

Detailed California-GREET Pathway for Biodiesel Produced in California from Used Cooking Oil

Stationary Source Division Release Date: July 20, 2009 Version: 1.0 Preliminary draft version developed by Alternative Fuels Section and Fuels Section of the California Air Resources Board as part of the Low Carbon Fuel Standard Regulatory Process

The ARB acknowledges contributions from Life Cycle Associates (under contract with the California Energy Commission) during the development of this document

When reviewing this document, please submit comments directly to: Anil Prabhu: <u>aprabhu@arb.ca.gov</u> Chan Pham: <u>cpham@arb.ca.gov</u>

These comments will be compiled, reviewed, and posted to the LCFS website in a timely manner.

TABLE OF CONTENTS

TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES	i ii ii 1
CA-GREET Model Pathway for Biodiesel from UCO	2
APPENDIX A	10
Section 1. Energy Consumption and GHG Emissions from Transport of Used	
Cooking Oil	11
1.1 Transport of Used Cooking Oil to Rendering Plant	11
1.2 GHG Calculations for UCO Transport to a Rendering Plant in California	13
1.3 Energy for Rendering UCO in California	15
1.4 Greenhouse Gas Emissions from Rendering of UCO in California	18
1.5 Energy Use for Transport of Rendered UCO to a BD Production Plant	18
	10
Fidilition 2 Biodiesel Production	19 21
2 1 Energy for Pre-Processing of LICO (Free Fatty Acid Conversion)	21
2.2 Greenhouse Gas Emissions from Biodiesel Production	24
Section 3. Biodiesel Transport and Distribution	26
3.1 Energy Calculations for Biodiesel Transport to Retail Stations	26
3.2 GHG Calculations for Biodiesel Transport to Retail Stations	27
Section 4. GHG Emissions from a Biodiesel-Fueled Vehicle	28
4.1 Combustion Emissions from Fuel Vehicle CO ₂ (Carbon in Fuel)	28
APPENDIX B	30
Input Values for Biodiesel from Used Cooking Oil Pathway	30

LIST OF FIGURES

Figure 1. Discrete Components of Use Cooking Oil to Biodiesel	. 3
Figure 2. Energy and GHG from Used Cooking Oil Biodiesel	. 5
Figure 3. Co-Processing Configuration for UCO Conversion to Biodiesel	21

LIST OF TABLES

Table A. Summary of Energy Use and GHG Emissions for the Used Cooking Oil (UCO)
Toble P. Total Energy Line for LICO Transport to Pendering Plant
Table D. Total Energy Use for UCO Transport to Rendering Flant
Table C. Total GHG Emissions nonn occurring of UCO
Table D. Total Energy Use for Rendering of UCO
Table E. Foldi GHG Emissions non Kendening of 000
Table C. CHC Emissions for Pro-processing OCO for Converting TTAS
Table G. GING LINISSIONS for Fie-processing of OCO for Conventing IT As
Table I. Energy Consumed for Biodiesel Production
Table 1. Forary Lise for Transportation and Distribution of RD
Table V. CHG Emissions from Transportation and Distribution of DD
Table I. Combustion Emissions for BD
Table 1 01 Used Cooking Oil (UCO) Specifications 11
Table 1.02 Parameters for LICO Transport to Rendering Plant in CA
Table 1.02 Parameters for 0000 Pransport to Rendering Plant III OR to a Rendering
Plant in CA
Table 1.04 Greenhouse Gas Emissions for Transport of UCO to a Rendering Plant in
California
Table 1.05 Energy for Processing Used Cooking Oil 16
Table 1.06 Direct and Upstream Energy Use for Rendering UCO in CA
Table 1.07 GHG Emissions from Direct and Upstream Energy Used in Rendering of
UCO in California
Table 1.08 Transport Parameters for Rendered UCO
Table 1.09 Direct, Upstream and Total Energy for Transport of Rendered UCO to a BD
Production Plant
Table 1.10 Greenhouse Gas Emission Results for Transport of Rendered UCO20
Table 2.01 Calculation of Direct Energy Consumption (Btu/lb BD) for Pre-processing of
UCO to Convert FFAs
Table 2.02 Calculation of Direct and Upstream Energy Consumption (Btu/lb BD) for Pre-
processing of UCO to Convert FFAs
Table 2.03 Total and Allocated Energy Consumption for Pre-Processing of UCO to
Convert FFAs
Table 2.04 Calculation of Direct and Upstream Energy Consumption (Btu/lb BD) for BD
Production
Table 2.05 Total Energy Consumption for BD Production
Table 2.06 Direct, Upstream and Total Greenhouse Gas Emissions for Pre-processing
of UCO to Convert FFAs25

Table 2.07 Direct, Upstream and Total Greenhouse Gas Emissions for BD	Production25
Table 3.01 Biodiesel Transport Parameters and Results	
Table 3.02 Biodiesel Greenhouse Gas Emissions	27
Table 4.01 Fuel Fossil CO ₂ Emissions (g/mmBtu)	
Table 4.02 Vehicle CH ₄ and N ₂ O Emissions	

SUMMARY

CA-GREET Model Pathway for Biodiesel from UCO

Well-To-Tank (WTT) Life Cycle Analysis of a Biodiesel (BD) fuel pathway (from Used Cooking Oil (UCO) includes steps starting from UCO being transported to a biorefinery and transformation to final finished fuel. Tank-To-Wheel (TTW) analysis includes actual combustion of this fuel in a heavy-duty vehicle for motive power. WTT and TTW analysis are combined to provide a total Well-To-Wheel (WTW) analysis.

A Life Cycle Analysis Model called the <u>**Gr**</u>eenhouse gases, <u>**R**</u>egulated <u>**E**</u>missions, and <u>**E**</u>nergy use in <u>**T**</u>ransportation (GREET)¹ developed by Argonne National Laboratory was modified with assistance from Life Cycle Associates to create a modified GREET model called the CA-GREET model. The methodology inherent in the CA-GREET model was utilized to develop a WTW analysis of the conversion of Used Cooking Oil (UCO) into Biodiesel (BD). The pathway documented here includes UCO transport, BD production, and transport of BD and use in a heavy duty vehicle. The CA-GREET model and pathway documents published by staff are available from www.arb.ca.gov/fuels/lcfs/lcfs.htm.

