Specifications for Commercial Refrigeration

Whitney Leeman, Ph.D.
ARB Workshop on Stationary Source High-GWP Early Action Items

February 15, 2008
• Background
• Data Sources, Emissions and Trends
• Existing Regulations & International Experience
• Potential Control Strategies
• Emission Reduction Projections
• Regulatory Concepts & Costs
• Data Gaps, Ongoing Research, Questions
• Working Group Formation
• Timeline & Contact Information
Types of Commercial Refrigeration Systems

- Direct expansion (DX) systems used in supermarkets, cold storage warehouses, industrial food processing

- Standalone equipment (open and closed display cases) and refrigerated vending machines
• Commercial Refrigeration Systems Emissions Sources
 – Direct refrigerant emissions occur during equipment manufacturing/charging, lifetime (from leaks, ruptures, maintenance), and end-of-life (EOL)
 – Indirect emissions (CO_2E emissions resulting from energy use) occur during equipment manufacture, lifetime operation, and EOL
Existing Systems

• Direct Expansion (DX) Systems
 – Also called centralized or multiplex systems
 • Supermarkets, cold storage warehouses, built-up refrigeration/freezing systems for food processing, etc.
 – High direct emissions
 • Leaks result from vibration and thermal expansion of numerous pipes, threaded joints, fittings, and valves
 • Ruptures can result in huge refrigerant losses
 – High indirect emissions due to energy inefficient system components, designs
 • Lack of heat recovery in some systems, open cases, poor air curtains, inefficient lighting, use of anti-sweat heaters, etc.
• **Standalone Equipment and Vending Machines**
 – Low direct emissions (EOL), high indirect emissions
 – Large numbers of standalone cases and vending machines in CA
 • ~500,000 refrigerated vending machines in CA
 • Open and closed standalone cases yet to be enumerated
Data Sources, Emissions, and Trends: Rule 1415

- Rule 1415 Data
 - Reporting of annual ODS usage for RAC systems > 50 lbs in SCAQMD only
 - Leak rates exceed 35% for 11% of systems, 100% for 2.7% of systems
 - The top 15 SIC codes emit 80% of total

<table>
<thead>
<tr>
<th>SIC Code</th>
<th>Description</th>
<th>Emissions MTCO2E/year</th>
<th>Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>5400</td>
<td>FOOD STORE</td>
<td>94820</td>
<td>255</td>
</tr>
<tr>
<td>5490</td>
<td>GROCERY-RETAIL</td>
<td>54116</td>
<td>207</td>
</tr>
<tr>
<td>2013</td>
<td>FOOD PROCESSOR</td>
<td>11001</td>
<td>5</td>
</tr>
<tr>
<td>4960</td>
<td>DISTRICT HEATING AND COOLING</td>
<td>6188</td>
<td>10</td>
</tr>
<tr>
<td>8700</td>
<td>OFFICE BUILDING</td>
<td>5137</td>
<td>141</td>
</tr>
<tr>
<td>4810</td>
<td>TELEPHONE COMMUNICATION</td>
<td>5071</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>WHOLESALE TRADE NON-DURABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5142</td>
<td>GOODS/PACKAGED FROZEN FOODS</td>
<td>4643</td>
<td>1</td>
</tr>
</tbody>
</table>
Data Sources, Emissions, and Trends: ARMINES

- **Commercial RAC Inventory Development for California**
 - Contractor Denis Clodic/ARMINES
 - Preliminary estimates, DX systems

<table>
<thead>
<tr>
<th>Direct emissions or leaks</th>
<th>Indirect emissions or energy use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak rates ~30% per year or ~2.7 MMTCO(_2)E</td>
<td>Indirect CO(_2) emissions ~2.3 MMTCO(_2)E</td>
</tr>
<tr>
<td>Typical CA DX system charge ~2800 lbs (large release potential)</td>
<td></td>
</tr>
<tr>
<td>Banked refrigerant in CA DX systems is ~7.5 MMTCO(_2)E</td>
<td></td>
</tr>
</tbody>
</table>
Data Sources, Emissions, and Trends: ARMINES (continued)

