Production and Emissions Leakage from the Cap-and-Trade Program in California's Food Processing Industries

Stephen F. Hamilton (Cal Poly) Ethan Ligon (UC Berkeley) Aric Shafran (Cal Poly) Sofia Villas-Boas (UC Berkeley)

CAL POLY

ORFALEA COLLEGE OF BUSINESS

1. Introduction

- The Cap-and-Trade Program has the potential to transfer output from California producers to out-of-state producers
 - Market transfer effects arise when a cost shock (compliance costs) applies unilaterally to one region (California), creating cost-advantage in other regions
 - Production leakage refers to the increase in output in other regions in response to cost-advantage
 - Emissions leakage depends on production leakage and the relative emissions efficiency (CO_2e/MT) of plants reducing output and those increasing output

Market Transfer

AL POLY

SAN LUIS OBISPO

EGE OF BUSINESS

1.1 Market Transfer and Leakage

- Unilateral environmental regulations raise cost for CA firms, reducing output ($\Delta Q_{CA} < 0$)
- When market prices rise in response, output rises in unregulated regions ($\Delta Q_{UR} > 0$)
 - $-\Delta Q_{\text{UR}}$ is the amount of "production leakage"
- Market transfer (M) relates the two effects
 - In absolute value terms: $\Delta Q_{UR} = M^*(\Delta Q_{CA})$
 - If M = 1, production is offset 1-to-1 by outside producers
 - Generally, 0 < M < 1 (less than 100% leakage of production)

POIV

ORFALEA COLLEGE OF BUSINESS

1.2 Market Transfer Mechanism

- Market transfer effects occur following a regional cost increase through "forward-shifting" of cost
 - 1 of 3 things occur from a regional cost increase:
 - Cost is shifted backwards to the regional supply chain in the form of lower farm prices for raw material
 - Cost is absorbed by food processors in decreased margins
 - Cost is shifted forward into higher consumer prices
 - Forward shifting of cost into consumer prices causes:
 - Decreased total production (regulated + un-regulated areas)
 - Increased output in un-regulated areas (production leakage)

Market Transfer

LPOIN

SAN LUIS OBISPO

EGE OF BUSINESS

1.3 Emissions Leakage

- Emissions leakage depends on production leakage and relative emissions efficiency
 - For equally-efficient plants, emissions leakage occurs one-for-one with production leakage
 - If market transfer is 50% of California production, then every 1 unit of emissions decrease in California is associated with ½ unit of emissions increase elsewhere

– Global CO_2 e emissions decline by half as much as in California

 If market transfer occurs from natural gas-fired plants in California to coal-fired plants elsewhere, then emissions leakage will exceed production leakage

Market Transfer

AL POLY

ORFALEA COLLEGE OF BUSINESS

1.4 Note on Production Leakage

- Production leakage and emissions leakage only occur when regional policies are not harmonized:
 - If all producers face similar compliance costs, then *all* regions curtail production in response to higher costs
 - Global prices for goods requiring CO₂e inputs rise
 - Costs are passed through to higher consumer prices without stimulating production by unregulated polluters
 - A smaller share of cost is shifted backwards to reduce economic activity in regulated regions
- Allowance allocations (and other policies) can reduce production and emissions leakage

Market Transfer

Cal Poly

SAN LUIS OBISPO

LEGE OF BUSINESS

1.5 Scope of Study

- We examine production leakage from California food processors to out-of-state food processors in response to the Cap-and-Trade Program absent any allowance allocation:
 - Processing tomatoes (global market transfer)
 - Cheese (market transfer within the U.S.)
 - Wet Corn (market transfer within the U.S.)
 - Sugar (market transfer within the U.S.)

EGE OF BUSINESS

2. The Model

- Market transfer depends on the extent to which cost increases are passed into consumer prices, stimulating increased out-of-state production
- Forward passing of cost into consumer markets raises consumer prices, resulting in:
 - (1) Decreased California production
 - -(2) Decreased U.S. (or global) production
- Production leakage (increased out-of-state production) is the difference: (1) (2).