UCO for this pathway is considered to be waste oil generated in restaurants. All of the steps from feedstock transport to final use of finished fuel is considered to happen within California. Figure 1 provides a step-wise description of the various steps in the UCO to BD pathway. The steps include transport of UCO to a rendering plant, UCO rendering, transport of the rendered UCO to a biodiesel production plant, production of BD via esterification at the plant, and transport of BD to a fuel dispensing facility for final use in a heavy-duty vehicle. For this document, combustion of BD in a heavy-duty vehicle is assumed to generate the same CH_4 and N_2O emissions as Ultra Low Sulfur Diesel (ULSD) (see pathway document for ULSD published on the LCFS website at www.arb.ca.gov/fuels/lcfs/lcfs.htm).

¹ GREET Model: Argonne National Laboratory:

http://www.transportation.anl.gov/modeling_simulation/GREET/index.html

Figure 1. Discrete Components of Used Cooking Oil to Biodiesel

This document provides detailed calculations, assumptions, input values, and other information required to calculate the energy use and GHG emissions for the UCO to BD pathway. The original Argonne GREET model does not include this fuel pathway. The modified CA-GREET model however includes this fuel pathway. A detailed list of all input values used is provided in Appendix B.

Table A provides a summary of the Well-To-Tank (WTT) and Tank-To-Wheel (TTW) energy use and GHG emissions for this pathway. Energy use is presented as Btu/mmBtu and GHG emissions are reported as g CO₂e/MJ, where non-CO₂ gasses (i.e., CH₄ and N₂O) are converted into CO₂ equivalents. Details of converting non-CO₂ gasses to CO₂ equivalents are detailed in Appendix A in this document.

Note: The energy inputs are presented in mmBtu because the calculations in the CA-GREET model use mmBtu.

	Energy Required (Btu/mmBtu)	% Energy Contribution	Emissions (gCO₂e/MJ)	% Emissions Contribution
UCO Transport to Rendering Plant	4,856	0.40%	0.37	2.70%
Rendering of UCO	45,818	3.74%	2.61	19.05%
UCO Transport (after rendering)	3,885	0.32%	0.29	2.12%
Biodiesel Production	152,005	12.40%	5.29	38.61%
Biodiesel Transport	8,662	0.71%	0.66	4.82%
Total (Well To Tank)	226,282	18.45%	9.22	67.30%
Total Combustion Emissions	n/a	n/a	4.48	32.70%
Total (Tank To Wheel)	1,000,000	81.55%	4.48	32.70%
Total (Well To Wheel)	1,226,282	100%	13.70	100%

 Table A. Summary of Energy Use and GHG Emissions for the Used Cooking Oil

 (UCO) to Biodiesel Pathway

Note: percentages may not add to 100 due to rounding

From Table A, the WTW analysis of BD from UCO indicates that **1,226,282** Btu of energy is required to produce 1 (one) mmBtu of available fuel energy delivered to the vehicle. From a GHG perspective, **13.70** gCO₂e of GHGs are produced during the production and use of 1 (one) MJ of BD.

The values in Table A are illustrated in Figure 2, showing specific energy and GHG contributions of each of the discrete components of the entire fuel pathway. The charts are shown separately for energy use and GHG emissions. From an energy perspective, most of the energy is in the fuel (81.55%). From a GHG perspective, biodiesel production (38.61%), combustion (32.70%), and rendering (19.05%) are the largest contributors to this pathway.

Energy Allocation of Used Cooking oil Biodiesel

GHG Emissions Allocation of Used Cooking Oil Biodiesel

Figure 2. Contributions to Energy Use and GHG Emissions for the Used Cooking Oil to Biodiesel Pathway

WTT Details - Transport of UCO to Rendering Plant

Table B and C provides the energy use and associated GHG emissions related to transport of UCO to a rendering plant in California respectively. Detailed calculations are provided in Appendix A.

Table B. Total Energy Use for UCO Transport to Rendering Plant

Energy Result	Energy
Direct Energy for UCO Transport (Btu/lb UCO)	102,762
Upstream Energy from Transportation Fuel Used (Btu/lb UCO)	22,149
Total Energy (Btu/Ib UCO)	124,911
Total Energy (Btu/mmBtu)	4,856

Table C.	Total GHG	Emissions	from UCO	Transport
rubic C.			110111 0000	rianoport

	GHG
	Emissions
CO ₂ (g/ton UCO)	9,562
CH ₄ (g/ton UCO)	11.763
N ₂ O (g/ton UCO)	0.236
CO (g/ton UCO)	18.354
VOC (g/ton UCO)	4.058
Total GHG emissions (g/tonUCO)	9,968
Total GHG emissions (gCO2e/MJ)	0.37

WTT Details - Rendering of UCO in CA

Tables D and E provide a summary of the energy use and associated GHG emissions from rendering of UCO in a facility in California respectively. Details are provided in Appendix A.

Table D. Total Energy Use for Rendering of UCO

Energy Result	Energy
NG (Btu/lb UCO)	483
Electricity (Btu/lb UCO)	253
Total Energy (Btu/lb UCO)	736
Total Energy (Btu/mmBtu)	45,818

Table E. Total GHG Emissions from Rendering of UCO

	GHG
	Emissions
CO ₂ (g/lb UCO)	42
CH ₄ (g/lb UCO)	0.086
N ₂ O (g/lb UCO)	0.000
CO (g/lb UCO)	0.023
VOC (g/lb UCO)	0.006
Total emissions (g/lb UCO)	44
Total GHG emissions (gCO ₂ e/MJ)	2.61

WTT Details – Biodiesel Production

Pre-Processing of UCO for Converting FFAs

Tables F and G show the energy use and GHG emissions generated from preprocessing of UCO for converting free fatty acids (FFAs) respectively. Complete details are shown in Appendix A.

Table F. Energy Used for Pre-processing UCO for Converting FFAs

	Energy
Natural Gas (Btu/lb BD)	166
Electricity (Btu/lb BD)	32
Total Energy (Btu/lb BD)	197
Total Energy (Btu/mmBtu)	11,056

Table G. GHG Emissions for Pre-processing of UCO for Converting FFAs

Species	Direct Emissions (g/lb UCO)	Upstream Emissions (g/lb UCO)	Total Emissions (g/lb BD)
CH ₄	0.000	0.026	0.024
N ₂ O	0.000	0.000	0.000
CO ₂	10	2.522	11
GHG (gCO ₂ e/lb UCO)			12.09
Total GHGs (gCO ₂ e/MJ)			0.64

Biodiesel Production

Table H shows the energy Btu necessary for producing one million Btu of BD from UCO using esterification.

