A.

Solomon was approached by CONCAWE (Conservation of Clean Air and Water in Europe) in 2008 to develop a complexity-weighted methodology for benchmarking CO<sub>2</sub> emissions for European Union (EU) refining industry, under the EU GHG Emissions Trading Scheme (ETS) Directive. The study was initiated in November 2008, and the final product, a report on the EU-CWT methodology, was delivered to CONCAWE at the end of February 2009. Under the agreement between Solomon and CONCAWE, CONCAWE acquired the rights to use and promote the EU-CWT methodology in Europe for the specific purpose of complying with the EU ETS. Starting in 2013, a modified version of Solomon's EU-CWT methodology since the transfer of ownership to CONCAWE, referred to as the "CONCAWE EU-CWT", is being implemented in the third phase of EU ETS Directive.

The description of the CONCAWE EU-CWT methodology and the CWT factors can be found in a report published by CONCAWE, "Developing a Methodology for an EU Refining Industry CO<sub>2</sub> Emissions Benchmark" (Report No. 9/12).

The EU-CWT method was developed for EU refineries, which typically measure refinery throughput and production in tonnes. The CWB method was developed for American refineries, which typically use volumetric measures expressed in barrels of throughput, except for certain process units such as hydrogen generation and purification (in k SCF of hydrogen product or feed gas), sulfur recovery unit (in long tons, LT, of product sulfur), and coke calciner (in short tons, ST, of product), in accordance with industry convention.

As simplifications of Solomon's CEI methodology, the CWB and CWT factors are largely an adaptation of the EII standard energy. The CWB and CWT factors express the GHG emissions intensity inherent to various refinery processes relative to the emissions intensity of a standard atmospheric crude distillation unit. CWB and CWT are used in the denominator of an emission intensity metric, expressed in tonnes of  $CO_2$  per CWB or tonnes of  $CO_2$  per CWT, versus emissions standard used in CEI.

The EU-CWT methodology was developed for the purpose of allocating emission allowances under the EU ETS. To comply with the requirements of EU ETS, Solomon's EU-CWT methodology differs from the CWB methodology in several respects:

- Boundary Condition Excludes actual or allocated emissions from all electricity generation and cogeneration that takes place within refineries
- Fuel Standard Uses the EU refineries' average carbon intensity of refinery fuels as the reference fuel instead of pipeline natural gas, a standard used in Solomon's EII and CEI methodologies
- Customized EU Operating Characteristics Uses EU refineries' average parameters for other refinery characteristics rather than average parameters developed from Solomon's entire database of refineries located in developed economies
- Level of Simplification Employs a number of simplifications in process unit categories and process types, reducing the number of factors

The CWB and CWT factors differ due to the fundamental difference in unit of measure. In the CWB method, throughputs to most units are measured in barrels. In the CWT method, throughputs to most units are measured in tonnes. CWB and CWT factors are relative to the atmospheric crude distillation unit (CDU). The CWB factor for a process unit is the ratio of emissions from this particular unit, usually per barrel of feed, relative to an atmospheric crude distillation unit unit, usually per tonne of feed, relative to an atmospheric crude distillation unit, usually per tonne of feed, relative to an atmospheric crude distillation unit, usually per tonne of feed, relative to an atmospheric crude distillation unit per tonne of feed. Because the densities of crude and process unit feeds and products vary from one refinery to another, there was no simple and straightforward conversion between CWB and CWT.

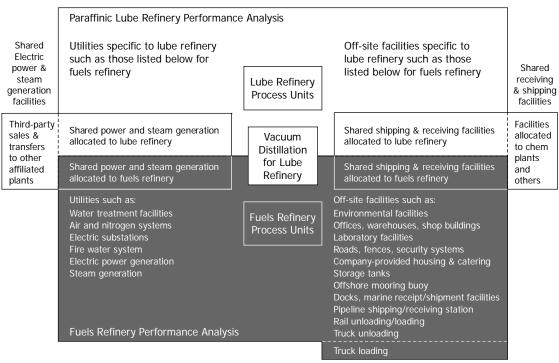
A comparison of the CA-CWB methodology, Solomon EU-CWT methodology, and the CONCAWE EU-CWT methodology, is provided in Appendix B.

A comparison of the CWB and CWT factors between the CA-CWB methodology and Solomon EU-CWT methodology is summarized in Appendix C to highlight the differences in unit of measure and consolidation of process units.

### 2.4 CWB Boundary Conditions

One key consideration in assessing the GHG emissions performance for a refinery is defining the "boundary" for benchmarking, in order to assure comparability of results.

The CA-CWB boundary includes the process units, utilities, and off-site infrastructure used at a refinery to produce the following petroleum products:


Residual fuel

Petroleum coke

- Liquefied petroleum gas Gasoline ٠
- Naphtha Distillate fuel
- Jet fuel •
- Bitumen and asphalt
- Unfinished oils Specialty solvents
  - Lube feedstock Chemical feedstock
- Sulfur by-product Aromatic petrochemicals
- Liquefied CO<sub>2</sub> by-product for sales ٠ Propylene
- Lubricants and waxes
- Refinery-produced fuel gas and other fuels consumed

Although the refinery-produced propylene is reported in Solomon's *Fuels Study* as a product, olefin cracking plants and all derivative petrochemical plants are specifically excluded.

Figure 2 illustrates the allocation of utilities and off-site infrastructure shared among the fuels refinery and other plants in a refining and petrochemical manufacturing complex. The estimated or calculated GHG emissions (the numerator) must be consistent with the capacity and throughput of process units and supporting facilities defined, to calculate the appropriate CWB (the denominator) in an intensity metric.



NSA06-90

Figure 2. A Shared Complex Between a Fuels Refinery and a Lube Refinery

In this example, vacuum distillation may be either included as a fuels refinery function or excluded as a lubricant refinery function. For participants in both Solomon's *Fuels Study* and *Lube Study*, Solomon provides a consolidated report covering the integrated fuels/lube complex. Similarly, the CWB method can accommodate either a fuels refinery or an integrated fuels/lube complex. If electric power and steam generation systems are shared with non-refinery facilities, only the portion of the capacity required for the refinery under study is included. If raw material receiving or product shipment facilities are shared, allocation is also required for the refinery under study. Refer to Appendix D for complete listings of refinery process types and functions covered in the CA-CWB methodology, per Solomon definition.

Figure 3 illustrates how the CWB method applies to the physical boundary described above. The boundary condition for CWB is basically on a "Total Emissions" basis, including indirect emissions for purchased steam and electricity (but excludes by-product emissions due to imported hydrogen).

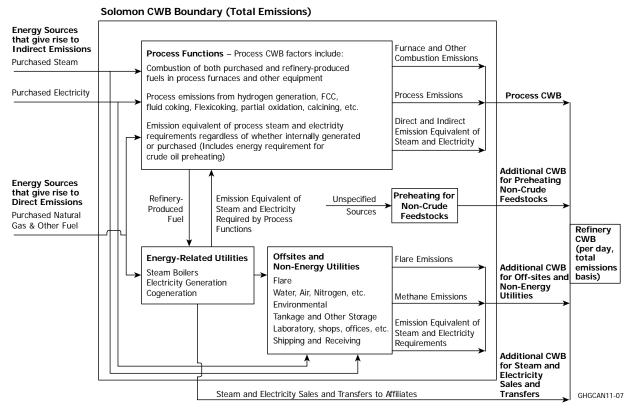
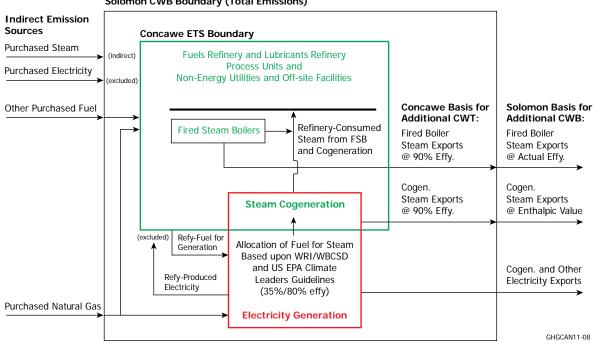




Figure 3. CWB Boundary Conditions

Figure 4 illustrates the difference in boundary conditions between Solomon's CWB and EU-CWT methodologies. The key difference is that electricity generation (in any form, either conventional or cogeneration) is carved out per EU ETS requirement.



Solomon CWB Boundary (Total Emissions)

Figure 4. CWB vs CWT Boundary Conditions

In the CWB method, all purchased fuels, refinery-produced fuels, and process emissions of facilities located within its refinery boundary are included, as well as the emission equivalent of purchased steam and electricity, on a "Total Emissions" basis. The EU-CWT method developed for CONCAWE further excludes *on-site* emissions from fuels consumed in electricity generation within the refinery boundary. For refineries with cogeneration facilities, a specific method based on World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD) is employed to allocate emissions from electricity generation and steam generation, respectively. The EU-CWT method also employs a refinery-specific electricity utilization factor (EUF) to make appropriate adjustments for the extent of on-site electricity consumption.

### 2.5 CWB Calculations

In this section, the calculation of Total CWB for a refinery is discussed.

There are four components in calculating the Total CWB for a refinery:

- Process CWB CWB for all refining process units
- Off-Sites and Non-Energy Utilities CWB credit for supporting off-site facilities and utilities (excluding steam and electricity) allocated based on the refinery Process CWB and total input barrels (including both crude and non-crude inputs)
- Non-Crude Sensible Heat CWB credit for heating up non-crude raw materials into a refinery

• Adjustments for Sales and Exports of Steam and Electricity – CWB credit for thermal equivalent of exported steam and electricity

### 2.5.1 Process CWB

For each process unit, CWB is calculated by multiplying actual process unit throughput by a dimensionless coefficient, i.e., the CWB factor, and is thus expressed in barrels per day (b/d). The CWB factor is the ratio of  $CO_2e$  emissions standard per barrel for a certain process unit over the  $CO_2e$  emissions standard per barrel for a crude distillation unit. Appendix C summarizes the CWB factors for various process units and types included in the CA-CWB methodology, mapped to Solomon definition of standard refining process units. This extensive list encompasses all process units reported by California refineries in Solomon's *Fuels Study* and *Lube Study*.

Because GHG emissions originate mostly from energy consumption, the  $CO_2$  emissions standard for a certain process unit is determined by its *energy standard* multiplying the  $CO_2$  emission factor of the fuel. For each major refinery function, the standard energy requirement is determined by the weighted-average EII standard energy of all relevant process units operated by participating refineries located in developed economies, in operating year 2006. Pipeline natural gas with a  $CO_2$  emission factor of 0.059 tonne  $CO_2/MBtu$  is the reference fuel used to convert EII standard energy to emissions standard regardless of geographic location or actual fuel mix.<sup>3</sup> EII standard energy includes all of the energy required for a refinery regardless of whether it gives rise to direct  $CO_2$  emissions on site.

As examples, below are the descriptions of CWB factors for three major process units or functions:

- Atmospheric Crude Distillation Its emissions standard is calculated by the average EII standard energy (Solomon proprietary information) for atmospheric crude distillation units in Solomon's *Fuels Study* database, in k Btu per barrel of throughput, multiplying the CO<sub>2</sub> emission factor of 0.059 tonne CO<sub>2</sub>/MBtu for pipeline natural gas. Since all CWB factors are relative to CO<sub>2</sub> emissions per barrel of atmospheric crude distillation, the factor for a CDU is precisely 1.00.
- Vacuum Distillation Its CWB factor, 0.91, represents the ratio of its emission standard, i.e., the average EII standard energy for all vacuum distillation units multiplying the CO<sub>2</sub> emission factor of 0.059 tonne CO<sub>2</sub>/MBtu for pipeline natural gas, to the emission standard for CDU.
- Fluid Catalytic Cracker (FCC) The evaluation of the CWB factor for a FCC is more complicated. The emission standard of a FCC is based on a proprietary multi-variable function statistically derived from nearly one thousand (1,000) reactor-years of FCC in Solomon's *Fuels Study* database, depending on variables such as the unit type, ConCarbon, UOP-K factor, etc. The resulting expression for its CWB factor is simplified as 1.15 + 1.041× FCC Coke on Catalyst vol %. For example, for a FCC unit with coke on catalyst consumption equal to 5 vol% of fresh feed, its CWB factor would be 6.355.<sup>4</sup>

<sup>&</sup>lt;sup>3</sup> Pipeline natural gas is the reference fuel used in the CWB methodology. The average mix of fuels consumed by EU refineries is the reference fuel for EU-CWT factors, with a  $CO_2$  emission factor of 65.21 tonne  $CO_2/TJ$  or 0.069 tonne  $CO_2/MBtu$ .

<sup>&</sup>lt;sup>4</sup> The EU-CWT factors for FCC units are further simplified. It is a constant based on average EU refineries' coke on catalyst rather than calculated by actual coke on catalyst yield for each refinery. Other process unit simplifications in EU-CWT factors include combining kerosene and diesel hydrotreating into one single factor, using EU average byproduct  $CO_2$  emissions for both steam-methane reforming and steam-naphtha reforming, and eliminating the requirement to separately identify and quantify capacity for most special fractionation units.

The summation of CWB's for all refinery process units or functions yields the total Process CWB for a refinery:

*Process*  $CWB = \Sigma$  (*Daily Throughput Barrel* × *CWB Factor*)

#### 2.5.2 Off-Sites and Non-Energy Utilities

The "Off-Sites and Non-Energy Utilities" component of CWB include the emissions standard arising from the energy requirements for "Off-Sites and Utilities", such as product and intermediate movements, water treatment, air compression, other non-fired utilities, environmental treatment facilities, tankage outside battery limits, flares, truck, rail, and marine shipping facilities, etc.

In Solomon's EII method, the standard energy (in k Btu per daily input barrel) for "Off-Sites and Utilities" is expressed as a linear equation, Constant A + (Constant B  $\times$  Complexity), where the Complexity of a refinery is calculated as the refinery Equivalent Distillation Capacity (EDC) divided by its crude distillation unit capacity.

In the CA-CWB method, a regression analysis was performed for allocating energy contribution by the refinery Complexity, in order to eliminate the need for calculating each individual refinery's Complexity. This yields the final equation for calculating CWB for "Off-Sites and Non-Energy Utilities" based on the Process CWB and total input barrels:

Off-Sites and Non-Energy Utilities CWB = 0.327 × Total Input Barrels + 0.0085 × Process CWB

In this equation, *Total Input Barrels* to a refinery includes the following:

- Crude oil & condensate, excluding basic sediment and water (BS&W)
- Finished product additives (dyes, diesel pour point depressants, cetane improvers, etc.)
- Antiknock compounds
- Other raw materials, including crude diluents, feedstock processed in other process units or blend stock blended into refinery products

#### 2.5.3 Non-Crude Sensible Heat

In Solomon's EII method, a standard energy credit (in k Btu per bbl of throughput) is assigned for preheating non-crude raw materials prior to entering the process units, such as for raising the temperatures of naphtha and vacuum gas oil (VGO) streams by approximately 200–220 °F. The CWB factor for "Non-Crude Sensible Heat" is simply:

#### *Non-Crude Sensible Heat CWB* = $0.44 \times Non$ -Crude Input Barrels

In this equation, *Non-Crude Input Barrels* refers the daily non-crude input barrels of raw materials processed in process units, excluding returns from a lube refinery or a chemical plant within a refining/petrochemical complex, and non-processed blend stock.

