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Attachment 1:  Description of Emission Reduction Measure Form 
 
Please fill out one form for each emission reduction measure.  See instructions in 
Attachment 2. 
 
Title:  Reducing unproductive fuel uses in the transportation sector in relation to 
vehicle highway speed 
 
Type of Measure (check all that apply):   
 
  Direct Regulation  Market-Based Compliance  
  Monetary Incentive  Non-Monetary Incentive  
  Voluntary  Alternative Compliance Mechanism 
  Other  Describe:        
 
Responsible Agency:  Local regulatory authority for POUs? CPUC for LSEs? 
 
Sector: 
 
  Transportation  Electricity Generation  
  Other Industrial  Refineries 
  Agriculture  Cement 
  Sequestration  Other  Describe:        
 
2020 Baseline Emissions Assumed (MMT CO2E):  137 MMT per year (pursuant to 
2004 CARB estimate) for on-road gasoline vehicles  
 
Percent Reduction in 2020:  1.5% - 11% (approx. 2 - 15 MMT) 
 
Cost-Effectiveness ($/metric ton CO2E) in 2020:  Very high cost effectiveness, 
with implementation costs possibly offset by increased revenues from citations  
 
 
Description:  This is an operational strategy to reduce the UNPRODUCTIVE uses of 
fossil fuels by reducing average vehicle speeds on California road ways.  The core 
principle of this strategy is that in the hiearchy of implementing CARB's emission 
reduction measures, all unproductive uses of fossil fuel should be identified and 
mitigated before CARB places restrictions on productive uses of fossil fuels (e.g., 
electricity generation, manufacturing, agriculture, etc.)  Productive uses of fuel in any 
sector should not be required to inequitably shoulder the burden of reducing GHG 
emissions to reach the Statewide GHG Emisisons limit while unproductive uses remain 
unrestricted.  This strategy does not suggest a "correct" maximum speed nor the 
specific details of implementing a maximum speed law.  This strategy, however, 
suggests that CARB is required to analyze and assess whether significant GHG 
emission reductions could be achieved through implementing a maximum speed law.  In 
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its analysis, CARB may determine that a significant percentage of fuel use in the 
transportation sector is unproductive, and even hazardous to human health.    
 
This strategy recognizes that many aspects of the transportation sector are critical and 
necessary to a functioning and productive economy.  On the other hand, many vehicles 
are operated in an aggressive manner and at excessively high rates of speed (over 75 
mph).  There is a significant amount of research indicating that higher average speeds 
and acceleration will decrease fuel economy, resulting in higher fuel consumption per 
trip.  Higher fuel consumption results in increased emissions of GHGs and criteria 
pollutants. 
         
CARB should collect and consider all available research to determine if a maximum 
speed law is a feasible and cost-effective GHG reduction measure.  CARB may find that 
the optimum speed for achieving the highest average fuel economy is 55 MPH, or it 
may find that higher speeds are more economical due to improvements in vehicle 
designs.  Based upon CARB's findings, this single process change may be implemented 
before 2012 and requires no technology changes or improvements.   
 
Emission Reduction Calculations and Assumptions:   
 
Assumption:  Generally, fuel consumption and total emissions increase with a vehicle's 
average speed due to various reasons such as aerodynamic drag, rolling friction, and 
engine load. (Effects of vehicle speed and engine load on motor vehicle emissions, 
Environ. Sci. Tech.; The Relationship Between Fuel Economy and Safety Outcomes, 
Monash University Accident Research Centre; Microscopic Fuel Consumption and 
Emission Modeling, Thesis submitted to Virginia Polytechnic University by Kyoungho 
Ahner). 
 
Assumption: Fuel consumption (i.e., an increase in fuel economy) and the resulting 
emissions will be reduced by at least 15% if average speeds are reduced by 10%. (EPA 
data at http://www.epa.gov/otaq/mobile.htm; The Relationship Between Fuel Economy 
and Safety Outcomes, Monash University Accident Research Centre; Microscopic Fuel 
Consumption and Emission Modeling, Thesis submitted to Virginia Polytechnic 
University by Kyoungho Ahner) 
 
Assumption: Fuel consumption (i.e., an increase in fuel economy) and the resulting 
emissions will be reduced from current levels by reducing the average speed of road 
way vehicles. 
 
Assumption: The average speed reduction will impact between 10% and 75% of the 
roadway vehicles. 
 
Calculation 1: (15% emission reduction) X (10% of vehicles) X (137 MMT) = 2.00 MMT 
annual reduction  
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Calculation 2: (15% emission reduction) X (75% of vehicles) X (137 MMT) = 15.4 MMT 
annual reduction   
 
Cost-Effectiveness Calculation and Assumptions:    
 
Assumption:  All implementation costs will be offset by increased revenues from traffic 
citations and reduced costs from fewer accidents requiring responses by law 
enforcement. 
 
Implementation Barriers and Ways to Overcome Them:    
 
Technological barriers: None 
 
Operational barriers:  Increased enforcement activity for maximum speed law violations. 
 
Regulatory barriers: Coordination with other agencies responsible for spped laws and 
traffic enforcement.    
 
Public and political barriers:  It is presumed that there will be extreme resistance to this 
strategy. 
 
Potential Impact on Criteria and Toxic Pollutants:   
 
Data shows that different criteria polutants are affected in different amounts by reducing 
highway speeds.  However, a reduction in criteria pollutants is presumed since the 
calculations are based upon a reduction in fuel consumption.   
 
A collateral benefit includes reducing the number of accidents resulting in death, 
personal injury, and property damage. (The Relationship Between Fuel Economy and 
Safety Outcomes, Monash University Accident Research Centre) 
 
 
 
Name:              Bruce McLaughlin 
Organization:   None 
Phone/e-mail:  (916) 531-5566 / bruce6450@yahoo.com 
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Microscopic Fuel Consumption and Emission Modeling

by

Kyoungho Ahn

ABSTRACT

Mathematical models to predict vehicle fuel consumption and emission metrics are

presented in this thesis. Vehicle fuel consumption and emissions are complex functions to

be approximated in practice due to numerous variables affecting their outcome. Vehicle

energy and emissions are particularly sensitive to changes in vehicle state variables such

as speed and acceleration, ambient conditions such as temperature, and driver control

inputs such as acceleration pedal position and gear shift speeds, among others.

Recent empirical studies have produced large amounts of data concerning vehicle

fuel consumption and emissions rates and offer a wealth of information to transportation

planners. Unfortunately, unless simple relationships are found between fuel consumption

and vehicle emission metrics, their application in microscopic traffic and macroscopic

planning models becomes prohibitive computationally. This thesis describes the

development of microscopic energy and emission models using nonlinear multiple

regression and neural network techniques to approximate vehicle fuel consumption and

emissions field data. The energy and emission models described in this thesis utilized

data collected by the Oak Ridge National Laboratory.  The data include microscopic fuel

consumption and emission measurements (CO, HC, and NOx) for eight light duty

vehicles as a function of vehicle speed and acceleration. The thesis describes modeling

processes and the tradeoffs between model accuracy and computational efficiency. Model

verification results are included for two vehicle driving cycles.  The models presented

estimate vehicle fuel consumption within 2.5% of their actual measured values. Vehicle

emissions errors fall in the range of 3-33% with correlation coefficients ranging between
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0.94 and 0.99.

Future transportation planning studies could also make use of the modeling

approaches presented in the thesis.  The models developed in this study have been

incorporated into a microscopic traffic simulation tool called INTEGRATION to further

demonstrate their application and relevance to traffic engineering studies. Two sample

Intelligent Transportation Systems (ITS) application results are included.  In the case

studies, it was found that vehicle fuel consumption and emissions are more sensitive to

the level of vehicle acceleration than to the vehicle speed.  Also, the study shows

signalization techniques can reduce fuel consumption and emissions significantly, while

incident management techniques do not affect the energy and emissions rates notably.
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 &KDSWHU#41 ##,QWURGXFWLRQ
Vehicle fuel consumption and engine emissions are two critical aspects that are

considered in the transportation planning process of highway facilities.  Transportation is

one of the major contributors to man-made polluting emissions. Recent studies indicate

that as much as 45% of the pollutants released in the U.S. are a direct consequence of

vehicle emissions [NRC 1995]. Highway vehicles, which contribute more than one-third

of the total nationwide emissions, are the largest source of transportation-related

emissions [Nizich et al. 1994].  Motor vehicles are the source of more than 75 percent of

the national CO emissions, and about 35 percent of emissions of HC and NOx [Nizich et

al. 1994].

The introduction of Intelligent Transportation Systems (ITS) makes a compelling

case to compare alternative ITS and non-ITS investments with emphasis on energy and

emission measures of effectiveness.  However, until now, the benefits derived from ITS

technology in terms of energy and emissions are not clear.

1.1  Objective of Thesis

The primary objective of this thesis is to develop mathematical models to predict

vehicle fuel consumption and emissions under various traffic conditions.  Current state-

of-the-art models estimate fuel consumption and emission measures of effectiveness

based on typical driving cycles. Most of these models offer simplified mathematical

expressions to compute fuel and emissions based on average link speeds without much

regard to the transient effects on speed and acceleration as the vehicle travels on a

highway network. Moreover, most models use an aggregate modeling approach where a

'characteristic' vehicle is used to represent dissimilar vehicle populations. While this

approach has been accepted by transportation planners and Federal Agencies to estimate

highway impacts on the environment, it can be argued that modeling individual vehicle

fuel consumption and emissions coupled with the modeling of vehicle kinematics on a
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highway network could result in more reliable predictions of actual vehicle fuel

consumption and emissions.  This thesis addresses this issue, presenting two

mathematical models to predict fuel consumption and emissions for individual vehicles

using instantaneous speed and acceleration as explanatory variables. The availability of

relatively powerful computers on the average desktop today makes this approach feasible

even for large highway networks.

The ultimate use of these models would be their integration into traffic network

simulators to better understand the impacts of traffic policies, including introduction of

ITS technology, on the environment.

1.2  Thesis Structure

This thesis is organized into five chapters.  The second chapter provides a review of

the relevant literature.  The literature discusses the contribution of motor vehicle

transportation to air pollution and energy consumption including air quality standards and

requirements, those factors affecting fuel consumption and emissions.  Various fuel

consumption and emissions models are also described.

The third chapter shows some of the data sources used in the modeling approach

presented. This describes two mathematical approaches proposed for modeling highway

vehicle energy and emissions, and some of the validation results using field data.

In Chapter 4, the thesis provides an opportunity to apply the model in current ITS

applications.  The first example explores impacts of various traffic control systems.

Secondly, the impacts of incident management techniques were analyzed to illustrate the

benefits in terms of energy and emissions

Finally, Chapter 5 comprises a summary of the findings and future recommendations

for continued research.

BMcLaughlin
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 &KDSWHU#51 ##/LWHUDWXUH#5HYLHZ

2.1  Introduction

Chapter 2 discusses two fundamental issues related to motor vehicle fuel

consumption and emission modeling.  The first section describes the contributions of

motor vehicle transportation to air pollution and energy consumption.  Government

legislation has evolved over recent years in order to reduce vehicle emissions.  Initially,

air quality standards and requirements are outlined and the significance of each pollutant

is summarized.  Also, the literature indicates the factors which affect fuel consumption

and emissions.  The second section reviews the current fuel consumption and emission

models and its current research efforts.  Finally, the capabilities of current traffic

simulation models in terms of estimating fuel consumption and emissions are examined.

2.2  Contribution of Motor Vehicle Transportation to

Air Pollution and Energy Consumption

Emissions from individual cars are generally regarded as low if looked at in

isolation.  However, since the number of motor vehicles in this country is large, the

combined emissions and fuel consumption cannot be disregarded.  In fact, personal

automobiles are the single largest polluter in the United States.

BMcLaughlin
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2.2.1  Air Quality Standards and Requirements

Contributions of motor vehicles to air pollution were first studied in the early 1950s

by a California researcher [EPA 1994b].  In this study, it was determined that traffic was

to blame for the smoggy skies over Los Angeles.  The first significant legislation to

recognize the harmful effects of air pollution on pubic health was the Clean Air Act

(CAA) in 1970.  The CAA established the U.S. Environmental Protection Agency (EPA)

and mandated that the EPA set health-based national ambient air quality standards

(NAAQS) for six pollutants: carbon monoxide (CO), lead (pb), nitrogen dioxide (NO2),

ozone (O3), particulate matter (PM-10) and sulfur dioxide (SO2).   This 1970 Amendment

imposed some goals to achieve clean air by reducing 0.41 gram per mile HC standard and

the 3.4 grams per mile CO standard by 1975 [EPA 1994a].  However, these standards

were not achieved and the government delayed the HC standard until 1980 and the CO

standard until 1981 as specified by the Clean Air Act of 1977.  In the amendment, the

NOx standard was relaxed to 1 gram per mile and the deadline was extended until 1981.

In 1990, the New Clean Air Act placed a heavy burden on the transportation

community.  This legislation was amended by Congress to require further reductions in

HC, CO, NOx, and particulate emissions.  It also introduced a comprehensive set of

programs aimed at reducing pollution from vehicles.  These included additional

technological advances, such as lower tailpipe standards; enhanced vehicle inspection

and maintenance (I/M) programs; more stringent emission testing procedures; new

vehicle technologies and the use clean fuels; transportation management provisions; and

possible regulation of emissions from nonroad vehicles [EPA 1994b].

The act defined deadlines to attain the goal based on the severity of air quality

conditions.  According to severity, urban areas were classified as marginal, moderate,

serious, severe, and extreme.  Forty areas ranked as marginal for ozone had 3 years from

the baseline year, 1990, to attain the EPA standard.  Twenty nine areas classified as

moderate for ozone, and thirty seven for CO that were given classified as moderate and
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had 6 years to achieve the goal.  There were twelve serious areas for ozone and one for

CO with 9 years to establish compliance.  There were nine severe cases for ozone and

fifteen cases for CO with 17 years to achieve compliance.  Only Los Angeles was

classified as extreme for ozone and had 20 years to comply with the new standards [NRC

1995].