Table H. Energy Consumed for Biodiesel Production

	Energy
Natural Gas (Btu/lb BD)	950
Electricity (Btu/lb BD)	93
Methanol (Btu/lb BD)	1,354
Sodium Hydroxide (Btu/lb BD)	42
Sodium Methoxide (Btu/lb BD)	209
Hydrochloric Acid	63
Total BD Production Energy (Btu/Ib BD)	2,712
Total BD Production Energy (Btu/mmBtu)	152,005

Table I provides GHG emissions resulting from BD production. The fuel consumption and other specifics necessary for this calculation are detailed in the Appendix A.

GHG	GHG Emissions
CO ₂ (g/lb of BD)	80
CH ₄ (g/lb of BD)	0.292
N ₂ O (g/lb of BD)	0.001
CO (g/lb of BD)	0.062
VOC (g/lb of BD)	0.030
Total GHG emissions (g/lb of BD)	5,423
Total GHG emissions (gCO₂e/MJ)	4.65

Table I. Total GHG Emissions for Biodiesel Production

WTT Details - Biodiesel Transport

Tables J and K provide the energy use and GHG emissions from transporting and distributing BD respectively. Details of all the calculations are presented in Appendix A.

Table J. Energy Use for Transportation and Distribution of BD

Transport mode	Btu/mmBtu
BD transportation by truck to bulk terminal	2,665
BD distribution by HDD truck	5,997
Total	8,662

Table IZ	0110	-	f	T	- · · - / /		
Table K.	GHG	Emissions	trom	I ransporting	and L	Distributino	BD

GHGs	Total (gCO₂e/MJ)	
CO ₂	0.63	
CH ₄ (converted to CO ₂ e)	0.02	
N ₂ O (converted to CO ₂ e)	<0.01	
CO (converted to CO ₂)	<0.01	
VOC (converted to CO ₂)	<0.01	
Total GHGs	0.66	

TTW Details - Carbon in Biodiesel

Table L below provides a summary of the combustion emissions from using BD in a heavy-duty vehicle details of which are provided in Appendix A.

Table L. Combustion Emissions for BDTotal GHG Emisisons = 4.48 g CO2e/MJ

APPENDIX A

Section 1. Energy Consumption and GHG Emissions from Transport of Used Cooking Oil

This document provides details of the pathway from UCO to Biodiesel and final use in a heavy-duty vehicle in California. Complete details of each step are provided in sections below.

1.1 Transport of Used Cooking Oil to Rendering Plant

Used cooking oil (UCO) generated in California is transported by heavy duty diesel truck to a rendering plant in California. The CA-marginal regional parameters are used in CA-GREET for UCO transport; these include California petroleum and electricity parameters. The raw UCO transported is assumed to contain an average moisture content of 20% (for additional details, see Section 1.3). The transport energy and distance parameters used in this analysis are shown below in Table 1.02.

Descriptions	Values	
LICO wat ratio	1.25 lb/lb	Calculated
	processed UCO	
UCO/BD ratio	1.11 lb/lb BD	GREET Default
UCO Density	7.5 lb/gallon	
Allocation Factor	90.5%	

Table 1.01 Used Cooking Oil (UCO) Specifications

Note: To calculate processed UCO yield factor:

(1/(1-20% moisture content)) = 1.25 lbs wet UCO/lb processed UCO.

For Allocation factor details refer to Section 2 of this document.

Mode	Heavy Duty Truck
Mode Share	100%
Fuel	ULSD
Fuel Economy (miles/gallon)	5
Distance (mi)	50
Moisture Content Unprocessed UCO (%)	20%
LHV Ultra Low Sulfur Diesel (Btu/gal)	128,450
LHV Biodiesel (Btu/gal)	119,550
LHV Biodiesel (Btu/lb)	16,149
Density (g/gal)	3,361
Energy Intensity (Btu/ton-mi)	1,028
Upstream Diesel Energy Factor (Btu/Btu)	0.216

Table 1.02 Parameters for UCO Transport to Rendering Plant in CA

The direct, upstream and total energy requirements based on the inputs shown above are shown in Table 1.03 below. Transportation of UCO for rendering requires **5,366 Btu/mmBtu** of BD produced. This energy is then adjusted using an allocation factor of 90.5% (see Section 2 for details) to provide an adjusted energy requirement of 4,856 Btu/mmBtu of BD produced. The calculations for direct and upstream energy are shown below:

Direct Energy:

1/(119,550 Btu/gal BD)*(3,361 g/gal)/(454 g/lb)*(50 mi)*(1,028 Btu/ton-mi + 1,028 Btu/ton-mi)*(16,149 Btu/lb BD) = **102,762 Btu/ton wet UCO** (wet UCO here refers to UCO before rendering)

Upstream Energy:

1/(119,550 Btu/gal BD)*(3,361 g/gal)/(454 g/lb)*(50 mi)*(1,028 Btu/ton-mi + 1,028 Btu/ton-mi)*(0.216 Btu/Btu)(16,149 Btu/lb BD) = **22,149 Btu/ton wet UCO**

Total Energy = 102,762 Btu/ton + 22,149 Btu/ton = 124,911 Btu/ton wet UCO

Table 1.03 Direct, Upstream and Total Energy of Transport of UCO to a Rendering Plant in CA

Energy Result	Heavy Duty Truck (Btu/ton wet UCO)
Direct Energy for UCO Transport	102,762
Upstream Energy from Transportation Fuel Used	22,149
Total Energy (Btu/ton wet UCO)	124,911
Total Energy (Btu/mmBtu BD)	5,366
Total Allocated* Energy (Btu/mmBtu BD)	4,856

Note: To convert from Btu/ton wet UCO to Btu/mmBtu BD:

(124,911 Btu/lb wet UCO)/(2,000 lbs/ton)*(1.25 lb wet UCO/lb processed UCO)*(1.11 lb UCO/lb BD)/(16,149 Btu/lb BD)* 10^6 = 5,366 Btu/mmBtu BD.

*Multiply by 90.5% allocation factor to yield total allocated results for UCO transport.

1.2 GHG Calculations for UCO Transport to a Rendering Plant in California

The analysis assumes a transport distance of 50 miles and assumes heavy duty truck transport from UCO collection sites to the processing facility. Transport emissions were calculated in CA-GREET in g/ton wet UCO, then converted to g/lb BD and g/mmBtu BD. Table 1.04 shows the direct emissions, upstream emissions and total emissions. Sample calculations of the direct and total CO₂ emissions from UCO transport are shown below. The calculations are similar for the other GHG species shown in Table 1.04.

Direct CO₂ Emissions:

(3,361 g/gal)/(119,550 Btu/gal BD)/(454 g/lb)*[(77,809 g/mmBtu)*(1,028 Btu/tonmi) + (77,912 g/mmBtu)*(1,028 Btu/ton-mi)]*(50 mi)*(16,149 Btu/lb)/10⁶ = **8,001** g/ton wet UCO

where 77,809 and 77,912 g/mmBtu are the heavy duty truck CO_2 emission factors for both ways of travel.