#### 2.5.4 Sales and Exports of Steam and Electricity

For a refinery, the sale and export of steam and electricity receives additional credit for CWB, because the emissions arising from purchased steam and electricity is included in Solomon's calculation of  $CO_2e$  emissions. The CWB for the steam and electricity exported or sold is calculated by a constant factor multiplying their thermal equivalents in k Btu per day:

CWB Adjustments for Sales and Exports of Steam and Electricity =  $0.0125 \times$  Thermal Equivalent in k Btu/d

The thermal equivalent of steam and electricity transferred should be reported as follows:

- Steam Estimate the energy required to generate this steam, rather than heat content of the steam. This estimate should include boiler efficiency, boiler feedwater treatment energy, and boiler feedwater sensible heat, etc. If the steam was produced in a cogeneration unit, use the enthalpy of the vapor at pressure and temperature less saturated feedwater at 220 °F (100% efficiency). In all cases, if the condensate is not returned to the refinery condensate system, be sure to include an estimate of the energy required to produce the boiler feedwater make up from raw water.
- Electricity If a refinery both imports and exports electricity, a factor of 9,090 Btu/kWh is used to calculate the energy required for generating the electricity sold or exported, up to the point when the quantity sold/exported is equal to the quantity purchased/imported. Since the thermal energy of all purchased/imported electricity is calculated based on 9,090 Btu/kWh, this netting method would avoid gaining from importing/exporting the electricity. If the quantity of electricity sale and export is greater than purchased/imported, the energy requirement for this difference is calculated by the refinery's weighted average efficiency for producing the electricity, i.e., the summation of Btu per kWh multiplying the MWh of each respective power generation unit (such as generators with steam condensing turbines or steam-topping turbine drivers, or fired-turbine cogen) divided by total MWh produced.

#### 2.5.5 Total CWB for a Refinery

A refinery's Total Complexity-Weighted Throughput Barrels per day is determined as the sum of the four components described above, and can be expressed as follows:

### Total CWB

= Process CWB + Off-Sites and Non-Energy Utilities CWB + Non-Crude Sensible Heat CWB + CWB Adjustments for Sales and Exports of Steam and Electricity

=  $\Sigma$  (Daily Throughput Barrel × CWB Factor) + 0.327 × Total Input Barrels + 0.0085 ×  $\Sigma$  (Daily Throughput Barrel × CWB Factor) + 0.44 × Non-Crude Input Barrels + 0.0125 × Thermal Equivalent in k Btu/d

=  $1.0085 \times \Sigma$  (Daily Throughput Barrel × CWB Factor) +  $0.327 \times$  Total Input Barrels +  $0.44 \times$  Non-Crude Input Barrels +  $0.0125 \times$ Thermal Equivalent in k Btu/d

Appendix F provides an example for calculation of Total CWB for a refinery in the CA-CWB.

The calculation of Total CWB requires the input of daily throughput (expressed as the utilized capacity) for all process units as defined in Solomon's *Fuels Study* and *Lube Study*, mapped to the CA-CWB methodology. A detailed description of process units and process types in each grouping, as well as the

capacity basis (feed- or product-based) and unit of measure are provided in Appendix D, which sufficiently cover all process units reported by California refineries in Solomon's *Fuels Study* and *Lube Study*.

Following are a few tips for calculating the CWB for a refinery, as outlined in the calculation example (Appendix F):

- *Identify the Process Type* For example, in calculating the CWB for the catalytic cracking process, a fluid catalytic cracking (FCC) unit was identified, i.e, Feed ConCarbon less than 2.25 wt % per Solomon definition.
- *Report the Throughput* Per Solomon definition, the capacity for catalytic cracking units is based on fresh feed only, excluding slop and recycle rates. The daily throughput of process units was calculated based on the capacity and utilization data reported in Solomon's *Fuels Study*, i.e., annualized stream day capacity multiplying the utilization rate and then divided by 365 (or 366) days in operating year.
- *Calculate the CWB for FCC* In this example, the FCC coke on catalyst in vol %, 4.413 vol %, was calculated from the "Full Burn Coke yield, wt % Fresh Feed" reported in Solomon's *Fuels Study*. The CWB for a FCC is calculated as 1.150+1.041×(FCC Coke on Catalyst vol %), as defined in Appendix D. This yields a refinery-specific CWB factor for FCC as 5.74, and the CWB for FCC as 353,276 b/d, in the calculation example.
- Combine the Reporting of Process Units Under the Same Group (Streamlining)– As defined in Appendix D, the daily throughput for the "Alkylation/Poly/Dimerol" group indicates a combined throughput on product basis for all process units under this group including polymerization of C<sub>3</sub> or C<sub>3</sub>/C<sub>4</sub>, dimersol, and alkylation with either hydrofluoric acid or sulfuric acid. Similarly, the daily throughput under "Sulfur" includes the combined throughput of product sulfur for Sulfur Recovery Unit, Tail Gas Recovery Unit, and sulfur sprung for H<sub>2</sub>S Springer Unit.
- *Recognize CWB Embedded in Other Major Process Units* For simplification, the CWB for certain process units are embedded in other major process units by elevating their CWB factors. For example, there are no CWB factors for ancillary lube functions such as Wax/Acid/Clay Treating, Wax Sweating, Lotox, and so on. These are allocated among other major lubricant refining units. Similarly, the CWB factors for Hydrogen Purification are allocated among Hydrogen Generation units.

The streamlining and simplification applied in the CA-CWB methodology can be further evaluated and tailored for the California refining industry as needed.

For comparison, a calculation example for CWT using Solomon's EU-CWT methodology is provided in Appendix F, for the same refinery.

### 2.6 Solomon's Calculation of CO<sub>2</sub>e Emissions

Solomon's calculation of  $CO_2e$  emissions is used in the numerator of the benchmark, in both CEI and the CA-CWB method. It is calculated using the data reported by study participants in Solomon's *Fuels Study* and *Lube Study*. The CO<sub>2</sub> emissions equivalent for each fuel type is determined by multiplying the quantity of energy consumed (expressed in MBtu) by the appropriate CO<sub>2</sub> emission factor (in tonnes of CO<sub>2</sub> equivalent per MBtu, or tonne CO<sub>2</sub>/MBtu).

The assignment or calculation of appropriate carbon emission factors is essential to the measurement of  $CO_2e$  emissions. A complete description of Solomon's calculation of  $CO_2e$  emissions is beyond the scope of this Report. The determination of carbon emission factors for various fuel types is briefly described as follows:

- Fuels such as ethane, propane, LPG, naphtha, distillates, pipeline natural gas, and residual fuels based on the API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry (API Compendium); adjusted according to the sulfur content for residual fuels
- Refinery Fuel Gas based on its composition as reported in Solomon's *Fuels Study*
- FCC Coke on Catalyst derived from a proprietary multivariable, non-linear model developed by Solomon for this purpose. Independent variables used in this model include the type of FCC unit, feedstock density, coke yield, and other relevant operating parameters reported in Solomon's *Fuels Study*.
- Low-Btu Gas (LBG) depends on the energy consumption of various types of process units that produce LBG (such as flexicoker, fluid coker, POX, hydrogen purification pressure swing adsorption off-gas)
- Marketable Coke depends on the extent of coke calcining at the refinery

Solomon's calculation of  $CO_2e$  emissions also include  $CO_2$  from flaring and by-product from hydrogen production and asphalt blowing.  $CO_2e$  emissions may be reduced by the amount of carbon disposed in liquefied  $CO_2$  sale and synthesized in methanol production. The  $CO_2$  equivalent of actual methane emissions is estimated using the US EPA's Annex F methodology. A simple estimate of the  $CO_2$ equivalent of actual nitrous oxide (N<sub>2</sub>O) emissions is also incorporated in Solomon's calculation. For indirect emissions from steam imports, an emission factor of pipeline natural gas, 0.059 tonne  $CO_2/MBtu$ , is used to multiply the actual energy reported on a fuel-equivalent basis. For indirect emissions from purchased electricity, a national average carbon intensity of electricity, Electricity Emission Factor (EEF), expressed in tonne  $CO_2e/MWh$ , is used for estimating emissions. Values for EEF are based on data published in the *API Compendium* and by the World Bank.

The sum of the energy-related  $CO_2$  emissions, non-energy  $CO_2$  emissions, indirect emissions, and the  $CO_2$  equivalent of emissions other than carbon dioxide yields the total  $CO_2$  e emissions for the refinery. The equation below illustrates a simplified version for Solomon's estimate of actual  $CO_2$  e emissions.

$$\begin{array}{l} CEI\\ CO2e\\ Actual \end{array} = \left[ \left( \sum_{\substack{Fuel\\ Consumption}} AE_i \times CEF_i \right) + CE_{Steam} + CE_{Elect} + CE_{H2 and} + CE_{Flare} + CE_{CH4} - CE_{MeOH} \\ Other \\ Mfg. \\ N2O \\ Sales \end{array} \right]$$

where

- CEI CO<sub>2</sub>eActual is Solomon's estimate of actual carbon dioxide equivalent emissions
- $AE_i$  is the quantity of actual energy from fuel type *i* consumed on-site as reported in Solomon's *Fuels Study*
- $CEF_i$  is CO<sub>2</sub> emission factor applicable to fuel type *i*
- *CE*<sub>Steam</sub> is the quantity of actual CO<sub>2</sub> emissions from steam imports (indirect emissions)
- $CE_{Elect}$  is the quantity of actual CO<sub>2</sub> emissions from purchased electricity (indirect emissions)

- $CE_{H_2 and Other Mfg.}$  is the quantity of non-energy CO<sub>2</sub> emissions from hydrogen production and other manufacturing operations, based upon process stoichiometrics and actual unit loss rates reported in Solomon's *Fuels Study*
- $CE_{Flare}$  is the estimate of CO<sub>2</sub> emission from flaring, which is based upon actual refinery flare losses and a standard CO<sub>2</sub> emission factor
- $CE_{CH4 and N2O}$  is the estimated CO<sub>2</sub>e of methane and nitrous oxide emissions
- $CE_{MeOH and CO_2 Sales}$  is a reduction for carbon rejection in methanol synthesis and for sales of liquefied carbon dioxide

#### About Solomon Associates (<u>www.SolomonOnline.com</u>)

Based in Dallas, TX, Solomon is the world's leading performance improvement company for the refining industry. Solomon's greenhouse gas (GHG) benchmarking and consulting methodologies stem from the industry's largest proprietary database of energy and process units and in-depth understanding of the industry.

As a trusted industry advisor, Solomon has worked with study participants and their respective industry associations in Europe, Canada, Japan, Singapore, New Zealand, and the United States for benchmarking GHG emission efficiency. The key metrics include  $EII^{\circledast}$ ,  $CEI^{TM}$ ,  $CWB^{TM}$ , and  $CWT^{TM}$ . Services are tailored for each specific goal and objective, such as custom peer analysis, *pro forma* analysis, trend analysis, combined energy/GHG analysis, allocation studies for regulatory support, or other custom consulting services for identifying gaps and capturing improvement opportunities.

For any inquiries on GHG benchmarking and consulting services, please contact:

| • | Bill Trout<br>Vice President, Refining Studies | Bill.Trout@SolomonOnline.com | +1.972.739.1733 |
|---|------------------------------------------------|------------------------------|-----------------|
| • | Celia He<br>GHG Study Project Manager          | Celia.He@SolomonOnline.com   | +1.972.739.1807 |

## Appendix A Roles of Solomon in Supporting CWB/CWT Application in Regulatory Use

### A.1 Before the Transfer of CWB or CWT Methodology Ownership

- Solomon met with members of the Industry Association for explaining the methodology.
- Solomon met with key stakeholders and regulators for educational sessions with Q&A on the methodology.
- Solomon met with other technology firms or consultants for exchanging professional opinions.
- Solomon worked with the Industry Association in developing the region-specific methodology, such as adding additional factors, modifying the existent factors or process type consolidations (streamlining), and defining the boundary conditions. The requirements for customization would be driven by the Industry Association.
- Solomon developed a Report on the Methodology suitable for public disclosure. A Consulting Service Agreement conveyed ownership of the Report and methodology to the Industry Association and granted a perpetual, non-transferable, non-exclusive and indivisible right to use all information in the Report for the purpose of GHG regulations, limited to the particular region.

### A.2 After the Transfer of CWB or CWT Methodology Ownership

On an as-needed basis,

- Solomon assisted the Industry Association in performing internal industry review meetings to work out details on key assumptions, process type consolidations, unique process unit considerations, harmonization of metrics, etc.
- Solomon assisted the Industry Association in developing the strategy for carrying the methodology forward to the regulatory arena.
- Solomon assisted the Industry Association in discussions with regulators and government subgroups/committees to review and seek approval.
- Solomon assisted the Industry Association in responding to inquiries from regulatory agencies following detailed technical reviews by outside technical reviewers.
- Solomon assisted the Industry Association in continued performance benchmarking and review & update of the factors.

