Environmental Justice Screening Method: Integrating Indicators of Cumulative Impact and Community Vulnerability into Regulatory Decision-making

Manuel Pastor, USC
Rachel Morello-Frosch, UC Berkeley
Jim Sadd, Occidental College
Our Research Team

- Manuel Pastor, Ph.D. in Economics, responsible for project coordination, statistical analyses, including multivariate and spatial modeling, and popularization
- James Sadd, Ph.D. in Geology, responsible for developing and maintaining geographic information systems (GIS), including location of site and sophisticated geo-processing
- Rachel Morello-Frosch, Ph.D. in Environmental Health Science, responsible for multivariate statistical analysis, health end-points, and estimates of risk.
Our Research Team: Previous Work –

* A wide range of issues and topics, all with a focus on environmental justice in California

- Location of TSDFs in Los Angeles County
- Distribution of TRI facilities in Southern California, with a second study considering all of California
- Longitudinal studies of siting of TSDF in Los Angeles County – assessing minority move-in hypothesis.
- Analysis of “riskscape” – estimate excess cancer risk and respiratory hazard from U.S. EPA Cumulative Exposure Project
- Analysis of “riskscape” and student demographics, with extension to consider association with asthma and student academic performance
- In virtually all analysis, evidence consistent with environmental disparities in California, reinforcing rationale for state mandates for the consideration of environmental justice
Current Project Summary

- Conduct multivariate modeling and testing to examine disparate impact of estimated risks associated with pollution exposures, particularly in Bay Area
- Conduct regression analysis of relationship between PM and ozone to birth outcomes, taking into account socioeconomic and other measures
- Compare available emissions inventory data with results of local study utilizing community-based participatory research (CBPR) methodology
- Develop a “screening tool” that would indicate locations and populations that may be of regulatory concern for disparate impact
- Consider alternative siting environmental justice assessment strategies for California Energy Commission
Screening Method Strategy:

- Develop indicators of cumulative impact and community vulnerability that:
 - Reflect research on air pollution, environmental justice, and health
 - Apply at various geographic levels
 - Are transparent, understandable and relevant to policy-makers and communities
 - Are reviewed early by community EJ groups, Project Advisory Committee and CARB

- Integrate indicators into environmental justice “screening method” applicable to multiple uses:
 - Regulatory decision-making and enforcement
 - Community outreach
 - Identifying areas for special regulatory attention
Categories of Concern and Analysis

- **Hazard proximity and land use**
 - Based on measures developed in EJ literature, ARB land use guidelines, and state data bases on environmental disamenities.

- **Health risk measures**
 - Based on EJ literature, available state and national data bases, modeling from emissions inventories.

- **Social Vulnerability**
 - Based on epidemiological literature on social determinants of health as well as EJ literature on determinant of siting and emissions.
Not the Only Game in Town . . .

Environmental Justice
Strategic Enforcement Assessment Tool (EJSEAT)
Social Demographic Indicators

Scaled Percent of Population:

- In Poverty
- Counted as Minority
- 25 Years Old and Over without HS Diploma
- Under 5 Years Old
- Over 64 Years Old
- In Linguistically Isolated Households

\[\div 6 \]

Average of Scaled Demographic Variables, Scaled Again

Environmental Indicators

Scaled:

- NATA Cancer
- NATA Neurological and Respiratory
- NATA NonCancer Diesel PM
- RSEI
- Population Weighted Ozone Monitoring
- Population Weighted PM2.5 Monitoring

\[\div 6 \]

Average of Scaled Environmental Variables, Scaled Again
Compliance Indicators

Scaled:
- Inspection Measure
- Violations Measure
- Formal Actions Measure
- FRS Facility Density

\[\div 4 \]

Average of Scaled Compliance Variables, Scaled Again

Health Indicators

Scaled County Data Applied to Each Census Tract:
- Percent Infant Mortality
- Percent Low Birth Weight Births

\[\div 2 \]

Average of Scaled Health Variables, Scaled Again
U.S. EPA “EJSEAT”
Environmental Justice Strategic Enforcement Assessment Tool
Our Methodology

- Two regions; 6 air basins
 - 7 southern California counties
 - 9 Bay Area counties
- Map where people are exposed
 - Residential land use
 - Sensitive land use categories (ARB land use guidelines, 2005)

