Measurement of NO$_2$ Emissions from Heavy Duty Vehicles/Engines at Environment Canada

Emissions Research and Measurement Division
Environment Canada

Presented at IDRAC
October 5, 2004
Outline

• Environment Canada - Emissions Test Facility
• NO₂ Sampling and Analysis Methods
• Engine NO₂/NOₓ Data
• Chassis NO₂/NOₓ Data
• Summary/Next Steps
Environment Canada Organization

- Five Regions: Pacific & Yukon, Prairie & Northern, Ontario, Quebec, Atlantic
- Canadian Environmental Assessment Agency
- Meteorological Services of Canada
- Human Resources & Service Innovation
- Policy & Communications
- Environmental Conservation Service
- Environmental Protection Service
Environment Canada Organization cont’d

• Environmental Protection Service:
 – Air Pollution Prevention
 – Pollution Prevention
 – Risk Management
 – Strategic Priorities
 Environmental Technology Advancement

• Environmental Technology Centre
• Emissions Research and Measurement Division - ERMD
ERMD Programs

• Conformity Program for New Light Duty Vehicles and Certification of New Vehicles and Engines
• Quantifying the emission contribution of a range of mobile sources and stationary sources
• Support the development of technologies, fuels, and strategies to reduce the emissions from transportation
• Providing technical assistance and expertise to government divisions, industry, and other countries
ERMD Test Facility

- 4 Light Duty Chassis Dynamometer Labs
- 2 Heavy Duty Chassis Dynamometer Labs
- 3 Heavy Duty Engine Dynamometer Labs
- Utility Engine Laboratory
- Light Duty Evaporative Emissions Enclosure
- Environmental Chambers (-5°C to -25°C)
- Organic Chemistry Laboratory
- Portable Emissions Sampling System
Technology Development & Evaluations

- Fuels
 - ULSD, BioD, E-D, H\textsubscript{2}O
 - Emulsions, CNG, Alcohols, gasoline reformulations
- Emission Controls
 - Diesel Particulate Filters
 - Diesel Oxidation Cat’s
 - EGR, SCR
- Diesel-Electric Hybrids & Fuel Cell Buses
Sampling & Analysis Capabilities

- Gaseous Emissions: NDIR, HCLD, HFID
- Particulate Matter: Gravimetric, particle size/count/distribution
- Carbonyl compounds: HPLC
- Volatile Organic Compounds: GC- FID
- Methane and light hydrocarbons, N₂0: GC
- PAH, n-PAH: High Resolution MS
- OC/EC: Thermal Optical Transmittance
- NH₃, Particle Phase SO₄, SO₂: Ion Chromatography
NO₂ Collection Methods

• Chemiluminescent Analyzer Method
 – NO & NOₓ dilute exhaust concentrations determined
 – 2 heated analyzers -California Analytical Model 400-HCLD
 – Corrected for ambient concentrations and atmospheric conditions
 – Continuous collection at higher instrument range

• DNPH (2,4-dinitrophenylhydrazine) Cartridge Method*
 – Reaction of NO₂ and DNPH to form 2,4 dinitrophenylazide (DNPA)
 – DNPH and DNPA monitored at different wavelengths
 – Hewlett Packard 1090M Series II & Photo diode array

Reference: ES&T: Tang, Graham et al. “Simultaneous Determination of Carbonyls and NO₂ in Exhausits of HDD Trucks and Transit Buses by HPLC Following 2,4DNPH cartridge collection”
NO$_2$/NO$_x$ Concentrations from an Urban Transit Bus

![Graph showing NO$_2$/NO$_x$ concentrations over time.](image)

- **X-axis**: Time (seconds)
- **Y-axis 1**: Exhaust Concentration (ppm)
- **Y-axis 2**: Speed (mph)

Legend:
- Green line: Dynamometer Speed
- Dotted line: NOx
- Solid black line: NO2 Calculated
Comparison of Measured Dilute Exhaust NO$_2$ Concentrations

Reference: ES&T Tang, Graham et al.
International DT466, MY 2000
7.6L, inline 6, 237bhp @ 1400 rpm

Reference: SAE 2004-01-1085
International DT466 % NO$_2$/NO$_X$

Reference: SAE 2004-01-1085
DDC Series 50, MY 1996, 8.5L, inline 4, 275 bhp @ 2110 rpm

- No-Aft DOC CDPF 1 CDPF 2
- 10 ppm S - NOX
- 10 ppm S - NO2
- 80 ppm S - NOX
- 80 ppm S - NO2

Bar chart showing emissions data.
CAT C11, MY 2004, 11.1L, inline 6, 305 bhp @ 2100 rpm

