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Abstract
Many biofuel standards, including California’s recently adopted low carbon fuel standard,
consider just one feedstock from one supplying country for the production of sugarcane
ethanol: fresh mill-pressed cane juice from a Brazilian factory. While cane juice is the
dominant feedstock for ethanol in most Brazilian factories, a large number of producers in
Indonesia, India, and the Caribbean, and a significant number in Brazil, manufacture most of
their ethanol from molasses, a low value co-product of raw sugar. Several producers in these
countries have the capacity to export ethanol to California, but the GREET (from: greenhouse
gas, regulated emissions and energy use in transportation) model, which is the LCA (lifecycle
assessment) model of choice for most biofuel regulators including California, does not currently
include this production pathway. We develop a modification to GREET to account for this
pathway. We use the upstream and process lifecycle results from the existing GREET model for
Brazilian ethanol to derive lifecycle greenhouse gas emissions for ethanol manufactured from
any combination of molasses and fresh cane juice. We find that ethanol manufactured with only
molasses as a feedstock with all other processes and inputs identical to those of the average
Brazilian mill has a lifecycle GHG (greenhouse gas) rating of 15.1 gCO2-eq MJ−1, which is
significantly lower than the current California-GREET assigned rating of 26.6 gCO2-eq MJ−1.
Our model can be applied at any level of granulation from the individual factory to an
industry-wide average. We examine some ways in which current sugarcane producers could
inaccurately claim this molasses credit. We discuss methods for addressing this in regulation.
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1. Introduction

The production of raw cane sugar from sugarcane juice
results in the formation of molasses, a byproduct that contains

4 Author to whom any correspondence should be addressed.

minerals regarded as impurities in raw sugar (Hugot and
Jenkins 1986). However, this purification process results in
the loss of some high value disaccharides and monosaccharides
from the final raw sugar product that end up in the molasses.
The fermentable sugar content of molasses varies inversely
with the purity of the raw sugar produced at the factory.
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Molasses is a low value product that is used as a cattle
feed supplement, in specialized yeast propagation or as a
flavoring agent in some foods (Troiani 2009a). Although
the fermentable sugars in the molasses cannot be further
upgraded to raw sugar, they can be converted to ethanol in
a distillery. Hence, integrated sugarcane factories that have
sugar manufacturing co-located with an ethanol distillery can
use molasses as a feedstock for ethanol in addition to raw cane
juice directly from the mill. A significant number of sugarcane
factories in Brazil and several hundreds of others around the
world are of this type (Szwarc 2009). Since molasses has
a significantly lower opportunity cost than raw cane juice,
factories using it as a feedstock for ethanol deserve to be
credited. The current California-GREET model for sugarcane
ethanol5 (hereby referred to as CA-GREET for Brazil) does
not include this pathway (CARB 2009). In this paper, we use
the outputs of CA-GREET for Brazil to recalculate lifecycle
emissions for integrated factories that use any proportion of
molasses and cane juice to make ethanol. We present results for
such factories using existing Brazilian data but our model will
be particularly relevant to other countries, whose producers
use substantially higher fractions of molasses to make ethanol,
from where data is not yet available. When the data becomes
available the model is designed to be an add-on to GREET
which will make it a new analytic tool for the biofuel industry
and fuel regulators. The output of CA-GREET for Brazil is
used by the California Air Resources Board to set the default
lifecycle carbon content of sugarcane ethanol under the low
carbon fuel standard (LCFS) program and with an estimated 2
billion liters of molasses ethanol manufactured in regions that
have the capacity and interest to sell to California (Licht 2006),
our add-on is likely have substantial economic implications for
the state.

