Outline of statistical analysis

• Objective: Estimate the difference in NO\textsubscript{x} emissions (if any) between biodiesel blends and conventional diesel fuel

• Meta-analysis, reanalyzing original data from three studies
 – Durbin 2011 (86 observations)
 – Durbin 2013 (32 observations)
 – Karavalakis 2014 (193 observations)

• Used multiple statistical methods and cross-checked results
Analytical considerations

• Focus mainly on engine testing
• Focus mainly on B5-soy
• Make as few statistical assumptions as possible:
 – Analyze each blend level separately, don’t assume straight-line relationship between blend level and NO\textsubscript{x} emissions
 – Treat each combination of study, engine type and drive cycle as a separate experiment
Biodiesel effect on NOx

NO$_x$ emissions adjusted for study + engine + cycle (g/bhp-hr)
Samples are unevenly distributed

Durbin 2011

<table>
<thead>
<tr>
<th>Year</th>
<th>Engine Type</th>
<th>CRUISE - 40mph</th>
<th>CRUISE - 50mph</th>
<th>FTP</th>
<th>UDDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991 DDC60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006 Cummins ISM</td>
<td></td>
<td>5</td>
<td>12</td>
<td>51</td>
<td>68</td>
</tr>
<tr>
<td>2007 MBE4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Durbin 2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Engine Type</th>
<th>CRUISE - 40mph</th>
<th>CRUISE - 50mph</th>
<th>FTP</th>
<th>UDDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991 DDC60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006 Cummins ISM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>2007 MBE4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Karavalakis 2014

<table>
<thead>
<tr>
<th>Year</th>
<th>Engine Type</th>
<th>CRUISE - 40mph</th>
<th>CRUISE - 50mph</th>
<th>FTP</th>
<th>UDDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991 DDC60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>2006 Cummins ISM</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>2007 MBE4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>
Mixed model

• A linear mixed-effects model (or “mixed model”) has been the standard statistical approach for this type of problem since the 1950’s

• Available in standard statistical packages such as R or SAS
Mixed model results

• Difference between conventional diesel and
 Soy B5 ~1%
 Soy B10 ~2%

• Is the fuel effect significant?
 ➡ Significance test gives a P value of 10^{-15}
 Confidence level = 1-P = Greater than 99.99%
Key Result

• For B5-soy, all our statistical approaches yield approximately the same results:
 – Approximately 1% increase in NO\textsubscript{x} emissions, compared with conventional diesel
 – Highly statistically significant (confidence level ≥ 99%)
Additional checks

• Consultant obtained the same result ("approximately 1%", confidence level > 99.9999%)

• Initial inclusion of chassis test data – similar results in magnitude and significance