From Wells to Burners: Methane Emissions from California Natural Gas

June 7th, 2016
Marc L. Fischer (mlfischer@lbl.gov)

◆ Problem Overview
 ◦ Significance of Natural Gas (NG) Methane
 ◦ Bottom-up Estimates of California NG methane emissions

◆ CALGEM-NG measurements
 ◦ Regional NG Emission Measurements for SF Bay Area
 ◦ UCD Airborne Measurements of NG Facilities
 ◦ LBNL Mobile Plume Integration (MPI) Measurements
 ◦ LBNL Residential Building and Appliance Measurements

◆ Summary and Recommendations
CALGEM team & collaborators

LBNL: Seongeun Jeong, Toby Walpert, Xinguag Cui, Justin Bagley, Wanyu Chang, Woody Delp, Dev Millstein

BAAQMD: Abhinav Guha, Phil Martien, David Fairley, Saffet Tanrikulu

CARB: Ying-Kuang Hsu, Mathias Falk, Abhilash Vijayan, Jorn Herner, Bart Croes, Vernon Hughes, Larry Hunsaker, Marc Vayssières, Richard Bode, Anny Huang, Joseph Fischer, Jim Narady, Webster Tassat, Mac McDougall, Steve Rider, Steven Aston, Neil Adler, and Harlan Quan

CEC: Guido Franco, Yu Hou

CIT: Sally Newman, Paul Wennberg, Christian Frankenberg

EarthNetworks: Christopher D. Sloop

Kings College London: Heather Graven, Kieran Brophy

JPL: Nick Parazoo, Riley Duren, Chip Miller

LLNL: Tom Guilderson

NASA-Ames: Laura Iraci, Matthew Johnson, Emma Yates

PG&E: François Rongere, Gerry Bong

Picarro: Chris Rella

Scripps/UCSD: Ralph Keeling, Jooil Kim, Ray F. Weiss

SJSU: Craig Clements, Neil Lareau, Matthew Lloyd

SNL: Ray Bamba, Hope Michelson, Brian LaFranci

UC Berkeley: Allen Goldstein

UCSB: Ira Leifer

UC Davis: Stephen Conley, Ian Faloona, Shobhit Mehrorta

UC Irvine: Don Blake, Xiaomei Xu

UCR: Jingsong Zhang

CALGEM natural gas CH₄ research was predominantly supported by the California Energy Commission though grants to LBNL and UCD
Problem Overview

- Natural gas provides ~40% of California fossil fuel energy
- Methane is a potent short lived climate pollutant
 - 3% of well-to-burner NG leaked as methane approximately doubles climate forcing of remaining 97% gas combusted to CO$_2$ on 20 year timescale
- CA and US now moving to control CH$_4$ emissions
 - 10-20% of California’s total methane emissions likely from NG
 - Entire production to consumption chain susceptible to emissions
 - Measurements now fill some gaps in understanding across NG infrastructure
Bottom-up Natural Gas CH$_4$ Emissions

- Map emissions w/ 2010/2011 US-EPA emission factors and CA specific GIS activity data
 - Production: Dry gas and petroleum wells
 - Transmission, compression, and storage
 - Distribution & consumption
- Estimated NG emissions ~ 330 Gg CH$_4$ yr$^{-1}$ (-20% to + 30% @ 95%)
 - Top-down studies in SoCAB suggest higher NG emissions (Peischl et al., 2013, Wunch et al., 2016)
 - 2016 US-EPA estimates increase production but decrease distribution emissions
 - NG is still small fraction of total California CH$_4$ emissions
CALGEM-NG CH₄ Measurements

- Regional Emissions
 - Tower measurements
 - Atmospheric Inversions
- Large Facilities
 - Aircraft Observations
- Localized Sources
 - Mobile Plume Integration
 - Building Studies

Collaborative tower measurements
Atmospheric Regional Inverse Modeling

LBNL Plume Integration UC Davis Mass-balance UC Irvine VOC LBNL Building Science
Regional NG Emission Estimate for San Francisco Bay Area

- Oct-Dec, 2015 sampling at six collaborative sites
 - CH_4, ethane, pentane, toluene, CO, and other VOC
 - Livermore hourly CH4 & VOC
 - Daily flask sampling at other sites analyzed at NOAA and UCI
- Fossil VOC:CH_4 compositions adopted from PG&E gas reporting, airborne measurements, and previous mobile source studies (e.g., Kirchstetter et al., 1996)
SFBA Biological and Fossil CH\textsubscript{4} Sources

- Biological sources
 - Landfill 51%
 - Livestock 15%
 - Wastewater 6%
 - Wetland 3%

- Fossil sources
 - NG distribution 15% (0.2% NG consumption)
 - Mobil and refining 4%
Sector Specific SFBay CH$_4$ Inversion

- Inversion of biological, NG, and petroleum CH$_4$ emissions constrained by CH$_4$ and VOCs
- Hierarchical Bayesian estimates optimize background offsets, VOC source compositions, and emission scaling factors

Preliminary results:

1) Biological CH$_4$ dominates
2) NG emissions higher than prior at 0.3-0.5% SFBA NG consumption (Jeong et al., in prep)

- Approach amenable to sustained observations in other locations
Facility Specific Emissions
San Joaquin Valley Production

- UCD Airborne mass balance measurements
- Example: April, 2014 Belridge South petroleum production field with steam injection
 - Clear downwind enhancements of CH$_4$ and ethane
- Emissions estimated from mass balance flight 1900 +/- 700 kg CH$_4$ hr$^{-1}$ (17 +/- 6 Gg CH$_4$ yr$^{-1}$)
- Bottom-up 15 – 20 Gg CH$_4$ yr$^{-1}$
- Collaborative observations of Kern River/Front fields show emissions varied with well completion (Leifer et al., in prep)
Facility Level Emissions: Natural Gas Storage

