Diesel Fuel Lubricity
Requirements for Light Duty Fuel Injection Equipment

CARB Fuels Workshop
Sacramento, CA
Feb. 20, 2003

Klaus Meyer and Thomas C. Livingston
Robert Bosch GmbH
This presentation covers the interests of

- Robert Bosch GmbH
- Delphi Diesel Systems
- Denso Corporation
- SiemensVDO Automotive AG
- Stanadyne Automotive Corporation
Our Mission for the Future

Our Mission is to increase the number of Diesel vehicles in the USA especially Passenger Cars + SUVs + Light Duty (LD)

- Build a Cleaner Environment
- Conserve Energy Resources
- Reduce Fuel Consumption / CAFE
- Lower CO₂ Emission

- For Diesel Fuel Injection Equipment (DFIE)
 Lubricity is the most valuable and crucial property
Scope of Presentation

Introduction
Experience in Europe
Comparing USA and Europe

- Vehicles and DFIE
- Survey Data

Requirements

- HFRR method
- Sensitivity of DFIE to HFRR
- Rating Table for Assessed Pump Wear
- Endurance Performance

Data for Diesel Fuels with HFRR between 400 - 650 µm

- Pump Performance: Rotary pumps, Common Rail Systems

Engine Results

Conclusions
A Brief Review

- Sweden introduced sulphur-free fuels in 1990, California followed in 1993 with low-sulphur fuels
 → Failures of fuel-lubricated injection pumps (for passenger and light duty vehicles)
- Lubricity identified as cause
 → Hydroprocessing for desulphurization reduces lubricity enhancing fuel components
- All DFIE manufacturers afflicted
- Process to define wear test method and lubricity limit for fuel spec:
 HFRR (ISO 12156-1, -2, ASTM D-6079)
 → EN 590 et al. Lubricity Limit =460 µm
 SLBOCLE (ASTM D-6078/99)
Experience in Europe

Current Situation in EU

- In Europe 40% of new cars are Diesel vehicles:
 - Passenger and Light Duty vehicles (e.g. SUV)
- EN 590 lubricity spec. (HFRR 460 µm max.) successfully prevents field problems
- Diesel vehicles improve fuel consumption by 30% compared to SI engines
- Diesel vehicles have low fuel consumption (up to 78 mpg)
- Diesel vehicles produce lower CO$_2$ emissions
- Diesel vehicles provide low service costs and high service intervals
- Drivers enjoy driving diesel vehicles due to superior torque characteristics
- Majority of High Pressure DFIE is fuel-lubricated
Main Differences in Diesel Vehicles

<table>
<thead>
<tr>
<th></th>
<th>Today</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. / California</td>
<td>EU</td>
</tr>
<tr>
<td>Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Duty</td>
<td></td>
<td>Light Duty</td>
</tr>
<tr>
<td>Light Duty</td>
<td></td>
<td>Heavy Duty</td>
</tr>
<tr>
<td>Passenger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Duty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Duty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inline pumps</td>
<td></td>
<td>Common Rail</td>
</tr>
<tr>
<td>UIS/UPS</td>
<td></td>
<td>UIS/UPS</td>
</tr>
<tr>
<td>Common Rail</td>
<td></td>
<td>Rotary pumps</td>
</tr>
<tr>
<td>Rotary pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricity requirement</td>
<td>(+)</td>
<td>++</td>
</tr>
<tr>
<td>Lubricity specification</td>
<td>U.S.A.: none</td>
<td>HFRR 460 µm max.</td>
</tr>
</tbody>
</table>
Survey of U.S.A. Diesel Fuels