- Spatial Unit for Analysis
 - Most data sets calculated at tract level
 - Intersect land use polygons with census tracts
 - Land Use data (SCAG, SANDAG, ABAG)
 - Residential
 - Schools
 - Health Care Facilities
Select Sensitive Land Uses
Intersect Land Use Polygons with Block Groups
Result: Sliver Polygons, each associated with a Specific Tract and Land Use
Each Polygon eventually receives a Cumulative Impacts Score
Land Uses Outside of Analysis
Black = Industrial, Transportation, etc.; Gray = Open Space, Vacant, etc.
Land Uses in Analysis
(pink = residential, schools, or medical facilities)
Sensitive Land Uses

- Sensitive land uses
 - Childcare facilities (geocoded from SIC)
 - Healthcare facilities (from ARB)
 - Schools (geocoded from CaDOE)
 - Land use designations provide additional check

- Polygons containing at least one sensitive land use are given a score of 1
Sensitive Land Uses

Sensitive land uses in polygon

![Map showing sensitive land uses](image)

- 87.0% of polygons contain sensitive land uses
- 13.0% of polygons do not contain sensitive land uses

Legend:
- Green: No Sensitive Land Uses
- Red: Contains Sensitive Land Uses
Hazard Proximity & Land Use Indicators (9)

- CHAPIS (ARB)
- AB2588 “hot spots” (ARB)
- Chrome Platers (ARB)
- Hazardous Waste TSDs (DTSC)
 - Federal Response (includes Superfund)
 - State response
 - Voluntary cleanup
 - Military evaluation
 - School investigations and cleanup
- Rail
- Ports
- Airport
- Refinery
- Distribution facilities
- Traffic Density
 - to be added
- Sum of sites within buffered distance of polygon edge
- Score based on summing hazards and land uses, and normalizing to 0 (no hazards or land uses) to 4
Health Risk Indicators (4)

- **RSEI** (Risk Screening Environmental Indicators)
 - (2005) toxic conc. hazard scores
- **NATA 1999** (National Air Toxics Assessment)
 - Respiratory hazard from all air pollutants
- **ARB Estimated Inhalable Cancer Risk 2001**
 - Calculated from modeled air toxics concentrations using emissions from CHAPIS
 - We used our corrected version of this data
- **ARB estimated mortality from PM$_{2.5}$**
- **ARB estimated mortality from ozone exposure**
 - To be added

Health risk measures log transformed and means and standard deviations are calculated, range from 1 to 4 each.
Scores are determined for each risk measure (RSEI, NATA, CATA, and PM 2.5), making use of mean and standard deviation. Each of these ranges from 1 to 4; they are then added together, and ranked into quintiles (with natural breaks) to derive a score ranging from 1 to 5.
Social and Health Vulnerability (9)

Metrics include (2000 Census):

- % residents of color (non-White)
- % residents below twice national poverty level
- Home ownership - % living in rented households
- Educational attainment – % population > age 24 with less than high school education
- Age of residents (% <5)
- Age of residents (% >60)
- Voter turnout - % votes cast among all registered voters in 2000 general election
- Linguistic isolation - % pop. > age 4 in households where no one > age 15 speaks English well
- Birth outcomes – % preterm or SGA infants 1996-2003

- As with risk measure, social vulnerability measures are ranked from 1 to 4 utilizing means and standard deviations.
- Total scores are added (with a strategy to account for missing observations) and normalized to a scale of 1-5.
Social and Health Vulnerability Score

Social Vulnerability

18%
23%
19%
20%
19%
0%
5%
10%
15%
20%
25%

percent of tracts

Score
1
2
3
4
5

Social Vulnerability
Future work

Additional Indicators
- Land Use
 - Distance-weighted traffic counts
- Health Risk
 - Estimated mortality from ozone
- Social and Health Vulnerability
 - Residential real estate value as proxy for wealth/class

Buffer Distance
- Conducting sensitivity analysis by varying buffer distance
- 1 mile vs. ½ mile from polygon centroids
- 1000 feet and 2000 feet from polygon boundaries

Robustness Analysis
- Varying weighting and scoring schemes
- Dropping in and out single measures
Important Caveats

- Screening method is still in development -- beta version being shared but final version forthcoming

 - Developed with specific reference to air quality and not screening for concerns such as water or pesticides

 - Requires high-resolution land use data which is not available in all areas of the state

 - Developed with secondary databases not micro-studies – so this is screen not assessment
Potential Contributions

- Can be a way of developing shared understanding about what areas may be of high regulatory priority

- Transparent approach that is publicly accessible and not too difficult to implement & update

- Is open to modification by sophisticated users to change weights or data inputs