- **CA RAC Inventory: Preliminary Estimates, Continued**
 - Standalone systems, direct emissions
 - Emission rates estimated at 1% of the charge per year for stand-alone equipment, most of which are EOL emissions
 - Standalone systems, indirect emissions
 - More standalone systems in CA than anticipated; energy use ~50% of the commercial refrigeration total
Data Sources, Emissions, and Trends: USEPA Vintaging Model

- **Estimated CA Commercial/Industrial/Cold Storage Refrigeration Emissions**
 - HFC emissions ~2.5 MMTCO₂E
 - ODS emissions ~6 MMTCO₂E

2006 CA Emission Sources

- HFCs
- ODSs

- Domestic Refrigeration
- Commercial & Transport Refrigeration
- Industrial Process Refrigeration/Cold Storage
- Mobile Air Conditioning
- Large Commercial AC (chillers)
- Small Commercial AC
- Residential AC
- Fire Extinguishing
- Foams
Data Sources, Emissions, and Trends: USEPA Vintaging Model

- Estimated CA Commercial/Industrial/Cold Storage Refrigeration Banks
 - HFC Banks ~12.5 MMTCO$_2$E
 - ODS Banks ~35 MMTCO$_2$E

2006 CA Banks

HFCs

ODSs

- Domestic Refrigeration
- Commercial & Transport Refrigeration
- Industrial Process Refrigeration/Cold Storage
- Mobile Air Conditioning
- Large Commercial AC (Chillers)
- Small Commercial AC
- Residential AC
- Fire Extinguishing
- Foams
Existing Regulations

- ODSs Have Some Sales, Record-Keeping/Reporting, Technician Certification, and Emissions Restrictions
 - Section 608 of CAAAs and SCAQMD Rule 1415
- HFCs Subject to “No Venting” Provision of CAAAs, Section 608
• STEK Regulation
 – The Dutch regulation on leak-free refrigeration equipment, which includes the following:
 • Flared joints shall not be used
 • Pipes shall be joined by welded or brazed joints
 • Systems with a charge >3 kg shall be inspected annually
 • Systems with a charge of >1000 kg shall be under constant supervision
 • Logbooks must be kept for all systems with a charge >3 kg
 • Refill or top-off is only permitted if leaks are identified and repaired
International Experience (continued)

• EU F-Gas Regulation
 – Similar to, but more restrictive than, Section 608 of the CAAAs
 • Covers only Kyoto gases
 • Requires containment, record-keeping, recovery, training/certification, reporting, labeling, use control
 • Also specifies certain market prohibitions (shoes and tires containing SF$_6$, one-component foams, one-way cylinders, aerosols, etc.)
Potential Control Strategies

• DX Systems
 – Direct Emissions Reduction
 • Indirect or Secondary Loop (SL) Systems
 – Can utilize low-GWP refrigerants, or significantly reduced quantities of high-GWP refrigerants
 ▪ Charge reduction important to reduce emissions from ruptures
 – Automatic leak detection in machine rooms possible
 ▪ Benefits include easier leak detection/repair, fewer refrigerant purchases
Potential Control Strategies (continued)

• DX Systems, Continued
 – Indirect Emissions Reduction
 • Machine Room Technologies
 – Evaporative condensers
 – Floating head pressure controls
 – Heat recovery
 • Display Case Technologies
 – Add doors to display cases
 – Improved air curtains
 – Energy-efficient reach-ins, evaporator and condenser fan motors, compressor systems, lighting
 – Anti-sweat heater controls
 – Hot gas defrost
Potential Control Strategies (continued)