Samples from Summer 2002

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>U.S.A.</th>
<th>Europe (EN 590)</th>
<th>Assessment of U.S.A. Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kg/m³</td>
<td>813 ... 863</td>
<td>820 ... 845</td>
<td>wide range</td>
</tr>
<tr>
<td>Viscosity</td>
<td>c.St. (40 °C)</td>
<td>2.1 ... 3.2</td>
<td>2.0 ... 4.5</td>
<td>o.k.</td>
</tr>
<tr>
<td>Dist. 95% vol rec.</td>
<td>°C</td>
<td>324 ... 344</td>
<td>< 360</td>
<td>o.k.</td>
</tr>
<tr>
<td>Total Aromatic Cont.</td>
<td>%</td>
<td>16 ... 46</td>
<td>n.a.</td>
<td>many high numbers</td>
</tr>
<tr>
<td>Cetane No.</td>
<td></td>
<td>44 ... 57</td>
<td>> 51</td>
<td>many low numbers</td>
</tr>
<tr>
<td>Sulphur</td>
<td>mg/kg</td>
<td>23 ... 416</td>
<td>< 350</td>
<td>not o.k. for aftertreatment</td>
</tr>
<tr>
<td>Water</td>
<td>mg/kg</td>
<td>42 ... 96</td>
<td>< 200</td>
<td>o.k.</td>
</tr>
<tr>
<td>Total Contamination (particulates)</td>
<td>mg/kg</td>
<td>0.8 ... 3.1</td>
<td>< 24</td>
<td>some high numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(EN590 limit too high)</td>
</tr>
<tr>
<td>Lubricity</td>
<td>μm (HFRR 60C)</td>
<td>351 ... 648</td>
<td>< 460</td>
<td>80% of samples > 460 μm</td>
</tr>
<tr>
<td>Alcohol</td>
<td>% vol.</td>
<td>< 0.1</td>
<td>n.a.</td>
<td>o.k.</td>
</tr>
</tbody>
</table>
ISO 12156-1 Method

Test conditions:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied load</td>
<td>200 g ± 0.01 g</td>
</tr>
<tr>
<td>Stroke length</td>
<td>1 ± 0.02 mm</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 ± 1 Hz</td>
</tr>
<tr>
<td>Test duration</td>
<td>75 ± 0.1 min</td>
</tr>
<tr>
<td>Fluid temperature</td>
<td>60 ± 2 °C</td>
</tr>
<tr>
<td>Fluid volume</td>
<td>2 ± 0.20 ml</td>
</tr>
<tr>
<td>Bath surface</td>
<td>6 ± 1 cm²</td>
</tr>
</tbody>
</table>

→

WS1.4 µm
Sensitivity of DFIE to HFRR

Linear regression: Pump wear 3.5 ==> WS1.4 = 454 µm
Table to Assess Pump Wear

<table>
<thead>
<tr>
<th>Component</th>
<th>Wear rating: 1 – 3.5</th>
<th></th>
<th>Wear rating: 4 – 6</th>
<th></th>
<th>Wear rating: 7 – 10</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Durability + performance = 100 %</td>
<td>Wear rating: 4 – 6</td>
<td>Durability reduced to 20 %</td>
<td>Wear rating: 7 – 10</td>
<td>Durability reduced to 1 %</td>
<td>Immediate failure</td>
</tr>
<tr>
<td></td>
<td>Type of wear</td>
<td>Wear rate</td>
<td>Type of wear</td>
<td>Wear rate</td>
<td>Type of wear</td>
<td>Wear rate</td>
</tr>
<tr>
<td>Cam plate runway</td>
<td>rolling and abrasive</td>
<td>< 1 μm</td>
<td>seizure and fatigue</td>
<td>1 – 30 μm</td>
<td>fatigue</td>
<td>not determinable</td>
</tr>
<tr>
<td>cam plate centre</td>
<td>fretting</td>
<td>1 - 3 μm</td>
<td>fretting</td>
<td>3 - 10 μm</td>
<td>fretting</td>
<td>not determinable</td>
</tr>
<tr>
<td>cam plate claws</td>
<td>fretting</td>
<td>< 10 μm</td>
<td>rolling and fretting</td>
<td>10 - 20 μm</td>
<td>seizure</td>
<td>not determinable</td>
</tr>
<tr>
<td>Roller</td>
<td>rolling</td>
<td>< 1 μm</td>
<td>seizure and fatigue</td>
<td>1 - 5 μm</td>
<td>seizure and fatigue</td>
<td>not determinable</td>
</tr>
<tr>
<td>Roller bolt</td>
<td>rolling</td>
<td>< 1 μm</td>
<td>fretting and seizure</td>
<td>1 - 10 μm</td>
<td>seizure</td>
<td>> 10 μm</td>
</tr>
<tr>
<td>- point of contact to roller</td>
<td>fretting</td>
<td>< 10 μm</td>
<td>fretting</td>
<td>10 - 15 μm</td>
<td>seizure</td>
<td>> 15 μm</td>
</tr>
<tr>
<td>- point of contact to roller ring</td>
<td>fretting</td>
<td>10 - 15 μm</td>
<td>seizure</td>
<td>> 15 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel pump</td>
<td>fretting</td>
<td>< 10 μm</td>
<td>fretting</td>
<td>10 - 200 μm</td>
<td>fretting and seizure</td>
<td>not determinable</td>
</tr>
<tr>
<td>- blades</td>
<td>fretting</td>
<td>1 – 2 μm</td>
<td>fretting</td>
<td>2 - 100 μm</td>
<td>fretting and seizure</td>
<td>not determinable</td>
</tr>
<tr>
<td>- raceway</td>
<td>fretting</td>
<td>< 10 μm</td>
<td>fretting</td>
<td>10 - 200 μm</td>
<td>fretting and seizure</td>
<td>not determinable</td>
</tr>
</tbody>
</table>