RFALEA COLLEGE OF BUSINESS

POI

2.1 Residual Demand

- Residual demand facing California food processors: $D^{R}(P) = D^{T}(P) - S^{U}(P)$
 - $D^{T}(P) =$ Total Market demand
 - $-S^{U}(P) =$ Supply from unregulated regions
- Residual demand is more elastic than market demand: $\varepsilon_{T} = \frac{\varepsilon_{T}}{1 - \frac{1}{2}} \varepsilon_{U}$

$$\mathcal{E}_R = \frac{1}{s} + \left(\frac{1 - \frac{1}{s}}{s} \right) \mathcal{E}_U$$

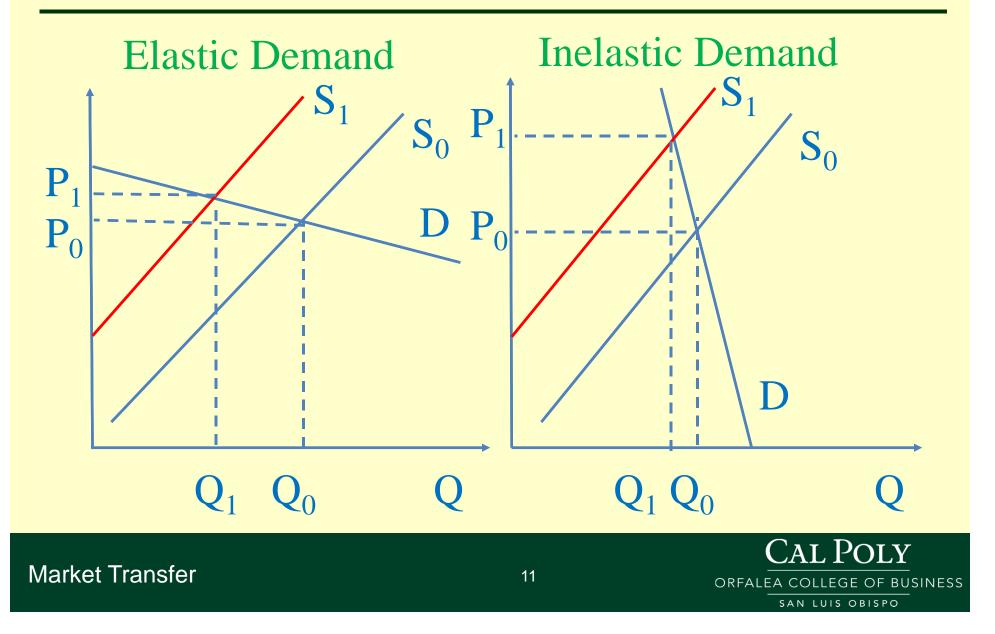
- $-\varepsilon_R$ = residual demand elasticity
- $-\varepsilon_U$ = supply elasticity of out-of-state producers
- -s = market share of California producers