The requirements were also different from one another according to the rank of air

quality severity.  Areas of moderate or worse ozone classifications must submit revisions

to State Implementation Plans (SIPs) showing that, during the period, ozone will be

reduced by at least 15 percent.  These areas must reduce ozone emissions by 3 percent

per year until attainment is achieved.  Moreover, areas classified as severe or extreme had

to adopt transportation control measures (TCMs). TCMs are activities intended to

decrease motor travel or otherwise reduce vehicle emissions.  Areas with carbon

monoxide specifications had to forecast vehicle miles traveled (VMT) annually, and if

the actual VMT exceeds the expected VMT, they had to adopt TCMs.  Furthermore,

areas designated as serious for CO emissions were required to adopt TCMs [NRC 1995].

The amendment of 1990 defined sanctions for noncompliance.  For failure to submit

an SIP, EPA disapproval of an SIP, failure to make a required submission, or failure to

implement any SIP requirement, highway projects assisted by the federal government

could be withheld.  Additionally, if sanctions were commanded, the department of

transportation (DOT) could only approve highway projects that would not increase

single-vehicle trips [NRC 1995].

2.2.2  Transportation and Pollutants

Transportation is one of the major contributors to man-made polluting emissions.

Generally, emission sources are categorized by four main sources: transportation

(highway vehicles), stationary fuel combustion (electrical utilities), industrial processes

(chemical refining) and solid waste disposal [Horowitz 1982].  According to current

estimates, transportation sources are responsible for about 45 percent of nationwide
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emissions of the EPA defined pollutants [NRC 1995].  Highway vehicles, which

contribute more than one-third of the total nationwide emissions of the six criteria

pollutants, are the largest source of transportation-related emissions [Nizich et al. 1994].

Motor vehicles are the source of more than 75 percent of the national CO emissions, and

about 35 percent of emissions of HC and NOx [Nizich et al. 1994].

Most of emissions are generated in the combustion process and from evaporation of

the fuel itself.  Gasoline and diesel fuels are comprised of hydrocarbons and compounds

of hydrogen and carbon atoms.  In a perfect combustion, all the hydrogen in the fuel is

converted to water and the carbon is changed to carbon dioxide.  Unfortunately, the

perfect combustion process is impossible to achieve in the real word, and many pollutants

result as by-products of this combustion process and from evaporation of the fuel [EPA

1994a].

The principal pollutants emitted from typical motor engines are carbon monoxide,

hydrocarbon, and oxides of nitrogen. Carbon monoxide (CO), a product of incomplete

combustion, is a colorless, odorless and poisonous gas.  CO reduces the flow of oxygen

in the bloodstream and is harmful to every living organism.  In some urban areas, the

motor vehicle contribution to carbon monoxide emissions can exceed 90 percent [EPA

1993a].

Hydrocarbon (HC) emissions result from fuel that does not burn completely in the

engine.  It reacts with nitrogen oxides and sunlight to form ozone, which is a major

component of smog. Ozone is one of the EPA’s defined pollutants known to cause

irritations of the eyes, damage the lung tissue and affect the well-being of the human

respiratory system.  Furthermore, hydrocarbons emitted by vehicle exhaust systems are

also toxic and are known to cause cancer in the long term [EPA 1994a].

While CO and HC are the products of the incomplete combustion of motor fuels,

oxides of nitrogen (NOx) are formed differently. NOx is formed by the reaction of

nitrogen and oxygen atoms during high pressure and temperature, the chemical processes
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that occur during the combustion.  NOx also leads to the formation of ozone and

contributes to the formation of acid rain [EPA 1994a].

The air/fuel (A/F) ratio is one of the most important variables affecting the efficiency

of catalytic converters and the level of exhaust emissions (Johnson 1988).  The highest

CO and HC levels are produced under fuel-rich conditions, and the highest NOx level is

emitted under fuel-lean conditions.  Generally, fuel-rich operations occur during cold-

start conditions, or under heavy engine loads such as during rapid accelerations at high

speeds and on steep grades.  Therefore, high levels of CO and HC are generated on

congested highways and in other high traffic density areas.

2.2.3  Factors Affecting Emission Rates

Emissions deriving from transportation sources are the functions of several variables.

These variables have been categorized as follows [NRC 1995]:

• travel-related factors,

• highway network characteristics,

• vehicle characteristics.

The following paragraphs describe in detail these factors.

Travel-related factors

Pollutants emitted from motor vehicles are dependent on the number of trips and the

distance traveled.  Emissions relating to trip factors vary according to the percentages of

different vehicle operation modes, such as exhaust emissions and evaporative emissions.

The former includes start-up emissions, which are classified as cold-start or hot-start

depending on how long the vehicle has been turned off, and  running emissions, which

are emitted during a hot stabilized mode.  The latter comprise running losses and hot soak

emissions produced from fuel evaporation when an engine is still hot at the end of a trip,

BMcLaughlin
Highlight



8

and diurnal emissions, which result from the gasoline tank regardless of whether the

vehicle is operated or not [NRC 1995].

Speed, acceleration and engine load of the vehicle are also significant factors

contributing to emission rates.  According to current model estimates such as MOBILE5a

developed by the EPA and EMFAC7F developed by the California Air Resources Board

(CARB), emissions are generally high under low speed, congested driving conditions.

Emissions fall at intermediate speeds, low density traffic conditions.  On the other hand,

NOx has a different attribute, showing the highest point at high speed [NRC 1995].

However, these estimates have some problems. For example, sharp acceleration, which

contributes high emission rates, is not explained in existing traffic models.  Acceleration,

which causes a vehicle to operate in a fuel-rich mode, must be used as an input factor to

estimate accurate emission rates in these models.

Highway-Related Factors

Emission rates of motor vehicles also depend on the geometric design of the

highway.   Highways with facilities such as signalized intersections, freeway lamps, toll

booths and weaving sections may increase the emission levels due to the engine

enrichment from accelerations.  Grade on highways is one of the large contributors

affecting emission rates.  On a steep grade, vehicles require more engine power, causing

a high A/F ratio (high enrichment statues) in order to maintain the same speeds.  Road

conditions are also considered in estimating emissions.

Vehicle-Related and Other Factors

Vehicle characteristics such as engine sizes, horsepower and weight are also factors

influencing emission rates on highways.  Generally, vehicles with large engine sizes emit

more pollutants than vehicles with small engine sizes, and large engine sizes are

commonly accompanied by high maximum horsepower and heavy weights of vehicles.

Emission rates also vary with vehicle age.  Older vehicles produce higher emission
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rates than newer fuel-injected vehicles during normal operation and vehicle starts (Enns

et al. 1993).  Furthermore, older vehicles are not held to the same restrictive vehicle

standards as newer vehicles.  According to known data, 1975-model vehicles emit more

than three times the amount of CO and HC than the rates of 1990-model vehicles [DOT

and EPA 1993].

Ambient temperature is an important parameter affecting both exhaust and

evaporative emissions.  The engine and emission control systems take longer to warm up

at cold temperature increasing cold-start emissions. Moreover, as the temperature

increases, evaporative emissions increase with higher emission rates.

2.2.4  Transportation and Energy Consumption

The primary energy source for the transportation sector is petroleum.  The

transportation sector consumes nearly two-thirds of the petroleum used in the United

States.  Highway traffic is responsible for nearly three-fourths of the total transportation

energy use, with about 80 percent from automobiles, light trucks, and motorcycles, and

about 20 percent from heavy trucks and buses [Davis 1994].

The principal factors affecting fuel consumption are closely related to those affecting

emissions.  Therefore, primary emission factors such as travel-related factors, highway

conditions, and other vehicle factors are also considered as fuel economy factors.

Travel-Related Factors

Fuel consumption is highly dependent on many different traffic characteristics.

Speed and acceleration are significant factors affecting fuel consumption rates.

Generally, fuel consumption rates increase as speed and acceleration increases.  Also,

fuel economy is somewhat poor at lower average trip speeds due to frequent accelerations

and stops.  Also, fuel consumption rates are reduced by engine friction, tires and

accessories such as power steering and air conditioning at low speeds and are dominated
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by the effect of aerodynamic drag on fuel efficiency at high speeds [An and Ross 1993a].

The modal operation of the vehicle also affects fuel consumption.  Engines typically

take several minutes to reach their normal operation.  The cold-start fuel consumption

experienced during the initial stages of the trip result in lower fuel efficiency than when

the engines are fully warmed up [Baker 1994].

Highway-Related Factors

The highway related factors such as steep upgrades and poor road surface conditions

also reduce fuel efficiency.  On steep upgrades, vehicles require a heavy power output

from their engines, consuming more fuel than under normal conditions.  Also, rough

roads can lead to significant incremental increases in fuel consumption by influencing the

rolling resistance and aerodynamic drag generated.  At typical highway speeds, a vehicle

tested on a rough road increased its fuel consumption by five percent over a vehicle

tested on a normal quality road [Baker 1994].

Vehicle-Related and Other Factors

Vehicle characteristics such as weights, engine sizes, and technologies are the

primary factors affecting fuel economy.  Generally, larger and heavier vehicles, vehicles

with automatic transmissions, and vehicles with more power accessories (e.g., power

seats and windows, power brakes and steering, and air conditioning) require more fuel

than vehicles lacking these systems [Murrell 1980].

Without proper vehicle maintenance, fuel consumption can increase by as much as

40 percent [Baker 1994].  According to research, improper engine tuning can increase

average fuel consumption by about 10 percent and wheel misalignment as small as 2 mm

can cause an increase of fuel consumption by about 3 percent due to tire rolling resistance

[Baker 1994].

Finally, the influence of weather conditions contributes to fuel economy.  Fuel

consumption rates worsen at low temperatures and with high winds, which result in
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aerodynamic losses [Murrell 1980].  For example, in Europe, fuel consumption in winter

is worse than in summer by about 15 to 20 percent [Baker 1994].
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2.3  Fuel Consumption and Emissions Models

Various models are available to estimate the contribution of motor vehicle

transportation to air quality and energy use.  However, many of the models are not well

suited for estimating the effects of highway improvement projects such as ITS

alternatives.

ITS implementations can affect energy consumption and emission rates in the

corridor in which the improvement is located.  Furthermore, those improvements can also

improve the variability of travel such as destination, departure time, and trip mode.

Finally, these results affect the fuel economy and emission levels in urban areas.   In

order to estimate these consequences of new projects, land use and travel demand models

and emissions and fuel consumption models are required.  The former is used to generate

trips according to changes of highway traffic conditions and the later is used to estimate

the impact of changes in travel activity on emission rates and energy consumption.

Furthermore, atmospheric dispersion models are also used to estimate concentrations of

pollutants produced by particular facilities, such as intersections.

2.3.1  Emission Models

Two main emission models commonly used in the United States are the

Environmental Protection Agency’s (EPA’s) MOBILE model and the California Air

Resources Board’s (CARB’s) EMFAC model.  In both models, emission rates according

to the models are a function of vehicle type and age, vehicle average speed, ambient

temperature, and vehicle operating mode. Both models produce specific emission rates.

These emission rates are multiplied by vehicle activities such as vehicle miles-traveled,

number of trips, and vehicle-hours traveled in order to estimate total emission levels

[NRC 1995].

Current estimates of emission rates of the MOBILE model and the EMFAC model
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are expressed as functions of average speeds and are based on vehicle testing on a limited

number of driving cycles.  The baseline emission rates are derived from the Federal Test

Procedure (FTP), which is the vehicle test procedure commonly used for light duty

vehicle testing and is composed of three different phases: a cold-start phase, a stabilized

phase and a hot-start phase.  In the MOBILE model, the emissions from vehicles

operating in all three phases are used to estimate baseline emissions.  The baseline

emission rates for a vehicle class is the average result from the three phases of the FTP

cycle at an average speed of 31.6 kph (19.6 mph), which is the average test speed of the

entire FTP cycle.  In the EMFAC model, the baseline emission rate is derived from only

the stabilized phase of the FTP cycle with an average operating speed of 25.6 kph (16

mph) [Guensler et al. 1993].

Emission rates at other average speeds are multiplied by the appropriate speed

correction factor (SCF) associated with a vehicle class and the operating speed.  SCFs are

derived from emissions data from testing vehicles on eleven other driving cycles and

heavy-duty trucks on four drive cycles; each cycle has a different overall average speed.

The SCFs are estimated from the average cycle speed on the average emission rate for the

cycle.  Therefore, speed-corrected emission rates used in emission models are highly

dependant on the average cycle speed [NRC 1995].

The following paragraphs describe some of the limitations found in current models.

A limited set of driving cycles, which insufficiently represent specific traffic flow

conditions, are used to estimate emission rates in current models.  Many of the driving

cycles are out of data (the FTP is more than 20 years old), and they do not represent

current, real world driving conditions.  Analyses of three cycles, which include the FTP

cycle and two recently developed cycles (Freeway 6 and Arterial 1) with the same

average speed, found that the FTP cycle underestimated driving conditions at higher

speeds and acceleration, both of which are known to be sources of high emissions [NRC

1995].
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Another problem with emission estimations is that current emission models predict

emission rates solely on the basis of changes in average speed among traffic flow

characteristics.  Average trip speeds are not equivalent to link-specific speeds for portions

of vehicle trips. This method of using average speeds cannot represent the distribution of

speeds and accelerations of a trip, which vary by type of facility and level of congestion.

For example, existing emission models cannot compare a highly congested freeway and a

normal density arterial with the same average speed, though each has quite different

distribution for speeds and accelerations causing distinct emission levels [NRC 1995].