Upstream CO₂ Emissions:

(3,361 g/gal)/(119,550 Btu/gal BD)/(454 g/lb)*[(15,186 g/mmBtu)*(1,028 Btu/tonmi) + (15,186 g/mmBtu)*(1,028 Btu/ton-mi)]*(50 mi)*(16,149 Btu/lb)/10⁶ = **1,561** g/ton wet UCO

where 15,186 g/mmBtu is the upstream emissions associated with diesel production.

Total CO₂ Emissions = 8,001 g/ton + 1,561 g/ton = **9,562 g/ton wet UCO**

	Processing to Fuel Plant	
Mode	Heavy Duty Truck	
Mode Share	100%	
Distance, miles	50	
Fuel	Diesel	
Energy Intensity, Btu/ton-mile	1,028	
UCO Moisture Content (%)	20%	
Direct Emissions (g/ton wet UCO)		
VOC	3.086	
СО	15.730	
CH ₄	0.157	
N ₂ O	0.216	
CO ₂	8,001	
Upstream Emissions (g/ton wet UCO)		
VOC	0.972	
СО	2.624	
CH ₄	11.606	
N ₂ O	0.020	
CO ₂	1,561	
Total Emissions, (g/ton UCO Transpo	orted)	
VOC	4.058	
СО	18.354	
CH ₄	11.763	
N ₂ O	0.236	
CO ₂	9,562	
GHG Emissions (g/ton wet UCO)	9,968	
GHGs (g/mmBtu BD)	428	
GHGs (g/MJ BD)	0.41	
Allocated GHGs* (g/MJ BD)	0.37	

Table 1.04 Greenhouse Gas Emissions for Transport of UCO to a RenderingPlant in California

Note: To convert from g/ton wet UCO to g/mmBtu BD:

 $(9,968 \text{ g/ton wet UCO})/(2,000 \text{ lbs/ton})*(1.25 \text{ lb wet UCO/lb processed UCO})*(1.11 \text{ lb UCO/lb BD})/(16,149 \text{ Btu/lb BD})*10^6 = 428 \text{ g/mmBtu BD}.$

1.3 Energy for Rendering UCO in California

Depending on the source of the used cooking oil, it may contain varying amounts of water, which must be removed prior to further processing of the oil. At animal by-product rendering plants that also process UCO, cookers are used to evaporate the water from the oil. Because the UCO typically contains much less moisture than animal by-products and requires no crushing, much less thermal and electrical energy are required to process used cooking oil than to render animal by-products.

The range of figures published for the heat energy required to process UCO spans more than an order of magnitude. The reason for the wide range is due primarily to the different approaches used to remove moisture from the UCO. To a lesser extent, it may also be explained by differing assumptions about the moisture content of the raw UCO. The average of the data collected and reported for seven different plants for this study are based on several older rendering plants in the U.S., which process UCO in their cookers. The data reflect information provided by the operators that per pound of product, it takes one-third as much energy to process UCO as it does to render animal by-products.

Table 1.05 presents the range of processing energy inputs based on available literature and survey data. The lowest figure listed in Table 1.05 for thermal energy represents the average of several modern plants in the U.S. that are dedicated to the processing of UCO. In these plants, the UCO is not processed in a cooker, as it is at rendering plants². Instead, the UCO (grease) is heated to liquefy it and break the oil-water emulsion. The liquefied grease is filtered and the water and sediment is allowed to settle from the oil. Because the water is physically separated from the UCO, no energy is required for evaporation, thus resulting in far less energy consumption than for the processing of UCO in a rendering plant cooker.

This analysis assumes a thermal processing input of 3,768 Btu/gallon HHV (3,391 Btu/gallon LHV) as estimated by the Fats Proteins Research Foundation. This value is selected because it lies within the range listed in Table 1.05. It is close to the weighted average of Plants 1-7 in Table 1.05 and the data provided by an industry source. It is estimated that currently 60-80 percent of UCO is processed using the technology employed representative of the data provided from industry source, while the remainder is processed in cookers at rendering plants, such as those represented by Plants 1-7². If 70 percent of the UCO is assumed to be processed in newer plants and 30 percent in older plants, the weighed average energy consumption would be 3,521 Btu/gallon, which is comparable to the Fats Proteins Research Foundation value. For use in the GREET model the energy input (NG) is converted to a Btu/lb UCO basis using a density of 7.5 lb/gal for UCO.

² Wellons, Fred, Tellurian Biodiesel, Personal Communication, June 25, 2009.

Processing Energy	Thermal	Electrical	Notos
Data Source	Energy	Energy	Notes
	Btu/gal	kWh/gal	
Survey of U.S. Rendering			
Plants for ARB, 2009 ³			
Plant 1	7,250	0.259	
Plant 2	8,213	0.112	
Plant 3	7,383	0.309	
Plant 4	9,259	0.284	
Plant 5	7,648	0.295	
Plant 6	13,602	0.478	
Plant 7	13,485	0.418	
Average Plants 1-7	9,549	0.308	
Natural Pasaureas			Based on 40% water in UCO,
C_{2}	2,440	0.337	reduced mechanically to 14.3%
			before rendering
			Electricity based on soybean
Eats Proteins Research			processing; thermal energy
Foundation 2005^5	3,768	0.278	based on evaporation of 20%
			moisture in of raw material (0.53
			MJ/lb oil produced)
CSIRO, 2007 ⁶	1103	0.012	Basis for figures not specified
Industry Sourced Data			Water removed by heating used
2000^7	938	0.060	oil and allowing water to settle;
2000			not processed in a cooker.

Table 1.05 Energy for Processing Used Cooking Oil

Electricity consumption for UCO processing is also much less than for rendering animal by-products. Data for the seven rendering plants surveyed for this study indicate that on average, the plants consume 0.308 kWh per gallon of UCO produced. This analysis uses the estimate of the Fats Proteins Research Foundation, 0.278 kWh/gallon. This figure is intermediate among the range of surveyed values. It is equivalent to 0.037 kWh per pound of product (based on a density of 7.5 lbs per gallon for UCO).

The direct energy and upstream energy consumption of the processing process is calculated as shown in Table 1.06. Details of the calculations for direct and upstream energy are presented below:

³ Wellons, Fred, Tellurian Biodiesel, Personal Communication, June 2, 2009.

⁴ Natural Resources Canada, 2005.

⁵ Fats Proteins Research Foundation, 2005.