# Appendix B Comparison Matrix

| Comp                                                       | arison of CA-CWB, EU-CWT                                    | , and CONCAWE EU-CWT                                                        |                                                                             |
|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                                            | CA-CWB                                                      | Solomon EU-CWT (1)                                                          | CONCAWE EU-CWT (1)                                                          |
| Owner                                                      | WSPA                                                        | Solomon                                                                     | CONCAWE                                                                     |
| Region                                                     | Applied to California<br>Refineries                         | Developed for European<br>Refineries                                        | Applied to European Union<br>(EU) Refining Industry                         |
| Year Developed                                             | 2013                                                        | 2008–2009                                                                   | Transferred to CONCAWE<br>in 2009 <sup>(1)</sup>                            |
| Foundation                                                 | Solomon EII <sup>®</sup><br>Methodology                     | Solomon EII <sup>®</sup><br>Methodology                                     | Solomon EII <sup>®</sup> Methodology                                        |
| Basis                                                      | Throughput                                                  | Throughput                                                                  | Throughput                                                                  |
| Operating Characteristics for<br>Grouping                  | >200 Select OECD<br>Refineries (2006)                       | >200 Select OECD<br>Refineries (2006)                                       | >200 Select OECD<br>Refineries (2006)                                       |
| Units of Measure                                           | barrels per day                                             | tonnes per day                                                              | tonnes per day                                                              |
| Reference Fuel                                             | Pipeline Natural Gas<br>(0.059 tonne CO <sub>2</sub> /MBtu) | EU Average Fuel Mix<br>(0.069 tonne CO <sub>2</sub> /MBtu)                  | EU Average Fuel Mix<br>(0.069 tonne CO <sub>2</sub> /MBtu)                  |
| Boundary Condition(s)                                      | Total Emissions <sup>(2)</sup>                              | EU GHG ETS* Directive<br>(excluding on-site<br>electricity production)      | EU GHG ETS* Directive<br>(excluding on-site electricity<br>production)      |
| Level of Complexity <sup>(3)</sup>                         | Higher                                                      | Simplified vs CWB                                                           | Simplified vs CWB                                                           |
| Number of Factors for Process<br>Units                     | ~60                                                         | ~52                                                                         | 56 (a few added by<br>CONCAWE)                                              |
| Factors for Fluid Catalytic Cracking                       | 3                                                           | 1                                                                           | 1                                                                           |
| Factors for Hydrogen Production <sup>(4)</sup>             | 3                                                           | 2                                                                           | 2                                                                           |
| r <sup>2</sup> for Regression Analysis <sup>(5)</sup>      | 0.97                                                        | 0.92                                                                        | Expected to be similar to<br>Solomon EU-CWT                                 |
| Emissions<br>Factor Adjustments by<br>Feed/Product Quality | CO <sub>2</sub> -equivalent<br>None                         | CO <sub>2</sub><br>Customized using EU<br>Refineries' Average<br>Properties | CO <sub>2</sub><br>Customized using EU<br>Refineries' Average<br>Properties |

\* ETS = Emissions Trading Scheme

<sup>(1)</sup> Solomon EU-CWT was developed specifically for CONCAWE. The ownership was transferred to CONCAWE in 2009.

<sup>(2)</sup> Total Emissions include indirect emissions from purchased steam and electricity.

<sup>(3)</sup> Solomon's proprietary CEI<sup>™</sup> is the most complete and rigorously calculated methodology for benchmarking GHG emissions efficiency. Solomon's CEI, CWB, and EU-CWT all originate from the EII methodology. The level of complexity is CEI > CWB > EU-CWT.

<sup>(4)</sup> In CWB, there are three factors for FCC, based on FCC Coke on Catalyst (vol %) and type of FCC for individual refineries. In EU-CWT, the factor for FCC is simplified as one constant based on EU average. Other process unit simplifications in EU-CWT factors include combining kerosene and diesel hydrotreating into one single factor, using EU average by-product CO<sub>2</sub> emissions for both steam-methane reforming and steam-naphtha reforming, and eliminating the requirement for reporting most special fractionation units separately.

(5) Referred to a regression analysis (data from Solomon's *Fuels Study* and *Lube Study*) for the correlation between Solomon's calculation for CO<sub>2</sub>e emissions and CWB for all select OECD refineries for operating year 2010; or between Solomon's calculation for CO<sub>2</sub> emissions and EU-CWT for all EU refineries for operating year 2006.

# Appendix C Comparison of CWB and CWT Factors for Process Units (CA-CWB vs Solomon EU-CWT)

A side-by-side comparison of CWB factors (in CA-CWB) and CWT factors (in Solomon EU-CWT) is provided in the following table. This is for sole use in California regulatory support.

|                                                                     | Units of Measure (1) | CWB<br>Factor | CWB Factor,<br>FCC Coke on<br>Catalyst |                                                                        | Units of Measure <sup>(1)</sup> | CWT<br>Factor |
|---------------------------------------------------------------------|----------------------|---------------|----------------------------------------|------------------------------------------------------------------------|---------------------------------|---------------|
| Atmospheric Crude Distillation                                      | T b/cd               | 1.00          |                                        | Atmospheric Crude Distillation                                         | tonne/cd                        | 1.00          |
| Vacuum Distillation                                                 | T b/cd               | 0.91          |                                        | Vacuum Distillation                                                    | tonne/cd                        | 0.85          |
| Visbreaker                                                          | T b/cd               | 1.60          |                                        | Visbreaker                                                             | tonne/cd                        | 1.40          |
| Delayed Coker                                                       | T b/cd               | 2.55          |                                        | Delayed Coker                                                          | tonne/cd                        | 2.20          |
| Fluid Coking                                                        |                      |               |                                        | Fluid Coking                                                           |                                 |               |
| Fluid Coker                                                         | T b/cd               | 10.30         |                                        | Fluid Coker                                                            | tonne/cd                        | 7.60          |
| Flexicoker                                                          | T b/cd               | 23.60         |                                        | Flexicoker                                                             | tonne/cd                        | 16.60         |
| Catalytic Cracking                                                  |                      |               |                                        | Catalytic Cracking                                                     |                                 |               |
| FCC                                                                 | T b/cd               | 1.15          | 1.041                                  | FCC                                                                    | tonne/cd                        | 5.50          |
| Mild Residual FCC                                                   | T b/cd               | 0.66          | 1.1075                                 | Mild Residual FCC                                                      | tonne/cd                        | 5.50          |
| Residual FCC                                                        | T b/cd               | 0.00          | 1.1765                                 | Residual FCC                                                           | tonne/cd                        | 5.50          |
| Other FCC                                                           | T b/cd               | 4.65          |                                        | Other FCC                                                              | tonne/cd                        | 4.10          |
| Thermal Cracking                                                    | T b/cd               | 2.95          |                                        | Thermal Cracking                                                       | tonne/cd                        | 2.70          |
| Naphtha/Distillate Hydrocracker                                     | T b/cd               | 3.15          |                                        | Naphtha/Distillate Hydrocracker                                        | tonne/cd                        | 2.85          |
| Residual Hydrocracker<br>(H-Oil; LC-Fining and Hycon)               | T b/cd               | 4.40          |                                        | Residual Hydrocracker<br>(H-Oil; LC-Fining and Hycon)                  | tonne/cd                        | 3.75          |
| Naphtha Hydrotreater                                                | T b/cd               | 0.91          |                                        | Naphtha Hydrotreater                                                   | tonne/cd                        | 1.10          |
| Kerosene Hydrotreater                                               | T b/cd               | 0.75          |                                        | Kerosene Hydrotreater                                                  | tonne/cd                        | 0.90          |
| Diesel/Selective Hydrotreater                                       | T b/cd               | 0.90          |                                        | Diesel/Selective Hydrotreater                                          | tonne/cd                        | 0.90          |
| Residual Hydrotreater                                               | T b/cd               | 1.80          |                                        | Residual Hydrotreater                                                  | tonne/cd                        | 1.55          |
| VGO Hydrotreater                                                    | T b/cd               | 1.00          |                                        | VGO Hydrotreater                                                       | tonne/cd                        | 0.90          |
| Reformer – including AROMAX                                         | T b/cd               | 3.50          |                                        | Reformer – including AROMAX                                            | tonne/cd                        | 4.95          |
| Solvent Deasphalter                                                 | T b/cd               | 2.80          |                                        | Solvent Deasphalter                                                    | tonne/cd                        | 2.45          |
| Alkylation / Poly / Dimersol                                        | P b/cd               | 5.00          |                                        | Alkylation / Poly / Dimersol                                           | P tonne/cd                      | 7.25          |
| C <sub>4</sub> Isomer Production                                    | P b/cd               | 1.25          |                                        | C4 Isomer Production                                                   | P tonne/cd                      | 3.25          |
| C <sub>5</sub> /C <sub>6</sub> Isomer Production – including ISOSIV | P b/cd               | 1.80          |                                        | C <sub>5</sub> /C <sub>6</sub> Isomer Production – including<br>ISOSIV | P tonne/cd                      | 2.85          |
| Coke Calciner                                                       | ST/cd                | 96.00         |                                        | Coke Calciner                                                          | P tonne/cd                      | 12.75         |
| Hydrogen Generation                                                 |                      |               |                                        | Hydrogen Generation                                                    |                                 |               |

|                                              | Units of Measure (1) | CWB<br>Factor | CWB Factor,<br>FCC Coke on<br>Catalyst |                                                 | Units of Measure <sup>(1)</sup>      | CWT<br>Factor |
|----------------------------------------------|----------------------|---------------|----------------------------------------|-------------------------------------------------|--------------------------------------|---------------|
| Steam-Methane Reforming                      | k SCF/cd             | 5.70          |                                        | Gas Feed                                        | tonne/cd                             | 296.00        |
| Steam-Naphtha Reforming                      | k SCF/cd             | 6.70          |                                        | Naphtha Feed                                    | tonne/cd                             | 348.00        |
| Partial Oxidation                            | k SCF/cd             | 7.10          |                                        | POX Syngas to H <sub>2</sub> or Methanol        | tonne SG/cd                          | 44.00         |
|                                              |                      |               |                                        | Air Separation Plant                            | k nm <sup>3</sup> O <sub>2</sub> /cd | 8.80          |
| POX Syngas for Fuel                          | k SCF/cd             | 2.75          |                                        | POX Syngas for Fuel                             | tonne SG/cd                          | 8.20          |
| Sulfur                                       | LT/cd                | 140.00        |                                        | Sulfur                                          | tonne/cd                             | 18.60         |
| Aromatics Production (All)                   | T b/cd               | 3.30          |                                        | Aromatics Production (All)                      | P tonne/cd                           | 5.25          |
| Hydrodealkylation                            | P b/cd               | 2.50          |                                        | Hydrodealkylation                               | P tonne/cd                           | 2.45          |
| Toluene Disproportionation / Transalkylation | P b/cd               | 1.90          |                                        | Toluene Disproportionation /<br>Transalkylation | P tonne/cd                           | 1.85          |
| Cyclohexane Production                       | P b/cd               | 2.80          |                                        | Cyclohexane Production                          | P tonne/cd                           | 3.00          |
| Xylene Isomerization                         | P b/cd               | 1.90          |                                        | Xylene Isomerization                            | P tonne/cd                           | 1.85          |
| Paraxylene Production                        | P b/cd               | 6.50          |                                        | Paraxylene Production                           | P tonne/cd                           | 6.40          |
| Ethylbenzene Production                      | P b/cd               | 1.60          |                                        | Ethylbenzene Production                         | P tonne/cd                           | 1.55          |
| Cumene Production                            | P b/cd               | 5.00          |                                        | Cumene Production                               | P tonne/cd                           | 5.00          |
| Lubricants                                   |                      |               |                                        | Lubricants                                      |                                      |               |
| Solvent Extraction                           | T b/cd               | 2.20          |                                        | Solvent Extraction                              | tonne/cd                             | 2.10          |
| Solvent Dewaxing                             | T b/cd               | 4.55          |                                        | Solvent Dewaxing                                | tonne/cd                             | 4.55          |
| Catalytic Dewaxing                           | T b/cd               | 1.60          |                                        | Wax Isomerization                               | tonne/cd                             | 1.60          |
| Lube Hydrocracking                           | T b/cd               | 2.50          |                                        | Lube Hydrocracking                              | tonne/cd                             | 2.50          |
| Wax Deoiling                                 | T b/cd               | 11.80         |                                        | Wax Deoiling                                    | tonne/cd                             | 12.00         |
| Lube and Wax Hydrofining                     | T b/cd               | 1.15          |                                        | Lube and Wax Hydrofining                        | tonne/cd                             | 1.15          |
| Asphalt Production                           | P b/cd               | 2.70          |                                        | Asphalt Production                              | P tonne/cd                           | 2.10          |
| Oxygenates                                   | P b/cd               | 4.90          |                                        | Oxygenates                                      | P tonne/cd                           | 5.60          |
| Methanol Synthesis                           | P b/cd               | (36.00)       |                                        | Methanol Synthesis                              | P tonne/cd                           | (36.20)       |
| CO <sub>2</sub> Liquefaction                 | ST/cd                | (160.00)      |                                        | CO <sub>2</sub> Liquefaction                    | tonne/cd                             | (19.20)       |
| Desalination                                 | k gal/cd             | 32.70         |                                        | Desalination                                    | P tonne/cd                           | 1.15          |
| Special Fractionation                        | T b/cd               | 0.80          |                                        | Special Fractionation – Purchased NGL<br>Only   | tonne/cd                             | 1.00          |

|                                                      | Units of Measure <sup>(1)</sup> | CWB<br>Factor | CWB Factor,<br>FCC Coke on<br>Catalyst |                                                      | Units of Measure <sup>(1)</sup> | CWT<br>Factor |
|------------------------------------------------------|---------------------------------|---------------|----------------------------------------|------------------------------------------------------|---------------------------------|---------------|
| Propane/Propylene Splitter (Propylene<br>Production) | P b/cd                          | 2.10          |                                        | Propane/Propylene Splitter (Propylene<br>Production) | tonne/cd                        | 3.45          |
| Fuel Gas Sales Treating & Compression                | hp                              | 2.52          |                                        | Fuel Gas Sales Treating & Compression                | kW                              | 0.45          |
| Sulfuric Acid Regeneration                           | ST/cd                           | 37.80         |                                        |                                                      |                                 |               |
| Ammonia Recovery Unit                                | ST/cd                           | 453.00        |                                        |                                                      |                                 |               |
| Cryogenic LPG Recovery                               | k SCF/cd                        | 0.25          |                                        |                                                      |                                 |               |
| Flare Gas Recovery                                   | k SCF/cd                        | 0.13          |                                        |                                                      |                                 |               |
| Flue Gas Desulfurizing                               | k SCF/cd                        | 0.02          |                                        |                                                      |                                 |               |
|                                                      |                                 |               |                                        | Solvents                                             |                                 |               |
|                                                      |                                 |               |                                        | Solvent Hydrotreating                                | tonne/cd                        | 1.25          |
|                                                      |                                 |               |                                        | Solvent Fractionation                                | tonne/cd                        | 0.90          |

<sup>(1)</sup> Please refer to Appendix G.