2. Integrated sugar and ethanol factory process

Sugarcane factories can broadly be classified into three
categories: (1) ones that produce only raw table sugar (hereby
referred to as raw sugar), (2) ones that produce only ethanol
and, (3) integrated ones that produce both raw sugar and
ethanol. Approximately 80% of the factories in Brazil belong
to the third category (BNDES 2008). In other countries, large
factories (crushing more than five hundred thousand tons of
sugarcane each season), also overwhelmingly belong to the
third category (Troiani 2008). The use of both molasses
and sugarcane juice to produce ethanol is only economically
feasible in factories belonging to the third category. Typically
all three types of sugarcane factories meet their process energy
demand by combusting bagasse, the ligno-cellulosic fiber that
is a byproduct of sugarcane crushing, to power a steam turbine.
Figure 1 below is process and mass flow diagram of an
integrated sugar and ethanol factory. The figure shows the
quantities of intermediate and final products produced from the
crushing of 1 wet ton of sugarcane.

In integrated factories, sugarcane is crushed at a mill that
produces both sugarcane juice, which is rich in sucrose, and

5 Posted on 27 February, 2009 at http://www.arb.ca.gov/fuels/lcfs/lcfs.htm

Figure 1. Mass and process flow of an integrated sugar and ethanol
factory where x = fraction of cane juice sent to manufacture raw
sugar; ηj = cane crushing yield (tons of fermentable sugars in
juice/ton of cane); ηs = raw sugar manufacturing efficiency (tons of
sucrose in final sugar/ton of sucrose in); ηe = ethanol distillery
efficiency (dry tons EtOH/ton of sucrose in).

bagasse, which is used to meet the energy demand of the entire
factory. The factories then split the juice into two streams
sending one part for raw sugar production and the other part
to the ethanol distillery. Molasses, which is a byproduct of
raw sugar production is then sent as additional feedstock to
the distillery. The yield of ethanol from fermentable sugars
in molasses is almost identical to the yield from fermentable
sugars in cane juice (Troiani 2009b).

3. The add-on model for dual feedstock ethanol
production

Greenhouse gas (GHG) emissions upstream of the factory are
already well described in GREET. The process calculations,
however assume that only cane juice is used as a feedstock.
We develop an add-on that uses several outputs from CA-
GREET for Brazil along with some additional parameters to
calculate lifecycle GHG emissions for ethanol production with
dual feedstocks.

We include a key additional parameter ‘x’ that is currently
implicitly set to a value of 0 in CA-GREET for Brazil, which
is the fraction of sugarcane juice by mass that is sent to
manufacture raw sugar. All emissions associated with raw
sugar manufacturing need to be allocated between raw sugar,
the primary product, and molasses, the co-product. We choose
to make this co-product allocation based on the market value
method. Since, co-product allocation is a hotly debated issue
in lifecycle analysis, especially in the case of biofuels, we
discuss the substitution and market value methodologies in
detail within the context of this paper and present our reasoning
for the one we choose. Note that co-product allocation based
on the energy content of sugar and molasses would lead to
a solution identical to that of CA-GREET for Brazil where
cane juice and molasses are indistinguishable from an LCA
standpoint.

3.1. Allocation by the substitution method

Molasses is used in several applications in addition to ethanol
production and, in each case is easily substituted by a variety
of other products. It is commonly used as a feed supplement
for both feedlot and pasture cattle where it normally constitutes
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4% of the feed mix (Fox et al 2001) and is highly substitutable
with products made from corn, wheat or barley (Surry and
Moschini 1984). Further, it is a difficult product to store
and transport and hence only about 15% of the molasses
sold worldwide is traded internationally (Westway 2002).
Molasses has two further uses where the total demand for
it is insignificant when compared to the volume demanded
by the cattle feed industry. It functions as a substrate in
the propagation of yeast and as a flavoring or coloring agent
in some food products. Due to all these factors demand
for molasses is highly elastic. Perhaps more importantly,
molasses serves as substitute for several products across
several industries making the application of the substitution
method complicated and highly geographically variant.