2.3.2  Fuel Consumption Models

Fuel consumption models are mathematical relationships using contributions of fuel

consumption such as the number of trips, the vehicle miles traveled, the number of stops,

the vehicle’s average speed, etc.  Many models have been developed, and automotive fuel

use is believed to be well approximated in current models.

Instantaneous Fuel Consumption Models

Instantaneous fuel consumption models are derived from a relationship between the

fuel consumption rates and the instantaneous vehicle power.  Second-by-second vehicle

characteristics, traffic conditions and road conditions are required in order to estimate the

expected fuel consumption.  Due to the disaggregate characteristic of fuel consumption

data, these models are usually implemented to evaluate individual transportation projects

such as single intersections, toll plazas, sections of highway, etc.

From Newton’s second law, it can be demonstrated that the net force on a vehicle in

the direction of motion is proportional to its acceleration and the net force is required to

overcome the aerodynamic, rolling resistance and grade resistance.  Using these ideas,

fuel consumption rates can be estimated as a function of the vehicle mass, drag

coefficient, rolling resistance, frontal area, acceleration, speed, transmission efficiency,

grade, and etc.
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The original power-based model, proposed by Post et al. (1984), provides aggregate

fuel consumption estimates for on-road driving within 2 percent of the actual fuel usage.

Akcelik and Biggs (1989) contributed to improving the power-based model increasing

accuracy.  This model was embedded into a computer package which is based on vehicle

speed and road geometry data with varying levels of detail.  Another power-based

approach, developed by An and Ross (1993b), established a simple analytic relationship

between fuel economy, vehicle parameters, and driving cycle characteristics.

Modal Fuel Consumption Models

A modal fuel consumption model considers the different types of operating

conditions a vehicle would experience on a typical trip.  This type of model assumes that

the driving mode elements are independent of each other and the sum of the component

consumption equals the total amount of fuel consumed.  The advantage of this model is

its simplicity, generality, and conceptual clarity, as well as the direct relationship to

existing traffic modeling techniques [Richardson et al. 1981].  This model is applicable to

individual transportation projects similar to the instantaneous fuel consumption models.

The first drive mode is the duration of travel at constant speed.  The second mode is

the phase of either a full or partial stop-and-go from the constant speed (acceleration and

deceleration duration).  Finally, the stopped time or time spent idling is also counted to

estimate an accurate fuel consumption.  However, if these speeds are not available, they

may be reasonably estimated from time or distance observations, or substituted for by the

number of complete stops [Baker 1994].

The greatest shortcoming of the modal fuel consumption model is that it is difficult

to introduce any differences in driver’s behavior such as the acceleration and deceleration

maneuvers of different drivers, or behaviors of the same driver under different situations.

Baker (1994) tried to overcome this weakness employing driver’s aggressiveness, such as

aggressive, normal, and passive behavior modes.  Nevertheless, each stop-and-go

maneuver for every driver was considered the same.
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Average Speed Models

Average speed models can be implemented as macroscopic fuel consumption models

rather than the microscopic models such as instantaneous models and modal models.  In

these models, fuel consumption rates are functions of trip times, trip distance and average

speed.  These models are suitable for assessing the impacts on fuel consumption of

various macroscopic transport management schemes.  Average travel speed models

should only be used for average speeds of less than 50 km/h, since these models do not

adequately reflect an increase in aerodynamic drag resistance at high speeds [Akcelik

1985].

2.3.3  Status of Current Research, Modeling Methodologies,

and Modeling Efforts

One of the main trends in the current research directed toward the design of better

fuel consumption and emission models has focused on the effects of driving patterns on

emissions as sharp accelerations and high speeds take place. Both of these conditions are

not well represented by current driving cycles, and they are suspected of being major

reasons for typical underestimation of emission levels [LeBlanc et al. 1994].  After

surveys of driving behavior in selected cities, the EPA has confirmed that sharp

acceleration and high speeds are not well represented in the baseline of the FTP drive

cycle.  The current maximum acceleration and speed of the FTP cycle, 5.3 kph/s and 90.7

kph (3.3 mph/s and 56.7 mph), are frequently exceeded in real-world driving conditions

[EPA 1993b].

Recently, several modal-emission models have been used by many researchers.  St.

Denis and Winer have created both a speed-acceleration and a speed-load modal

emissions model using data from a single Ford vehicle.  Further, researchers at Sierra

Research have extended the VEHSIM model, originally developed at GM to compute

engine speed and load, to create a VEHSIME model that predicts emission rates for

specified driving cycles.  The model computes the second-by-second engine speed and
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load required to drive the cycle, then, using an emissions map (with interpolation),

second-by-second emissions are approximated.  The EPA has similarly extended the

VEHSIM model to create a modal emission model called VEMISS.  Researchers from

the University of California, Riverside, have developed a power demand-based modal

emission model that predicts second-by-second emissions given a specified vehicle

operation [Barth et al. 1996].  Researchers at the University of Michigan have developed

a physical model that predicts fuel economy given any driving cycle or trip

characteristics, and they have recently extended the model to predict CO emissions.  A

new approach to modal-emission modeling is proposed by Barth (1996).  This model,

which is deterministic and based on analytical functions, describes the physical

phenomena associated with vehicle operation and emissions productions [Barth et al.

1996, Barth et al. 1998].  Recently, the Georgia Tech Research Partnership has been

developing a vehicle emissions model within a geographic information system (GIS)

framework.  This model, named the Mobile Emission Assessment System for Urban and

Regional Evaluation (MEASURE), predicts emissions as a function of the vehicle

operating mode (including cruise, acceleration, deceleration, idle, and power demand

conditions that lead to fuel enrichment, or high A/F ratios) employing specific vehicle

characteristics and speed/acceleration profiles [Guensler et al. 1998].

For a modal fuel consumption and emissions model, a conventional method for

characterizing vehicle operating modes of idle, cruise, and different levels of

acceleration/deceleration is to set up a speed/acceleration mode matrix.  The matrix

measures emissions associated with each mode. The result is the total amount of

emissions produced for the specified vehicle activity with the associated emission matrix.

The problem with such an approach is that it does not properly handle other variables that

can affect emissions, such as road grade or use of accessories.  In order to overcome this

shortcoming, correction factors can be used, but this can be also problematic since their

effect will typically be based on secondary testing not associated with the core model

[Barth et al. 1996].

Another modal modeling method is an emissions map based on engine power and
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speed.  Second-by-second emission tests are performed at numerous engine operating

points, taking an average of steady state measurements.  This model can estimate

emission rates based on engine power and speed, the effects of acceleration, grade, and

use of accessories.  The problem associated with this approach is a deficiency in the

relationship of the emission rate to vehicle speed and acceleration rates, or engine speed

and engine load.  Without knowing the underlying mathematical relationships, this

methodology assumes a simple two-dimensional linear relationship among them.  Due to

measurement difficulties, most speed acceleration matrices or emission maps have only a

very limited number of cells, resulting in the repetitive use of the above procedure in real

applications.  The error associated with a single cell or engine operational point could be

accumulated into major computing errors in the final results [Barth et al. 1996].

2.3.4  Traffic Simulation Models with Fuel Consumption and

Emissions Estimation Procedures

Traffic simulation models are generally used to estimate traffic flow changes on

affected facility links as the result of highway capacity expansions and to provide a tool

for evaluating the operation of a traffic system in terms of its individual components.

Simulation models provide  individual behaviors and interrelationships of road vehicles

to predict the performance of the system.  Fuel consumption and emissions are important

outcomes of new highway facilities or ITS deployments and can be predicted using

traffic simulation models.

NETSIM, a computer simulation model developed by the Federal Highway

Administration (FHWA), is a microscopic model that performs a detailed simulation of

traffic flow on urban streets.  The original model has been improved, resulting in a new

model called TRAF-NETSIM.  TRAF-NETSIM provides traffic operation information by

vehicle type (automobile, bus, and truck: each type has 16 potential sub-types with

different operating and performance characteristics) and by the driver behavior

characteristics (passive, normal, and aggressive).  The vehicle performance, individual

driver, and other characteristics such as turning movements, free speed, and headways are
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assigned stochastically.  Every second, the trajectory of the vehicle is computed

according to car following logic while responding to traffic control devices, pedestrian

activity, transit operations, the performance of other neighboring vehicles, and a number

of other conditions which influence driver behavior.  Fuel consumption and emission

rates are calculated based on a look-up table at each time step according to the speed and

acceleration of the vehicle [Baker 1994, West et al. 1997].

FREQ (May, 1990) is a macroscopic, analytic, deterministic, freeway simulation and

optimization program developed at the University of California at Berkeley.  FREQ is

designed to evaluate freeway operations in a single direction of travel and is widely used

to evaluate the impacts of temporary freeway lane blockages, various freeway lane and

ramp configurations, and high-occupancy vehicle (HOV) treatments.  This model

estimates the absolute volume of fuel consumption and vehicle emissions based on the

total vehicle miles traveled and average speeds.

INTEGRATION (Van Aerde, 1998) is a microscopic traffic simulation and traffic

assignment model developed in the mid 1980s.  Unique characteristics of the

INTEGRATION model is its approach to representing both freeway and signalized links

using the same logic.  Both the simulation and traffic assignment components are

microscopic, integrated, and dynamic [Van Aerde 1998].  In this model, each individual

vehicle follows pre-specified macroscopic traffic flow relationships, and due to this

concept, which uses individual vehicles and macroscopic flow theory, this model is

sometimes considered a mesoscopic model.  Currently, the INTEGRATION model

provides estimates of fuel consumption and vehicle emissions.  Fuel consumption and

emission rates are computed every second on the basis of the individual vehicle’s current

instantaneous speed.  This computation also includes modal-based estimations

considering accelerations and cold-start modules.  Current default coefficients used to

estimate fuel consumption and emission rates are derived from the Oldsmobile Toronado

(1992) [Van Aerde 1998].
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2.4  Summary of Chapter 2

The above review of the literature has shown the complex nature of the factors

which affect the vehicle fuel consumption and emissions.  Fuel consumption and

emissions deriving from transportation sources are the functions of several variables such

as travel-related factors, highway network characteristics, and vehicle characteristics.

Especially, the factors such as vehicle speed and acceleration, start-up emissions, engine

loads (air/fuel ratio) and the ambient temperature of the surrounding environment were

identified as significant factors.

The next chapter describes several models that predict the fuel consumption and

emission rates based on individual vehicle speed and acceleration profiles, which is one

of the most significant factors.  These models can be utilized to predict the fuel

consumption on a second-by-second basis for individual vehicles and, therefore, are

suitable for implementation in microscopic traffic simulation models.
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3.1  Introduction

This chapter discusses the Oak Ridge National Laboratory data were utilized to

develop the fuel consumption and emission models and several mathematical models that

predict the MOEs based on individual vehicle speed and acceleration profiles.

The first section describes some of data sources that were utilized in the modeling

approach.  The second section describes several mathematical approaches to estimate

vehicle fuel consumption and emissions.  Finally, the chapter provides some of the

validation results against some urban driving cycles.

3.2  Data Description

The data used for fuel consumption and emissions modeling was provided by the

Oak Ridge National Laboratory (1997). These data are in the form of look-up tables for

fuel consumption and emission rates as functions of vehicle speed and acceleration.

Emissions data comprises hydrocarbon (HC), oxides of nitrogen (NOx) and carbon

monoxide (CO). A total of eight vehicles of various weights and engine sizes were

available for modeling [West et al. 1997].  These eight vehicles are representative of

current internal combustion (IC) engine technology. The average engine size for all

vehicles is 3.3 liters; the average number of cylinders is 5.8, and the average curb weight

is 1497 kg (3300 lbs) [West et al. 1997].  Industry reports show that the average sales-

weighted domestic engine size for 1995 was 3.5 liters, with an average of 5.8 cylinders

[Ward’s Automotive Yearbook 1996, Ward’s Automotive Reports 1995]. Detailed

specifications of test vehicles are provided in Appendix A of this document.
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The raw data collected at the Oak Ridge National Lab (ORNL) contain 1300-1600

individual vehicle data points, each collected every second during various driving cycles.

Typically, vehicle acceleration values range from –5 to 12 ft/s2 (at intervals of 1 ft/s2),

and velocities vary from 0 to 110 ft/s.  A sample data set for a popular minivan vehicle is

shown in Figures 3-1 through 3-4. Note the large nonlinear behaviors observed for some

of the energy and emission metrics as a function of speed and acceleration. Also note

various ‘peaks’ and ‘valleys’ for fuel consumption, CO, HC and NOx as a result of gear

shifts under various driving conditions. It is interesting to note that the ORNL data

represent particular speed-acceleration conditions defining a unique vehicle performance

envelope. For example, high power-to-weight ratio vehicles have better acceleration

characteristics at high speeds than their low power-to-weight ratio counterparts. This

inherent performance boundary is extremely important when these models are used in

conjunction with microscopic traffic flow models, as they represent a physical kinematic

constraint in the car-following equations of motion. A typical speed-acceleration

performance boundary is shown in Figure 3-5 for a hypothetical composite vehicle. The

composite vehicle data have been derived be taking average fuel consumption and

emissions rates for all eight vehicles at various speeds and accelerations.

A graphical representation of the sample data (Villager) available from Oak Ridge

National Lab is shown in Figures 3-1 through 3-4.  Surface plots of the fuel consumption,

CO, HC and NOx emission rates are shown in these Figures.
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Figure 3-1  Fuel Consumption Data (Villager).
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Figure 3-2  CO Emission Rate Data (Villager).
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Figure 3-3  HC Emission Rate Data (Villager).
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Figure 3-4  NOx Emission Rate Data (Villager).
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3.3  Model Description

This section describes several models for predicting the fuel consumption and

emissions rates for any trip based on individual vehicle speed and acceleration profiles.