Cat Poiv

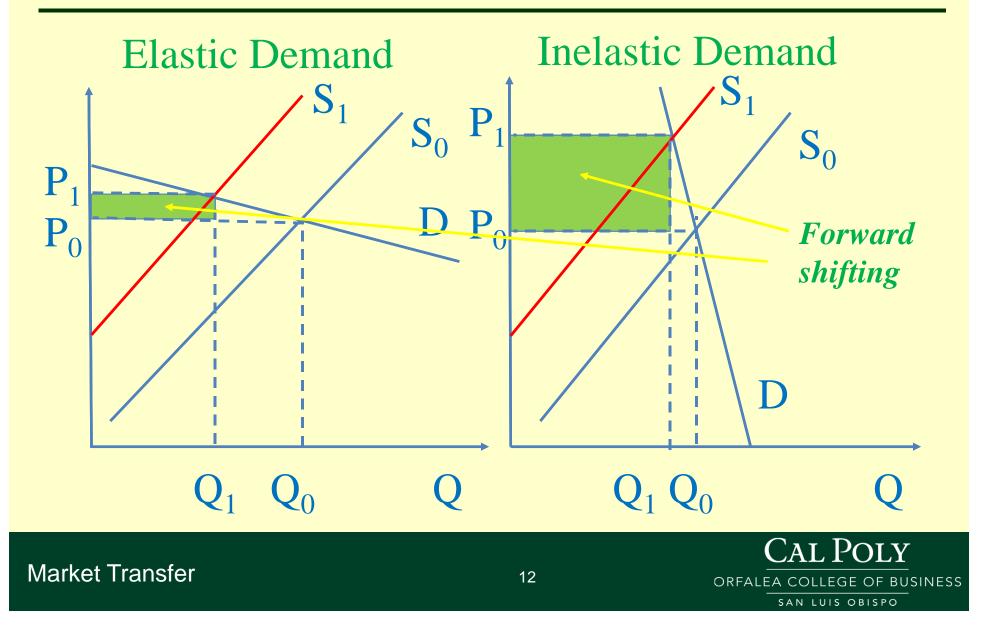
SAN LUIS OBISPO

EGE OF BUSINESS

2.2 Market Transfer Effects


- Market transfer effects are calculated in the case of competitive equilibrium
 - Cost changes from the Cap-and-Trade Program are passed backwards (decreased farm prices) or forward (increased consumer prices) according to:
 - Residual demand elasticity facing California producers
 - Supply elasticity in the California market
- When residual demand is more elastic:
 - Smaller share of cost is shifted forward
 - Larger share of cost is shifted backwards, reducing economic value in California's supply chain

Ροιν


SAN LUIS OBISPO

EGE OF BUSINESS

2.3 Forward Pass Through

2.3 Forward Pass Through

2.3 Forward Pass Through

3. Data and Methods

- Industries considered: 17 of 38 regulated food processing facilities in California
 - Energy share of variable cost based on industry data

Table 4.1. Energy Intensity of Production in Selected Industries

		Natural Gas	Energy Share of Variable Cost	Energy per Unit of Output
Industry	Time Period	(\$/MMBtu)	(%)	(MMBtu/MT)
Processing Tomatoes	2010-2012	\$4.68	4.24%	5.36
Cheese	2010-2013	\$5.04	4.40%	5.43
Wet Corn	2013	\$6.25	6.90%	4.39
Sugar	2006-2009	\$7.57	5.33%	8.85

Market Transfer

ORFALEA COLLEGE OF BUSINESS

3.1 Cap and Trade and Energy Cost

- Increased energy cost under the Cap-and-Trade Program mediated through natural gas prices:
 - U.S. Energy Information Administration (2007) CO_2e emissions factors per MBtu of natural gas
 - Allows changes in compliance costs to be mapped to changes in effective cost per MBtu of natural gas.
 - In periods with "low" natural gas prices, compliance costs are a larger percentage of variable cost
 - Food processors outside California are assumed to have similar technology as California plants

POI

EA COLLEGE OF BUSINESS

3.2 Data and Methods

- Methods differ by food processing industry according to quality of available data:
 - Processing Tomatoes (paste and diced):
 - Estimate both supply and demand elasticities
 - Wet Corn: Estimate supply, demand elasticities taken from the economics literature
 - Cheese: Supply and demand elasticities taken from estimates in the economics literature
 - Sugar: Supply and demand elasticities taken from estimates in the economics literature

Market Transfer

ΙΡΟΙΥ

SAN LUIS OBISPO

EGE OF BUSINESS

3.3 Long Run Supply Estimates

- Processing Tomatoes: Supply elasticity = 9.8
 Spatial simulation model based on transport costs
- Wet Corn: Supply elasticity = 1.9
 - Two-Stage Least Squares (TSLS) estimate
 - Instumented with Midwest starch prices
- Cheese: Supply elasticity = 1.2
 - Chavas and Klemme (1986): 6-year supply response
- Sugar beets: Supply elasticity = 1.7
 Lopez (1989) = 1.2; Sudaryanto (1987) = 2.3

20

ORFALEA COLLEGE OF BUSINESS

3.4 Demand Elasticities

- Processing Tomatoes: Demand elasticity = 3.1
 TSLS with cost instruments
- Wet Corn (sweeteners): Demand elast. = 0.6
 - Sudaryanto (1987)= 0.6; Lopez (1988) = 0.6
- Cheese: Demand elasticity = 0.7
 - Bergtold (2004) = 0.7; range in literature = 0.4 1.5
- Sugar (sweeteners): Demand elasticity = 0.6