⁶ CSIRO, The Greenhouse and Air Quality Emissions of Biodiesel Blends in Australia. Vitoria, Australia. August, 2007.

⁷ Industry Representative, Personal Communication, June 23, 2009.

Upstream NG Energy:

(452 Btu/lb UCO)*(68,865 Btu/mmBtu NG)/10⁶ = **31 Btu/lb UCO**

Upstream Electricity Energy:

 $(452 \text{ Btu/lb UCO})^*((111,573 \text{ Btu/mmBtu Feedstock}) + (1,884,989 \text{ Btu/mmBtu Electricity}))/10^6 - (126 \text{ Btu/mmBtu direct energy}) =$ **126 \text{ Btu/lb UCO**

Table 1.06 Direct and Upstream Energy Use for Rendering UCO in CA

Inputs	Direct	Upstream Energy	Total Energy
NG (heat) (Btu/lb UCO)	((3,391 Btu/gal LHV) / (7.5 lbs/gal)) = 452	31	483
Electricity (CA marginal) (Btu/lb UCO)	(0.278 kWh/gal) *(3,412 Btu/kWh) /(7.5 gal/lb) = 126	126	253
Total Energy Input	579	157	736
Convert to Btu/mmBtu E	50,627		
Convert to Allocated Btu	45,818		

Note: Upstream energy is from WTT energy of NG and electricity documents⁸. Converting from Btu/lb UCO to Btu/mmBtu requires the ratio of the UCO to BD (1.11 lb UCO/lb BD) and the LHV for BD (16,149 Btu/lb BD). *Calculate allocated energy input using 90.5% energy allocation factor (see section 2)

⁸ See Natural Gas and Electricity pathway documents published by ARB February 2009

1.4 Greenhouse Gas Emissions from Rendering of UCO in California

Details of GHG emissions from the rendering process are shown in Table 1.07.

Emission Species	Direct Emissions (g/lb UCO)	Upstream Emissions (g/lb UCO)	Total Emissions (g/lb UCO)
VOC	0.001	0.005	0.006
CO	0.010	0.013	0.023
CH ₄	0.000	0.086	0.086
N ₂ O	0.000	0.000	0.000
CO ₂	26	16	42
Total Emissions	26	18	44
Total Emiss	3,040		
Total Emissions (gCO ₂ e/mmBtu BD)			2.88
Total Allocated Emissions* (gCO ₂ e/MJ)			2.61

Table 1.07 GHG Emissions from Direct and Upstream Energy Used in Rendering of UCO in California

Note: Upstream energy is from WTT energy of NG and electricity documents. Converting from Btu/lb UCO to Btu/mmBtu requires the ratio of the UCO to BD (1.11 lb UCO/lb BD) and the LHV for BD (16,149 Btu/lb BD). *Calculate allocated energy input using 90.5% energy allocation factor (see section 2).

Example Calculations of CO₂ emissions⁹

Direct CO₂:

((452 Btu NG/lb UCO)[50%*(58,198 g/mmBtu utility boiler CO₂ EF) + $50\%*(58,176 \text{ g/mmBtu utility boiler CO}_2 \text{ EF})])/10^6 = 26 \text{ g/lb UCO}$

The upstream CO₂ emissions of the NG and electricity used

Upstream CO₂:

 $((452 \text{ Btu NG/lb UCO})^{*}(5,050 \text{ NG WTT CO}_{2} \text{ Emissions})+(423 \text{ Btu/lb UCO})^{*}((8,277 \text{ g/mmBtu feedstock}) + (96,250 \text{ g/mmBtu})))/10^{6} =$ **16 g/lb UCO**

1.5 Energy Use for Transport of Rendered UCO to a BD Production Plant

Processed UCO is transported by heavy duty truck to a fuel plant in California. The CA-marginal regional parameters are used in CA-GREET for UCO transport; these include California petroleum and electricity parameters. UCO transport is modeled in CA-GREET using the BD heavy duty truck transport calculations in Btu/ton of product transported. The key transport energy and distance parameters are shown in Table 1.08.

⁹ Emission Factors of boilers and feedstock of electricity used are from CA-GREET Model and is available in the BD from soybean pathway document published in 02/2009.

Mode	Heavy Duty Truck
Mode Share	100%
Fuel	Diesel
Fuel Economy (mpg)	5
Distance (mi)	50

 Table 1.08 Transport Parameters for Rendered UCO

The direct, upstream, and total energy requirements based on the inputs above are shown in Table 1.08. Transportation of UCO for BD production requires **4,293 Btu/mmBtu** BD produced. An energy-based allocation factor (90.5%) is used to calculate the total energy for UCO transport allocated to biodiesel production. See section 2 for the explanation and derivation of the allocation factor.

Table 1.09 Direct, Upstream and Total Energy for Transport of Rendered UCO to a BD Production Plant

Energy Result	Heavy Duty Truck (Btu/ton processed UCO)
Direct Energy for UCO Transport	102,762
Upstream Energy from Transportation Fuel Used	22,149
Total Energy (Btu/lb processed UCO)	124,911
Total Energy (Btu/mmBtu BD)	4,293
Total Allocated* Energy (Btu/mmBtu BD)	3,885

Note: To convert from Btu/lb wet UCO to Btu/mmBtu BD:

(124,911 Btu/ton processed UCO)/(2,000 lbs/ton)*(1.11 lb UCO/lb BD)/(16,149 Btu/lb BD) = 4,293 Btu/mmBtu BD. *Calculate allocated energy input using 90.5% energy allocation factor (see section 2).

1.6 GHG Calculations for Transport of Rendered UCO to a Biodiesel Production Plant

The analysis assumes 50 miles heavy duty transport from UCO processing plant to the fuel plant. Transport emissions were calculated in GREET in g/ton processed UCO, then converted to g/lb BD and g/mmBtu BD. Table 1.09 below shows the direct emissions, upstream emissions and total emissions.

	Processing to Fuel Plant
Mode	Heavy Duty Truck
Mode Share	100%
Distance, miles	50
Fuel	Diesel
Energy Intensity, Btu/ton-mile	1,028
Direct Emissions (g/ton Processed	UCO)
VOC	3.086
СО	15.730
CH ₄	0.157
N ₂ O	0.216
CO ₂	8,001
Upstream Emissions (g/ton Process	sed UCO)
VOC	0.972
СО	2.624
CH ₄	11.606
N ₂ O	0.020
CO ₂	1,561
Total Emissions, (g/ton Processed U	JCO)
VOC	4.058
СО	18.354
CH ₄	11.763
N ₂ O	0.236
CO ₂	9,562
GHG Emissions (g/ton processed UCO)	9,968
GHGs (g/mmBtu BD)	342
GHGs (g/MJ BD)	0.32
Allocated GHGs* (g/MJ BD)	0.29

Table 1.10 Greenhouse Gas Emission Results for Transport of Rendered UCO

.