These models can be utilized to predict the fuel consumption and emissions on a second-

by-second basis for individual vehicles, and therefore are suitable for implementation in

microscopic analysis.  This approach can be more accurate for predicting the fuel

consumption and emission rates than current models based on vehicle average speed or

modal events (i.e., cruise, acceleration, deceleration, and idle).  The models developed in

this research document use speed and acceleration profiles as input data, and in a typical

application, fuel consumption or the emission rates are model outputs. Second-by-second

results are accumulated to predict the total fuel consumed or the total emissions released

during a prescribed FTP cycle.  Two types of mathematical models have been studied as

part of this research effort:

• Nonlinear regression models, and

• Neural network models

The following paragraphs describe in detail the models studied.

3.3.1  Regression Model I

A first regression model was developed to predict the expected fuel consumption and

emission rates using a combination of quadratic and cubic speed-acceleration terms.  In

this model, a regression coefficient technique was adopted.  The raw data collected by the

Oak Ridge National Lab have approximately 1300 to 1600 data points, with vehicle

deceleration values ranging from -5 ft/s2 to 12 ft/s2 (at intervals of 1ft/s2) and velocities

spanning from 0 ft/s to 110 ft/s.  Each speed has 18 data points, which correspond to 18

values of their acceleration.
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A quadratic regression model (Model A) to predict fuel consumption or emission

rates can be expressed in the following form,

FA = as + bsAcc + csAcc2 (3-1)

where

FA   : fuel consumption or emission rates (gal/hr or milligram/s) for every speed

sampled (111speeds)

as    : intercept

bs,cs : coefficients of the regression equation

Acc  : acceleration (ft/s2)

In addition, Equation 3-1b represents a cubic regression model (Model B).

FB = as + bsAcc + csAcc2 + dsAcc3 (3-1b)

These models were fitted for every speed (i.e. 0 ft/s to 110 ft/s).  From these models,

111 intercepts and coefficients were extracted accordingly.  Inspection of these results

found that the intercepts and coefficients change according to certain patterns. To

simplify these 111 regression models, another regression model was fitted using the

intercepts and coefficients as data.  In this model, the intercept and coefficients are

independent variables, and speed is the dependent variable. This integrated model (Model

C) can be expressed in quadratic form, as shown in Equation 3-2a.

FC = (a1+b1S +c1S
2) + (a2+b2S+c2S

2)Acc + (a3+b3S+c3S
2)Acc2    (3-2a)

where

as = a1+b1S +c1S
2

bs = a2+b2S+c2S
2

cs = a3+b3S+c3S
2
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Using the same approach, combinations of quadratic and cubic models are presented

in Equations 3-2b through 3-2d.

(Model D)

FD = (a1+b1S +c1S
2) + (a2+b2S+c2S

2)Acc + (a3+b3S+c3S
2)Acc2 + (a4+b4S+c4S

2)Acc3 

(3-2b)

(Model E)

FE = (a1+b1S +c1S
2+d1S

3) + (a2+b2S+c2S
2+d2S

3)Acc + (a3+b3S+c3S
2+ d3S

3)Acc2

(3-2c)

(Model F)

FF = (a1+b1S +c1S
2+d1S

3) + (a2+b2S+c2S
2+d2S

3)Acc + (a3+b3S+c3S
2+d3S

3)Acc2 +

(a4+b4S+c4S
2+ d4S

3)Acc3 (3-2d)

In a similar manner as described for Models A and B, a speed-based model was

fitted to the data using speed as the dependent variable. This new model (Model G) is

presented in Equation 3-3a.

(Model G)

FG = aa + baS + caS
2  (3-3a)

where 

FG   : fuel consumption or emission rates (gal/hr or millgram/s) for a certain

speed per one second

aa    : intercept

ba,ca : coefficients of equation

S     : speed (ft/s)
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A simple cubic model using speed as the only dependent variable is,

(Model H)

FH = aa + baS + caS
2 + daS

3 (3-3b)

Furthermore, integrated models incorporating combinations of quadratic and cubic

terms are described as follows:

(Model I)

FI = (a1+b1Acc +c1Acc2) + (a2+b2Acc+c2Acc2)S + (a3+b3Acc+c3Acc2)S2  (3-4a)

where

aa = a1+b1Acc +c1Acc2

ba = a2+b2Acc+c2Acc2

ca = a3+b3Acc+c3Acc2

(Model J)

FJ = (a1+b1Acc +c1Acc2) + (a2+b2Acc+c2Acc2)S + (a3+b3Acc+c3Acc2)S2 +

(a4+b4Acc+c4Acc2)S3 (3-4b)

(Model K)

FK = (a1+b1Acc +c1Acc2+d1Acc3) + (a2+b2Acc+c2Acc2+d2Acc3)S + (a3+b3Acc+c3Acc2+

d3Acc3)S2 (3-4c)

(Model L)

FL = (a1+b1Acc +c1Acc2+d1Acc3) + (a2+b2Acc+c2Acc2+d2Acc3)S + (a3+b3Acc+c3Acc2+

d3
3)2 + (a4+b4Acc+c4Acc2+ d4Acc3)S3 (3-4d)

Table 3-1 provides a summary of all the statistical models that were considered in
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selecting a best model to capture the fuel consumption and emission rates.  Table 3-1

includes the number of parameters, and the sum of squared errors and correlation

coefficients used as measures of effectiveness (MOEs).  The sum of squared errors

returns the sum of the squares of the differences of corresponding values (i.e. the raw

data and the predicted value).  The equation for the sum of squared differences is:

Sum of squared errors = ∑∑∑∑( xi  – yi )
2 (3-5)

where 

xi  = predicted values (gal/hr or millgram/s) of fuel consumption and emission model

yi  = raw data values (gal/hr or millgram/s)

The equation to estimate the correlation coefficient is:

yx
xy

YXCOV

σσ
ρ ),(= (3-6)

where :

11 ≤≤− xyρ

and:

∑
−

−−=
n

i
yixi yx

n
YXCOV

1

))((
1

),( µµ (3-6a)

where:

σx,σy : standard deviation of the predicted values and the raw data

xi, : predicted values (gal/hr or millgram/s) of the fuel consumption and emission

model

yi  : raw data values (gal/hr or millgram/s)

µx, µy : mean of the predicted values and the raw data
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Table 3-1 Summary of the Fuel Consumption Modeling Results of Regression I.

Method No. of
Parameters

Sum of Squared
Errors

Correlation Coefficient

Model A 333 N/A N/A
Model B 444 N/A N/A
Model C 9 44.15979 0.996904
Model D 12 53.67932 0.996334
Model E 12 33.33944 0.997619
Model F 16 52.46797 0.996831
Model G 45 1857.388 0.942227
Model H 60 1960.971 0.932148
Model I 9 66.59052 0.995358
Model J 12 3434.103 0.828656
Model K 12 70.96154 0.995098
Model L 16 1837.55 0.928849

As inspection of Table 3-1 indicates that Model E is the best fuel consumption

model among all Regression I analysis models, judging by the sum of squared errors and

correlation coefficients.  This regression produced an acceptable correlation coefficient

(0.998), and the lowest sum of squared errors (33.340).  Among the decision criteria, the

number of parameters is also very important from the computational effort point of view.

According to the computing time criteria, Model C provided a reasonable sum of squared

errors and a correlation coefficient with a small number of regression coefficients.

Figures 3-6 and 3-7 describe the predicted fuel consumption and the raw data.
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Figure 3-6  Predicted Fuel Consumption for Model C.

Figure 3-7   Predicted Fuel Consumption for Model E.

* : Predicted Value
o : Raw Data Value

* : Predicted Value
o : Raw Data Value
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Using Models C and E, the CO emissions rate data of a composite vehicle were

fitted. The summary of the results are shown in Table 3-2.  Parameters are found in

Appendix B.

Table 3-2 Summary of the Emission (CO) Modeling Results of Regression I.

Method No. of Parameters Sum of Squared Errors Correlation coefficient
Model E 12 87376723 0.933079
Model C 9 77159193 0.943977

Both models produced reasonable correlation coefficients that determine the

relationship of the predicted values and the CO data. However, it was found that some

predicted values were negative, a very undesirable condition.  This analysis was later

corrected with the introduction of natural logarithms in the modeling process.  In order to

reduce the sum of squared errors, other attempts were initiated.

Figures 3-8 and 3-9 describe the predicted CO emission rates and the raw data.
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Figure 3-7  Predicted CO Emission Rates of Model C.

Figure 3-8  Predicted CO Emission Rates of Model E.

* : Predicted Value
o : Raw Data Value

* : Predicted Value
o : Raw Data Value
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3.3.2  Regression Model II

In the previous section, integrated multiple regression models were developed to

predict the fuel consumption and emission rates.  In this section, a polynomial regression

technique was attempted to predict the fuel consumption and emission rates.

Each raw data point is a function of acceleration and speed. Using this concept, the

following polynomial equation was established.

(Model M)

F=a+bA+cA2+dA3+eS+fS2+gS3+hAS+iAS2+jAS3+kA2S+lA2S2+mA2S3+nA3S+oA3S2+p

A3S3 (3-7)

where

F   : fuel consumption or emission rates (gal/hr or milligram/s)

a   : intercept

b,c,…,p: coefficients

A  : acceleration (ft/s2)

S   : speed (ft/s)

A summary of this regression model is presented in Table 3-2. The results shown in

Table 3-2 are the output of the model fitted to predict fuel consumption and CO emission

rate data for a composite vehicle.
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Table 3-3  Summary of Fuel Consumption and CO Emission Rate Model Results

(Model M).

Fuel Consumption Results CO Emission Results
Correlation Coefficient 0.998 0.993
Sum of Squared Errors 25.975 8652558

The table shows that this model (Model M) predicted a better estimate of the raw

data than  Model E in terms of the correlation coefficient and the sum of squared errors.

This fuel consumption model produced a satisfactory sum of squared errors.

Nevertheless, the predicted values of the CO model still produced some negative values.

In order to remove negative emission rates, a data transformation technique was adopted.

Figures 3-10 and 3-11 compare the predicted values and the raw data.
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Figure 3-10  Predicted Fuel Consumption of Model M.

Figure 3-11  Predicted CO Emission Rates of Model M.

* : Predicted Value
o : Raw Data Value

* : Predicted Value
o : Raw Data Value
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3.3.3  Regression Model III

The main drawback of the previous models was the generation of negative numbers

for some dependent variables.  This situation is both undesirable and unrealistic.  In order

to overcome this weakness, a data transformation technique using a log function was

adopted.  First, the data were transformed using the natural log.  Second, a regression

model using the same characteristics as the previous model (Model M) was fitted to the

transformed data.  Finally, the predicted values were transformed by the exponential

function.  Using this concept, the following logarithmic polynomial equation was

established:

∑∑
= =

=
3

0
,

3

0

)**()log(
i

jie
ji

j
e askMOE (3-8)

where

MOEe = fuel consumption or emissions rates (l/hr or mg/s)

k = model regression coefficients

s = speed (m/s)

a = acceleration (m/s2)

The first attempt at modeling the CO emission rates produced an unsatisfactory sum

of squared errors (712,671,321), but included some statistically insignificant terms.  After

the removal of the two insignificant terms, this model reduced the sum of squared errors

significantly (i.e., 92,099,193).

A summary for this model (Model N) is provided in Table 3-4.

Table 3-4  Summary of Fuel Consumption and CO Emission Rate Model Results

(Model N).

Fuel Consumption Results CO Emission Results
Correlation Coefficient 0.997603 0.9493807
Sum of Squared Errors 33.65873 92099193
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As shown in Table 3-4, this model did not improve the measures of effectiveness

significantly.  Nevertheless, the CO model did not generate negative emission rates, so it

improved the predictive capabilities of previous models.

This model uses the polynomial variables derived from speed and acceleration

variables, which can result in multi-collinearity.  However, removing the variables to

reduce the variance inflation (VIF) which is a measure of multi-collinearity, reduces the

model’s performance.  Therefore, this model reserves the polynomial variables despite

problems with multi-collinearity.  Figure 3-12 illustrates the model’s performance with or

without multi-collinearity.

Figures 3-13 and 3-14 compare the predicted values using this model and the raw

data.  The errors of this model are shown in Appendix B.
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Predicted CO of Regression Model with Sixteen Variables

Figure 3-12  CO Predictions of Regression Models with and without Multi-

Collinearity.
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Figure 3-13  Predicted Fuel Consumption of Model N.

Figure 3-14  Predicted CO Emission Rates of Model N.

* : Predicted Value
o : Raw Data Value

* : Predicted Value
o : Raw Data Value
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3.3.4  Neural Network Model

Neural networks are composed of many simple elements supporting an information

processing system that has special characteristics. These elements are motivated by

human biological nervous systems.  The network function is determined by the

connections between elements.  This function is decided by a training step which is a

significant process in the neural network modeling.  In other words, the neural network is

trained to perform a particular function by adjusting the values of the connections among

elements.  Trained networks tend to produce reasonable answers when presented with

inputs that they have never experienced. A new input will produce an output similar to

the collected output data for a corresponding input vector.  Consequently, the trained

neural networks tend to predict the expected data in a reasonable error range.

A neural network might be a good candidate to estimate fuel consumption and

emission rates, due to the following arguments:

• Data is heavily nonlinear with several oscillations along the speed axis.

• Data needs to be fitted with a fast computational procedure for later

implementation in micro-simulation models.

• The accuracy of the algorithm needs to be sufficient to support second-by-second

simulations.

In order to predict the fuel consumption and emission rates, a neural network was

trained to mimic the raw data. The MATLAB Neural Network Toolbox was used to

perform the neural network training analysis.   MATLAB is a general mathematical

package produced by the Mathworks Company [Mathworks, 1997].  This tool is very

efficient in handling matrices, and was used throughout this research project to handle

data manipulation tasks and neural network computations.

Throughout this research project, several programs or ‘templates’ were developed in

MATLAB to perform the following neural net computations:
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• Network training/learning.