## Appendix D Solomon Definition of Standard Refining Process Units and CWB Factors

Solomon definitions of standard refining process units and the corresponding CWB factors in CA-CWB are provided in the following table. This list is for the sole use by California refineries only, encompassing all process units in California refineries reported in Solomon's *Fuels Study* and *Lube Study*.

| Processing Facilities                           | Process Type                                                                                                      | Process ID | Process Type ID | Feed                                         | Products                                                                                                         | Typical Equipment                                                                                                                                                                                                                                   | Capacity Basis | Unit of Measure | CWB Factor                                       |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------|-----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--------------------------------------------------|
| Atmospheric Crude Distillation                  | Mild Crude Unit                                                                                                   | CDU        | MCU             | Crude Oil,                                   | Fuel Gas, Propane, Mixed Butanes, Light &                                                                        | Heaters, Preflash Tower, Outboard Flash Tower,                                                                                                                                                                                                      | Feed           | b/sd            | 1.00                                             |
|                                                 | Standard Crude Unit                                                                                               | CDU        | SCU             | Condensate, &<br>Commingled<br>Liquids       | Heavy Naphtha, Kerosene, Diesel,<br>Atmospheric Gas Oil, & Atmospheric Resid                                     | Desalters, Crude Distillation Column, Sidestream<br>Stripper Columns, Pumparound Circuits, Merox<br>Treating, Saturate Gas Plant (including: Gas<br>Compression, Absorber, Stripper, Deethanizer,<br>Depropanizer, Debutanizer, Naphtha Splitter, & |                |                 |                                                  |
| V D' d'IL d'                                    |                                                                                                                   | MAG        | MATT            |                                              |                                                                                                                  | Sour Water Stripper )                                                                                                                                                                                                                               | F 1            | 1/1             | 0.01                                             |
| Vacuum Distillation                             | Mild Vacuum Fractionation                                                                                         | VAC        | MVU             | Atmospheric Resid                            | Fuel Gas, Vacuum Gas Oils to Vacuum<br>Resid                                                                     | Heater, Vacuum Distillation Column, multiple<br>towers in series counted as one unit                                                                                                                                                                | Feed           | b/sd            | 0.91                                             |
|                                                 | Standard Vacuum Column                                                                                            | VAC        | VAC             | _                                            |                                                                                                                  | to were in series counted as one unit                                                                                                                                                                                                               |                |                 |                                                  |
|                                                 | Vacuum Fractionating Column                                                                                       | VAC        | VFR             | _                                            |                                                                                                                  |                                                                                                                                                                                                                                                     |                |                 |                                                  |
|                                                 | Vacuum Flasher Column                                                                                             | VAC        | VFL             | _                                            |                                                                                                                  |                                                                                                                                                                                                                                                     |                |                 |                                                  |
| <b>T7</b> • 1 • • • • • • • • • • • • • • • • • | Heavy Feed Vacuum Unit                                                                                            | VAC        | HFV             | A. 1 *                                       |                                                                                                                  |                                                                                                                                                                                                                                                     | <b>F</b> 1     | 1 / 1           | 1.60                                             |
| Visbreaking                                     | Processing Atmospheric Resid (w/o a Soaker Drum)                                                                  | VBR        | VAR             | Atmospheric or<br>Vacuum Resid               | Fuel Gas, Naphtha, Distillates, Heavy Gas<br>Oil, & Resid                                                        | Furnace, Soaker Drum, Atmospheric Product<br>Fractionator, Sidestream Column                                                                                                                                                                        | Feed           | b/sd            | 1.60                                             |
|                                                 | Processing Atmospheric Resid (with a Soaker Drum)                                                                 | VBR        | VARS            | v actualii Kesia                             | On, & Resid                                                                                                      | Tractionator, Sidestream Column                                                                                                                                                                                                                     |                |                 |                                                  |
|                                                 | Processing Vacuum Bottoms Feed (w/o a Soaker<br>Drum)                                                             | VBR        | VBF             | _                                            |                                                                                                                  |                                                                                                                                                                                                                                                     |                |                 |                                                  |
|                                                 | Vacuum Bottoms Feed (with a Soaker Drum)                                                                          | VBR        | VBFS            |                                              |                                                                                                                  |                                                                                                                                                                                                                                                     |                |                 |                                                  |
| Coking                                          | Fluid Coking                                                                                                      | COK        | FC              | Vacuum Resid                                 | Fuel Gas, C3s, C4s, Naphtha, Distillates,<br>Heavy Gas Oil, Coke                                                 | Reactor, Coke Handling, Coke Burner,<br>Fractionator, Light Ends Processing (incl. Unsat<br>Gas Plant), Waste Heat Steam Generation,<br>CO Boiler                                                                                                   | Feed           | b/sd            | 10.30                                            |
|                                                 | Flexicoking                                                                                                       | СОК        | FX              | Vacuum Resid                                 | Fuel Gas, C <sub>3</sub> s, C <sub>4</sub> s, Naphtha, Distillates,<br>Heavy Gas Oil, Low-Btu Gas                | Reactor, Coke Burner, Gasifier, Fractionator,<br>Light Ends Processing, Waste Heat Steam<br>Generation                                                                                                                                              | Feed           | b/sd            | 23.60                                            |
|                                                 | Delayed Coking                                                                                                    | СОК        | DC              | Vacuum Resid                                 | Fuel Gas, C <sub>3</sub> s, C <sub>4</sub> s, Naphtha, Distillates,<br>Heavy Gas Oils, Coke                      | Heater, Coke Drums, Fractionator, Sidestream<br>Column, Light Ends Processing (incl. Unsat Gas<br>Plant), Coke Cutting (Resources for coke<br>handling & storage are reported separately)                                                           | Feed           | b/sd 2.5        | 2.55                                             |
| Thermal Cracking                                | Thermal Cracking                                                                                                  | TCR        |                 | Vacuum Gas Oil                               | Fuel Gas, Naphtha, Distillates, Heavy Gas<br>Oil, & Bottoms                                                      | Gas Oil Furnace, Product Fractionator                                                                                                                                                                                                               | Feed           | b/sd            | 2.95                                             |
| Catalytic Cracking                              | Fluid Catalytic Cracking<br>(Feed ConCarbon <2.25 wt %)                                                           | FCC        | FCC             | Vacuum Gas Oil,<br>Atmospheric Resid         | Fuel Gas, C <sub>3</sub> s, C <sub>4</sub> s, Gasoline, Cycle Oils,<br>Decant Oil                                | Feed Preheater, Reactor, Fractionator,<br>Regenerator, CO Boiler, Waste Heat Steam<br>Generator, Tertiary Flue Gas Separator,                                                                                                                       | Feed           | b/sd            | 1.150+1.041×(FCC<br>Coke on Catalyst vol<br>%)   |
|                                                 | Mild Residual Catalytic Cracking<br>(Feed ConCarbon 2.25–3.5 wt %)                                                | FCC        | MRCC            | _                                            |                                                                                                                  | Electrostatic Precipitators, Catalyst Hoppers                                                                                                                                                                                                       | Feed           | b/sd            | 0.6593+1.1075×(FCC<br>Coke on Catalyst vol<br>%) |
|                                                 | Residual Catalytic Cracking (Includes two-stage regeneration; Feed ConCarbon ≥3.5 wt %)                           | FCC        | RCC             | -                                            |                                                                                                                  |                                                                                                                                                                                                                                                     | Feed           | b/sd            | 1.1765×(FCC Coke<br>on Catalyst vol %)           |
|                                                 | Houdry Catalytic Cracking                                                                                         | FCC        | HCC             |                                              |                                                                                                                  |                                                                                                                                                                                                                                                     | Feed           | b/sd            | 4.65                                             |
|                                                 | Thermofor Catalytic Cracking                                                                                      | FCC        | TCC             |                                              |                                                                                                                  |                                                                                                                                                                                                                                                     |                |                 |                                                  |
| Naphtha/Distillate Hydrocracking                | Mild Hydrocracking<br>(Normally less than 1,500 psig and consumes<br>between 100 and 1,000 SCF H <sub>2</sub> /b) | НҮС        | HMD             | Heavy Naphthas<br>through Resid,<br>Hydrogen | Fuel Gas, Propane, Isobutane, Normal<br>Butane, Light & Heavy Naphtha, Kerosene,<br>Diesel, Heavy Gas Oil, Resid | Heater; Reactors; Fractionator; Hydrogen<br>Compression, Scrubbing & Recycle                                                                                                                                                                        | Feed           | b/sd            | 3.15                                             |
|                                                 | Severe Hydrocracking (Normally more than 1,500 psig and consumes more than 1,000 SCF H <sub>2</sub> /b)           | HYC        | HSD             |                                              |                                                                                                                  | Saturate Gas Plant (including: Fuel Gas Treating,<br>Absorber Stripper, Deethanizer, Depropanizer,                                                                                                                                                  |                |                 |                                                  |
|                                                 | Naphtha Hydrocracking                                                                                             | HYC        | HNP             |                                              |                                                                                                                  | Debutanizer, Deisobutanizer, Naphtha Splitter,<br>Sour Water Stripper)                                                                                                                                                                              |                |                 |                                                  |
| H-Oil                                           | H-Oil                                                                                                             | НҮС        | HOL             | Resid, Hydrogen                              | Fuel Gas, Propane, Isobutane, Normal<br>Butane, Naphtha, Kerosene, Diesel, Heavy<br>Gas Oil, Resid               | Heaters; Reactors; Regenerator; CO Boiler;<br>Hydrogen Compression, Scrubbing & Recycle;<br>Catalyst Hoppers; Atmospheric & Vacuum<br>Fractionation                                                                                                 | Feed           | b/sd            | 4.40                                             |
| LC-Fining <sup>™</sup> and Hycon                | LC-Fining <sup>™</sup> and Hycon                                                                                  | НҮС        | LCF             | Atmospheric or<br>Vacuum Resid,<br>Hydrogen  | Fuel Gas, Propane, Isobutane, Normal<br>Butane, Naphtha, Kerosene, Diesel, Heavy<br>Gas Oil, Resid               | Heaters; Reactors; Hydrogen Compression,<br>Scrubbing & Recycle; Atmospheric & Vacuum<br>Fractionation                                                                                                                                              | Feed           | b/sd            | 4.40                                             |

| Processing Facilities                       | Process Type                                                                           | Process ID | Process Type ID | Feed                                       | Products                                               | Typical Equipment                                                                                        | Capacity Basis | Unit of Measure | CWB Factor |
|---------------------------------------------|----------------------------------------------------------------------------------------|------------|-----------------|--------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------|-----------------|------------|
| Gasoline/Naphtha Desulfurization & Treating | Benzene Saturation                                                                     | NHYT       | BSAT            | Naphtha/Gasoline,<br>Hydrogen              | Low Benzene Content Naphtha/Gasoline                   | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        | Feed           | b/sd            | 0.91       |
|                                             | Desulfurization of C <sub>4</sub> –C <sub>6</sub> Feeds                                | NHYT       | C4C6            | C <sub>4</sub> –C <sub>6</sub> , hydrogen  | Fuel Gas, Low Sulfur C <sub>4</sub> –C <sub>6</sub>    | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        |                |                 |            |
|                                             | Conventional Naphtha Hydrotreating                                                     | NHYT       | CONV            | Naphtha, Gasoline,<br>Hydrogen             | Fuel gas, Low sulfur naphtha, gasoline                 | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        |                |                 |            |
|                                             | Diolefin to Olefin Saturation of Gasoline                                              | NHYT       | DIO             | Light Naphtha,<br>Hydrogen                 | Treated Light Naphtha                                  | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        |                |                 |            |
|                                             | FCC Gasoline Hydrotreating with Minimal Octane<br>Loss                                 | NHYT       | GOCT            | Heavy FCC<br>Naphtha/Gasoline,<br>Hydrogen | Fuel Gas, Low Sulfur Heavy FCC Gasoline                | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        |                |                 |            |
|                                             | Olefinic Alkylation of Thiophenic Sulfur                                               | NHYT       | OATS            | Full range FCC<br>Naphtha/Gasoline         | Low Sulfur FCC Gasoline                                | Exchangers, Reactors, Separators, & Recycling<br>System                                                  |                |                 |            |
|                                             | Selective Hydrotreating of Pyrolysis<br>Gasoline/Naphtha Combined with Desulfurization | NHYT       | PYGC            | Pyrolysis<br>Naphtha/Gasoline,<br>Hydrogen | Fuel Gas, Low-Sulfur, Low-Olefin Pyrolysis<br>Gasoline | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        |                |                 |            |
|                                             | Pyrolysis Gasoline/Naphtha Desulfurization                                             | NHYT       | PYGD            | Pyrolysis<br>Naphtha/Gasoline,<br>Hydrogen | Fuel Gas, Low Sulfur Pyrolysis Gasoline                | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        |                |                 |            |
|                                             | Selective Hydrotreating of Pyrolysis<br>Gasoline/Naphtha Combined with Desulfurization | NHYT       | PYGS            | Pyrolysis<br>Naphtha/Gasoline,<br>Hydrogen | Fuel Gas, Low Olefin Pyrolysis Gasoline                | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        |                |                 |            |
|                                             | Reactor for Selective Hydrotreating                                                    | NHYT       | RXST            | Light FCC<br>Naphtha/Gasoline              | Low Sulfur Light FCC Gasoline                          | Reactors                                                                                                 |                |                 |            |
|                                             | S-Zorb <sup>™</sup> Process                                                            | NHYT       | ZORB            | Full range FCC<br>Naphtha/Gasoline         | Low Sulfur FCC Gasoline                                | Heater, Reactor, Recycle Compressor,<br>Exchangers, Separators, Stabilizer, & Sorbent<br>Regenerator     |                |                 |            |
| Kerosene Desulfurization &<br>Treating      | Aromatic Saturation of Kerosene                                                        | КНҮТ       | ASAT            | Kerosene,<br>Hydrogen                      | Fuel Gas, Low Sulfur Kerosene                          | Heater, Reactor, Separator, Stripper/Stabilizer,<br>Hydrogen Compression & Recycle System                | Feed           | b/sd            | 0.75       |
|                                             | Conventional Hydrotreating of Kerosene/Jet Fuel                                        | КНҮТ       | CONV            | Kerosene,<br>Hydrogen                      | Fuel Gas, Low Sulfur Kerosene                          | Heater, Guard Bed, Reactor, Separators,<br>Fractionator, Hydrogen Compression & Recycle<br>System        |                |                 |            |
|                                             | High Severity Hydrotreating of Kerosene/Jet Fuel                                       | КНҮТ       | KUS             | Kerosene,<br>Hydrogen                      | Fuel Gas, Low Sulfur Kerosene                          | Heater, Guard Bed, Reactor, Separators,<br>Stripper/Stabilizer, Hydrogen Compression &<br>Recycle System |                |                 |            |
| Distillate Desulfurization &<br>Treating    | Aromatic Saturation of Distillates                                                     | DHYT       | ASAT            | Low Sulfur<br>Distillate, Hydrogen         | Low Olefins Distillate                                 | Heater, Reactor, Separator, Stripper/Stabilizer,<br>Hydrogen Compression & Recycle System                | Feed           | b/sd            | 0.90       |
|                                             | Conventional Distillate Hydrotreating                                                  | DHYT       | CONV            | Distillate/Light<br>Gasoil, Hydrogen       | Fuel Gas, Low Sulfur Distillate/Gasoil                 | Heater, Guard Bed, Reactor, Separators,<br>Stripper/Stabilizer, Hydrogen Compression &<br>Recycle System |                |                 |            |
|                                             | High Severity Distillate Hydrotreating                                                 | DHYT       | DHS             | Distillate/Light<br>Gasoil, Hydrogen       | Fuel Gas, Low Sulfur Distillate/Gasoil                 | Heater, Guard Bed, Reactor, Separators,<br>Stripper/Stabilizer, Hydrogen Compression &<br>Recycle System |                |                 |            |
|                                             | Ultra-High Severity Hydrotreating                                                      | DHYT       | DUS             | Distillate/Light<br>Gasoil, Hydrogen       | Fuel Gas, Low Sulfur Distillate/Gasoil                 | Heater, Guard Bed, Reactor, Separators,<br>Stripper/Stabilizer, Hydrogen Compression &<br>Recycle System |                |                 |            |
|                                             | Middle Distillate Dewaxing                                                             | DHYT       | MDDW            | Distillate/Light<br>Gasoil, Hydrogen       | Fuel Gas, Low Wax Content<br>Distillate/Gasoil         | Heater, Guard Bed, Reactor, Separators,<br>Stripper/Stabilizer, Hydrogen Compression &<br>Recycle System | ]              |                 |            |
|                                             | S-Zorb <sup>™</sup> Process                                                            | DHYT       | ZORB            | Distillate/Gasoil                          | Low Sulfur Distillate                                  | Heater, Reactor, Recycle Compressor,<br>Exchangers, Separators, Stabilizer, & Sorbent<br>Regenerator     |                |                 |            |