Note: To convert from g/ton processed UCO to g/mmBtu BD: (9,968 Btu/ton processed UCO)/(2,000 lbs/ton)*(1.11 lb UCO/lb BD)/(16,149 Btu/lb BD) = 342 g/mmBtu BD.

Section 2. Biodiesel Production

2.1 Energy for Pre-Processing of UCO (Free Fatty Acid Conversion)

When processing biodiesel feedstocks that have a high free fatty acid (FFA) content, such as UCO, a pre-processing step is necessary to reduce the FFA content before it is esterified to biodiesel. It is estimated that roughly half the UCO in the US is processed via acid esterification using sodium hydroxide to neutralize sulfuric acid, and the other half processed with continuous, non-acid esterification¹⁰. The acid esterification process consumes on average 1,862 Btu's of thermal energy and 0.04375 kWh of electricity per gallon of biodiesel produced, while the non-acid esterification process consumes 722 Btus of thermal energy and 0.02575 kWh of electricity per gallon of biodiesel produced¹¹. Since roughly equal quantities of UCO are processed using each method, this analysis uses the average energy consumption of these two be used to represent this processing step in the CA-GREET model. The average values for thermal energy and electricity per gallon of biodiesel produced are 1,292 Btu (HHV) and 0.03475 kWh. These values are based on a 90 percent yield of biodiesel upon distillation. Figure 2.1 below shows the fuel production configuration.

Figure 3. Configuration for UCO Conversion to Biodiesel.

The process inputs for FFA pre-processing are presented in Table 2.01, converted to Btu/lb BD (LHV). The CA marginal electricity mix was used for this analysis.

¹⁰ Wellons, Fred, Tellurian Biodiesel, Personal Communication, June 23, 2009.

¹¹ Ibid.

Process Fuel Type	Direct Energy Calculation (Btu/lb BD)	Direct Energy Consumption, (Btu/Ib BD)
Natural Gas	((1,163 Btu/gal LHV) / (7.5 lbs/gal)) = 155	155
Electricity (0.03475 kWh/gal) *(3,412 Btu/kWh) /(7.5 gal/lb) = 16		16
Direct Energy Co	nsumption	171

Table 2.01 Calculation of Direct Energy Consumption (Btu/lb BD) for Preprocessing of UCO to Convert FFAs

The values provided in Table 2.01 are direct energy consumption per lb of BD produced. The natural gas input is based on 1,292 Btu/gal BD HHV (1,973 Btu/gal LHV) The total energy includes the direct and upstream energy components, and the total energy requirement is then allocated among the BD fuel and co-product glycerin based on energy content of each and glycerin yield (see allocation factor calculation below)¹². Table 2.02 below shows the total energy consumption (in Btu/lb) and allocated energy consumption (in Btu/lb BD and Btu/mmBtu BD).

 $BD Allocation Factor = \frac{16,149 Btu/lb BD}{(16,149 Btu/lb BD+(7,979 Btu/lb glycerin)^*(0.213 lb propane/lb BD)} = 90.5\%$

Table 2.02 expresses the contribution energy with direct and upstream energy for each fuel. Table 2.03 presents the total energy for pre-processing to convert FFAs prior to esterification.

Table 2.02 Calculation of Direct and Upstream Energy Consumption (E	3tu/lb BD)
for Pre-processing of UCO to Convert FFAs	-

Process Fuel Type	Direct Energy (Btu/lb)	Upstream Energy (Btu/lb)	Total Energy Consumption, Btu/lb BD
Natural Gas	155	155*(1+68,865/10 ⁶)	166
Electricity	16	16*(111,573+1,884,989)/10 ⁶	32
Direct and Upstream Energy Input (Btu/lb BD)			197

Where:

Energy of NG as fuel: 68,865 Btu/mmBtu

Energy of Electricity as feedstock: 111,573 Btu/mmBtu

Energy of Electricity as fuel: 1,884,989 Btu/mmBtu

¹² This allocation factor is assumed the same as soy bean BD. Please refer to this document for complete details. It is available on the Low Carbon Fuel Standard website.

Table 2.03 Total and Allocated Energy Consumption for Pre-Processing of UCO to Convert FFAs

Energy Consumption	Value
Total Energy (Btu/lb BD)	197
Total Energy (Btu/mmBtu BD)	12,216
Total Adjusted Energy* (Btu/mmBtu BD)	11,056

Note:

Total adjusted energy includes allocation (90.5%) and downstream loss factor (1.000) To convert Btu/lb BD to Btu/mmBtu BD:

(197 Btu/lb UCO)/(16,149 Btu/lb BD)*10⁶ = 12,216 Btu/mmBtu BD

To convert Btu/mmBtu BD to energy-allocated Btu/mmBtu:

(12,216 Btu/mmBtu BD)*(90.5%) = 11,056 Btu/mmBtu

After FFA conversion, the intermediate UCO product is esterified like soybean oil. The analysis assumes the same esterification input parameters used for soybean oil esterification to biodiesel¹³. Table 2.04 below presents the direct, and upstream energy for BD production (UCO esterification). Table 2.05 provides the total energy use for BD production.

Process Fuel Type	Fuel Shares	Direct Energy (Btu/lb)	Upstream Energy (Btu/lb)	Total Energy Consumption (Btu/Ib BD)
Natural Gas	42.0%	(42.0%)*(2,116) = 889	889*(1+68,865/10 ⁶)	950
Electricity	2.2%	(2.2%)*(2,116) = 47	47*(111,573+1,884,9 89)/10 ⁶	93
Methanol	40.9%	(40.9%)*(2,116) = 865	865*(31,792*1.000+5 32,954)/10 ⁶	1,354
Sodium Hydroxide	2.0%	(2.0%)*(2,116) = 42	-	42
Sodium Methoxide	9.9%	(9.9%)*(2,116) = 209	-	209
Hydrochloric Acid	3.0%	(3.0%)*(2,116) = 63	-	63
Direct Energy Input (Btu/Ib BD)				2,712

Table 2.04 Calculation of Direct and Upstream Energy Consumption (Btu/lb BD)for BD Production

¹³ See Soybean Biodiesel Pathway Document published by ARB February 2009, www.arb.ca.gov/fuels/lcfs/lcfs.htm

Energy Consumption	Value
Total Energy (Btu/lb BD)	2,712
Total Energy (Btu/mmBtu BD)	167,961
Total Adjusted Energy* (Btu/mmBtu BD)	152,005