Pump wear must not exceed “green” zone to meet customer expectation.
Durability Performance

Pump Wear vs. Lubricity over Lifetime

- Good lubricity
- Borderline lubricity
- Insufficient lubricity
- Bad lubricity

Wear (µm) vs. Endurance Testing (hrs)

- HFRR: 680 µm
- HFRR: 575 µm
- HFRR: 450 µm
- HFRR: 380 µm

→ New DFIE designed to operate with “blue ---” fuel
VE - Rotary Pump with HFRR 450 µm Fuel

Wear rating = 3.5
Bolts: slight scuffing Supply pump vanes: increased abrasive wear

→ Fuel represents borderline EU quality
→ Fuel adequate for purpose
VE - Rotary Pump with HFRR 650 µm Fuel

Wear rating = 8
Cam plate: 30 µm Rollers: Seizure Bolt: 15 µm Piston: Broken

- Fuel represents worst case U.S. lubricity
- Fuel unfit for purpose
VP44 - Rotary Pump with **HFRR 400 µm Fuel**

- Fuel represents typical EU quality
- Fuel fit for purpose

Wear rating = 3.0
Supply pump, roller shoes, feed pump tooth system, and timing piston: minor polishing
Pump Wear with HFRR Range 400 to 650 µm

VP44 - Rotary Pump with HFRR 650 µm Fuel

Wear rating = 7.0
Supply pump, feed pump tooth system, high pressure piston and vanes: severe wear

- Fuel represents worst case U.S. lubricity
- Fuel unfit for purpose
Pump Wear with HFRR Range 400 to 650 µm

Common Rail System with HFRR 460 µm Fuel

- Fuel represents borderline EU quality
- Fuel adequate for purpose
Pump Wear with HFRR Range 400 to 650 µm

Common Rail System with HFRR 650 µm Fuel

Wear rating = 9.0

- Piston: Seizure
- Piston bottom center: 15 µm
- Bearing shell: Seizure
- Polygon: ≥ 1000 µm

- Fuel represents worst case U.S. lubricity
- Fuel unfit for purpose
Survey of U.S.A. Diesel Fuels