• Testing and evaluation of a trained network.

• Implementation to estimate car emissions.

For any given car, learning data sets are used to train the neural network to recognize

patterns. Each template requires the following inputs:

• Number of inputs.

• Value for the learning coefficient.

• Number of processing elements (neurons) in the hidden and output layers.

• Maximum number of cycles (epochs) for each run.

• Required accuracy in the training procedure (i.e., sum of the squared errors for

each run).

Backpropagation, which is the one of many training methods available in neural

network analysis, was used for this modeling.  Backpropagation for multiple-layer

networks and nonlinear differentiable functions is simply a gradient descent method to

minimize the sum of squared errors of the weights and biases produced by the neural

network. Based on the analysis performed with several transfer function algorithms of

backpropagation techniques the Levenberg-Marquardt algorithms (trainnlm: Matlab

function) have been found to be an efficient and reliable training method to be used for

this study [Trani and Wing-Ho 1997].  The design of an appropriate neural network

topology involves: choosing the appropriate neurons’ transfer functions, basic decisions

about the amount of neurons to be used in each layer, and selecting the amount of hidden

layers.

The best topology for car fuel consumption and emission rates comprises three

layers with one hyperbolic tangent sigmoid and two log sigmoid transfer functions

joining them. In neural network topology design, there are tradeoffs between numerical

complexity and prediction performance. In general, the simplest neural network topology
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that produces good results should be selected.  A mathematical form representing a three-

layer neural network is shown in Equation 3-9.

MOEe=F3(W3F2(W2F1(W1p+b1)+b2)+b3) (3-9)

where:

MOEe  = fuel consumption or emissions rates (l/hr or mg/s)

W1,, W2 and W3 = model coefficients

b1, b2 and b3 = bias matrices

p = an input vector containing pairs of (speed, acceleration) used as predictor

variables

F1 = nonlinear transfer function (hyperbolic tangent sigmoid, 
ne

F −+
=

1

1
)

F2 and F3 = nonlinear transfer functions (logarithmic sigmoid, 
nn

nn

ee

ee
F −

−

+
−= )

Figure 3-15 illustrates a general neural network applied to fuel consumption and

emissions function prediction.  As shown in Figure 3-15, three nonlinear transfer

functions (F), model coefficients (W), and bias matrices (b) are utilized to obtain an

MOEe.  Model coefficients and bias matrices are generated by a MATLAB Neural

Network function (trainnlm) after a network training.  Once an input vector (p) is

multiplied to model coefficients (W1) with a matrix form, the matrix (W1p) is added to

with a bias matrix (b1), which is a training output, and forms another matrix form

(W1p+b1).  Then, this matrix is transformed by a nonlinear transfer function (F1).   These

procedures are iterated three times to acquire a predicted MOEe.
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Figure 3-15  General Three-Layered Neural Network .

The source code of this neural network model (Model O) is provided in Appendix C,

and the summary of the results of the model for the composite vehicle are shown in Table

3-5.

Table 3-5  Summary of Fuel Consumption and CO Emission Rate Model Results

(Model O).

Fuel Consumption Results CO Emission Results
Correlation Coefficient 0.9998 0.9996
Sum of Squared Errors 3.3046 548620

As shown in Table 3-5, it was found that this neural network model (Model O)

correlated well with the raw data presented.  These models produced very high

correlation coefficients (0.999, 0.999) and low sums of squared errors (3.3, 548620),

which are the best values obtained so far.  However, due to the neural network

characteristic that traces the trained results, it is difficult to identify this as the best model.

Therefore, further evaluations are considered.

Figures 3-16 and 3-17 compare the predicted values and the raw data.  The errors

between predicted values and the raw data are shown in Appendix B.



46

Figure 3-16  Predicted Fuel Consumption of Model O.

Figure 3-17  Predicted CO Emission Rates of Model O.

* : Predicted Value
o : Raw Data Value

* : Predicted Value
o : Raw Data Value
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3.4  Model Verification

In the previous section, several models were developed that capture the fuel

consumption and emission rates for individual vehicles.  Before we implemented these

models into micro-simulation ITS applications, it was necessary to validate the model

based on the raw data collected.

In order to test the models developed, three test methods were adopted:

• FTP cycle test

• US06 cycle test

• Generalization test

3.4.1  FTP Cycle Test

The Federal Test Procedure (FTP) is the vehicle test procedure used by the

environmental protection agency (EPA).  This procedure is commonly used for light duty

vehicle testing.  The FTP is used to test vehicle emissions performance on a “typical”

driving schedule, using a dynamometer to simulate actual road conditions.

The FTP is characterized by a 11.04 mile trip, consuming 1874 seconds, and

traveling at an average speed of 21.2 mph.  The cycle consists of three distinct segments:

(a cold-transient phase, a stabilized phase, and a hot-transient phase).  Because the mass

emissions from each of the three segments are collected in separate bags, the three

operating modes are often referred to in terms of "bags" (DOT, 1994).  A complete FTP

is comprised of:

• a cold-start or cold-transient phase ("Bag 1”), corresponding to the first 3.59

miles (505 seconds in length);

• a stabilized phase ("Bag 2"), which is the final 3.91 miles (867 seconds in
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length); and

• a hot-start or hot-transient phase ("Bag 3"), corresponding to the first 3.59 miles .
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Figure 3-18  Speed Profile of the FTP Cycle.
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Figure 3-19  Acceleration Profile of the FTP Cycle.
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Speed and acceleration profiles were used for input variables to predict fuel

consumption and emission rates.  The results of each model were compared to the

interpolated raw data.  Aggregate total error, the mean of 1 second-based errors, standard

deviation, a correlation coefficient and CPU computing time were adopted as measures of

effectiveness.  The equation for the aggregate total error is:

100
)(

(%)_ ×−=
Y

YXabs
errorTotal (3-10)

where

X = sum of the predicted values during the entire FTP cycle

Y = sum of the interpolated values of the raw data during the entire FTP cycle

The one second-based error is computed according to the following expression,

100
)(

(%)_ ×−=−
y

yxabs
errorbasedSecond (3-11)

where

x = predicted values for one second

y = interpolated values for one second

The results of five measures of effectiveness for Models C, E, M, N and O are shown

in Table 3-6.  This table shows the measures of effectiveness for the fuel consumption

measure.  Graphical results of fuel consumption errors are shown in Appendix D.
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Table 3-6  Summary of FTP Cycle Test of Fuel Consumption Models for Composite

Vehicle.

Regression Models
Neural Net

Model
Model C Model E Model M Model N Model O

CPU Time
(seconds)

0.0056 0.0162 0.0315 0.0306 0.0884

Total Error 6.26 4.6306 4.1949 0.5758 2.3707
1-s Based
Error

14.1 9.3541 8.6548 5.5316 4.2164

Standard
Deviation

0.75 0.78 0.784 0.72478 0.7239

Correlation
Coefficient

0.985 0.989 0.994 0.995 0.992

As shown in Table 3-6, all the models produced reasonable MOEs.  In terms of

computation time, Model C exceeded the other models at least twice though it ranked in

the last place among most MOEs.  After thorough inspection of the table, it was found

that Model N produced the most acceptable MOEs among the models.

A summary of CO models is presented in Table 3-7.

Table 3-7  Summary of FTP Cycle Test for CO Emission Rate Models for

Composite Vehicle.

Regression Models
Neural Net

Model
Model C Model E Model M Model N Model O

CPU Time
(seconds)

0.0055 0.0157 0.0306 0.0315 0.0890

Total Error 140 86.55 39.44 3.4618 19.8668
1-s Based
Error

739.99 477.22 119.58 16.8691 47.8774

Standard
Deviation

96.72 86.55 52.9349 26.1308 43.2809

Correlation
Coefficient

0.77 0.80 0.9145 0.90067 0.98609

As shown in Table 3-7, Models C, E and M did not generate satisfactory results.

Though Model M produced a higher correlation coefficient than Model N, the former
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generated higher errors than the latter.  One possible reason for this behavior is that

Model M generated a large amount of negative values in a low acceleration regime.

However, Models N and O produced acceptable results.  Model N produced an

acceptable aggregate and one second average errors (3.46% and 16.87% respectively).

The neural network model (Model O) produced the highest value for a correlation

coefficient (0.986) among all the models.

Figures 3-20 through 3-27 show the FTP cycle outputs of CO modeling for Models

N and O.
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Figure 3-20  FTP Cycle CO Emission Rates for Model N (Speed Based).

Figure 3-21  FTP Cycle CO Emission Rates for Model O (Speed Based).

* : Predicted Value
o : Raw Data Value

* : Predicted Value
o : Raw Data Value
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Figure 3-22  FTP Cycle CO Emission Rates for Model N (Time Based).

Figure 3-23  FTP Cycle CO Emission Rates for Model O (Time Based).

* : Predicted Value
o : Raw Data Value

* : Predicted Value
o : Raw Data Value



55

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

Time (s)

E
rr

o
r 

(%
)

Figure 3-24  FTP Cycle Errors of CO Emissions for Model N (Time Based).
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Figure 3-25  FTP Cycle Errors of CO Emissions for Model O (Time Based).
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Figure 3-26  FTP Cycle Error Distribution of CO Emissions Rate for Model N.
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Figure 3-27  FTP Cycle Error Distribution of CO Emissions Rate for Model O.
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As shown in Figures 3-20 and 3-22, the expected CO emission rates of Model N

underestimated the high emission rate data. Nevertheless, it was found that Model N

produced smaller errors than Model O (see Figures 3-24 through 3-27).  Model N is a

good predictor of emission rates in the low speed and acceleration regime, whereas

Model O fits well at higher emission rates.

3.4.2  US06 Cycle Test

The US06 cycle used for the second test is a high acceleration aggressive driving

schedule that is often recognized as a “Supplemental FTP” driving cycle.  This

Supplemental Federal Test Procedure (SFTP) was designed to address shortcomings with

the current FTP in the representation of aggressive (high speed and/or high acceleration)

driving behavior, rapid speed fluctuations, and driving behavior following startup.  This

cycle represents a new set of requirements designed to more accurately reflect real road

forces on the test dynamometer.

This EPA defined cycle has an average speed of 47.97 mph over a distance of 8.01

miles.  The complete cycle takes 600 seconds.  The speed and acceleration variation is

shown in Figures 3-28 and 3-29.
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Figure 3-28  US06 Cycle Speed Profile.
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Figure 3-29  US06 Cycle Acceleration Profile.
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In this US06 cycle test, speed and acceleration profiles were used as input variables.

However, due to the high acceleration and speed characteristic of this cycle, some speed

and acceleration profiles exceed the boundary of the raw data (thirteen times out of 596

seconds).  Accordingly, it was unfeasible to obtain the precise interpolated value of the

raw data.  In order to minimize the differences between the interpolated values and the

real values of the US06 cycle, the speed and acceleration profiles that surpass the

boundary of the raw data were replaced by the maximum value or minimum value of the

raw data.

A summary of the US06 cycle for Models N and O, which have produced acceptable

results until now, is presented in Table 3-8.

Table 3-8  Summary of US06 Cycle Test for Composite Vehicle.

Fuel Consumption Modeling CO Emissions Modeling
Model N Model O Model N Model O

CPU Time(seconds) 0.0118 0.032 0.0125 0.0331
Total Error 2.1662 2.0857 16.7923 33.4787
1-s Based Error 4.4050 14.0092 39.1142 41.0706
Standard Deviation 2.0144 1.9084 1845.5897 514.2616
Correlation Coefficient 0.97605 0.97042 0.65669 0.94192

As shown in Table 3-8, both models yield reasonable outputs for fuel consumption

modeling.  In terms of CO emissions rate modeling, Model N produced lower error

values than Model O, while Model O generated a higher correlation coefficient value.

Figures 3-30 through 3-36 illustrate the two behaviors of these models.
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Figure 3-30  Interpolated Fuel Consumption (Composite Vehicle, US06).
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Figure 3-31  US06 Cycle Fuel Consumption Results for Model N (Speed Based).
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Figure 3-32  US06 Cycle Fuel Consumption Results for Model O (Speed Based).
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Figure 3-33  US06 Cycle Fuel Consumption Results for Model N (Time Based).
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Figure 3-34  US06 Cycle Fuel Consumption Results for Model O (Time Based).
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Figure 3-35  Fuel Consumption Errors for Model N (US06 Cycle).
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Figure 3-36  Fuel Consumption Errors for Model O (US06 Cycle).
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Figure 3-37  Error Distribution of Fuel Consumption for Model N (US06 Cycle).
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Figure 3-38  Error Distribution of Fuel Consumption for Model O (US06 Cycle).
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Figure 3-30 represents the interpolated fuel consumption of raw data using the US06

cycle.  Figures 3-31 through 3-34  compare the accuracy of the two models showing the

difference between the interpolated and predicted values for speed and time series using

the US06 cycle. Figures 3-35 through 3-38 show the errors between the interpolated and

predicted values.

As shown in the previous figures, the variance of error for fuel consumption

modeling of Model N is smaller than that of Model O.  Most of the errors in model N are

within 10%, while those for Model O are dispersed up to 40%.

Figures 3-39 through 3-47 illustrate the US06 test outputs of CO emissions rate

modeling for Model N and Model O.
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Figure 3-39  Interpolated CO Emission Rates (Composite Vehicle, US06).
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Figure 3-40  Speed Trace of CO Emission Rates (US06 Cycle) for Model N.
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Figure 3-41  Speed Trace of CO Emission Rates (US06 Cycle) for Model O.
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Figure 3-42  Time Trace of CO Emission Rates (US06 Cycle) for Model N.
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Figure 3-43  Time Trace of CO Emission Rates (US06 Cycle) for Model O.
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Figure 3-44  CO Emission Error (US06 Cycle) for Model N.
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Figure 3-45  CO Emission Error (US06 Cycle) for Model O.
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Figure 3-46  Error Distribution of CO Emission for Model N (US06 Cycle).
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Figure 3-47  Error Distribution of CO Emission for Model O (US06 Cycle).
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As shown in the previous figures, it was found that Model N overestimated some CO

data points located at the end of the cycle.  This results in a standard deviation of error

(1845.59), which is three and a half times the standard deviation for Model O (514.26).