Table 2.05 Total Energy Consumption for BD Production

Note:

Total adjusted energy includes allocation (90.5%) and downstream loss factor (1.000) To convert Btu/lb BD to Btu/mmBtu BD:

(2,712 Btu/lb BD)/(16,149 Btu/lb BD)*10⁶ = 167,961 Btu/mmBtu BD

Btu/mmBtu BD (where 16,194 Btu/lb is assumed LHV of BD) To convert Btu/mmBtu BD to energy-allocated Btu/mmBtu:

(167.961 Btu/mmBtu)*(90.5%) = 152.005 Btu/mmBtu

(167,961 Btu/mmBtu)*(90.5%) = 152,005 Btu/mmBtu

2.2 Greenhouse Gas Emissions from Biodiesel Production

Direct, upstream and total greenhouse gas emissions for FFA conversion in UCO are shown below in Table 2.06. The California marginal electricity mix is used to calculate emissions from electricity generation. The calculations for direct and upstream CO_2 emissions are shown below.

Direct CO₂ Emissions:

(155 Btu NG/lb BD)*(50%*(58,198 g/mmBtu NG) + 50%*(58,176 g/mmBtu NG))/10⁶ = **9 g/lb BD**

where 58,198 g/mmBtu and 58,176 g/mmBtu are the emission factors for NG utility and small boilers, respectively (no direct electricity emissions).

Upstream CO₂ Emissions:

[(155 Btu NG/lb BD)*(5,050 g/mmBtu)+(16 Btu electricity/lb BD)*((8,277 g/mmBtu Feedstock)+(96,250 g/mmBtu Electricity))]/ $10^6 = 2 g/lb BD$

where 5,050 g/mmBtu is the upstream emissions for NG production. 8,277 g/mmBtu and 96,250 g/mmBtu are the upstream emissions associated with electricity feedstock and generation, respectively.

Species	Direct Emissions (g/lb BD)	Upstream Emissions (g/lb BD)	Total Emissions (g/lb BD)
VOC	0.000	0.001	0.002
CO	0.004	0.003	0.006
CH ₄	0.000	0.023	0.024
N ₂ O	0.000	0.000	0.000
CO ₂	9	2	11
GHG (gCO ₂ e/lb BD) ¹	12.09		
GHG (gCO ₂ e/mmBtu) ¹	748		
Total GHG (g/MJ)	0.71		
Total Adjusted ² GHG (g/	0.64		

 Table 2.06 Direct, Upstream and Total Greenhouse Gas Emissions for Preprocessing of UCO to Convert FFAs

Note:

1. Adjusted to Global Warming Potential: CH₄: 25, N₂O: 298, CO₂: 1

2. Total adjusted energy includes allocation (90.5%) and downstream loss factor (1.000)

To convert from g/lb BD to g/mmBtu BD:

 $(12.09 \text{ g/lb BD})/(16,149 \text{ Btu/lb BD})*10^6 = 748 \text{ Btu/mmBtu BD}$

Direct, upstream and total greenhouse gas emissions for UCO esterification (BD production) are shown below in Table 2.07. The California marginal electricity mix is used to calculate emissions from electricity generation.

Table 2.07 Direct, Upstream and Total Greenhouse Gas Emissions for BD Production

Species	Direct Emissions (g/lb BD)	Upstream Emissions (g/lb BD)	Total Emissions (g/lb BD)
VOC	0.002	0.029	0.030
CO	0.020	0.0419	0.062
CH ₄	0.001	0.291	0.292
N ₂ O	0.000	0.000	0.001
CO ₂	52	28	80
GHG (gCO₂e/lb BD)	87.6		
GHG (gCO ₂ e/mmBtu)	5,423		
Total GHG (g/MJ)	5.14		
Total Adjusted ² GHG (g/l	4.65		

Note:

Adjusted to Global Warming Potential: CH₄: 25, N₂O: 298, CO₂: 1

To convert from g/lb BD to g/mmBtu BD:

 $(87.6 \text{ g/lb BD})/(16,149 \text{ Btu/lb BD})*10^6 = 5,423 \text{ Btu/mmBtu BD}$ (where 16,194 Btu/lb is the assumed LHV of BD)

Section 3. Biodiesel Transport and Distribution

3.1 Energy Calculations for Biodiesel Transport to Retail Stations

The next step in the Biodiesel pathway is transport from the production plant in California to a retail station. Table 3.01 provides the transport assumptions and calculations for this final step.

80% of the Biodiesel is transported by heavy duty truck 50 miles from the plant to bulk terminal; the remaining 20% is distributed directly from the plant. All BD is then transported 90 miles by heavy duty truck from the bulk terminal to refueling stations. The energy values are converted from Btu/ton-mile to total energy as follows: The energy and emissions are calculated the same here as for BD from soyoil pathway document (see document on LCFS website at http://www.arb.ca.gov/fuels/lcfs/lcfs.htm). Btu/ton-mile factors are converted to Btu/ton, which is converted to Btu/mmBtu fuel for both legs of the trip. The energy for each mode is multiplied by the mode share shown in Table 3.01 to yield the total energy. No allocation factor adjustment is made for BD transport.

Parameter	Units	Plant to Bulk Terminal	Distribution	Total
Mode	-	Heavy Duty	Heavy Duty	
		Iruck	Iruck	
Shares	%	80%	100%	
Distance	Miles	50	90	
Payload	Tons	25	25	
Fuel Economy	mi/gal	5	5	
Fuel	-	Diesel	Diesel	
Fuel LHV	Btu/gal	128,450	128,450	
Energy Intensity	Btu/ton-mile	1,028	1,028	
Direct Energy (Btu/mmBtu) ¹		2,741	4,934	
Upstream Energy (Btu/mmBtu) ¹		591	1,063	
Total Energy (Btu/mmBtu) ¹		3,332	5,997	
Total BD T&D Er (Btu/mmBtu)	nergy	2,665	5,997	8,662

Table 3.01 Biodiesel Transport Parameters and Results

¹Excludes mode share, which is accounted for in the total energy

Note: Energy Intensity = LHV / fuel economy / payload = 1,028 Btu/mile-ton

Direct truck energy doubles the miles to take into account round trip energy.

3.2 GHG Calculations for Biodiesel Transport to Retail Stations

Biodiesel is assumed to be transported as follows in CA-GREET:

- 80% transported 50 miles by heavy duty diesel truck (HDD) from plants in CA to bulk terminal
- 100% distributed 90 miles by heavy duty truck.