Table 5.4. Supply, Demand and Market Share Parameters

Industry	Demand Elasticity	Supply Elasticity	California Market Share	Residual Demand Elasticity	Market Designation
Processing Tomatoes	3.1	9.8	31.90%	30.6	Global
Cheese	0.7	1.2	21.13%	7.8	U.S.
Wet Corn	0.6	1.9	1.75%	141.3	U.S.
Sugar	0.6	1.7	11.58%	18.2	U.S.

Market Transfer

Table 5.4. Supply, Demand and Market Share Parameters

Industry	Demand Elasticity	Supply Elasticity	California Market Share	Residual Demand Elasticity	Market Designation
Processing Tomatoes	3.1	9.8	31.90%	30.6	Global
Cheese	0.7	1.2	21.13%	7.8	U.S.
Wet Corn	0.6	1.9	1.75%	141.3	U.S.
Sugar	0.6	1.7	11.58%	18.2	U.S.

Residual demand facing California food processors is an order of magnitude more elastic than market demand → Greater backward shifting of cost (less forward shifting)

Market Transfer

ORFALEA COLLEGE OF BUSINESS

CAL POLY

4. Leakage Results

• Market Transfer: Share of California output decrease that is offset by increased out-of-state production

	icted Cost-Shifting and Market Tran <u>Share of Cost Increase</u>			
Industry	Shifted Backward	Shifted Forward	Market Transfer	
Processing Tomatoes	76%	24%	68%	
Cheese	87%	13%	57%	
Wet Corn	99%	1%	76%	
Sugar	91%	9%	71%	

Μ

4.1 Processing Tomatoes

 Table 6.2. Predicted Effects of the Cap-and-Trade Program on the Global Processing Tomato Market

Impact	\$0.00	\$12.73	\$16.69	\$23.40	\$33.82
U.S. Quantity (1,000 MT)	37,904	37,729	37,675	37,582	37,439
California Quantity (1,000 MT)	12,093	11,540	11,369	11,078	10,626
Market Price (\$/MT)	\$890.76	\$892.09	\$892.50	\$893.20	\$894.29
Percent increase MC of processing		0.62%	0.81%	1.13%	1.63%
Increase in global price (\$/MT)		\$1.33	\$1.74	\$2.44	\$3.53
Cost Absorbed in Production (\$/MT)		\$4.15	\$5.44	\$7.63	\$11.03
Decrease in California supply (1,000 MT)		552.23	724.01	1,015.10	1,467.12
Percent Decrease in California Supply		4.57%	5.99%	8.39%	12.13%
Production Leakage (1,000 MT)		377.00	494.37	693.12	1,001.77
Leakage as Percent of California Supply		3.12%	4.09%	5.73%	8.28%

		CAL POLY
Market Transfer	22	ORFALEA COLLEGE OF BUSINESS
		SAN LUIS OBISPO

4.2 Cheese

Table 6.3. Predicted Effects of the Cap-and-Trade Program on the U.S. Cheese Market

	Compliance Costs (\$/MT CO ₂ e)					
Impact	\$0.00	\$12.73	\$16.69	\$23.40	\$33.82	
U.S. Quantity (1,000 MT)	5,140	5,137	5,136	5,135	5,132	
California Quantity (1,000 MT)	1,086	1,079	1,077	1,074	1,068	
Market Price (\$/MT)	\$3,679.42	\$3,682.33	\$3,683.23	\$3,684.76	\$3,687.14	
Percent increase MC of processing		0.59%	0.78%	1.09%	1.57%	
Increase in U.S. price (\$/MT)		\$2.91	\$3.81	\$5.34	\$7.72	
Cost Absorbed in Production (\$/MT)		\$18.87	\$24.74	\$34.68	\$50.13	
Decrease in California supply (1,000 MT)		6.68	8.76	12.29	17.76	
Percent Decrease in California Supply		0.62%	0.81%	1.13%	1.64%	
Production Leakage (1,000 MT)		3.84	5.04	7.06	10.21	
Leakage as Percent of California Supply		0.35%	0.46%	0.65%	0.94%	