An inspection of Figure 3-43 reveals that many of the predicted values of  Model O

underestimate the interpolated CO emission rate values of the US06 cycle.
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3.4.3  Generalization Test

A generalization technique was used to verify the accuracy of these models. In the

neural network model, the outputs of a supervised neural network come to approximate

the target values, given the inputs in the training set. The ability to predict the trained

inputs may be useful in itself. But more importantly, a neural net should be generalized to

have model outputs approximate target values given inputs that are not in the training set

(Sarle,1997).

In order to use generalization, a total of 10,000 random numbers (100 random

acceleration and 100 random speed) were generated.  These 10,000 random numbers

were used as input variables into the neural network model (Model O) and the regression

model (Model N).

The output of the generalization test is presented in Table 3-9.

Table 3-9  Summary of Generalization Test for Composite Vehicle.

Fuel Consumption Modeling CO Emissions Modeling
Model N Model O Model N Model O

CPU Time(seconds) 0.1603 3.5534 0.1642 3.5212
Total Error 0.5931 0.5985 36.6104 6.1426
1-s  Based Error 7.0271 6.3676 31.1767 34.5944
Standard Deviation 64.6656 61.6378 32.1231 38.3163
Correlation Coefficient 0.988 0.989 0.9626 0.992

As shown in Table 3-9, both Models N and O produced good results in fuel

consumption modeling.  In terms of CO emissions rate modeling, the total error for

Model O was about six times smaller than for Model N, whereas the CPU time

consumption for Model O was notably greater than that of Model N.
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Figure 3-48  Predicted Fuel Consumption of Model N in Generalization Test.

Figure 3-49  Predicted Fuel Consumption of Model O in Generalization Test.
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Figure 3-50  Predicted CO Emission Rates of Model N in Generalization Test.

Figure 3-51  Predicted CO Emission Rates of Model O in Generalization Test.
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3.5  Summary of Chapter 3

This chapter discussed the Oak Ridge National Laboratory data and several

mathematical models that predict the MOEs based on individual vehicle speed and

acceleration profiles.

In order to obtain a regression equation, many experimental combinations of speed

and acceleration using linear, quadratic, cubic, and quartic terms are modeled.   A

regression model was developed to predict vehicle fuel consumption and emission rates

using a combination of linear, quadratic, and cubic speed and acceleration terms.

Backpropagation, one of many training methods available in neural network

analysis, was used for this modeling.  Backpropagation for multiple-layer networks and

nonlinear differentiable functions is simply a gradient descent method that minimizes the

sum of squared errors of the weights and biases produced by the neural network training

process. Based on the analysis performed with several transfer function algorithms and

various backpropagation techniques, the Levenberg-Marquardt algorithm (trainnlm:

Matlab function) was found to be an efficient and reliable training method and

consequently used in this study.

Currently, the models do not consider ambient temperature, start emissions, road

grade, and accessory use.  Sample varification results are included for two vehicle-

driving cycles and generalization tests. The models presented estimate vehicle fuel

consumption to within 2.5% of their actual measured values. Vehicle emission rate errors

fall in the range of 3-33% with correlation coefficients ranging between 0.94 and 0.99.
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4.1  Introduction

A mathematical model has been developed to describe and explain the first order

contribution of vehicle speed and acceleration on energy and emissions.  In order to

provide an adequate description of system behavior, it was necessary for the model to be

validated.  In fuel consumption and emissions modeling, a number of reasonable tests are

available to test the model.  In this section, the general issues concerning model testing

are reviewed, and sensitivity analyses are conducted to validate the models developed.

The model developed has been applied to a signal coordination and an incident

management problem.  This model was implemented into a micro-simulation model

INTEGRATION and applied to typical networks for model testing.  The composite

vehicle was used throughout the entire testing model.

4.2  Signal Coordination

In this section, three scenarios are tested to check the energy economy and

environmental effects of several signal control strategies which are typical of real

networks.  The three scenarios are:

• No control

• Stop sign control

• Traffic signals control
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4.2.1  No Control Test

This scenario is tested to find out the least fuel consumption and the least emissions

speeds.  Consider a typical suburban corridor, which has three intersections and four

links.  Each link length is 1 km, and the same constant free-speeds are applied to the

entire network.  The complete network is 4 km in length.  In order to estimate the most

fuel efficient speed, a single vehicle traverses the network at 10 km/hr speed increments

from 10 km/hr to 100 km/hr in the simulation model.  The simulation runs are executed

assuming no vehicle acceleration.  Figure 4-1 represents the network configuration used

in the simulation.

Start  Node End Node
1  km 1 km1 km1 km

Figure 4-1  Simulation Screen Capture.
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Figure 4-2 shows a time-speed diagram showing the total travel time for each run.

From this figure we observed that although fuel consumption and emissions are generally

small at lower speeds for one second, the total fuel consumption and emissions also

depend on the total travel time.  As vehicle speeds increase, travel time decreases, thus

resulting in an optimum fuel and emissions economy speed.  Table 4-1 shows the one

second fuel consumption and emission rates and the total travel time in the network for

every speed.
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Figure 4-2  Vehicle Speeds and Total Travel Time.
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Table 4-1  One-Second Fuel Consumption and Emission Rates.

Speed
(km/hr)

Fuel Consumption
(liters/s)

HC (mg/s) CO (mg/s) NOx
(mg/s)

Total Travel
Time (s)

10.1 0.00072 0.62 4.87 0.56 630
20 0.00091 0.77 8.3 0.88 600
30 0.00111 0.94 12.65 1.34 509
40 0.00131 1.15 17.81 1.98 389
50 0.00152 1.41 24.02 2.86 317
60 0.00174 1.79 32.19 4.06 269
70 0.00201 2.37 44.48 5.67 235
80 0.00236 3.32 65.69 7.84 209
90 0.00284 5.02 107.61 10.78 189
100 0.00356 8.3 202.78 14.8 173

As shown in Table 4-1, the fuel consumption and emission rates increase as speeds

increase, while total travel time decreases.  Figures 4-3 and 4-4 represent the total fuel

consumption and emissions for every speed.
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Figure 4-3  Fuel Consumption vs. Constant Speed.
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Figure 4-4  Emissions vs. Constant Speed.

Careful examination of Figures 4-3 supports that the best fuel economy speed is

around 70 km/hr.  In case of emissions, their characteristics are different from those of

fuel consumption.  Usually total emissions increase as speed increases, except HC.

According to the results, the minimum total HC emission (0.406 g) is found to be around

50 km/h.  In the case of CO and NOx, emissions increase as speed increases.  Under real

driving conditions, a constant speed along network links is not possible.  As mentioned in

the previous chapter, acceleration variations influence fuel consumption and emissions.

Therefore, the next scenario examines the impact of acceleration and average speed on

the same network.
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4.2.2  Average Speeds Test

Two main emission models commonly used in the United States are the

Environmental Protection Agency’s (EPA’s) MOBILE model and the California Air

Resources Board’s (CARB’s) EMFAC model.  In both models, emission rates highly

depend on the vehicle’s average speed.  As shown in Chapter 3, the vehicle emission

rates are dependent on  acceleration as well.  Therefore, this section investigates how the

same average speed can generate different fuel consumption and emission rates using the

simulation model.

In order to simulate a typical scenario, exactly the same network is used as described

before (No Control Test).  The first vehicle is driven at 36 km/h at a constant speed, and

the second vehicle starts the first link at 25 km/h and drives at 75 km/h, 25 km/h and 75

km/h in the second, third and fourth links, respectively. Figure 4-5 represents the

trajectories of vehicle speed.
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Both of the two vehicles finish their trip at the same average speed, 36 km/h.  Figure

4-6 represents the variation in acceleration of the variable speed vehicle.  The total fuel

consumption and emission rates after complete trips, are presented in Table 4-2.
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Figure 4-6  Variation in Acceleration for Average Speed Test.

Table 4-2  Summary of Average Speed Test.

Fuel Consumption
(liters/s)

HC (mg/s) CO (mg/s) NOx(mg/s)

Variable Speed 0.619 1119.69 23033.24 1732.6
Constant Speed 0.492 424.00 6256.03 680.0

Table 4-2 shows that the variable speed trip consumes more fuel than the constant

speed trip as expected.  In the case of emissions, the emission rates of the variable speed

trip for all three emissions surpass those of the constant speed trip, also.  This

phenomenon, in which a variable speed trip exceeds a constant speed trip, can be

explained by the impact of vehicle acceleration.  As mentioned in Chapter 3, fuel

consumption and emissions rates are generally high in the positive acceleration mode.
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Therefore, whenever the speed of a vehicle changes during a trip, high rates of fuel

consumption and emissions are consumed and/or emitted.  Figures 4-7 and 4-8 represent

the second-by-second variations in fuel consumption and HC rates during the entire test

trip.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 50 100 150 200 250 300 350 400 450

Time (s)

F
ue

l C
on

su
m

pt
io

n 
(L

ite
rs

/s
)

Variable speed

Constant speed

Figure 4-7  Variations in Fuel Consumption Rates.
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Figure 4-8  Variations in HC Emission Rates.

4.2.3  Stop Sign Control Test

In this section, a stop sign control system is applied to the simulation model.

Generally, interrupted driving conditions consume more fuel and emit more emissions

than constant speed driving conditions.  This test verifies how stop signs affect fuel

consumption and emissions rates in a specific network.

In order to simulate the scenario, we use the same network described in Section 4.1.1

(No Control Test), but add three stop signs.  The first test vehicle is driven at 50 km/h at a

constant speed without any stop signs, and the second test vehicle is driven at 50 km/h

with a non-constant speed with three stop signs.

Figure 4-9 represents the variations in fuel consumption rates with stop sign controls.

As shown in Table 4-3, fuel consumption rates decrease in front of stop signs and sharply

increase after the stop sign implementation.
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Figure 4-9  Variation in Fuel Consumption with Stop Signs Control Network.

Table 4-3 shows the differences in fuel consumption and emission rates in the

simulated corridor with and without stop sign controls.

Table 4-3  Summary of Stop Signs Control Test (50 km/h).

Fuel Consumption
(liters/s)

HC (mg/s) CO (mg/s) NOx(mg/s)

No Control 0.43776 406.08 6917.72 823.85
Stop Sign
Control

0.54757 640.2 11479.92 1513.97

Relative
Difference(%)

0.250845 0.576537 0.659495 0.837677

As shown in the previous table, unessential stop signs provide negative impacts on

energy economy and air quality.  Especially, in the case of NOx, almost twice the

emission of this pollutant is related to three stop signs in a 4 km length network.  The

severity of the impact can be different according to the prescribed free speeds.
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4.2.4  Traffic Signal Control Test

This scenario serves to explain how good signal coordination can affect the fuel

consumption and emissions rates in a specific corridor.  Signal coordination is one of the

basic elements of the Intelligent Transportation System (ITS), and is widely used in many

cities in the world.  Signal coordination can reduce arterial travel times, increase average

travel speed and reduce stopped delay times for vehicles traveling on mainlines and at

intersections.  This section verifies the impacts of good signal coordination on fuel

consumption and emissions.

For this analysis, we consider the same urban corridor with three intersections and

four links, as before.  Each link length is 0.35 km, which is reasonable for intersection

lengths in urban areas.  Demand from the start node to the end node is 300 veh/h.  The

last vehicle injected into the simulation departs 15 minutes from the beginning of the

simulation.  A free speed of 50 km/h is applied to the entire corridor.

In order to study the effect of signal coordination, four scenarios are adopted: 1) poor

fixed-time signal coordination, 2) good fixed-time signal coordination and 3) real-time

traffic signal coordination.  Figures 4-10 through 4-12 represent second-by-second

vehicle trajectories for three signal controls.  Each small dot in each figure  represents a

time-space trace.
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Figure 4-10  Vehicle Trajectory (Poor Fixed-time Signal Coordination).
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Figure 4-11  Vehicle Trajectory (Real-time Traffic Signal Coordination).
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Figure 4-12  Vehicle Trajectory (Good Fixed-Time Signal Coordination).

Figure 4-10 represents the vehicle trajectory for poor fixed-time signal coordination.

Each narrow line stands for each vehicle, and the wide lines represent the traffic platoons

generated by the signal.  As shown in the figure, all vehicles stop at the first, second, and

third signals due to the poor signal coordination.

Figure 4-11 represents the vehicle trajectories in a real-time traffic signal

coordination implementation.  Initially, most of the vehicles stop at the signal but, as time

progresses, the signals change their offsets and vehicles progress without stops.  Figure 4-

12 shows the vehicle trajectories of good fixed-time signal coordination.  As shown in the

figure, vehicles proceed without a stop after the first signal.

Table 4-4 shows the summary of the delay metrics associated with each strategy.
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Table 4-4  Summary of the Delay of Four Signal Control Strategies.

Total Delay (s) Average Vehicle Delay (s)
No Signal Control 0 0

Poor Fixed-time Signal Coordination 4210 56.144
Real-time Signal Coordination 1614 21.527

Good Fixed-time Signal Coordination 586 7.823

As discussed in the previous chapter, vehicle fuel consumption and emission rates

are highly dependent on vehicle acceleration.  Repeated delays and stops result in

frequent acceleration behavior.  Poor signal control coordination reduces fuel economy

and increases the production of emissions.  Figure 4-13 depicts the variations in speed

and acceleration for a probe vehicle used to access poor signal coordination.
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Figure 4-13  Variations in Speed and Acceleration under Poor Signal Coordination.

