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Abstract

An extensive empirical literature has examined the behavior of crop yields over
time. Corn yields have been characterized by significant increases reflecting an array
of technological developments that have substantially boosted productivity. While
much of the focus has been on modeling deterministic and possibly stochastic trends
in yields over time, an equally important question involves the extent to which yield
changes may occur in response to price. This paper addresses two dimensions of this
issue. We first look at the extent to which realized yields (i.e., at harvest) tend to
be influenced by planting–time quotes of post–harvest futures contracts. Second, we
examine the potential for intra–seasonal responsiveness of yields to significant price
swings. The latter response is especially important in light of recent arguments that
weather offers identification through instruments that are completely exogenous to
market conditions—a view often expressed in terms of a “natural experiment.” We
challenge this argument by finding that the potential does exist for yields to be affected
by significant price changes that occur early in the growing season.
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Is Yield Endogenous to Price?

An Empirical Evaluation of Inter– and Intra–Seasonal

Corn Yield Response

1 Introduction

An extensive empirical literature has examined the behavior of crop yields over time. Corn

yields have been characterized by significant increases reflecting an array of technological

developments that have substantially boosted productivity. While much of the focus has

been on modeling deterministic and possibly stochastic trends in yields over time, an equally

important question involves the extent to which yield changes may occur in response to price

changes. This paper addresses two dimensions of this issue. We first look at the extent to

which realized yields (i.e. at harvest) tend to be influenced by planting-time quotes of post-

harvest futures contracts. Second, we examine the potential for intra-seasonal responsiveness

of yields to significant price changes. The examination of the role of price on yields is

motivated by the recent unprecedented increase in price volatility in the U.S. corn market

and, in particular, the role price plays in signaling market responses to the current demand

and supply situation and the bidding of acreage away from other crops, thereby increasing

supply. The implications of our analysis are directly pertinent to an ongoing exchange over

structural identification in empirical models of supply. Further, our results are relevant to

the ongoing debate over bioenergy policies and their implications for land use. In particular,

the extent to which the high corn prices that have been triggered by ethanol policies impact

land use decisions is critically dependent upon how yields respond to prices

Although agricultural supply models have been dominated by models of acreage response

to price movements, yields have been historically assumed to respond to exogenous weather

and technology variables (Shaw and Durost 1965, Schlenker and Roberts 2006, 2009, Desch-

enes and Greenstone 2007, Tannura, Irwin, and Good 2008)), there is a body of literature

that supports significant responsiveness of crop yields to economic factors such as input and
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output prices. Houck and Gallagher (1976) estimate corn yields as a function of one-year-

lagged fertilizer-to-corn price ratio, corn acreage, a weather variable and a technology trend

for the 1951-1971 period, and find corn price yield elasticities in the range of 0.25 - 0.75.1

Menz and Pardey (1983) re-estimate Houck and Gallagher’s (1976) equation for the 1972-

1980 period and find no significant price-yield response, noting that for the latter period, not

only annual increments in nitrogen application were smaller, but also the marginal product

of nitrogen was smaller, resulting in less price responsiveness. Choi and Helmberger (1993)

investigate the sensitivity of various crop yields to prices using time series from 1964-1988.

They use a recursive system in which they first estimate fertilizer use as a function of pro-

ducer and fertilizer prices and idle acreage, and then estimate a yield equation as a function

of fertilizer use, planted acreage, and weather. They estimate a corn price-yield elasticity

of 0.27, but note this should be considered an upper-bound elasticity, since it becomes null

when including a time trend to account for technology.

Huang and Khanna (2010) is perhaps the most recent study incorporating prices in the

yield equation, while taking price endogeneity into account. Using Choi and Helmberger’s

reduced-form specification of crop yields, they estimate a panel data, instrumental variable

(IV), fixed effects model of crop yields as a function of climate variables, lagged crop and

fertilizer prices, practice measures, and measures of intensive and extensive cropland expan-

sion. They use county yield data for the period 1977-2007. Lagged precipitation, growing

degree days, state-level crop stocks, and crop price and yield risks are used as instrumental

variables for prices and other endogenous variables in the yield equation.2 The authors find

a statistically significant corn price-yield elasticity of 0.15.

Most existing studies of agricultural yields use OLS as the main econometric method

for estimation and generally assume a linear or quadratic time trend. Nelson and Preckel

(1989) propose a conditional beta distribution as a parametric model of the probability

1The authors point out the weakness of their weather variables, as well as possible room for improvement
with regards to their price expectation (one-year lagged prices), which they argue implies the simplest form
of price-expectation formation. Similarly, the fertilizer price data is an aggregate index averaged over the
previous crop year.