| <b>Processing Facilities</b>                       | Process Type                                                                                 | Process ID | Process Type ID | Feed                                                                                                                                                                      | Products                                                                                                                               | Typical Equipment                                                                                                                          | Capacity Basis         | Unit of Measure | CWB Factor |
|----------------------------------------------------|----------------------------------------------------------------------------------------------|------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|------------|
| Selective Hydrotreating                            | Diolefin to Olefin Saturation of Alkylation Feed Selective Hydrotreating of Distillate Fuels | SHYT       | DIO             | C <sub>3</sub> s, C <sub>4</sub> s, C <sub>5</sub> s<br>containing Dienes<br>& Acetylenes, Light<br>Cracked Gasoline,<br>Light Distillate,<br>Hydrogen<br>Distillate      | C <sub>3</sub> s, C <sub>4</sub> s, C <sub>5</sub> s with no Dienes or Acetylenes,<br>Low-Olefin Cracked Gasoline, Light<br>Distillate | Reactor<br>Heater, Reactor, Separator, Stripper/Stabilizer                                                                                 | Feed                   | b/sd            | 0.90       |
| <b>D</b> 11 1 <b>D</b> 16 1 1                      |                                                                                              |            |                 |                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                            |                        |                 | 1.00       |
| Residual Desulfurization                           | Desulfurization of Atmospheric Resid                                                         | RHYT       | DAR             | Hydrogen,<br>Atmospheric Resid                                                                                                                                            | Fuel Gas, Atmospheric Resid                                                                                                            | Heater, Guard Bed, Reactor, Separators,<br>Stripper/Stabilizer, Hydrogen Compression &<br>Recycle System                                   | Feed                   | b/sd            | 1.80       |
|                                                    | Desulfurization of Vacuum Resid                                                              | RHYT       | DVR             | Hydrogen, Vacuum<br>Resid                                                                                                                                                 | Fuel Gas, Vacuum Resid                                                                                                                 | Heater, Guard Bed, Reactor, Separators,<br>Hydrogen Compression & Recycle System                                                           |                        |                 |            |
| Cracking Feed or Vacuum Gas<br>Oil Desulfurization | Cracking Feed or Vacuum Gas Oil<br>Hydrodesulfurization and Hydrodenitrification             | VHYT       | VHDN            | Vacuum Gas<br>Oil/Cracking Feed,<br>Hydrogen                                                                                                                              | Fuel Gas, Distillate, Vacuum Gas<br>Oil/Cracking Feed                                                                                  | Heater, Guard Bed, Reactor, Separators,<br>Stripper/Stabilizer, Hydrogen Compression &<br>Recycle System                                   | Feed                   | b/sd            | 1.00       |
|                                                    | Cracking Feed or Vacuum Gas Oil<br>Hydrodesulfurization                                      | VHYT       | VHDS            | Vacuum Gas<br>Oil/Cracking Feed,<br>Hydrogen                                                                                                                              | Fuel Gas, Distillate, Vacuum Gas<br>Oil/Cracking Feed                                                                                  | Heater, Guard Bed, Reactor, Separators,<br>Stripper/Stabilizer, Hydrogen Compression &<br>Recycle System                                   |                        |                 |            |
| Catalytic Reforming                                | Continuous Regeneration                                                                      | REF        | RCR             | Naphtha                                                                                                                                                                   | Fuel Gas, Butanes, Reformate, Hydrogen                                                                                                 | Heaters, Reactors, Regenerator, Debutanizer,                                                                                               | Feed                   | b/sd            | 3.50       |
|                                                    | Cyclic                                                                                       | REF        | RCY             |                                                                                                                                                                           |                                                                                                                                        | Light Ends Processing, Hydrogen Compression                                                                                                |                        |                 |            |
|                                                    | Semi-Regenerative                                                                            | REF        | RSR             |                                                                                                                                                                           |                                                                                                                                        | & Recycle System                                                                                                                           |                        |                 |            |
| AROMAX®                                            | AROMAX                                                                                       | U60        |                 |                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                            |                        |                 |            |
| Fuels Solvent Deasphalting                         | Conventional Solvent                                                                         | SDA        | CONV            | Resid, Solvent                                                                                                                                                            | Deasphalted Oil, Asphalt                                                                                                               | Heater plus Contactors & Separators or                                                                                                     | Feed                   | b/sd            | 2.80       |
|                                                    | Supercritical Solvent                                                                        | SDA        | SCRT            |                                                                                                                                                                           |                                                                                                                                        | Extraction Column & Strippers, Solvent<br>Recovery                                                                                         |                        |                 |            |
| Alkylation                                         | Polymerization of C <sub>3</sub> Olefin Feed                                                 | POLY       | PC3             | Propane/Propylene                                                                                                                                                         | LPG, Polymer Naphtha, Low-Boiling<br>Paraffins                                                                                         | Reactors, Product Fractionator                                                                                                             | C5+ Product            | b/sd            | 5.00       |
|                                                    | Polymerization of C <sub>3</sub> /C <sub>4</sub> Feed                                        | POLY       | PMIX            | PMIX     Mixed C <sub>3</sub> & C <sub>4</sub> LPG, Polymer Naphtha, Low-Boiling     Reactors, Product Fractionator       Olefins & Paraffins     Paraffins     Paraffins |                                                                                                                                        |                                                                                                                                            |                        |                 |            |
|                                                    | Dimersol                                                                                     | DIM        |                 | Propane/Propylene                                                                                                                                                         | Dimate (Nonene), LPG                                                                                                                   | Reactors, Catalyst Removal, Stabilizer,<br>Fractionator                                                                                    |                        |                 |            |
|                                                    | Alkylation with Hydrofluoric Acid                                                            | ALKY       | AHF             | Olefins, Isobutane                                                                                                                                                        | Alkylate, Normal Butane, Isobutane,                                                                                                    | Feed Drums, Acid Contactor, Acid Recovery,                                                                                                 | C5+ Alkylate           | b/sd            |            |
|                                                    | Alkylation with Sulfuric Acid                                                                | ALKY       | ASA             |                                                                                                                                                                           | Propane                                                                                                                                | Acid Regeneration (HF only), Depropanizer,<br>Debutanizer, Deisobutanizer, Refrigeration<br>System                                         |                        |                 |            |
| Sulfuric Acid Regeneration                         | Sulfuric Acid Regeneration                                                                   | ACID       |                 | Spent Acid                                                                                                                                                                | Sulfuric Acid                                                                                                                          | Combustor, Waste Heat Boiler, Converter,<br>Absorber, SO3 Recycle, Gas Cleaning including<br>Electrostatic Precipitator, Amine Regenerator | Product                | ST/sd           | 37.80      |
| Aromatics Production                               | Aromatic Solvent Extraction: Extraction Distillation                                         | ASE        | ED              | C <sub>6</sub> –C <sub>8</sub> Aromatic                                                                                                                                   | High Purity Aromatic Stream                                                                                                            | Extractor, Raffinate Wash, Stripper, Recovery                                                                                              | Feed                   | b/sd            | 3.30       |
|                                                    | Aromatic Solvent Extraction: Liquid/Liquid<br>Extraction                                     | ASE        | LLE             | Rich Stream from<br>Reformate or                                                                                                                                          |                                                                                                                                        | Column, Solvent Regenerator, Water Stripper,<br>Clay Treaters                                                                              | Feed                   | b/sd            |            |
|                                                    | Aromatic Solvent Extraction: Liquid/Liquid<br>Extraction w/ Extraction Distillation          | ASE        | LLED            | Pyrolysis Gasoline                                                                                                                                                        |                                                                                                                                        |                                                                                                                                            | Feed                   | b/sd            |            |
|                                                    | Benzene Column                                                                               | BZC        |                 | Mixed C <sub>6</sub> +<br>Aromatics from<br>extraction process                                                                                                            | Benzene (95+%), C <sub>7</sub> + Aromatics                                                                                             | Fractionating Column                                                                                                                       | Feed                   | b/sd            |            |
|                                                    | Toluene Column TO                                                                            | TOLC       |                 | Mixed C <sub>7</sub> +<br>Aromatics from<br>extraction process                                                                                                            | Toluene, C <sub>8</sub> + Aromatics                                                                                                    | Fractionating Column                                                                                                                       | Feed                   | b/sd            |            |
|                                                    | Xylene Rerun Column                                                                          | XYLC       |                 | Mixed C <sub>8</sub> +<br>Aromatics                                                                                                                                       | Mixed Xylenes, C <sub>9</sub> + Aromatics                                                                                              | Fractionating Column                                                                                                                       | Feed                   | b/sd            |            |
|                                                    | Heavy Aromatics Column                                                                       | HVYARO     |                 | Mixed C <sub>9</sub> +<br>Aromatics                                                                                                                                       | C <sub>9</sub> Aromatics, C <sub>10</sub> + Aromatics                                                                                  | Fractionating Column                                                                                                                       | Feed                   | b/sd            |            |
| Hydrodealkylation                                  | Hydrodealkylation                                                                            | HDA        |                 | Toluene, Heavy<br>Alkylbenzenes,<br>Hydrogen                                                                                                                              | Mixed Benzene & Heavy Aromatics                                                                                                        | Heater, Reactor, Separator, Stripper, Clay<br>Treaters, Fractionators, Hydrogen Compression                                                | Feed                   | b/sd            | 2.50       |
| Toluene Disproportionation/<br>Transalkylation     | Toluene Disproportionation / Transalkylation                                                 | TDP/TDA    |                 | Toluene, C <sub>9</sub><br>Aromatics,<br>Hydrogen                                                                                                                         | Mixed Benzene, C <sub>8</sub> Aromatics, C <sub>10</sub> +<br>Aromatics                                                                | Heater, Reactor, Clay Treating, Light Ends<br>Stripper, Separator, Recycle Gas Compressor                                                  | Feed                   | b/sd            | 1.90       |
| Cyclohexane Production                             | Cyclohexane                                                                                  | CYC6       |                 | Benzene, Hydrogen                                                                                                                                                         | Cyclohexane                                                                                                                            | Reactor, Separator, Stabilizer, Steam Generator,<br>Recycle Compressor, Makeup Compressor                                                  | Cyclohexane<br>Product | b/sd            | 2.80       |