Figure 4-14 represents the sample emission rates for a probe vehicle under good and

poor signal coordination strategies.
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Figure 4-14  HC Emissions for a Probe Vehicle.

As shown in Figure 4-14, stops and acceleration behaviors produce up to ten times

more emissions than a constant speed driving behavior.  Until the first signal, emission

rates are same for the both signal controls.  However, it is observed that after the first

sharp emission peak, HC rates are almost constant for good signal coordination.  This is

not the case under poor signal coordination.  Table 4-5 and Figure 4-15 show a summary

of the fuel consumption and emissions rates for four different signal controls.
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Table 4-5  Summary of Total Fuel Consumption and Emissions.

Fuel Consumption (liters) HC (g) CO (g) NOx (g)
No Signal Control 11 10 180 21

Poor  Signal
Coordination

19 21 350 54

Real-time Signal
Coordination

15 15 260 36

Good  Signal
Coordination

13 13 227 30
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Figure 4-15  Relative Difference with No Control.

As shown in Figure 4-15, poor signal control coordination produces the NOx

pollutant up to increments of 157% than is the case with those observed under no signal

control.  However, Figure 4-16 shows possible pollutant reductions using various signal

control strategies.
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Figure 4-16  Comparison of Fuel Consumption and Emissions for Various Signal

Controls.

Figure 4-16 suggests that good signal coordination and real-time signal controls can

increase fuel economy and reduce the pollution metrics.  Furthermore, good signal

coordination can reduce NOx pollutants up to 45 %, compared with poor signal

coordination.

4.3  Incident Delay Impact

An incident is any non-recurrent event that causes a temporary reduction in roadway

capacity.  Incidents are one of the main elements that affect highway delays.  Incident

management, which is one of most popular ITS techniques, has been established in urban

areas nationwide to help reduce the magnitude of incident induced congestion.

Incident management improves the incident control capabilities of transportation and

public safety systems, implements a response to minimize the effects on traffic, and helps

public and private organizations to identify incidents quickly.  Generally, incident

management has five stages: incident detection, incident verification, incident response,

incident clearance, and motorist information.



93

In this section, it was investigated how reduced incident recovery time and motorist

information affect fuel consumption and emissions.  In order to simulate a real incident

condition, the INTEGRATION software was used.

 4.3.1  Variable Incident Duration Test

A 25 km length section of one lane highway is used to test energy and emissions

under incidents.  There is no exit on this section, and the free speed is 100 km/h, the jam

density is 90 veh/h, and the saturation flow rate of this section is 2250 veh/h.  The

departure rate is 900 veh/h (v/c ratio = 0.4), and incident duration times increases from 0

to 1200 seconds with a 300 seconds interval.

In order to simulate the scenarios, we assume that,

1. The first and the last times that vehicles enter the network is 0 and 1800 seconds,

respectively. Also, simulations continue by 3000 seconds in order to clear all the

vehicles entering the network.  All the estimates of measures of effectiveness

(MOEs) are the output of 1800 seconds of simulation.

2. All the incidents block 100 percent of the lane capacity.  And, after clearance, the

lane capacity is fully recovered.

3. The incident occurs at 900 seconds from the start of the simulation, and it occurs

on  the 19.75 km point from the departure location.

Figure 4-17 illustrates total delays for each incident duration time.  Total Delay

increases exponentially as incident duration lengthens.
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Figure 4-17  Total Delays for Various Incident Duration Times.

Figure 4-18 represents the total fuel consumption and emission rates produced

during each simulation time.  As shown in Figure 4-18, the changes in incident duration

do not affect the total fuel consumption and emissions rates significantly. The figure

illustrates that the total emissions of HC and NOx does not change much according to

changes in incident duration, while total CO emission rates increase about 15% after the

reduction in incident length (1200 to 0 seconds).

The results can be explained in that although there was no incident on the highway,

individual vehicles generated sufficiently large emissions to account for this outcome.

The free flow speed of these simulations was 100 km/h, which is known to produce good

amount of emissions.  Also, vehicles produce very small amounts of emissions during

idling condition.  And, in this case, the effect of acceleration, which is the main factor

affecting fuel consumption and emissions, was relatively small.
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Figure 4-18  Fuel Consumption and Emission Rates for Various Incident Duration.

 4.3.2  Route Diversion Strategy Test

The simulation network used for route diversion test is shown in Figure 4-19.

Node 1 Node 2

Node 4Node 3

0.5 km

1.0 km

0.3 km0.3 km

0.3 km 0.3 km

0.5 km1.0 km

Incident

Figure 4-19  The Sample Network for Route Diversion Test.

The network has four nodes, including two signalized intersections.  Two signals on

the arterial have two phases, and the signal time is optimized by INTEGRATION itself.

To simplify the analysis, one side of the highway and the arterial are considered for
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simulations.  The incident occurs at the 1.3 km point from the starting node of the

highway and blocks two out of three lanes.  This incident starts at 150 seconds and ends

600 seconds from the start of the simulation.  In the case of the diversion test, real-time

traffic information is provided to the vehicles on the highway while 20 percent of error

rates are applied.

The following parameters are used in all the simulations.

• Total Simulation Time: 1200 seconds

• Vehicle Departure Time: 0 to 900 second

• Total network length: 4.8 km ( 8.8 lane-km)

• Number of Vehicles Entered:  650 vehicles (600 on hwy. and 50 art.)

• Free Flow Speed: 100 km/h on the highway and 60 km/h on the arterial

• Jam Density: 80 veh/km

• Capacity: 2000 veh/hr

• Number of Lanes: Three lanes on the highway and one lane on the arterial

Table 4-6 illustrates the simulation results of diversion, no-diversion, and the no-

incident tests.
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Table 4 - 6  Summary of Diversion Technique Results.

Diversion No Diversion No Incident
Total Delay (veh-secs) 33053 51799 4574

Veh-stops 859 838 93
Fuel (l) 228.09 225.95 158.71
CO (g) 22589.77 20507.15 11315.21
HC (g) 2989.38 3356.51 1773.76
NOx (g) 891.59 850.63 626.76

The results of the test support the following findings:

1. Diversion technique reduces 35 percent of the total delay.

2. Diversion technique increases fuel consumption, CO and NOx emission rate

slightly.

3. Diversion technique does not affect the fuel consumption and emissions rates

significantly.

Even though the diversion technique reduced the total vehicle delay, it did not

reduce the fuel consumption and emission rates.  This may be explained in that the total

delay caused by an incident is dominated by idle conditions (stopped delay), the fuel

consumption and emission rates in idling condition are relatively low.  This might be the

main reason why the diversion technique does not reduce fuel consumption and

emissions rates.

Recently, many cities have adopted signal coordination techniques and incident

management techniques and would like to know how these techniques affect fuel

economy and emissions.  According to these case studies, the signal coordination

technique reduces pollutants significantly and also saves energy, while incident

management does not decrease fuel consumption and emission rates.  However, these

results can be vary according to the network conditions, flow characteristics, traffic signal

control types, and simulation scenarios.
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4.4  Summary of Chapter 4

This chapter has demonstrated how the combined use of a microscopic vehicle

dynamic model, together with a microscopic vehicle energy and emission model, can be

utilized to evaluate alternative ITS and non-ITS applications. The microscopic energy

and emission models were implemented into the INTEGRATION traffic simulation

model and applied to a typical networks for model testing. As a test of feasibility, this

tool was utilized to evaluate alternative types of traffic control and incident management

problem.

The study demonstrated that for steady-state conditions (no vehicle accelerations),

the tool predicted vehicle fuel consumption and emissions consistently with field data

that were obtained from ORNL. Furthermore, the study demonstrated that vehicle fuel

consumption and emissions are more sensitive to the level of vehicle acceleration than

they are to the vehicle speed (difference of up to ten-fold). In addition, this study has

demonstrated that the use of the average trip speed to estimate vehicle fuel consumption

and emissions (as is the case in MOBILE5) fails to capture these important differences in

acceleration levels. Finally, the study demonstrated that incident management techniques

did not affect the energy and emissions rates notably.
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5.1  Summary of the Thesis

This thesis demonstrates some preliminary modeling results of microscopic fuel

consumption and emission rate models and their applications. Key input variables to

these models are vehicle speed and acceleration. The results of this modeling study

support the following conclusions:

• For a composite vehicle, modeling results demonstrate a good agreement

between the raw data and the model predictions;

• The accuracy of both models in predicting fuel consumption appears to be

reasonable, with correlation coefficients of above 0.99;

• The accuracy (correlation coefficient: 0.85-0.95) of both models in predicting

CO, NOx, and HC emissions rates is acceptable for  traffic impact assessment,

including the assessment of ITS technology impacts on the environment.

The development of these models attempts to bridge the existing gap between traffic

model simulator outputs, traditional transportation planning models, and environmental

impact models. The models presented in this thesis are general enough to be incorporated

in any existing or planned model where vehicle kinematics are explicit enough to include

speed and acceleration variables. This model was implemented into a micro-simulation

model INTEGRATION and applied to a typical network for model testing.  The model

developed has been applied to a signal coordination and an incident management

problem.  The composite vehicle is used throughout the entire model testing.  The

summary of the case studies support the following conclusions:

• Vehicle fuel consumption and emissions are more sensitive to the level of

BMcLaughlin
Highlight
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vehicle acceleration than to vehicle speed.

• Under constant speed driving condition, the best fuel economy speed is found at

around 70 km/h. Emissions generally increase as speed increases, while the

minimum total HC emission is found at around 50 km/h.

• Even for vehicle trips that have the same average speeds, their fuel consumption

and emissions rates are significantly different.  A variable speed trip consumes

and emits more fuel (25 %) and emissions (300 to 400 %) than a constant speed

trip.

• Good real-time signal coordination can reduce the fuel consumption and

emission rates more significantly than can poor signal coordination.

• However, a reduction in incident duration does not reduce the amount of

pollutants while this decreases the fuel consumption slightly.

• Also, the diversion technique does not affect fuel consumption and emission

rates significantly in the case study.

5.2  Model Limitations

Like any mathematical model, there are some limitations in the use of the models

developed.  These limitations include the following:

• Start up emissions (cold-start vs. hot-start) and ambient temperature are not

considered in the current models.  Work is needed to develop models that are

sensitive to the ambient temperature.

• Models cannot be applied beyond the vehicle speed and acceleration boundaries

that were used in their calibration.

The first point arises because all data from ORNL were collected under hot-

stabilized engine conditions. Recent second-by-second data obtained from the EPA have

proven valuable in determining the differences between hot-running and cold-started

engines. A model is being developed to add this contribution as an external additive

BMcLaughlin
Highlight
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function to the models presented here.

The second limitation results from the inherent limitation of any model to

extrapolate response values beyond the boundaries used in the model calibration

procedure. While most vehicles can travel  faster than 110 ft/s (upper limit of the testing

boundary), it is impossible to establish a reliable forecasting pattern at high speeds due to

the heavy nonlinear nature of the response curves.  No data is available to verify energy

and emissions rates.

5.3  Further Research

The following areas of research are currently being pursued to expand the

applicability of the models developed in the context of microscopic traffic simulation:

• Aggregate start-up vehicle emissions and microscopic start-up emission models

must be added to the microscopic fuel consumption and emissions model,

including cold-start, hot-start, and soak-time functions.

• The environmental impact of heavy-duty vehicles cannot be ignored in the

modeling process.  Heavy-duty gasoline and diesel engines should be modeled

separately.

• Vehicle composition and its analysis are important considerations in the

modeling process.  Additional vehicle data including high emitters must be

added to the model.

• More data are required to extend the boundaries of the data and to include more

vehicles.

• Currently, only three air pollutants (CO, HC, and NOx), in addition to fuel

consumption, are modeled.  Two important pollutants, particulate matters and

CO2, will be added to the model.
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Appendix A

Table A-1  Test Vehicle and Industry Average Specifications.

<HDU 0DNH20RGHO (QJLQH 7UDQVPLVVLRQ Curb

Weight

OEV#+NJ,

5DWHG#KS

/LJKW0'XW\#&DUV

1988 Chevrolet Corsica 2.8L pushrod V6,PFI M5 2665(1209) 130

1994 Oldsmobile Cutlass

Supeme

3.4L DOHC V6, PFI L4 3290(1492) 210

1994 Oldsmobile 88 3.8L pushrod V6, PFI L4 3360(1523) 170

1995 Geo Prizm 1.6L OHC I4, PFI L4 2460(1116) 105

1993 Subaru Legacy 2.2L DOHC flat 4, PFI L4 2800(1270) 130

5-car average 2.8L, 5.2 cyl. 2915(1322) 149

1995 LDV industry average 2.9L, 5.4 cyl. 2900(1315)

/LJKW0'XW\#7UXFNV

1994 Mercury Villager Van 3.0L pushrod V6, PFI L4 4020(1823) 151

1994 Jeep Grand Cherokee 4.0L pushrod I6, PFI L4 3820(1732) 190

1994 Chevrolet Silverado

Pickup

5.7L pushrod V8, TBI L4 4020(1823) 200

3-truck average 4.2L, 6.7 cyl 3953(1793) 180

1995 LDT industry average 4.6L, 6.5 cyl

8-vehicle average 3.3L, 5.8 cyl 3300(1497) 160

1995 LDC+LDT, industry avg. 3.5L, 5.8 cyl

Source: West et al. 1997
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Appendix B

B-1 Error Plot of Model N

Figure B-1 Differences between the Predicted Fuel Consumption Values and the

Raw Data in Model N.
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Figure B-2 Error Plot of Fuel Consumption Model for Model N.

Figure B-3 Contour Plot of Fuel Consumption Error of Model N.
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Figure B-4 Differences between the Predicted CO Values and the Raw Data in

Model N.