• Standalone Systems and Vending Machines
 – Direct Emissions Reduction
 • Alternative refrigerants currently possible (i.e. \(\text{CO}_2 \))
 • Future innovations may include thermoacoustic or magnetic refrigeration
Potential Control Strategies (continued)

- **Standalone Systems and Vending Machines**
 - Indirect Emissions Reduction
 - Compressor and component improvements (i.e. efficient lighting, fans, anti-sweat heaters, addition of doors)
 - USDOE is developing energy conservation standards for:
 - Self-contained and remote display cases (ASHRAE 72, 2005, for open and closed display cases)
 - Vending machines (ASHRAE 32.1, 2004)
 - Walk-in coolers and freezers (no test methods yet)
Emission Reduction Projections

• DX System Direct Emissions 2020 Forecast: BAU, SL, and SL With Low-GWP Refrigerants

Source: Interim Draft Report, ARMINES, Centre énergétique et procédés - CEP
http://www-cep.ensmp.fr/english/

Business As Usual

Secondary Loop (SL)

SL + Low-GWP
Energy Savings For CA Supermarkets
- 30% savings relative to BAU
- 0.7 TWh/year or 0.3 MMTCO$_2$E/year, in 2007; 3 MMTCO$_2$E by 2020

![Energy Savings in all Supermarkets in California](chart)
Regulatory Concepts

• **New Refrigeration Systems**
 – Limit direct emissions to X% for all new systems
 • Will likely require installation of indirect systems
 – Full accessibility to all piping
 – Automatic leak detection

• **Existing and New Retail Food Systems**
 – Increase energy efficiency by 30%
• First Approximation of Costs
 – Installation costs expected to dominate over energy saving device costs for new systems
 • USEPA and Oak Ridge National Lab estimate that for a SL system with HFC refrigerant, installation costs will be 20% higher than baseline DX system
 – Using ammonia refrigerant results in installation costs 75% higher than the baseline case
 – Maintenance costs are expected to be lower than for the baseline case
• First Approximation of Costs, Continued
 – Costs could largely be offset by maintenance, refrigerant, and energy savings benefits
 • Benefits depend largely on future refrigerant and energy costs
Data Gaps, Ongoing Research

• **Data Gaps**
 – Costs, benefits, and payback periods associated with installing new systems and upgrading existing systems

• **Ongoing Research**
 – RAC inventory and energy efficiency contract with Denis Clodic/ARMINES
Questions

- What should trigger the upgrading of existing systems (i.e. repair or future compliance date)?
- Should DOE test methods be adopted earlier for standalone equipment and vending machines?
Working Group Formation

- Focused Technical Group Formation
- Identify Key Stakeholders and Agency Partners
- Meet at Least Twice, Over Several Months
- First Meeting in March 2008
- If Interested, Please Provide Your Information
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2008</td>
<td>Working Group/Stakeholder Formation</td>
</tr>
<tr>
<td>Summer 2008</td>
<td>Working Group/Stakeholder Consultation Meeting</td>
</tr>
<tr>
<td>Winter 2008</td>
<td>1º Public Workshop to Discuss Proposed Control Strategies and Options</td>
</tr>
<tr>
<td>Spring 2009</td>
<td>2º Working Group/Stakeholder Consultation Meeting</td>
</tr>
<tr>
<td>Winter 2009</td>
<td>2º Public Workshop on Proposed Strategies</td>
</tr>
<tr>
<td>Summer 2010</td>
<td>Regulatory Language and ISOR Finalized</td>
</tr>
<tr>
<td>Winter 2010</td>
<td>Board Meeting on Action</td>
</tr>
</tbody>
</table>
- Whitney Leeman, Ph.D.
 Greenhouse Gas Reduction Strategies Section
 916-327-9480
 wleeman@arb.ca.gov

- More Information
 • Visit: http://www.arb.ca.gov/cc/commref/commref.htm
 • Join list serve at:
 http://www.arb.ca.gov/listserv/listserv.php
Questions?