3.2. Allocation by the market value method

The strongest criticism of co-product allocation based on
market value is that it does not represent environmental
outcomes. While this criticism of the market value method
holds true here, it is also true that for reasons described above,
the substitution method is difficult to apply and will result
in grossly inaccurate results in this case. Further, the main
motivation for this letter is to reward producers for the use of
a waste or low value input since the technology for molasses
ethanol and cane juice ethanol is almost identical. While not
perfect, price is the best available indicator of how much of
a waste product molasses is. If there is a surge in demand
for molasses by ethanol producers looking to take advantage
of the better lifecycle rating, the price of molasses will rise
relative to sugar to a point where it can no longer be considered
a waste or low value product. The substitution method will
be blind to such an effect but if the regulation is set based
on the market value method, this relative price increase will
reduce the lifecycle GHG advantage of molasses ethanol. In
fact, if the relative price increase is large enough, we will reach
a breakeven point where molasses and cane juice ethanol are
indistinguishable from a lifecycle GHG perspective. This is
shown in detail in section 4. The potential for better policy
design is also the primary reasoning of Nguyen and Gheewala
(2008) for adopting the market value allocation method for
sugar and molasses.

We estimate the lifecycle emissions of ethanol from any
combination of molasses and cane juice using three steps.
First we estimate total GHG emissions per ton of raw cane
input based on mass flow estimates shown in figure 1 and
aggregation of associated individual process emissions. Next
we calculate the ethanol yield per ton of cane input, which
then is used to estimate GHG emissions per MJ of ethanol
produced. Finally, we add the emissions associated with
the transportation and distribution of ethanol that is already
calculated in GREET. Equations (1)–(3) represent each of the
above steps.

Total LCA GHG emissions up to distillery exit

(gCO2-eq/ton of cane) = U(1 − x) + x(U + S)

×
[ {(1 − ηs)/mm}Pm

{(1 − ηs)/mm}Pm + (ηs/ms)Ps

]

+ [(1 − xηs)(E × LHVanhyd × ηjηe)] (1)

where x = fraction of cane juice sent to manufacture
raw sugar; ηj = cane crushing yield (tons of sucrose in
juice/ton of cane); ηs = raw sugar manufacturing efficiency
(tons of sucrose in final sugar/ton of sucrose in); ηe =
ethanol distillery efficiency (dry tons EtOH/ton of sucrose in);
LHVanhyd = LHV of anhydrous ethanol (∼25.4 mmBtu/dry
ton EtOH); U = all emissions upstream of factory (GREET
value = 4.02 × 104 gCO2-eq/ton of cane); S = raw sugar
production emissions (gCO2-eq/ton of cane, currently not
calculated in GREET); E = ethanol production emissions
(GREET value = 2.0 × 103 gCO2-eq/mmBtu of anhydrous
ethanol); Ps = price of final raw sugar on the market ($330/ton
in Sao Paulo Bovespa); ms = tons of sucrose in final sugar/ton
of final sugar product (≈0.95); Pm = price of molasses on
the market (∼$60/ton); mm = tons of fermentable sugars in
standard molasses/ton of standard molasses (≈0.50).

CA-GREET for Brazil assumes a fixed ethanol yield of
24 gallons of hydrous ethanol per ton of cane which is quite
accurate when cane juice is the only feedstock. However, when
molasses is also used as a feedstock, the ethanol yield depends
on the fraction of cane juice sent to raw sugar production as
well as the process efficiencies of each production stage. The
efficiency of the distillery in converting fermentable sugars to
ethanol is effectively the same for molasses and cane juice. The
lower concentration of fermentable sugars in molasses does not
affect the performance of the distillery.

Ethanol yield = LHVanhyd × ηeηj[(1 − xηs)]
× 106

947.8
MJ of anhydrous ethanol/ton of cane. (2)

To obtain the total well-to-tank lifecycle greenhouse gas
emissions for ethanol from any combination of molasses and
cane juice in GREET equivalent units of gCO2-eq MJ−1 of
anhydrous ethanol, we divide equation (1) by equation (2) and
add the CA-GREET for Brazil calculated emissions due to
transportation and distribution of the fuel. This calculation in
CA-GREET for Brazil includes transportation of anhydrous,
denatured ethanol by rail and pipeline within Brazil and then
by ocean tanker to California. Once in California, the ethanol is
blended with gasoline and then transported and distributed by
truck, which is also included in the term ‘T ’ in equation (3).
The dehydration and denaturing are assumed to be done at the
distillery.