| <b>Processing Facilities</b>                 | Process Type                                        | Process ID | Process Type ID | Feed                                                               | Products                                                        | Typical Equipment                                                                                                                                                                                                 | Capacity Basis              | Unit of Measure | <b>CWB</b> Factor |
|----------------------------------------------|-----------------------------------------------------|------------|-----------------|--------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|-------------------|
| Xylene Isomerization                         | Xylene Isomerization                                | XYISOM     |                 | Mixed Xylenes low<br>in p-xylene content,<br>Hydrogen              | Mixed Xylenes in Equilibrium                                    | Heater, Reactor, Stabilizer, Deheptanizer                                                                                                                                                                         | Feed                        | b/sd            | 1.90              |
| Paraxylene Production                        | Paraxylene: Adsorption                              | PXYL       | ADS             | Mixed Xylenes                                                      | p-Xylene, Mixed Xylenes low in p-Xylene<br>Content              | Adsorption Chamber, Rotary Valve, Extract &<br>Raffinate Columns, Finishing Column                                                                                                                                | Paraxylene<br>Product       | b/sd            | 6.50              |
|                                              | Paraxylene: Crystallization                         | PXYL       | CRY             | Mixed Xylenes                                                      | p-Xylene, Mixed Xylenes low in p-Xylene<br>Content              | Crystallizers, Centrifuge                                                                                                                                                                                         | Paraxylene<br>Product       | b/sd            |                   |
|                                              | Xylene Splitter                                     | XYLS       |                 | Mixed C <sub>8</sub> +<br>Aromatics                                | Mixed p-/m-Xylenes, Mixed o-Xylene & C <sub>9</sub> + Aromatics | Fractionating Column                                                                                                                                                                                              | Feed                        | b/sd            |                   |
|                                              | Orthoxylene Rerun Column                            | OXYLRC     |                 | Mixed o-Xylene &<br>C <sub>9</sub> + Aromatics                     | o-Xylene, C <sub>9</sub> + Aromatics                            | Fractionating Column                                                                                                                                                                                              | Feed                        | b/sd            |                   |
| Ethylbenzene                                 | Ethylbenzene Manufacture                            | EBZ        |                 | Benzene, Ethylene<br>or Refinery Off-Gas<br>Containing<br>Ethylene | Ethylbenzene                                                    | Reactors, Heater, Benzene Recycle Column,<br>Fractionator, Recycle Compressor, Makeup<br>Compressor                                                                                                               | Ethylbenzene<br>Product     | b/sd            | 1.60              |
|                                              | Ethylbenzene Distillation                           | EBZD       |                 | Mixed C <sub>8</sub> Stream                                        | Ethylbenzene, Mixed C <sub>8</sub> Stream                       | Fractionator, Heat Exchange                                                                                                                                                                                       | Feed                        | b/sd            |                   |
| Cumene                                       | Cumene                                              | CUM        |                 | Propylene, Benzene                                                 | Propane, Cumene, Heavy Aromatics                                | Reactor, Hot Oil or Steam Heater, Flash Towers,<br>Benzene Recovery Column, Clay Treater,<br>Fractionator                                                                                                         | Cumene Product              | b/sd            | 5.00              |
| Asphalt Production                           | Asphalt Production                                  | ASP        |                 | Short Resid                                                        | Fuel Gas, Asphalt                                               | Steam Generation, Oxidizer, Air Blower,<br>Incinerator                                                                                                                                                            | Total Asphalt<br>Production | b/sd            | 2.70              |
| C <sub>4</sub> Isomerization                 | C <sub>4</sub> Isomerization                        | C4ISOM     |                 | Normal Paraffins,                                                  | Mixed Isoparaffins & Normal Paraffins                           | Once through operation with no feed preparation                                                                                                                                                                   | Feed                        | b/sd            | 1.25              |
| C <sub>5</sub> /C <sub>6</sub> Isomerization | C <sub>5</sub> /C <sub>6</sub> Isomerization        | C5ISOM     |                 | Hydrogen                                                           |                                                                 | or internal recycle of unconverted products.<br>Heater, Reactor, Stabilizer, Hydrogen Recycle                                                                                                                     | Feed                        | b/sd            | 1.80              |
| ISOSIV                                       | ISOSIV                                              | U18        |                 | Mixed C <sub>5</sub> /C <sub>6</sub><br>Paraffins                  | Isoparaffins, Normal Paraffins                                  | Sieve Beds                                                                                                                                                                                                        | Feed                        | b/sd            | 1.80              |
| Lubricants <sup>(1)</sup>                    | Extraction: Solvent is Duo-Sol                      | SOLVEX     | DOS             | Vacuum Gas Oil,                                                    | Raffinates, Extracts                                            | Heater, Extraction Tower, Raffinate and Extract                                                                                                                                                                   | Feed                        | b/sd            | 2.20              |
|                                              | Extraction: Solvent is Furfural                     | SOLVEX     | FUR             | Deasphalted Oil,                                                   |                                                                 | Solvent Recovery                                                                                                                                                                                                  |                             |                 |                   |
|                                              | Extraction: Solvent is NMP                          | SOLVEX     | NMP             | Vacuum Tower                                                       |                                                                 |                                                                                                                                                                                                                   |                             |                 |                   |
|                                              | Extraction: Solvent is Phenol                       | SOLVEX     | PHE             | Bottoms                                                            |                                                                 |                                                                                                                                                                                                                   |                             |                 |                   |
|                                              | Extraction: Solvent is SO <sub>2</sub>              | SOLVEX     | SDO             |                                                                    |                                                                 |                                                                                                                                                                                                                   |                             |                 |                   |
|                                              | Dewaxing: Solvent is Chlorocarbon                   | SDWAX      | CHL             | Extracted Gas Oil,                                                 | Dewaxed Oils, Slack Wax, Scale Wax                              | Solvent/Oil Refrigeration, Scraped Surface                                                                                                                                                                        | Feed                        | b/sd            | 4.55              |
|                                              | Dewaxing: Solvent is MEK/Toluene                    | SDWAX      | MEK             | Hydrocrackates,                                                    |                                                                 | Coolers/Chillers, Filter Feed Drum, Crystallizer,                                                                                                                                                                 |                             |                 |                   |
|                                              | Dewaxing: Solvent is MEK/MIBK                       | SDWAX      | MIB             | Vacuum Distillates                                                 |                                                                 | Rotary Filters, Solvent Recovery, Solvent                                                                                                                                                                         |                             |                 |                   |
|                                              | Dewaxing: Solvent is propane                        | SDWAX      | PRP             | _                                                                  |                                                                 | Dehydration, Solvent Splitter                                                                                                                                                                                     |                             |                 |                   |
|                                              | Catalytic Wax Isomerization and Dewaxing            | CDWAX      | ISO             | Extracted Gas Oil,                                                 | Dewaxed Oils, Light Ends, Distillates                           | Heater, Reactor, Hydrogen Recycle and Make-up                                                                                                                                                                     | Feed                        | b/sd            | 1.60              |
|                                              | Selective Wax Cracking                              | CDWAX      | SWC             | Hydrocrackates,<br>Vacuum Distillates                              | Domailee only Light Lites, Domailee                             | Compression, HP Separator, LP Separator,<br>Recycle Gas Treater, Atmospheric Product<br>Fractionation and/or Stripping. Additionally, an<br>Iso-Dewaxer includes a Hydrofinishing Reactor<br>and Product Stripper |                             |                 | 100               |
|                                              | Lube Hydrocracker with Multi-fraction Distillation  | LHYC       | HCM             | Vacuum Gas Oil                                                     | Base Oil Feedstocks, C <sub>3</sub> to 650 °F+ Clean            | Heater, Reactor, Product Fractionation,                                                                                                                                                                           | Feed                        | b/sd            | 2.50              |
|                                              | Lube Hydrocracker with Vacuum Stripper              | LHYC       | HCS             |                                                                    | Products, Fuel Gas                                              | Hydrogen Recycle and Make-up Compression,<br>Hydrogen Scrubbing and Recycle, Atmospheric<br>and Vacuum Distillation Columns                                                                                       |                             |                 |                   |
|                                              | Lube Hydrofinishing with Vacuum Stripper            | LHYFT      | HFS             | Raffinate or<br>Dewaxed Oil                                        | Base Oil Feedstocks, Dewaxed Oils, Fuel<br>Gas                  | Heater, Reactor, Separators, Fractionation,<br>Hydrogen Recycle and Make-up Compression,<br>Atmospheric Product Fractionation and/or<br>Stripping                                                                 | Feed                        | b/sd            | 1.15              |
|                                              | Lube Hydrotreating with Multi-fraction Distillation | LHYFT      | HTM             | 7                                                                  |                                                                 | Heater, Reactor, Fractionation, Hydrogen                                                                                                                                                                          | 1                           |                 |                   |
|                                              | Lube Hydrotreating with Vacuum Stripper             | LHYFT      | HTS             |                                                                    |                                                                 | Recycle and Make-up Compression,<br>Atmospheric Product Fractionation and/or<br>Stripping                                                                                                                         |                             |                 |                   |
|                                              | Deoiling: Solvent is Chlorocarbon                   | WDOIL      | CHL             | Slack Wax                                                          | Refined (Hard) Wax, Foots Oil/Soft Wax                          | Refrigeration, Rotary Filter, Solvent Recovery                                                                                                                                                                    | Product                     | b/sd            | 11.80             |
|                                              | Deoiling: Solvent is MEK/Toluene                    | WDOIL      | MEK             | 1                                                                  |                                                                 |                                                                                                                                                                                                                   |                             |                 |                   |
|                                              | Deoiling: Solvent is MEK/MIBK                       | WDOIL      | MIB             | 7                                                                  |                                                                 |                                                                                                                                                                                                                   |                             |                 |                   |
|                                              | Deoiling: Solvent is propane                        | WDOIL      | PRP             | 1                                                                  |                                                                 |                                                                                                                                                                                                                   |                             |                 |                   |
|                                              | Wax Hydrofinishing with Vacuum Stripper             | WHYFT      | HFS             | Refined Wax, Slack                                                 | HF Refined Wax, HF Scale Wax, HF Slack                          | Heater, Reactor, Separators, Fractionation,                                                                                                                                                                       | Feed                        | b/sd            | 1.15              |
|                                              | Wax Hydrotreating with Multi-fraction Distillation  | WHYFT      | HTM             | Wax, Scale Wax                                                     | Wax                                                             | Hydrogen Recycle and Make-up Compression                                                                                                                                                                          |                             |                 |                   |
|                                              | Wax Hydrotreating with Vacuum Stripper              | WHYFT      | HTS             | -1                                                                 |                                                                 |                                                                                                                                                                                                                   |                             |                 |                   |

| <b>Processing Facilities</b>             | Process Type                                                    | Process ID      | Process Type ID | Feed                                                      | Products                                                             | Typical Equipment                                                                                                                                                                                                                           | Capacity Basis          | Unit of Measure | CWB Factor                                 |
|------------------------------------------|-----------------------------------------------------------------|-----------------|-----------------|-----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|--------------------------------------------|
| Hydrogen Generation (2)                  | Steam Methane Reforming                                         | HYG             | HSM             | Fuel Oil, Naphtha,                                        | Hydrogen, Carbon Dioxide                                             | Desulfurizer, Heaters, Reformer or Partial                                                                                                                                                                                                  | Product                 | k SCF/sd        | 5.70                                       |
|                                          | Steam Naphtha Reforming                                         | HYG             | HSN             | Natural Gas                                               |                                                                      | Oxidizer, Shift Converter, Methanation,                                                                                                                                                                                                     | Product                 | k SCF/sd        | 6.70                                       |
|                                          | Partial Oxidation Units                                         | HYG             | POX             |                                                           |                                                                      | CO2 Rejection, Hydrogen Compression                                                                                                                                                                                                         | Product                 | k SCF/sd        | 7.10                                       |
| Sulfur                                   | Sulfur Recovery Unit                                            | SRU             |                 | Acid Gas                                                  | Sulfur, Tail Gas                                                     | Burner/Reactor, Waste Heat Boiler, Converters,<br>Condensers, Amine Unit Regenerator, Sour<br>Water Stripper (exclude pelletizers)                                                                                                          | Product Sulfur          | LT/sd           | 140.00                                     |
|                                          | Tail Gas Recovery Unit                                          | TRU             |                 | Tail Gas                                                  | Sulfur, Off-Gas                                                      | Reactor, Quench Tower, Absorber, Regenerator<br>for SCOT Process & equivalent for other<br>processes                                                                                                                                        | Product Sulfur          | LT/sd           |                                            |
|                                          | H <sub>2</sub> S Springer Unit                                  | U32             |                 | H <sub>2</sub> S Rich Gas,<br>Spent Caustic               | Sweet Gas, Sulfur/H <sub>2</sub> S                                   |                                                                                                                                                                                                                                             | Sulfur Sprung           | LT/sd           |                                            |
| Special Fractionation <sup>(3)</sup>     | All Special Fractionation ex Solvents, Propylene, and Aromatics | Various         |                 | Various                                                   | Various                                                              | Fractionator, Heat Exchange                                                                                                                                                                                                                 | Feed                    | b/sd            | 0.80                                       |
| Oxygenates - MTBE                        | Distillation Units                                              | MTBE            | DIST            | Methanol, C <sub>4</sub><br>Olefins                       | MTBE, Unreacted C <sub>4</sub> Olefins                               | Reactor & Fractionator or Catalytic Distillation<br>Vessel                                                                                                                                                                                  | Product                 | b/sd            | 4.90                                       |
|                                          | Extraction Units                                                | MTBE            | EXT             | Methanol, C <sub>4</sub><br>Olefins                       | MTBE, Unreacted C <sub>4</sub> Olefins                               | Reactor & Fractionator or Catalytic Distillation<br>Vessel; Methanol Recovery & Recycle                                                                                                                                                     | Product                 | b/sd            |                                            |
| Oxygenates – ETBE                        | ETBE                                                            | ETBE            |                 | Ethanol, C <sub>4</sub> Olefins                           | ETBE, Unreacted C <sub>4</sub> Olefins                               | Reactors, Fractionator, Ethanol Extraction & Recycle                                                                                                                                                                                        | Product                 | b/sd            |                                            |
| Oxygenates – TAME                        | TAME                                                            | TAME            |                 | Methanol, C <sub>4</sub> –C <sub>6</sub><br>Mixed Olefins | Mixed Ethers, Unreacted C <sub>4</sub> –C <sub>6</sub> Mixed Olefins | Reactors, Fractionator, Methanol Extraction & Recycle                                                                                                                                                                                       | Product                 | b/sd            |                                            |
| Coke Calciner                            | Vertical-Axis Hearth                                            | CALCIN          | HRTH            | Green Petroleum<br>Coke                                   | Calcined Coke                                                        | Combustion Chamber, Vertical Rotary Kiln,<br>Electrostatic Precipitator or other air pollution<br>control equipment (Coke Handling & Storage<br>Equipment reported separately. Report Waste<br>Heat Recovery under Fired Boilers – Solid)   | Product                 |                 | 96.00                                      |
|                                          | Horizontal-Axis Rotary Kiln                                     | CALCIN          | KILN            | Green Petroleum<br>Coke                                   | Calcined Coke                                                        | Combustion Chamber, Horizontal Rotary Kiln,<br>Electrostatic Precipitator or other air pollution<br>control equipment (Coke Handling & Storage<br>Equipment reported separately. Report Waste<br>Heat Recovery under Fired Boilers – Solid) | Product                 | ST/sd           |                                            |
| Methanol Synthesis                       | Methanol Synthesis                                              | U70             |                 | Hydrogen & CO                                             | Methanol                                                             | Reactor Section, Steam Generation, Distillation                                                                                                                                                                                             | Product                 | b/sd            | -36.00                                     |
| POX Syngas for Fuel                      | POX Syngas for Fuel                                             | U73             |                 | Resid                                                     | $H_2$ , CO, CO <sub>2</sub>                                          | POX Reactor, Scrubber, Soot Recovery, Gas<br>Cleanup & Sulfur Removal                                                                                                                                                                       | Product                 | k SCF/sd        | 2.75                                       |
|                                          | Air Separation Unit                                             | U79             |                 | Air                                                       | Oxygen, Nitrogen                                                     | Compressor, Cold Box, Separation Equipment                                                                                                                                                                                                  | Product                 | k SCF/sd        |                                            |
| Solvent Hydrotreating                    | Solvent Hydrotreating                                           | U1              |                 | Solvents, Hydrogen                                        | Treated Solvents                                                     | Reactor, Stabilizer                                                                                                                                                                                                                         | Feed                    | b/sd            | N.A. (Included in                          |
|                                          | Solvent Fractionation                                           | SOLVF           |                 | Distillate Mixture                                        | High Purity Solvent, By-Product Stream                               | Special Fractionation for Solvent Purification                                                                                                                                                                                              | Feed                    | b/sd            | Hydrotreating and<br>Special Fractionation |
| Propane/Propylene Splitter               | Chemical Grade                                                  | C3S             | CHEM            | Mixed C <sub>3</sub> s                                    | High Purity Propylene, Propane                                       | Splitter Column                                                                                                                                                                                                                             | Feed                    | b/sd            | 2.10                                       |
|                                          | Polymer Grade                                                   | C3S             | POLY            | Mixed C <sub>3</sub> s                                    | High Purity Propylene, Propane, C <sub>2</sub> - Off-Gas             | Deethanizer, Splitter Column, Compressor,<br>Driers, Treaters                                                                                                                                                                               | Feed                    | b/sd            |                                            |
| Desalination                             | Desalination                                                    | DESAL           |                 | Sea or<br>Contaminated<br>Water                           | Potable Water, Brine                                                 | Heater, Boilers, Fractionation                                                                                                                                                                                                              | Product                 | k gal/sd        | 32.70                                      |
| CO <sub>2</sub> Liquefaction             | CO <sub>2</sub> Liquefaction                                    | CO <sub>2</sub> |                 | Gaseous CO <sub>2</sub>                                   | Liquid CO <sub>2</sub>                                               | Multi-Stage Compression, Dehydrators, Stripper                                                                                                                                                                                              | CO <sub>2</sub> Product | ST/sd           | -160.00                                    |
| Ammonia Recovery Unit                    | PHOSAM                                                          | U59             |                 | Sour Water Stripper<br>Overhead                           | Ammonia, Treated Water                                               | Adsorber, Stripper, Fractionator                                                                                                                                                                                                            | Product                 | ST/sd           | 453.00                                     |
| Cryogenic LPG Recovery                   | Cryogenic LPG Recovery                                          | U60             |                 | Refinery Gas<br>Streams                                   | C <sub>3</sub> s, C <sub>4</sub> s, Other Gases                      | Refrigeration, Drier, Compressor, Absorber<br>Stripper, Fractionation                                                                                                                                                                       | Feed                    | k SCF/sd        | 0.25                                       |
| Flare Gas Recovery                       | Flare Gas Recovery                                              | U9              |                 | Waste Gases, Steam                                        | Compressed Gases                                                     | Compressor, Separator                                                                                                                                                                                                                       | Feed                    | k SCF/sd        | 0.13                                       |
| Fuel Gas Sales Treating &<br>Compression | Fuel Gas Sales Treating & Compression                           | U31             |                 | Raw Fuel Gas                                              | High-Pressure Sweet Fuel Gas                                         | H <sub>2</sub> S Absorber, Compressor, Miscellaneous<br>Purification                                                                                                                                                                        | Horsepower              | hp              | 2.52                                       |
| Flue Gas Desulfurizing                   | Flue Gas Desulfurizing                                          | U35             |                 | Flue Gas with<br>Contaminants                             | Clean Flue Gas                                                       | Contactor, Catalyst/Reagent<br>Regeneration,Scrubbing Circulation, Solids<br>Handling                                                                                                                                                       | Feed                    | k SCF/sd        | 0.02                                       |

<sup>(1)</sup> The CWB factors for additional lubricants refinery units, such as Wax/Acid/Clay Treating, Wax Sweating, Lotox, and Rerun Vacuum Distillation are allocated among major lubricant refining units.