<table>
<thead>
<tr>
<th></th>
<th>NO_x g/bhp-hr</th>
<th>NO_2 g/bhp-hr</th>
<th>% NO_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>2.323</td>
<td>0.107</td>
<td>4.61</td>
</tr>
<tr>
<td>HS 1</td>
<td>2.077</td>
<td>0.007</td>
<td>0.34</td>
</tr>
<tr>
<td>HS 2</td>
<td>2.127</td>
<td>0.010</td>
<td>0.47</td>
</tr>
<tr>
<td>HS 3</td>
<td>2.100</td>
<td>0.009</td>
<td>0.43</td>
</tr>
<tr>
<td>HS 4</td>
<td>2.094</td>
<td>0.003</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Urban Transit Bus NO₂/NOₓ Emissions over the CBD Cycle (g/mile)

<table>
<thead>
<tr>
<th>Model</th>
<th>Engine</th>
<th>Configuration</th>
<th>Fuel Sulphur (ppm)</th>
<th>NOX</th>
<th>NO2</th>
<th>%NO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orion V</td>
<td>DDC Series 50</td>
<td>OEM</td>
<td>247</td>
<td>25.6</td>
<td>1.6</td>
<td>6</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC Series 50</td>
<td>OEM</td>
<td>27</td>
<td>25.6</td>
<td>1.8</td>
<td>7</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC Series 50</td>
<td>OEM</td>
<td>27</td>
<td>25.1</td>
<td>1.9</td>
<td>8</td>
</tr>
<tr>
<td>New Flyer CLF</td>
<td>DDC Series 50 G</td>
<td>OEM</td>
<td>CNG</td>
<td>46.7</td>
<td>3.6</td>
<td>8</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC Series 50</td>
<td>OEM</td>
<td>247</td>
<td>23.3</td>
<td>1.8</td>
<td>8</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC 6v92</td>
<td>OEM</td>
<td>27</td>
<td>25.6</td>
<td>2.0</td>
<td>8</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC 6v92</td>
<td>OEM</td>
<td>247</td>
<td>26.6</td>
<td>2.1</td>
<td>8</td>
</tr>
<tr>
<td>New Flyer CLF</td>
<td>DDC Series 50 G</td>
<td>OEM</td>
<td>CNG</td>
<td>19</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC 6v92</td>
<td>OEM</td>
<td>247</td>
<td>20.5</td>
<td>2.8</td>
<td>14</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC 6v92</td>
<td>OEM</td>
<td>27</td>
<td>21.1</td>
<td>2.9</td>
<td>14</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC 6v92</td>
<td>OEM</td>
<td>27</td>
<td>21.6</td>
<td>3.3</td>
<td>15</td>
</tr>
<tr>
<td>New Flyer CLF</td>
<td>DDC Series 50 G</td>
<td>OEM</td>
<td>CNG</td>
<td>16.6</td>
<td>3.3</td>
<td>20</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC Series 50</td>
<td>CDPF</td>
<td>27</td>
<td>23.8</td>
<td>12.6</td>
<td>53</td>
</tr>
<tr>
<td>Orion V</td>
<td>DDC Series 50</td>
<td>CDPF</td>
<td>27</td>
<td>26.4</td>
<td>14.5</td>
<td>55</td>
</tr>
</tbody>
</table>

Reference: SAE 2002-01-0430
Hybrid Bus with Selected Emission Control Devices

<table>
<thead>
<tr>
<th>Fuel Type and Device</th>
<th>NOX (g/mile)</th>
<th>NO2 (g/mile)</th>
<th>%NO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULSD-No-Aft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULSD-D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULSD-D2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD-D3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD-D4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD-D5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULSD-D5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

71.5
Evolution of Urban Transit Bus NOX

NOX Trend

Engine Model Year

NOX (g/mile)
Summary/Next Steps

- Accurate and precise measurement of NO$_X$ species is increasingly important as NO$_X$ emissions standards become more stringent.
- Increases in the % NO$_2$ of NO$_X$ have been noted with specific emission control devices although the total NO$_X$ remains unchanged.
- EC will continue to compare DNPH Cartridge NO$_2$ Method with the Chemiluminescent NO$_2$ Method.
- NO$_2$ will be measured for the majority of heavy duty vehicles and engines tested at EC.
- N$_2$O is routinely measured to understand contribution from transportation sources.
- NH$_3$ measured with in-line raw exhaust analyzer with modified path length.
- EC will continue with future research on 2004 CAT C11 and Cummins ISM engines: complete characterization of emissions, fuels, emission control devices, NO$_2$/NO$_X$ comparisons.
Additional Information

Debbie Rosenblatt
Environment Canada
335 River Road
Ottawa, ON
Canada K1A 0H3

debbie.rosenblatt@ec.gc.ca

http://www.etcentre.org