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1. Quantifying impact of farming practices 
on N2O emissions 
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Climate
- Temperature
- Precipitation 
- N deposition

Soil properties
- Texture
- Organic matter
- Bulk density
- pH

Management
- Crop rotation
- Tillage
- Fertilization
- Manure use
- Irrigation
- Grazing

DNDC

1. Soil climate
2. Plant growth
3. Soil C turnover
4. N transformation 

Availability 
of water, 
NH4, NO3, 
and DOC

Used by 
soil 
microbes

Used by
plants

Emissions of 
N2O, NO, N2, 
CH4 and CO2

Crop biomass

Competition

DNDC predicts crop growth, SOC dynamics, N leaching and trace gas 
emissions driven by climate, soil and management

INPUTINPUTINPUT OUTPUTPROCESSES
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NH3 volatilization



N2O + N2 Fluxes from a Grassland at Berkshire, England, May 28-June 28, 1981
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Dynamics of Several Soil Environmental Factors at a Grassland 
in Berkshire, England, May 28-June 28, 1981
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Two N2O peaks were caused by fertilization and rainfalls at a grassland in England

(Field data from Ryden 1983)

N2O from a fertilized grassland in UK
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Low N2O fluxes were 
measured at a grassland in 
Colorado. Both nitrate and 
DOC were limiting factors.

(Field data from Mosier et al., 
1996)

N2O from a grassland in Colorado



N2O Fluxes from a Organic Soil at Glades, Florida, 1979-80

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10
6

12
3

14
0

15
7

17
4

19
1

20
8

22
5

24
2

25
9

27
6

29
3

31
0

32
7

34
4

36
1 13 30 47 64 81 98 11
5

13
2

14
9

16
6

18
3

20
0

21
7

23
4

25
1

26
8

28
5

30
2

31
9

33
6

35
3

Day

N
2O

 fl
ux

, g
 N

/h
a/

da
y

Field Model

N2O from an organic soil in Florida
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Two high peaks of N2O 
flux were caused by 
fertilization at a corn field 
in Costa Rica, 1994.
(Field data from Crill et al., 
1999)

N2O from a corn field in Costa Rica



Observed and DNDC-Modeled N2O Fluxes from Agricultural Soils in the U.S., Canada, 
the U.K., Germany, New Zealand, China, Japan, and Costa Rica
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DNDC has been utilized for quantifying N2O emissions in the U.S., Canada, 
EU nations, Australia, New Zealand, Russia, China and India



2. Searching management alternatives for 
mitigation of N2O emissions with DNDC



A specific management alternative
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Biogeochemical models serve Best Management Practices



Site: A tomato field at SAFS site in Davis, California

Simulated period: 1991-2000

Climate: Temperature 16°C, precipitation 210-630 
mm

Soil: Silt loam, SOC 0.011 kg C/kg, pH 7.0

Tillage: Conventional

Fertilization: 150 kg urea-N/ha

Irrigation: Precision with drip or better spray method

10-Year Simulations for a Crop Field in CA



Modeled annual N2O fluxes from a tomato field in Davis, CA  
in 1991-2000



Alternative 1: Change in fertilizer rate



Alternative 2: Change in fertilizer application depth



Alternative 3: Change in fertilizer splits



Alternative 4: Use of nitrification inhibitor



Alternative 5: Change in fertilizer type



Composing a best management practice (BMP) 
with alternative fertilization methods:

-Rate: 100 kg N/ha

-Depth: 15 cm

- 3 splits

- Nitrification inhibition: 90 days
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Impacts of Baseline vs. BMP Scenarios on N2O Emission and 
Other C and N Fluxes from a Tomato Field in Davis, CA



Impacts of farming practice on N2O vary according to soil or climate conditions

Soil texture SOC content

Temperature and precipitationSoil pH



Discussions
1. N2O emissions from agricultural soils can be 

reduced by up to 50% (~7 MMT CO2 eq. for CA) 
by adopting alternative fertilizing approaches;

2. Effectiveness of the alternatives varies with 
climate, soil and other management conditions;

3. Integrated model-database tools could serve up 
the spatially differentiated BMPs across CA;

4. Economic cost for each BMP scenario will need 
to be estimated with economists. 



Work in California
• Development of Manure-DNDC:

– Modify DNDC for quantifying GHG emissions from 
California dairies (supported by CEC PIER and 
USDA NRI);

• Model validation:
– Validate DNDC for California cropping systems 

(supported by CEC PIER and Kearney 
Foundation, in collaboration with UC Davis);

• Net GHG from afforestation of rangelands:
– Apply Forest-DNDC for California rangelands 

(supported by CEC PIER, collaboration with 
Winrock)