(2) The CWB factors for hydrogen purification units, such as Cryogenic Unit, Membrane Separation Unit, and Pressure Swing Adsorption (PSA) unit, as well as U71 (CO Shift & H<sub>2</sub> Purification) and U72 (POX Syngas for H<sub>2</sub> Generation), are allocated among Hydrogen Generation units.
 (3) Special Fractionation units include the following: Deethanizer, Depontanizer, Depont

## Appendix E Example for Calculating Total CWB for a Refinery (CA-CWB)

The following table illustrates the calculation of Total CWB for an example refinery.

|                                                                     | Utilized<br>Capacity | Units of<br>Measure <sup>(1)</sup> | CWB<br>Factor | FCC Coke<br>on Catalyst,<br>vol % | CWB<br>Factor,<br>FCC Coke<br>on<br>Catalyst | CWB<br>(b/d) |
|---------------------------------------------------------------------|----------------------|------------------------------------|---------------|-----------------------------------|----------------------------------------------|--------------|
| Atmospheric Crude Distillation                                      | 214,009              | T b/cd                             | 1.00          |                                   |                                              | 214,009      |
| Vacuum Distillation                                                 | 114,933              | T b/cd                             | 0.91          |                                   |                                              | 104,589      |
| Visbreaker                                                          | -                    | T b/cd                             | 1.60          |                                   |                                              | -            |
| Delayed Coker                                                       | 73,236               | T b/cd                             | 2.55          |                                   |                                              | 186,752      |
| Fluid Coking                                                        |                      |                                    |               |                                   |                                              |              |
| Fluid Coker                                                         | -                    | T b/cd                             | 10.3          |                                   |                                              | -            |
| Flexicoker                                                          | -                    | T b/cd                             | 23.6          |                                   |                                              | -            |
| Catalytic Cracking                                                  |                      |                                    |               |                                   |                                              |              |
| FCC                                                                 | 61,510               | T b/cd                             | 1.150         | 4.41                              | 1.041                                        | 353,276      |
| Mild Residual FCC                                                   | -                    | T b/cd                             | 0.659         | 4.41                              | 1.1075                                       | -            |
| Residual FCC                                                        | -                    | T b/cd                             | -             | 4.41                              | 1.1765                                       | -            |
| Other FCC                                                           | -                    | T b/cd                             | 4.65          |                                   |                                              | -            |
| Thermal Cracking                                                    | -                    | T b/cd                             | 2.95          |                                   |                                              | -            |
| Naphtha/Distillate Hydrocracker                                     | 30,290               | T b/cd                             | 3.15          |                                   |                                              | 95,412       |
| Residual Hydrocracker (H-Oil; LC-Fining and Hycon)                  | -                    | T b/cd                             | 4.40          |                                   |                                              | -            |
| Naphtha Hydrotreater                                                | 95,000               | T b/cd                             | 0.91          |                                   |                                              | 86,450       |
| Kerosene Hydrotreater                                               | 23,100               | T b/cd                             | 0.75          |                                   |                                              | 17,325       |
| Diesel/Selective Hydrotreater                                       | 70,366               | T b/cd                             | 0.90          |                                   |                                              | 63,329       |
| Residual Hydrotreater                                               | -                    | T b/cd                             | 1.80          |                                   |                                              | -            |
| VGO Hydrotreater                                                    | 46,930               | T b/cd                             | 1.00          |                                   |                                              | 46,930       |
| Reformer – including AROMAX                                         | 30,019               | T b/cd                             | 3.50          |                                   |                                              | 105,066      |
| Solvent Deasphalter                                                 | -                    | T b/cd                             | 2.80          |                                   |                                              | -            |
| Alkylation / Poly / Dimersol                                        | 16,720               | P b/cd                             | 5.00          |                                   |                                              | 83,601       |
| Sulfuric Acid Regeneration                                          | -                    | ST/cd                              | 37.80         |                                   |                                              |              |
| C <sub>4</sub> Isomer Production                                    | -                    | P b/cd                             | 1.25          |                                   |                                              | -            |
| C <sub>5</sub> /C <sub>6</sub> Isomer Production – including ISOSIV | -                    | P b/cd                             | 1.80          |                                   |                                              | -            |
| Coke Calciner                                                       | -                    | ST/cd                              | 96            |                                   |                                              | -            |
| Hydrogen Generation                                                 |                      |                                    |               |                                   |                                              |              |
| Steam-Methane Reforming                                             | -                    | k SCF/cd                           | 5.70          |                                   |                                              | -            |
| Steam-Naphtha Reforming                                             | -                    | k SCF/cd                           | 6.70          |                                   |                                              | -            |
| Partial Oxidation                                                   | -                    | k SCF/cd                           | 7.10          |                                   |                                              | -            |
| Sulfur <sup>(2)</sup>                                               | 783                  | LT/cd                              | 140           |                                   |                                              | 109,674      |
| Aromatics Production (All)                                          | -                    | T b/cd                             | 3.30          |                                   |                                              | -            |
| Hydrodealkylation                                                   | -                    | P b/cd                             | 2.50          |                                   |                                              | -            |
| Toluene Disproportionation / Transalkylation                        | -                    | P b/cd                             | 1.90          |                                   |                                              | -            |
| Cyclohexane Production                                              | -                    | P b/cd                             | 2.80          |                                   |                                              | -            |
| Xylene Isomerization                                                | -                    | P b/cd                             | 1.90          |                                   |                                              | -            |
| Paraxylene Production                                               | -                    | P b/cd                             | 6.50          |                                   |                                              | _            |

|                                                   | Utilized<br>Capacity  | Units of<br>Measure <sup>(1)</sup> | CWB<br>Factor                   | FCC Coke<br>on Catalyst,<br>vol % | CWB<br>Factor,<br>FCC Coke<br>on<br>Catalyst | CWB<br>(b/d) |
|---------------------------------------------------|-----------------------|------------------------------------|---------------------------------|-----------------------------------|----------------------------------------------|--------------|
| Ethylbenzene Production                           | -                     | P b/cd                             | 1.60                            |                                   |                                              | -            |
| Cumene Production                                 | -                     | P b/cd                             | 5.00                            |                                   |                                              | -            |
| Lubricants                                        |                       |                                    |                                 |                                   |                                              |              |
| Solvent Extraction                                | -                     | T b/cd                             | 2.20                            |                                   |                                              | -            |
| Solvent Dewaxing                                  | -                     | T b/cd                             | 4.55                            |                                   |                                              | -            |
| Catalytic Dewaxing                                | -                     | T b/cd                             | 1.60                            |                                   |                                              | -            |
| Lube Hydrocracking                                | -                     | T b/cd                             | 2.50                            |                                   |                                              | -            |
| Lube Hydrofining                                  | -                     | T b/cd                             | 1.15                            |                                   |                                              | -            |
| Wax Deoiling                                      | -                     | T b/cd                             | 11.80                           |                                   |                                              | -            |
| Wax Hydrofining                                   | -                     | T b/cd                             | 1.15                            |                                   |                                              | -            |
| Asphalt Production                                | -                     | P b/cd                             | 2.70                            |                                   |                                              | -            |
| Oxygenates                                        | -                     | P b/cd                             | 4.90                            |                                   |                                              | -            |
| POX Syngas for Fuel                               | -                     | k SCF/cd                           | 2.75                            |                                   |                                              | -            |
| Methanol Synthesis                                | -                     | P b/cd                             | (36.00)                         |                                   |                                              | -            |
| CO <sub>2</sub> Liquefaction                      | -                     | ST/cd                              | (160.00)                        |                                   |                                              | -            |
| Ammonia Recovery Unit                             |                       | ST/cd                              | 453                             |                                   |                                              |              |
| Desalination                                      | -                     | k gal/cd                           | 32.70                           |                                   |                                              | -            |
| Special Fractionation                             | 25,725                | T b/cd                             | 0.80                            |                                   |                                              | 20,580       |
| Propane/Propylene Splitter (Propylene Production) | -                     | P b/cd                             | 2.10                            |                                   |                                              | -            |
| Cryogenic LPG Recovery                            | -                     | k SCF/cd                           | 0.25                            |                                   |                                              |              |
| Flare Gas Recovery                                | -                     | k SCF/cd                           | 0.13                            |                                   |                                              |              |
| Fuel Gas Sales Treating & Compression             | -                     | hp                                 | 2.52                            |                                   |                                              |              |
| Flue Gas Desulfurizing                            | -                     | k SCF/cd                           | 0.02                            |                                   |                                              |              |
| Subtotal: Process CWB                             |                       |                                    |                                 |                                   |                                              | 1,486,994    |
| Off-Sites and Non-Energy Utilities                | Total<br>Throughput   | Units of<br>Measure <sup>(1)</sup> | CWB<br>Factor for<br>Throughput |                                   | CWB<br>Factor for<br>Process<br>CWB          |              |
| Total Input Barrels                               | 248,128               | T b/cd                             | 0.327                           |                                   | 0.0085                                       | 93,777       |
| Non-Crude Sensible Heat                           | Total<br>Throughput   | Units of<br>Measure <sup>(1)</sup> | CWB<br>Factor                   |                                   |                                              |              |
| Qual. Non-Crude Input Barrels                     | 20,863                | T b/cd                             | 0.44                            |                                   |                                              | 9,180        |
| Sales and Exports of Steam and Electricity        | Thermal<br>Equivalent | Units of<br>Measure <sup>(1)</sup> | CWB<br>Factor                   |                                   |                                              |              |
|                                                   | Equivalent            |                                    |                                 |                                   |                                              |              |
| Steam Transfers to Affiliates Steam Sales         | - 9,165,492           | k Btu/cd<br>k Btu/cd               | 0.0125                          |                                   |                                              | -<br>114,569 |
| Electricity Transfers to Affiliates               | -                     | k Btu/cd                           | 0.0125                          |                                   |                                              | -            |
| Electricity Sales                                 | 987,240               | k Btu/cd                           | 0.0125                          |                                   |                                              | 12,340       |
| Subtotal: CWB for Sales and Exports of S          |                       | 1                                  |                                 |                                   |                                              | 126,909      |
| Total CWB                                         |                       |                                    |                                 |                                   |                                              | 1,716,860    |

- <sup>(1)</sup> Units of measure in this column are as follows:
  - $T\ b/cd-Throughput$  on feed basis in barrels per calendar day
  - $P \ b/cd-Throughput \ on \ product \ basis in \ barrels \ per \ calendar \ day$
  - ST/cd Throughput in short tons per calendar day; 1 ST = 2,000 lbs
  - k SCF/cd Throughput in thousand standard cubic feet (dry @ 60 °F and 14.696 psia or 15 °C and 1 atmosphere) per calendar day
  - LT/cd Throughput in long tons per calendar day; 1 LT = 2,240 lbs
  - $k\ gal/cd$  Throughput in thousand gallons (US liquid) per calendar day
  - hp Horsepower
  - k Btu/cd –Thousand British thermal units per calendar day; 1 Btu = 1,055 joules
- <sup>(2)</sup> Includes the combined throughput of product sulfur for Sulfur Recovery Unit and Tail Gas Recovery Unit, and sulfur sprung for H<sub>2</sub>S Springer Unit.