WTT GHG emissions (gCO2-eq MJ−1) = (equation (1))

(equation (2))
+ T

(3)
where, T = emissions due to transportation and distribution of
ethanol (4.1 gCO2-eq MJ−1 in CA-GREET for Brazil).

4. Results

Based on our own field research and data from sugarcane
factories in Brazil, Indonesia and India, we determined average
values for each of the efficiency parameters in the equations
above. These are shown in table 1. CA-GREET for Brazil
ignores raw sugar production and hence does not report raw
sugar process emissions. We estimate raw sugar process
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Table 1. Parameter values.

Parameter Unit Value

ηs Tons of final sugar/ton of
recoverable sugar in

0.80

ηe Dry tons of EtOH/ton of
fermentable sugar in

0.51

ηj Tons of recoverable sugars
in juice/ton of cane

0.14

U gCO2-eq/ton of cane 4.02 × 104

E gCO2-eq/mmBtu of
anhydrous ethanol

2.02 × 103

S gCO2-eq/ton of cane 3.70 × 103

Ps US$/ton of raw sugar $330
Pm US$/ton of standard

molasses
$60

emissions by assuming that all of it is due to the non-
CO2 emissions from bagasse combustion, which, in reality,
does make up the majority of sugar production emissions.
Additives like lime and flocculant that are consumed in the
sugar production process make up the rest of the emissions,
which is a very small part of the total emissions for sugar
production.

The lifecycle greenhouse gas emissions associated with
Brazilian sugarcane ethanol for factories with varying amounts
of molasses as feedstock is shown in table 2. Table 2 also
shows the quantities of raw sugar, 85 brix molasses and
hydrous ethanol that are produced from a ton of cane for each
scenario. Our model calculates lifecycle emissions to be 27.0
gCO2-eq MJ−1 when x = 0, which is equivalent to the current
CA-GREET result for Brazil. Table 2 shows that emissions
decrease non-linearly with x to reach 15.1 gCO2-eq MJ−1 for
a factory that uses only molasses to make ethanol (x = 1).

The key parameter of interest in this model is the ratio of
sugar price to ethanol price (Ps/Pm). In figure 2, we show
the sensitivity of the results to this parameter for a factory that
uses only molasses as feedstock. Based on current sugar and
molasses prices, the LCA GHG emissions of 100% molasses
ethanol is 15.1 gCO2-eq MJ−1, shown by the square marker in
the figure. The dashed line in figure 2 represents the well-to-
tank GHG emissions for 100% cane juice ethanol. Note that
once the sugar to molasses price ratio drops below a given
breakeven value (which lies between 2 and 2.5), it is worse,
from a lifecycle GHG standpoint, to produce molasses ethanol
than cane juice ethanol.

5. Issues in applying the model to guide regulation

Our model works with CA-GREET for Brazil’s current outputs
and hence can initially be applied on the same scale, using
a single value for many producers over a large area. If
used in this manner, all the parameters in our model and in
CA-GREET for Brazil would just be any aggregate central
tendency measure for all the factories in the area of regulation.
Without any modification of the model, it can also be applied
at the factory level to determine an individual greenhouse
gas footprint. Hence when used in conjunction with GREET
this is a complete well-to-tank lifecycle analysis of sugarcane

Figure 2. Sensitivity of LCA GHG emissions to the raw sugar to
molasses price ratio.

ethanol when molasses is used as any fraction of the feedstock.
The regulatory framework can be identical to those of all
other fuels and pathways already in California’s LCFS. In the
case of Brazil, most integrated factories tend to favor ethanol
production over raw sugar and hence are likely to see very little
improvement in their rating over the current value. However,
for producers in Indonesia, Thailand, India, Guatemala and
several other countries, molasses is the majority feedstock for
ethanol production. Many producers have both the interest and
the capacity to export their ethanol to California and this model
will more accurately describe their fuel.