Samples from Summer 2002

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>U.S.A.</th>
<th>Europe (EN 590)</th>
<th>Assessment of U.S.A. Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kg/m³</td>
<td>813 ... 863</td>
<td>820 ... 845</td>
<td>wide range</td>
</tr>
<tr>
<td>Viscosity</td>
<td>c.St. (40 °C)</td>
<td>2.1 ... 3.2</td>
<td>2.0 ... 4.5</td>
<td>o.k.</td>
</tr>
<tr>
<td>Dist. 95% vol rec.</td>
<td>°C</td>
<td>324 ... 344</td>
<td>< 360</td>
<td>o.k.</td>
</tr>
<tr>
<td>Total Aromatic Cont.</td>
<td>%</td>
<td>16 ... 46</td>
<td>n.a.</td>
<td>many high numbers</td>
</tr>
<tr>
<td>Cetane No.</td>
<td></td>
<td>44 ... 57</td>
<td>> 51</td>
<td>many low numbers</td>
</tr>
<tr>
<td>Sulphur</td>
<td>mg/kg</td>
<td>23 ... 416</td>
<td>< 350</td>
<td>not o.k. for aftertreatment</td>
</tr>
<tr>
<td>Water</td>
<td>mg/kg</td>
<td>42 ... 96</td>
<td>< 200</td>
<td>o.k.</td>
</tr>
<tr>
<td>Total Contamination</td>
<td>mg/kg</td>
<td>0.8 ... 3.1</td>
<td>< 24</td>
<td>some high numbers (EN590 limit too high)</td>
</tr>
<tr>
<td>(particulates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricity</td>
<td>μm (HFRR 60°C)</td>
<td>351 ... 648</td>
<td>< 460</td>
<td>80% of samples > 460 μm</td>
</tr>
<tr>
<td>Alcohol</td>
<td>% vol.</td>
<td>< 0.1</td>
<td>n.a.</td>
<td>o.k.</td>
</tr>
</tbody>
</table>
Engine Results for Light Duty Vehicles

NO\textsubscript{x} and PM Reduction with CN 55 and 80 Fuels

Test conditions:
- 2.2 l DI engine
- European test cycle; MNEDC (cold test with PI)

Chart:
- **NO\textsubscript{x} [g/km]** and **partikulates [g/km]**
- **fuel type**
 - standard Diesel fuel (S<10ppm, CN 55)
 - synthetic Diesel fuel (CN 80)
 - synthetic Diesel fuel + SOI delay (CN 80)
- **consumption [l/100km]**
 - EN 590: 6.20
 - synthetic: 5.80
 - synth. + 2°CA delay: 5.90
 - synth. + 3°CA delay: 5.95
 - synth. + 4°CA delay: 6.00

Fuel Consumption:
- EURO III (2000):
 - EN 590: 6.20
 - synthetic: 5.80
 - synth. + 2°CA delay: 5.90
 - synth. + 3°CA delay: 5.95
 - synth. + 4°CA delay: 6.00

- EURO IV (2005):
 - standard Diesel fuel (S<10ppm, CN 55)
 - synthetic Diesel fuel (CN 80)
 - synthetic Diesel fuel + SOI delay (CN 80)
NO$_x$ and PM Reduction with CN 60 Fuels

Test conditions:
- 6 cyl., 2.4 l, swirl chamber engine
- U.S.-FTP75 test
Engine Results for Heavy Duty Vehicles

Better Trade-offs for Soot/ NO$_x$ and Fuel Consumption/ NO$_x$ with CN 52 → 59 Fuels

Test conditions:
1 Cyl. HD engine; V_d ca. 2 l, with EGR
Speed = 1710 rpm, Load = 100%
EGR rate ≤ 18 %
Conclusions

Reasoning for HFRR

- HFRR is an adequate test method
- HFRR provides customer satisfaction
- HFRR 460 µm max. known to prevent field problems
- All high-pressure fuel-lubricated injection systems are exceedingly lubricity-sensitive and require clean fuels (no free water and/or contamination)
- Common-rail and Rotary pumps require the same level of lubricity
- Lubricity specification in ASTM D975 needed ASAP
- Spec. should not exceed HFRR: WS1.4 ≤ 460 µm (ISO 12156-1)
- Bosch and DFIE industry willing to
 - share and validate experience
 - offer more tests and
 - cooperate with regulators (CARB, ...)

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights.
We reserve all rights of disposal such as copying and passing on to third parties.
Klaus Meyer

c/o Robert Bosch GmbH
Corporate Research
Dept. FV/FLM
P.O.B. 106050
D - 70049 Stuttgart
Germany

phone: +49-(0)711-811-6030
fax: +49-(0)711-811-267626
email: klaus.meyer@de.bosch.com

Thomas C. Livingston

c/o Robert Bosch Corporation
Dept. AP/EHD2.1
38000 Hills Tech Drive
Farmington Hills
Michigan 48331
U.S.A.

phone: (248)-553-1386
fax: (248)-324-7288
email: tom.livingston@us.bosch.com