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• In 2012, CO2-EOR fields produced about 353,921 barrels of oil per day (bbl/d) in the 

U.S., which amounts to roughly 5.5% of domestic crude oil production. [1] 

•  Additional CO2-EOR production is limited by scarcity of CO2 supply 

• ~ 80% of the CO2 used for EOR comes from naturally occurring, underground 

accumulations of CO2 [2] 

• Remaining ~20% comes primarily from natural gas processing and fertilizer 

production plants [2] 

• CO2 demand from natural sources will most likely continue to exceed supply, 

creating an incentive for CO2-EOR operators to pursue opportunities to capture 

man-made CO2 from large industrial facilities.  

2 

CO2-EOR Production & CO2 Supply 
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CO2-EOR Potential 

  

Technically Recoverable 
Oil (Billion Barrels) 

Economically 
Recoverable Oil (Billion 

Barrels) 

Economic CO2 Demand/Storage 
(Million Metric Tons) 

Oil price / 
CO2 price 

State of Art 
Next 

Generation 
State of Art 

Next 
Generation 

State of Art Next Generation 

$85/bbl / 
$40/tCO2  

61.4 120.3 26.9 67.2 10,430 19,930 

$45/bbl / 
$23.25/tCO2 

61.4 120.3 13.9 49.3 4,800 13,400 

Source [3] 



• Total benefit from 

sequestering CO2 

through EOR 

equivalent to ~1-3.5 

times annual U.S. 

energy-related CO2 

emissions, depending 

on oil & CO2 price and 

technology used. [3] 
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Sequestration Potential 
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• Fields with long operating histories and large numbers of wells 

• Observed quality of construction and maintenance in the field varies considerably with location, 

operator and age 

• May have multiple owners over time and well files and well histories may be missing or 

incomplete 

• State and federal records may also be incomplete, given that oil exploration and production in the 

U.S. predated regulation by several decades in some cases 

• Location and plugging status of all wells within the field may be unknown or imprecisely known 

• Orphan wells are ubiquitous in regions that have undergone oil and gas exploration and are a 

potentially significant leakage risk for CO2-EOR projects 

• Orphan wells may have been constructed and/or plugged using outdated methods, and may have 

not been maintained over time to ensure that the integrity of the construction and plugging 

materials has not degraded 
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CO2-EOR Challenges 



• Maintaining mechanical integrity critical to preventing leakage; performance of existing projects 

generally not well documented/publicly available 

• Numerous studies demonstrate that determining the precise number of violations, mechanical 

integrity and contamination incidents, and their variation with time or location is not possible 

with existing data [5] 

• Information is incomplete, outdated, or nonexistent making it is difficult to infer exact 

mechanical integrity failure rates or the number, extent and frequency of contamination or 

leakage incidents 

• Class II regulations leave  significant discretion to operators  

• 40 states have primacy for Class II, contain 94% of Class II wells and produced 99% of U.S. 

onshore oil in 2015 

• Significant variation exists among state rules in terms of stringency and completeness, as well as 

in enforcement 
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CO2-EOR Challenges 



• The commercial time horizon for a CO2-EOR flood (a few years to decades) is shorter than the 

time horizon of interest for achieving effective sequestration of CO2 from the atmosphere 

(centuries or longer) 

• Migration of CO2 out of pattern, into authorized zones, or to the atmosphere is possible after 

injection and production cease  due to lack of focus on post injection site closure 

• Change in ownership may result in inconsistent stewardship of the stored CO2 and/or loss of 

critical knowledge of the field and its operating history 

• Development of  advanced EOR techniques could result in operators reentering CO2-EOR fields 

at a future date to recover additional reserves, which could necessitate “blowing down” the field 
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CO2-EOR Challenges 



• Largest documented release rate occurred at a blowout at the Sheep Mountain CO2 Dome in 

Colorado.  

• Estimated 7,000 to 11,000 tons of CO2 were released per day for 17 days, resulting in a total 

of approximately 200,000 tons of leaked CO2. [6] 

• Modeled CO2 leakage rates from a completely unobstructed pipe found a maximum hypothetical 

CO2 flow rate of approximately 20,000 metric tons/day (assuming a 7” inside diameter well and 

depth of ~5,000 feet) 

•  Maximum exit gas velocity and flow rate is limited by the speed of sound 

• This theoretical maximum rate is approximately two times greater than Sheep Mountain [7]  

• Maximum estimated leak rate from Aliso Canyon = 1,392 metric tons/day 

• Leakage can occur through combination of well and geologic pathways, e.g. Leroy and Yaggy 

underground gas storage facilities [8][9] 
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Leakage Pathways and Rates 



• Detailed site characterization to determine geologic suitability 

• Site-specific Area of Review  and Corrective Action plans that take into account field data and 
operating history 

• Robust methods for identifying existing wells, including 

1. Historical Record Review 

2. Site Reconnaissance 

3. Aerial and Satellite Imagery Review, and;  

4. Geophysical and Air Emissions Surveys 

• Ensuring MI of existing wells, including  

1. Well Record Review 

2. Field Inspection and Testing, and; 

3. Corrective Action 

• Best practices for new well construction and conversion of existing wells 

• Robust leak inspection, detection, reporting, and repair standards 

• Comprehensive Mechanical Integrity Testing Plan, including post-closure 
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Solutions 
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