A number of concerns exist if firms are given credit for the
use of molasses. First, firms may begin to start using more and
more molasses to make ethanol, diminishing its status as a low
value product. This is the strongest argument for doing the co-
product allocation based on revenue ratio like we have in the
paper, since higher molasses demand will simply raise its price
relative to sugar, which will result in increased fuel lifecycle
GHG emissions.

Second, firms may re-engineer their process whereby
they direct more cane juice to the raw sugar factory but
deliberately produce raw sugar less efficiently leaving more
fermentable sugars in the molasses (also known as intermediate
molasses) which they will then use to make ethanol. Such
re-engineering will need substantial capital investment in
factories that are operating at full capacity to allow the sugar
factory to handle a greater throughput of cane juice than
its original design capacity. A vast majority of sugarcane
factories worldwide operate at full capacity since their sugar
and ethanol markets are predictable and, they do not want to
under-utilize capital. The additional revenue gained from their
improved GHG rating is unlikely to justify such investment.
Hence, a bi-annual inspection audit of these factories should
be sufficient to prevent any fraud. Several Brazilian factories
do have additional sugar and ethanol capacity but production
of intermediate molasses is still non-trivial. A moderately
more frequent audit of these factories is probably sufficient to
prevent such actions.

If this model is to be used in regulation, it will be
important to examine the volatility of sugar and molasses
prices in order to determine how often the fuel lifecycle rating
should be adjusted. If the prices are too volatile relative to
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Table 2. Well-to-tank GHG emissions for sugarcane ethanol manufactured with cane juice and molasses at current prices of sugar and
molasses.

Fraction of cane
juice sent to
manufacture sugar

LCA GHG emissions for sugarcane
ethanol (gCO2-eq MJ−1 of anhydrous
ethanol)

Tons of raw
sugar produced
per ton of cane

Tons of 85 brix
molasses produced
per ton of cane

Liters of hydrous
ethanol produced
per ton of cane

0.0 27.0 0.000 0.000 93.0
0.1 26.8 0.012 0.006 85.5
0.2 26.5 0.024 0.011 78.1
0.3 26.1 0.035 0.017 70.7
0.4 25.6 0.047 0.022 63.2
0.5 25.0 0.059 0.028 55.8
0.6 24.3 0.071 0.034 48.3
0.7 23.2 0.083 0.039 40.9
0.8 21.7 0.094 0.045 33.5
0.9 19.4 0.106 0.050 26.0
1.0 15.1 0.118 0.056 18.6
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Figure 3. US raw sugar and molasses prices by month (US$/ton).

each other, the prices may have to be averaged over longer
timescales in order to make the regulation feasible in practice.
While it is impossible to predict future trends in molasses
and raw sugar prices, we analyzed the price trends of the
two commodities over the last 20 months. Figure 3 shows
US prices for blackstrap molasses (which mirrors the price
variations of standard molasses) and raw sugar from January
2008 to August 2009. The data is from the USDA’s Economic
Research Service. From the figure we can see that there is
enough relative volatility in the spot price that it will be better
to employ moving averages for regulation, but not so much
volatility to make it infeasible to use this model in regulation.
A thorough analysis of price data to determine how to design
regulation is beyond the scope of this paper so our intention
here is to highlight the importance of this issue.

Our analysis results in a general-purpose add-on for
GREET and other LCA tools that more completely describes
lifecycle greenhouse gas emissions from sugarcane ethanol.
This pathway much more accurately describes sugarcane mills
in major cane producing countries who are well-placed to take
advantage of export opportunities. Most importantly, if the

model is used to set fuel lifecycle ratings for the LCFS, it is
likely to results in substantial monetary savings for California.
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