Market	Transfer
Mainer	

ORFALEA COLLEGE OF BUSINESS

CAL POLY

4.3 Wet Corn

Table 6.4. Predicted Effects of the Cap-and-Trade Program on the U.S. Wet Corn Market

	Compliance Costs (\$/MT CO ₂ e)					
Impact	\$0.00	\$12.73	\$16.69	\$23.40	\$33.82	
U.S. Quantity (1,000 MT)	28,840	28,839	28,838	28,837	28,836	
California Quantity (1,000 MT)	504	496	494	491	485	
Market Price (\$/MT)	\$441.38	\$441.43	\$441.44	\$441.46	\$441.50	
Percent increase MC of processing		0.75%	0.98%	1.38%	1.99%	
Increase in U.S. price (\$/MT)		\$0.04	\$0.06	\$0.08	\$0.12	
Cost Absorbed in Production (\$/MT)		\$3.26	\$4.28	\$6.00	\$8.67	
Decrease in California supply (1,000 MT)		7.07	9.27	13.00	18.79	
Percent Decrease in California Supply		1.40%	1.84%	2.58%	3.73%	
Production Leakage (1,000 MT)		5.35	7.02	9.84	14.22	
Leakage as Percent of California Supply		1.06%	1.39%	1.95%	2.82%	

ORFALEA COLLEGE OF BUSINESS

CAL POLY

4.4 Sugar

Table 6.5. Predicted Effects of the Cap-and-Trade Program on the U.S. Sugar Market

		Compliance Costs (\$/MT CO2e)				
Impact	\$0.00	\$12.73	\$16.69	\$23.40	\$33.82	
U.S. Quantity (1,000 MT)	7,480	7,478	7,477	7,476	7,475	
California Quantity (1,000 MT)	866	859	857	854	849	
Market Price (\$/MT)	\$699.91	\$700.19	\$700.28	\$700.43	\$700.67	
Percent increase MC of processing		0.48%	0.63%	0.88%	1.27%	
Increase in U.S. price (\$/MT)		\$0.29	\$0.37	\$0.53	\$0.76	
Cost Absorbed in Production (\$/MT)		\$3.06	\$4.01	\$5.62	\$8.12	
Decrease in California supply (1,000 MT)		6.43	8.42	11.81	17.07	
Percent Decrease in California Supply		0.74%	0.97%	1.36%	1.97%	
Production Leakage (1,000 MT)		4.59	6.02	8.44	12.20	
Leakage as Percent of California Supply		0.53%	0.70%	0.97%	1.41%	

N /		1	T		
IV	ari	Ket	Tra	nsi	er

ORFALEA COLLEGE OF BUSINESS

CAL POLY

5. Conclusion

- Estimated market transfer effects are substantial:
 - 57% to 76% of the production decrease in California is offset by production increases elsewhere (U.S. or international)
- Decrease in California production varies substantially across industries. In the case of \$20/MT compliance cost:
 - Tomatoes: 7.17% decrease
 - Cheese: 0.97% decrease
 - Wet Corn: 2.21% decrease
 - Sugar: 1.17% decrease

with 68% market transfer

- with 57% market transfer
- with 76% market transfer

with 71% market transfer

AL POLV

ORFALEA COLLEGE OF BUSINESS

Supply is more elastic in the case of processing tomatoes and wet corn

5.1 Conclusion

- Majority of cost increase is shifted backwards in supply:
 - Absent allowance allocations, the California supply chain absorbs 76% - 99% of the cost increase
 - Lower farm prices and reduced processing margins (continuous effects)
 - Potential exit of food processing plants (discrete effects)

• Emissions leakage differs from production leakage

- Emissions leakage depends on relative efficiency of California plants reducing output and out-of-state plants increasing output
 - Emissions efficiency (MT CO_2e / MMBtu) for natural gas = 0.053
 - Emissions efficiency (MT $CO_2e / MMBtu$) for bituminous coal = 0.093