- **UCD Airborne mass balance measurements**
 - Four sites observed 3-8 times from June, 2014 – May, 2016 (+ four others recently)
 - Emissions vary from ND to > 400 kg CH$_4$ hr$^{-1}$
 - Median emissions ~ 1 – 2 x annual voluntary reporting
 - C$_2$H$_6$:CH$_4$ ~ 5% by vol., - consistent w/ NG
 - Single point failures carry high risk: Oct,2015-Feb, 2016 Aliso Canyon well failure ~ 30% annual total CA fossil CH$_4$ emissions

(Mehrota et. al., in prep)
Facility Level Emissions: Petroleum Refining

- UCD Airborne mass balance measurements
 - Three refineries observed 3-5 times from Feb, 2015 – May, 2016
 - Emissions varied by site and date ~ 30 - 700 kg CH₄ hr⁻¹
 - Median emissions exceed annual emissions (4-25 x) reported to US-EPA
 - C₂H₆:CH₄ 6-10% by vol.

(Mehrota et. al., in prep)
Localized Source Emissions
LBNL Mobile Plume Integration (MPI)

- Cross-wind integral of CH\textsubscript{4} enhancement flux quantifies localized plume emission
 - Sample inlets can be set to 4-8 m above ground
 - Multi-analyzer system w/ 13CH\textsubscript{4} allows NG attribution for strong plumes
 - Anemometry of wind velocity
 - Tests at LBNL and local utilities show 30% accuracy with 3 passes with steady winds & small obstructions
Localized Plume Measurements: Bakersfield Distribution & Consumption

- Survey 80km of Bakersfield public streets
- Detect 20 large (~ 1 ppm) leaks above background
- 40% of total emissions found within 0.5 km of large distribution pipes
- Plume integrations yield total emissions of 6.4 kg CH$_4$ hr$^{-1}$
- Scaling by area suggests total emissions ~ 90 kg CH$_4$ hr$^{-1}$
- Comparing with consumption suggests ~ 0.3% distribution leakage – similar to bottom up
Localized Plumes: Sacramento Delta Gas Wells

- CA Dept. Cons. well map data
- Initial inspection of 13 capped or idle wells
 - Quantify one plume 5 +/- 1.7 g CH₄ hr⁻¹ (5 passes)
 - Detected three plumes 1.6-14 g CH₄ hr⁻¹ (1 pass each)
 - Non-detect downwind at 2 sites
 - 7 sites did not allow downwind access

CH₄ Enhancement in vertical plane

Methane Plume
Localized Sources:

East Bay Distribution & Consumption

- Small (<< 1 ppm) CH$_4$ plumes observed in SF East Bay
- Individual plumes emit ~ 0.07 – 0.3 g CH$_4$ hr$^{-1}$
- Emissions largest on commercial avenues w/ food service
- Total emissions ~ 5 g CH$_4$ hr$^{-1}$ over 30km route
Whole Building Measurements: Quiescent Residential Emissions

- **Measurements**
 - Depressurize house producing controlled inflow of outdoor air
 - Measure CH$_4$ enhancement relative to outdoor air
 - 13CH$_4$/12CH$_4$ identifies NG vs. biological
- **Results from 10 SF Bay homes**
 - Median leak rate 0.2 g CH$_4$ hr$^{-1}$ (0.1-0.4 g CH$_4$ hr$^{-1}$ lower-upper quartiles)
 - Equivalent to ~ 0.2% of house consumption
- CEC project underway to measure 50-75 homes across CA housing stock

$C_0Q + E = C_iQ$

$E = Q(C_i - C_0)$

Measured indoor (white) and outdoor (grey) methane during calibrated indoor leak (red)
Combustion Appliance Emissions

- **Emission Ratio Method**
 - Emission = product of $\text{CH}_4 : \text{CO}_2$ enhancements * measured NG usage

- **Tank-less water heaters**
 - Test of three tank-less water heaters yield emissions of 3 - 12 g CH$_4$ hr$^{-1}$
 (1 hr operation ~ equal 1 day of quiescent house leakage)

- **Clothes Driers and Gas Cooktop**
 - One gas range emitted ~ 2 g CH$_4$ hr$^{-1}$ in continuous operation
 - Two clothes driers emitted ~ 0.4 g CH$_4$ hr$^{-1}$ emissions in continuous operation
Summary

1. CH$_4$ emissions present across all NG subsectors from wells to burners

2. Regional inversions suggest emissions from SFBA distribution ~ 0.3-0.5% of NG consumption

3. Production field measurements (limited but) ~ consistent with bottom-up but expect variability (particularly well completion)

4. Gas storage facility emissions variable but ~ consistent with reporting

5. Petroleum refining emissions appear larger (4-25 x) than reporting

6. Localized emissions in distribution & consumption sectors measurable and appear to ~ scale with gas throughput
Recommendations

1. Daily multi-species tower measurements needed for inversion-base verification of regional integrated NG CH$_4$ emissions

2. Plume imaging from ground, air, and space needed to identify local emission hotspots to guide site specific quantification and mitigation

3. Mass balance flights and mobile plume integration needed for quantitative assessment of facility and localized source emissions

4. Continuous (open-path or multi-point CH$_4$) sensing valuable for ongoing leak detection at high volume/flow facilities

5. Energy efficiency programs would benefit from added leak detection and repair procedures and revised standards guidance for low-emission appliances