Figure B-5 Error Plot of CO Model for Model N.
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Figure B-6 Contour Plot of CO Error of Model N.
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B-2  Error Plot of Model O

Figure B-7  Differences between the Predicted Fuel Consumption Values and the

Raw Data in Model O.

Figure B-8  Error Plot of Fuel Consumption Model for Model O.
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Figure B-9 Contour Plot of Fuel Consumption Error of Model O.

Figure B-10 Differences between the Predicted CO Values and the Raw Data in

Model O.
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Figure B-11 Error Plot of CO Model for Model O.

Figure B-12 Contour Plot of CO Error of Model O.
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Appendix C

C-1  Matlab source code (Neural network training)

% NEURAL NETWORKS TRAINING FOR CAR EMISSIONS
% DEVELOPED BY DR. ANTONIO TRANI and KYOUNGHO AHN
% Revision 2 : Mar/10/1998

% Data input (file with velocity, acceleration and HC emissions
profiles)

% Copy the data(only data) to a new sheet
% Save excel data file as lotus wk1 type
% (EX) corf.wk1

% Save the data as matrix 'emi1'
% Change the worksheet

emi1 = wk1read('com2no.wk1',1,1);

k=0;

[row,col] = size(emi1);

% Assign three column vectors for speed, acceleration and emissions

for j = 1:col
for i = 1:row

if emi1(i,j) ~= 0

k = k + 1;
        emi2(k) = emi1(i,j);
        speed1(k) = i - 1;
        acc1(k) = j - 6;

end
end

end

% Transpose the data

emi = emi2;
speed = speed1;
acc = acc1;

[ncol,nrow]=size(emi);
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% Data Normalization (necessary to manipulate data)

speedn = speed/max(speed);
emin = emi/max(emi);
accn = acc/max(acc);

max_emi = max(emi); % Maximum emissions from database

% Set Inputs and Targets

speed_min = min(speedn);
speed_max = max(speedn);
emi_min = min(emin);
emi_max = max(emin);
acc_min = min(accn);
acc_max = max(accn);
P1_cr = [speed_min speed_max; acc_min acc_max];
T1_cr = [emi_min emi_max ] ;

P_cr = [speedn; accn];
Ta_cr = [emin];

% Initialize Traning Parameters

df = 1;   % Frequency of progress displays (in epochs).
me = 10000; % Maximum number of epochs to train.
eg = 0.03; % Sum-squared error goal.
tp = [df me eg ];

% Initialize Weights and Biases

nns = 10; % Number of Neurons in first layer
nns2 = 5; % Number of neurodes in second layer

%********************************
%        For HC Emissions       **
%********************************

[ W31_cr,b31_cr,W32_cr,b32_cr,W33_cr,b33_cr
]=initff(P1_cr,nns,'tansig',nns2,'logsig',T1_cr,'logsig');

% Taining of the neural networks using Lavenberg-Marquardt Alogrithm

[ W31_cr,b31_cr,W32_cr,b32_cr,W33_cr,b33_cr ]=
trainlm(W31_cr,b31_cr,'tansig',W32_cr,b32_cr,'logsig',W33_cr,b33_cr,'lo
gsig',P_cr,Ta_cr,tp);
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C-2 Matlab source code (Computer Program to Simulate Neural Network Results)

% NEURAL NETWORKS TRAINING FOR CAR EMISSIONS
% DEVELOPED BY TONI TRANI and KYOUNGHO AHN
% Revision # 2 (Mar/15/98)

%------------------------------------------------
% Change the MAT file
%------------------------------------------------

% Simulates NN results and checks accuracy

% load cr6
% loads a MAT file with cruise variables
% Simulate Traning Results

clear
load com2cocr;

[ncol,nrow]=size(emi);

%********************   CO Analysis  *****************************
% Speed Normalization

TM3 = speedn;

% Acceleration Normalization

TA3= accn;

P3 = [TM3; TA3 ];

F3
=simuff(P3,W31_cr,b31_cr,'tansig',W32_cr,b32_cr,'logsig',W33_cr,b33_cr,
'logsig');

cal = F3 * max(emi);

%**************************STATISTICS*****************************

% calculate correlation coefficient and sum of squared error
% emi = GENERALIZED DATA
% F3 = normalized predicted data points
% cal = PREDICTED VALUES

correl=corrcoef(cal, emi)
for i=1:nrow;

sq_er=(cal-emi).*(cal-emi);
end
sse=sum(sq_er)
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% CALCULATING ERRORS and THE AVERGER MEAN

i = 1:nrow;
w(i) = abs(emi(i) - cal(i))./emi(i).*100;
m = mean(w(i))

hist(w,15)
xlabel('Error (%)');
ylabel('Frequency');
grid
pause

% Plot predicted vs actual HC emissions

plot(speed,emi,'o',speed,cal,'*')
xlabel('Speed (ft/s)')
ylabel('CO emissions (mg/s)')
grid

zoom
pause

plot3(speed,acc,emi,'o')
xlabel('Speed (ft/s)')
ylabel('Acceleration (ft/s-s)')
zlabel('CO Emissions (mg/s)')
grid
rotate3d on
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C-3 Coefficients of Neural Network Models

Fuel consumption model of composite vehicle

W31_cr =
-2.3441 -3.6068

0.545 3.989
-1.1871 15.8267
-1.3359 -34.9685
-2.1817 2.9977
-0.4643 7.1607
-3.3227 0.773
-0.7025 1.0859

2.153 -1.0691
0.0045 0.9987

W32_cr =
9.8395 11.2833 16.8397 9.5135 -3.5567
5.8301 2.0437 -2.6434 -3.213 5.3262
2.7481 -0.2344 0.0405 0.0371 0.151
2.4731 -0.2383 -0.2996 1.1738 -3.9894
2.3906 -4.7423 1.5799 -0.7749 4.9463

10.3784 2.3867 21.6478 -8.2391 -4.5102
7.2281 4.8014 -13.5799 -7.7487 -3.4256
0.7447 0.6302 1.2586 -0.1151 -2.1916
6.4619 -4.224 -0.3685 -1.2051 18.369

-4.7091 8.1266 -27.8927 -6.2155 26.0683

W33_cr =

7.4912 -3.0672 -11.5365 2.608 35.6099

b31_cr b32_cr b33_cr

10.7115 16.662 -1.3345
-1.3451 6.8669
-4.2914 -2.6062
3.9883 -0.7492

-0.9202 -5.059
4.7345

-1.0774
-0.625

-7.7266
-0.641
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CO model of composite vehicle

W31_cr =

-8.4423 -12.7762
-4.785 0.2371
3.4909 8.971
0.5224 -1.7775

86.9082 89.803
1.6952 7.6344

20.5473 8.9231
-5.7592 -0.4062
-3.6823 -1.2485

-12.5008 -5.6944

W32_cr =

-142.764 327.5209 4.0144 13.5571 261.809
-0.2301 -1.5754 -17.2545 -28.2826 1.749

-23.8516 -26.8318 136.8162 -3.3562 -28.5863
1.7468 -3.3873 0.6608 -1.2107 0.2341

-40.5162 4.4494 -0.8991 -0.1803 151.5329

146.1387 143.6273 -119.696 16.4878 96.7187
3.0532 8.3863 -5.3488 1.4909 13.8055
19.857 20.7904 -5.601 -7.5315 10.0968

-3.1305 -0.7673 2.4445 -1.5547 -0.7736
41.7037 31.8503 -26.3897 26.8465 -2.4561

W33_cr =

1.1297 -1.0327 84.3573 374.648 -257.178

b31_cr = b32_cr = b33_cr =

-20.2527 143.224 166.9758
0.4542 -4.0353

-3.6283 27.6592
-0.0455 -2.2379

-112.456 44.5925
16.5706
16.5178
1.7009
2.1601
5.8495
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C-4  General Equation to use Coefficients of Neural Network Models

% General equation to use the NN parameters
% Developed by Kyoungho Ahn (Mar/19/1998)
%
%-------------------------------------------------------
% 1. Load MAT file
% 2. Input data transform(speed/max_speed, acc/max_acc)
%-------------------------------------------------------

clear
load com2cocr;

[ncol,nrow]=size(emi);

% Input Data Transform

TM3=speedn; % speedn=speed/max_speed
TA3=accn; % acc=acc/max_acc

% Input data matrix

P3=[TM3;TA3];

% Input variable for function 1

kk=W31_cr*P3;

for i=1:nrow;
kk2(:,i)=kk(:,i)+b31_cr;

end

[row1,col1]=size(kk2);

% Calculating Function1(Hyperbolic tnagent)

for i=1:row1;
for j=1:col1;

% tanans1(i,j)= tanh(kk2(i,j));
        tanans2(i,j)=(exp(kk2(i,j))-exp(-
kk2(i,j)))/(exp(kk2(i,j))+exp(-kk2(i,j)));

end
end

% Input variable for function 2

kk3=W32_cr*tanans2;

for i=1:nrow;
kk4(:,i)=kk3(:,i)+b32_cr;
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end

[row2,col2]=size(kk4);

% Calculating Function2(Log-sigmoid function)

for i=1:row2;
for j=1:col2;
logans(i,j)=1/(1+exp(-kk4(i,j)));
end

end

% Input variable for function 3

kk5=W33_cr*logans;

for i=1:nrow;
kk6(i)=kk5(i)+b33_cr;

end

[row3,col3]=size(kk6);

% Calculating Function3(Log-sigmoid function)

for j=1:col3;
logans2(j)=1/(1+exp(-kk6(j)));

end

% Final Output

predicted=logans2*max(emi);
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Appendix D

D-1  Fuel Consumption Modeling Test of Model N (FTP Cycle)

Figure D-1  Fuel Consumption for Model N (Speed Based).

* : Predicted Value
o : Raw Data Value
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Figure D-2  Fuel Consumption for Model N (Time Based).
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Figure D-3  Fuel Consumption Error for Model N.
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Figure D-4 Error Distribution of Fuel Consumption for Model N.
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D-2  Fuel Consumption Modeling Test of Model O (FTP Cycle)

Figure D-5  Fuel Consumption for Model O (Speed Based).

Figure D-6  Fuel Consumption for Model O (Time Based).
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Figure D-7  Fuel Consumption Error for Model O.
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Figure D-8  Error Distribution of Fuel Consumption for Model O.
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Appendix E

SAS Output,  Fuel emission model of composite vehicle (Model N)
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SAS Output,  CO emission model of composite vehicle (Model N)
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SAS Output,  HC emission model of composite vehicle (Model N)
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SAS Output,  NOx emission model of composite vehicle (Model N)
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Tips to Save Gas and Improve Mileage

What can I do to save gas?

• Walk, bike, take a bus, or carpool when possible.  Use your car only
when necessary.  Public transportation authorities often have carpooling
information as well as transit services.  If you own more than one vehicle,
drive the one that gets the best gas mileage whenever possible.

• Combine errands into one trip.  Consolidate trips to destinations that
are near  one another.  Once you arrive, park and walk between destina
tions.  Save errands for one afternoon and plan your trip so you don’t
retrace your route.  You not only save gas this way, but reduce wear-and-
tear on your car.

• Drive your car wisely and maintain it properly.  The way you drive
and take care of your car can make a big difference in your gas mileage.

What can I do to get better gas mileage when I drive?
You can greatly improve your mileage by having your car serviced regularly
and by driving wisely.  Any of these eight points can help improve your
mileage:

• Go easy on the brakes and gas pedal.  Avoid “jackrabbit” starts by
accelerating gradually whenever possible.  Also, anticipate stops to avoid
sudden braking.

• Avoid long idles.  Turn off the engine if you anticipate a lengthy wait.
Instead of idling at a drive-up window, park the car and go in.  Idling
burns more gas than restarting the engine.  Limit car warmups in winter.

• Avoid carrying unneeded items in the trunk.  Extra weight decreases
gas mileage.  Also, reduce drag by placing items inside the car or trunk
rather than on roof racks.

• Avoid high speeds.  You can improve your gas mileage about 15 percent
by driving at 55 mph rather than 65 mph.
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For More Information:
The Office of Mobile Sources is the national center for research and policy on air
pollution from highway and off-highway motor vehicles and equipment.  You
can write to us at the EPA National Vehicle and Fuel Emissions Laboratory,
2565 Plymouth Road, Ann Arbor, MI 48105. Our phone number is (313) 668-4333.

• Use your air conditioning only when necessary.  Roll down the
windows or open the air vents to keep your car comfortable on not-so-hot days.

• Use overdrive.  If your car is equipped with overdrive gearing (on 5-
speed manual transmissions and 4-speed automatic transmissions), be sure to
make use of the overdrive gear as soon as your speed is high enough.  If you have
a manual transmission, the lower the shift speed, the better the fuel economy.
Your owner’s manual will give you further information.

• Keep tires properly inflated and aligned.  Periodic wheel alignments
and keeping tires inflated to the maximum recommended pressure can improve
your gas mileage.

• Get regular engine tuneups and car maintenance checks.  Tuneups
improve performance as well as gas mileage.  Check your owner’s manual for
recommended maintenance schedules.  By following the manufacturer’s recom-
mendations, you should avoid fuel economy problems due to worn spark plugs,
dragging brakes, low transmission fluid, or the transmission not going into high
gear.

What should I consider when buying a new car?

• Understand  your needs and buy accordingly.  Get only the options
you really need.  Optional equipment that adds weight to your car can decrease
your gas mileage (especially heavy options such as four-wheel drive).  Automatic
transmissions generally degrade fuel economy. Larger engines and higher horse-
power typically result in lower gas mileage.  If you need the additional power
and torque, be aware your gas mileage will suffer during all types of driving.

• Check the gas mileage ratings of similar vehicles.  Buy a fuel effi-
cient model in the size category that meets your needs.  The Federal Gas Mileage
Guide, issued annually and free of charge at all auto dealerships, compares gas
mileage of similar models.
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