Table 3.02 below shows the direct emissions, upstream emissions (without accounting for mode share) and total emissions, accounting for mode share.

	Plant to Bulk Terminal	Fuel Distribution	Total Transport			
Mode	HDD Truck	HDD Truck				
Mode Share	80%	100%				
Distance, miles	50	90				
Fuel	Diesel	Diesel				
Energy Intensity, Btu/ton-mile	1,028	1,028				
Direct Emissions (g/mmBtu)						
VOC	0.082	0.148				
CO	0.420	0.755				
CH ₄	0.004	0.008				
N ₂ O	0.006	0.010				
CO ₂	213	384				
Upstream Emissions (g/mmBtu)						
VOC	0.0296	0.047				
CO	0.07	0.126				
CH ₄	0.310	0.557				
N ₂ O	0.001	0.001				
CO ₂	42	75				
Total Emissions, (g/mmBtu)						
VOC	0.086	0.047	0.281			
СО	0.392	0.126	1.273			
CH ₄	0.251	0.557	0.816			
N ₂ O	0.005	0.001	0.016			
CO ₂	204	462	663			
GHGs (g/mmBtu)	212.7	478.5	691.2			
GHGs (g/MJ)	0.20	0.46	0.66			

Table 3.02 Biodiesel Greenhouse Gas Emissions

Section 4. GHG Emissions from a Biodiesel-Fueled Vehicle

4.1 Combustion Emissions from Fuel Vehicle CO₂ (Carbon in Fuel)

The CA-GREET model considers only the fossil carbon in fuel (expressed as fully oxidized, g CO₂/mmBtu fuel), since biologically derived fuel carbon originates from the atmosphere and the net greenhouse gas impact is neutral. The only fossil carbon in biodiesel originates from the methanol (produced from natural gas) used in soybean oil transesterification. The calculations in Table 4.01 below show the fossil CO₂ emissions per mmBtu and MJ of fuel. The table summarizes the values used in the calculations and also shows the results from the fossil carbon in fuel calculations. The biodiesel production energy and methanol energy share for production shown in Table 4.01 are CA-GREET default values and the remaining values in the table are fuel properties. The calculations shown in this document are for a heavy-duty vehicle.

The total BD processing energy of 2,116 Btu/mmBtu is a GREET default. Esterification requires a methanol input that corresponds to 10% of the biodiesel mass. This methanol energy is input to CA-GREET as fuel shares of 40.9% of the 2,116 Btu of energy input which is equal to 865 Btu/mmBtu. The GHG emissions are calculated based on the fraction of methanol energy in BD and the carbon content of methanol. The calculations are below:

Fossil Carbon in Biodiesel Expressed as CO_2 : (2,116 Btu methanol/mmBtu BD)*(40.9%)/(16,149 Btu/lb BD)*10⁶ = 53,592 Btu methanol/mmBtu BD

 $(53,592 \text{ Btu methanol/mmBtu BD})/(57,250 \text{ Btu/gal})^{(3,006 g/gal})^{(37.5\% C)}(44.0095 g CO_2/12.011 g C) = 3,869 g CO_2/mmBtu$

(3,869 g CO₂/mmBtu)/(1055.055 MJ/mmBtu) = 3.7 g CO₂/MJ

Description	Methyl Ester Biodiesel (B100)
BD Production Energy Input (Btu/lb BD)	2,116
BD Lower Heating Value (Btu/gal)	119,550
BD Density (g/gal)	3,361
BD Carbon Ratio (wt%)	77.6 %
MeOH Fuel Production Share	40.9%
MeOH Lower Heating Value (Btu/gal)	57,250
MeOH Density (g/gal)	3,006
MeOH Carbon Ratio (wt%)	37.5%
$CO / C Mass Datis (ut \theta /)$	44.0095/
CO_2/C Mass Ratio (wt%)	12.011
Fossil Carbon in Fuel (gCO₂e/MJ)	3.7
Fossil Carbon in Fuel (gCO ₂ e/MJ)	3.7

 Table 4.01 Fuel Fossil CO2 Emissions (g/mmBtu)

Vehicle CH₄ and N₂O emissions

The CH₄ and N₂O emissions are assumed to be the same as ULSD. The vehicle energy use, N₂O and CH₄ emission rates and final emissions are shown in Table 4.02.

Table 4.02 Vehicle CH₄ and N₂O Emissions

Parameter	2010 Emissions factor (g/mi)	GWP	GHG (gCO2e/MJ)
N ₂ O	0.048	298	0.735
CH ₄	0.035	25	0.045
Vehicle Energy Efficiency	6.1 mi/gal		0.780

Total Combustion Emissions

Using Tables 4.01 and 4.02 above, the total GHG emissions from combusting BD in a heavy-duty vehicle is 3.7 + 0.78 = 4.48 gCO2e/MJ.

APPENDIX B

Input Values for Biodiesel from Used Cooking Oil Pathway

Parameters	Units	Values	Note	
GHG Equivalent				
CO ₂		1	CA-GREET	
CH ₄		25	CA-GREET	
N ₂ O		298	CA-GREET	
VOC		3.1	CA-GREET	
CO		1.6	CA-GREET	
UCO Processing				
Fuel Use Shares				
Natural Gas		82.5%	Available Plant Data	
Electricity		10.9%	Available Plant Data	
UCO as fuel		6.6%	Available Plant Data	
UCO or BD Transportation				
Heavy Duty Diesel Truck		100%	CA-GREET Default	
Travel Distance	miles	50	One way	
Truck Energy Intensity	Btu/mile-ton	1,028	CA-GREET Default	
Biodiesel Production				
BD Allocation Factor		94.5%	CA-GREET Default	
BD Yield	lb UCO/lb BD	1.11	CA-GREET Default	
Process Shares for the pre- processing of FFAs				
Natural Gas		90.6%	CA-GREET Default	
Electricity		9.4%	CA-GREET Default	
Equipment shares				
Large Industrial Boiler - Natural Gas		50%	CA-GREET Default	
CO ₂ Emission Factor	gCO ₂ /mmBtu	58,198	CA- GREET Default	
Small Industrial Boiler – Natural Gas		50%	CA-GREET Default	
CO ₂ Emission Factor	gCO ₂ /mmBtu	58,176	CA-GREET Default	
Fuels Properties	LHV (Btu/gal)	Density (g/gal)		
Natural Gas	83,686	2,651	NG Liquids - GREET Default	
Biodiesel	18,925	2,948	CA- GREET Default	
Transportation Mode				
Heavy Diesel Duty Truck	tons	25	UCO (assumed same as BD)	
	tons	25	Biodiesel (CA-GREET Default)	