# Appendix F Example for Calculating Total CWT for a Refinery (Solomon EU-CWT)

The following table illustrates the calculation of Total CWT for the same example refinery used in Appendix E.

|                                                                     | Utilized<br>Capacity | Units of<br>Measure <sup>(1)</sup> | EU-CWT<br>Factor | FCC Coke on<br>Catalyst,<br>wt % | CWT<br>(tonne/d) |
|---------------------------------------------------------------------|----------------------|------------------------------------|------------------|----------------------------------|------------------|
| Atmospheric Crude Distillation                                      | 31,591               | tonne/cd                           | 1.00             |                                  | 31,591           |
| Vacuum Distillation                                                 | 18,525               | tonne/cd                           | 0.85             |                                  | 15,746           |
| Visbreaker                                                          | -                    | tonne/cd                           | 1.40             |                                  | -                |
| Delayed Coker                                                       | 10,864               | tonne/cd                           | 2.20             |                                  | 23,900           |
| Fluid Coking                                                        |                      | tonne/cd                           |                  |                                  |                  |
| Fluid Coker                                                         | -                    | tonne/cd                           | 7.60             |                                  | -                |
| Flexicoker                                                          | -                    | tonne/cd                           | 16.60            |                                  | -                |
| Catalytic Cracking                                                  |                      | tonne/cd                           |                  |                                  |                  |
| FCC                                                                 | 8,951                | tonne/cd                           | 5.50             | 4.68                             | 49,229           |
| Mild Residual FCC                                                   | -                    | tonne/cd                           | 5.50             |                                  | -                |
| Residual FCC                                                        | -                    | tonne/cd                           | 5.50             |                                  | -                |
| Other FCC                                                           | -                    | tonne/cd                           | 4.10             |                                  | -                |
| Thermal Cracking                                                    | -                    | tonne/cd                           | 2.70             |                                  | -                |
| Naphtha/Distillate Hydrocracker                                     | 4,667                | tonne/cd                           | 2.85             |                                  | 13,302           |
| Residual Hydrocracker (H-Oil; LC-Fining and Hycon)                  | -                    | tonne/cd                           | 3.75             |                                  | -                |
| Naphtha Hydrotreater                                                | 9,592                | tonne/cd                           | 1.10             |                                  | 10,552           |
| Kerosene Hydrotreater                                               | 3,006                | tonne/cd                           | 0.90             |                                  | 2,706            |
| Diesel/Selective Hydrotreater                                       | 9,819                | tonne/cd                           | 0.90             |                                  | 8,838            |
| Residual Hydrotreater                                               | -                    | tonne/cd                           | 1.55             |                                  | -                |
| VGO Hydrotreater                                                    | 7,090                | tonne/cd                           | 0.90             |                                  | 6,381            |
| Reformer – including AROMAX                                         | 3,564                | tonne/cd                           | 4.95             |                                  | 17,642           |
| Solvent Deasphalter                                                 | -                    | tonne/cd                           | 2.45             |                                  | -                |
| Alkylation / Poly / Dimersol                                        | 1,858                | P tonne/cd                         | 7.25             |                                  | 13,468           |
| C <sub>4</sub> Isomer Production                                    | -                    | P tonne/cd                         | 3.25             |                                  | -                |
| C <sub>5</sub> /C <sub>6</sub> Isomer Production – including ISOSIV | -                    | P tonne/cd                         | 2.85             |                                  | -                |
| Coke Calciner                                                       | -                    | P tonne/cd                         | 12.75            |                                  | -                |
| Hydrogen Generation                                                 |                      |                                    |                  |                                  |                  |
| Gas Feed                                                            | -                    | tonne/cd                           | 296.00           |                                  | -                |
| Naphtha Feed                                                        | -                    | tonne/cd                           | 348.00           |                                  | -                |

|                                                                          | Utilized<br>Capacity  | Units of<br>Measure <sup>(1)</sup>   | EU-CWT<br>Factor | FCC Coke on<br>Catalyst,<br>wt % | CWT<br>(tonne/d) |
|--------------------------------------------------------------------------|-----------------------|--------------------------------------|------------------|----------------------------------|------------------|
| Sulfur                                                                   | 796                   | tonne/cd                             | 18.60            |                                  | 14,805           |
| Aromatics Production (All)                                               | -                     | P tonne/cd                           | 5.25             |                                  | -                |
| Hydrodealkylation                                                        | -                     | P tonne/cd                           | 2.45             |                                  | -                |
| Toluene Disproportionation / Transalkylation                             | -                     | P tonne/cd                           | 1.85             |                                  | -                |
| Cyclohexane Production                                                   | -                     | P tonne/cd                           | 3.00             |                                  | -                |
| Xylene Isomerization                                                     | -                     | P tonne/cd                           | 1.85             |                                  | -                |
| Paraxylene Production                                                    | -                     | P tonne/cd                           | 6.40             |                                  | -                |
| Ethylbenzene Production                                                  | -                     | P tonne/cd                           | 1.55             |                                  | -                |
| Cumene Production                                                        | -                     | P tonne/cd                           | 5.00             |                                  | -                |
| Lubricants                                                               |                       |                                      |                  |                                  |                  |
| Solvent Extraction                                                       | -                     | tonne/cd                             | 2.10             |                                  | -                |
| Solvent Dewaxing                                                         | -                     | tonne/cd                             | 4.55             |                                  | -                |
| Wax Isomerization                                                        | -                     | tonne/cd                             | 1.60             |                                  | -                |
| Lube Hydrocracking                                                       | -                     | tonne/cd                             | 2.50             |                                  | -                |
| Wax Deoiling                                                             | -                     | tonne/cd                             | 12.00            |                                  | -                |
| Lube and Wax Hydrotreating                                               | -                     | tonne/cd                             | 1.15             |                                  | -                |
| Asphalt Production                                                       | -                     | P tonne/cd                           | 2.10             |                                  | -                |
| Oxygenates                                                               | -                     | P tonne/cd                           | 5.60             |                                  | -                |
| POX Syngas for Fuel                                                      |                       | tonne SG/cd                          | 8.20             |                                  | -                |
| POX Syngas to H <sub>2</sub> or Methanol                                 | -                     | tonne SG/cd                          | 44.00            |                                  | -                |
| Methanol Synthesis                                                       | -                     | P tonne/cd                           | (36.20)          |                                  | -                |
| CO <sub>2</sub> Liquefaction                                             | -                     | tonne/cd                             | (19.20)          |                                  | -                |
| Desalination                                                             | -                     | P tonne/cd                           | 1.15             |                                  | -                |
| Special Fractionation – Purchased NGL Only                               | 1,153                 | tonne/cd                             | 1.00             |                                  | 1,153            |
| Propane/Propylene Splitter (Propylene Production)                        | -                     | tonne/cd                             | 3.45             |                                  | -                |
| Solvents                                                                 |                       |                                      |                  |                                  |                  |
| Solvent Hydrotreating                                                    | -                     | tonne/cd                             | 1.25             |                                  | -                |
| Solvent Fractionation                                                    | -                     | tonne/cd                             | 0.90             |                                  | -                |
| Treatment & Compression of Fuel Gas for Sale                             | -                     | kW                                   | 0.45             |                                  | -                |
| Air Separation Plant                                                     | -                     | k nm <sup>3</sup> O <sub>2</sub> /cd | 8.80             |                                  | -                |
| Subtotal: Process EU-CWT                                                 |                       |                                      |                  |                                  | 209,312          |
| Off-Sites, Non-Energy Utilities, and Non-Crude Sensi                     | ble Heat              |                                      |                  |                                  | 14,599           |
| Sales and Other Exports of Steam                                         | Thermal<br>Equivalent | Units of Measure                     | EU-CWT<br>Factor |                                  |                  |
| Steam Transfers & Sales                                                  | 9,670                 | GJ/cd                                | 1.62             |                                  | 15,665           |
| Subtotal: EU-CWT Before Adjustments for Steam<br>Imports and Electricity |                       |                                      |                  |                                  | 239,576          |
| Total CWT – per EU-ETS Boundary <sup>(2)</sup>                           |                       |                                      |                  |                                  | 140,152          |

<sup>(1)</sup> Units of measure in this column are as follows:

tonne/cd – Throughput on feed basis in tonnes per calendar day
P tonne/cd – Throughput on product basis in tonnes per calendar day
ST/cd – Throughput in short tons per calendar day; 1 ST = 2,000 lbs
tonne SG/cd – Throughput in tonnes of syngas per calendar day
LT/cd – Throughput in long tons per calendar day; 1 LT = 2,240 lbs
k gal/cd – Throughput in thousand gallons (US liquid) per calendar day
kW – Kilowatts; 1,000 watts
k nm<sup>3</sup> O<sub>2</sub>/cd – Throughput in thousand normal cubic meters of oxygen (dry @ 0 °C and 1 atmosphere) per calendar day
GJ/cd – Gigajoules per calendar day; 1 GJ = 109 joules

<sup>(2)</sup> The adjustments were made by multiplying Solomon's Electricity Utilization Factor (EUF) and Steam Import Factor.

### Appendix G Glossary and Solomon Units of Measure

| Solomon Usage                        | Description                                                                                                                                             |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| °C                                   | Degrees Celsius                                                                                                                                         |
| °F                                   | Degrees Fahrenheit                                                                                                                                      |
| 9,090 Btu per<br>kilowatt-hour (kWh) | Conversion Factor for Purchased/Imported Electricity to Thermal Energy                                                                                  |
| ASTM                                 | American Society for Testing and Materials                                                                                                              |
| b, bbl, barrels                      | API barrels; 42 US liquid gallons; 0.159 cubic meters                                                                                                   |
| b/cd                                 | Barrels per calendar day                                                                                                                                |
| b/sd                                 | Barrels per stream day                                                                                                                                  |
| bar a                                | Bar absolute; 14.504 lb-force per square inch absolute; 1.0197 kg-force per m <sup>2</sup> absolute; 100 kilopascal absolute; 0.987 atmosphere absolute |
| bar g                                | Bar gauge; 14.504 lb-force per square inch gauge; 1.0197 kg-force per m <sup>2</sup> gauge; 100 kilopascal gauge; 0.987 atmosphere gauge                |
| bhp                                  | Brake horsepower, 745.7 watts                                                                                                                           |
| BS&W                                 | Bottom sediment and water                                                                                                                               |
| Btu                                  | British thermal unit; 1,055 joules                                                                                                                      |
| CA                                   | California                                                                                                                                              |
| $CA-CWB^{TM}$                        | The Complexity-Weighted Barrels Methodology for California Refineries                                                                                   |
| CDU                                  | Atmospheric Crude Distillation Unit                                                                                                                     |
| CEF                                  | CO <sub>2</sub> Emission Factor; in tonne CO <sub>2</sub> /MBtu                                                                                         |
| CEI                                  | Carbon Emissions Index                                                                                                                                  |
| $CO_2$                               | Carbon Dioxide                                                                                                                                          |
| CO <sub>2</sub> e                    | Carbon Dioxide-Equivalent                                                                                                                               |
| Complexity                           | Configuration Factor; a ratio of Total Equivalent Distillation Capacity (EDC) of the Refinery to its Crude Unit Capacity                                |
| CONCAWE                              | Conservation of Clean Air and Water in Europe                                                                                                           |
| cu ft, ft <sup>3</sup>               | Cubic feet; 0.02832 cubic meters for liquids & solids. SCF; 0.02679 for NM <sup>3</sup> for gases                                                       |
| CWB                                  | Complexity-Weighted Barrels                                                                                                                             |
| CWTB                                 | Complexity-Weighted Throughput Barrels, referred as CWB                                                                                                 |
| CWT                                  | Complexity-Weighted Tonnes                                                                                                                              |
| EDC                                  | Equivalent Distillation Capacity                                                                                                                        |
| EEF                                  | Electricity Emission Factor                                                                                                                             |
| EII                                  | Energy Intensity Index                                                                                                                                  |
| EU                                   | European Union                                                                                                                                          |
| EU ETS                               | European Union Emissions Trading Scheme                                                                                                                 |
| EU-CWT                               | The Complexity-Weighted Tonnes Methodology for European Union Refining Industry                                                                         |

| EUF               | Electricity Utilization Factor                                                             |
|-------------------|--------------------------------------------------------------------------------------------|
| FCC               | Fluid Catalytic Cracking                                                                   |
| FOE (bbl)         | Fuel Oil Equivalent barrel (Lower Heating Value); 6.05 MBtu; 6,383 MJ                      |
| gal               | Gallon (US liquid)                                                                         |
| GHG               | Grrenhouse Gas                                                                             |
| GJ                | Gigajoule; 10 <sup>9</sup> joules                                                          |
| hp                | Horsepower                                                                                 |
| k                 | Thousands of units specified                                                               |
| kg                | Kilogram                                                                                   |
| kg/m <sup>3</sup> | Kilograms per cubic meter (density)                                                        |
| k lb/h            | Thousand pounds per hour                                                                   |
| kW                | Kilowatts; 1,000 watts                                                                     |
| kWh               | Kilowatt-hour                                                                              |
| L                 | Liter                                                                                      |
| lb                | Pound (avoirdupois)                                                                        |
| LBG               | Low-Btu Gas                                                                                |
| LHV               | Lower Heating Value; used in Energy Reporting in Solomon Studies                           |
| LPG               | Liquefied Petroleum Gas                                                                    |
| LT                | Long ton; 2,240 lb (avoirdupois)                                                           |
| М                 | Millions of units specified                                                                |
| m3                | Cubic meter; 6.289 bbl                                                                     |
| MJ                | Megajoule; 106 joules                                                                      |
| mm                | Millimeters                                                                                |
| mol %             | Molecular fraction (expressed as a percent)                                                |
| nm <sup>3</sup>   | Normal cubic meters; dry @ 0 °C and 1 atmosphere                                           |
| °API              | Specific gravity (SG) expressed in °API; ((141.5/SG) - 131.5)                              |
| OECD              | Organization for Economic Co-operation and Development                                     |
| POX               | Partial Oxidation Unit                                                                     |
| ppm (vol)         | Parts per million (volume)                                                                 |
| ppm (wt)          | Parts per million (weight)                                                                 |
| psia              | Pounds per square inch absolute (pressure)                                                 |
| psig              | Pounds per square inch gauge (pressure)                                                    |
| SCF               | Standard cubic feet; dry @ 60 $^\circ F$ and 14.696 psia or 15 $^\circ C$ and 1 atmosphere |
| Solomon           | HSB Solomon Associates LLC                                                                 |
| ST                | Short Ton; 2,000 lb (avoirdupois)                                                          |
| TJ                | Terajoule; 10 <sup>12</sup> joules                                                         |
| US EPA            | United States Environmental Protection Agency                                              |
| vol %             | Percent by volume                                                                          |
| WBCSD             | World Business Council for Sustainable Development                                         |
| WRI               | World Resources Institute                                                                  |
| WSPA              | Western States Petroleum Association                                                       |
|                   |                                                                                            |

| wt %                                 | Percent by weight                                                                                                   |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| GJ/cd                                | Gigajoules per calendar day; 1 GJ = 109 joules                                                                      |
| k Btu/cd                             | Thousand British thermal units per calendar day; 1 Btu = $1,055$ joules                                             |
| k gal/cd                             | Throughput in thousand gallons (US liquid) per calendar day                                                         |
| k gal/cd                             | Throughput in thousand gallons (US liquid) per calendar day                                                         |
| k nm <sup>3</sup> O <sub>2</sub> /cd | Throughput in thousand normal cubic meters of oxygen (dry @ 0 $^{\circ}$ C and 1 atmosphere) per calendar day       |
| k SCF/cd                             | Throughput in thousand standard cubic feet (dry @ 60 °F and 14.696 psia or 15 °C and 1 atmosphere) per calendar day |
| LT/cd                                | Throughput in long tons per calendar day; $1 LT = 2,240 lbs$                                                        |
| LT/cd                                | Throughput in long tons per calendar day; $1 LT = 2,240 lbs$                                                        |
| tonne SG/cd                          | Throughput in tonnes of syngas per calendar day                                                                     |
| tonne/cd                             | Throughput on feed basis in tonnes per calendar day                                                                 |
| P b/cd                               | Throughput on product basis in barrels per calendar day                                                             |
| P tonne/cd                           | Throughput on product basis in tonnes per calendar day                                                              |
| ST/cd                                | Throughput in short tons per calendar day; $1 \text{ ST} = 2,000 \text{ lbs}$                                       |
| ST/cd                                | Throughput in short tons per calendar day; $1 \text{ ST} = 2,000 \text{ lbs}$                                       |
| T b/cd                               | Throughput on feed basis in barrels per calendar day                                                                |
| Tonne                                | Metric Ton; 1 tonne = 1,000 kilograms                                                                               |