2Intensive land expansion refers to expansion to crop acreage previously planted to other crops, while
extensive land expansion refers to expansion on previously idle or non-cropland acres.
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distribution of agricultural output. The authors condition yield distributions as a function

of a vector of inputs by expressing the distribution parameters as a function of inputs. They

measure and report elasticities of mean, variance, and skewness measures with respect to

fertilizer application of nitrogen, phosphate, and potassium. Ervin et al. (2010) provide

a comprehensive assessment on the effects of GM crops on U.S. farm income, agronomic

practices, production decisions, environmental resources, and personal well-being. The study

finds that genetic-engineering technology has produced substantial net environmental and

economic benefits to U.S. farmers. As corn prices rise, the derived demand for the new,

significantly higher yielding corn hybrids will also increase, thus providing an additional

linkage between corn price and yield.

Various theoretical models and empirical evidence support a significant responsiveness of

crop yields to prices. For instance, Hayami and Ruttan (1985) formalized and empirically

verified their induced innovation hypothesis that links the emergence of innovation with

economic conditions. According to the induced innovation hypothesis, food shortages or high

prices of agricultural commodities are likely to lead to the introduction of new high-yielding

varieties. Further, the work of Boserup (1965) and Binswanger and McIntire (1987) on the

evolution of agricultural systems support the induced-innovation hypothesis (Sunding and

Zilberman, 2001). Price induced technology adoption is supported in Griliches (1957) seminal

study, where he finds that all parameters of a technology diffusion logistic function (diffusion

at start of estimation period, long-run upper limit of diffusion, and pace of diffusion) are

largely affected by profitability and other economic variables, which are direct functions of

output prices.

Thus, besides price-induced innovation, profit maximizing behavior of farmers with re-

spect to input decisions at planting time and within the growing season are affected by

farmer’s expectations of corn prices at harvest time. As Just and Pope (2011) state “each

time a crop is planted, a producer can choose to grow a different crop, use a different seed

variety, apply fertilizer, use herbicides, apply insecticides, or employ plant-growth regula-

tors” (p. 643). Importantly, the set of input choices available to farmers has dramatically
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changed since the introduction and widespread adoption of genetically modified corn, which

reached an 80% acreage share in the U.S. Central Corn Belt in 2009. In addition to the seeds

planted being genetically modified with yield enhancing and risk reducing traits, the refuge

requirements have also transformed such that adopters of the most recent trait technologies

are afforded smaller refuges. This transformation means more of the genetically modified

seed is being planted than previously, leading to higher average yields being achieved. This

should be factored into the calculation of the price-yield elasticity.

In summary, although crop yields have been historically modeled as a function of non-

economic factors, such as weather and technology representations, a body of literature

supports a positive and significant, though inelastic, response of crop yields with respect

to prices. However, this existing literature uses very old time series data as well as econo-

metric techniques that do not take price endogeneity into consideration. Most studies also

rely on inappropriate distributional assumptions of crop yields or yield trends. Further, none

of the previous measures of price-yield elasticity has taken into account the current agricul-

tural economic environment with a wider set of genetically engineered crop seed varieties, the

transformation of refuge requirements for the more recent trait technologies, and associated

optimal agronomic and managerial practices.

2 The Identification Conundrum

A recent strand of empirical research has argued that the measurement of price impacts on

market relationships are nearly always endogenous, thereby damning a large body of existing

research. The argument insists that identification can only be achieved in cases of a “natural

experiment” or when nature dictates that an identifying instrument is truly exogenous.

While arguments in favor of the need for exogenous instruments are unassailable, the specific

instruments applied by advocates of this approach may not always offer advantages over the

alternatives that they so readily criticize.

4



Roberts and Schlenker (2011) argue that traditional approaches to identification (e.g.,

Nerlove (1958)) in models of supply suffer from endogeneity biases because prices are en-

dogenous to market-anticipated supply shocks. They propose weather shocks as a natural

candidate for identification, arguing that weather and the resultant shocks to yield are purely

exogenous to market conditions. While arguments regarding the exogeneity of weather shocks

certainly seem valid, the implicit assumption that the effects of weather shocks on yield (and

therefore supply) are exogenous may be open to debate. In particular, to the extent that

yields are endogenous to changes in market conditions during the growing season, weather

shocks may not offer an exogenous approach to identification. Put differently, while weather

shocks may be exogenous, if producers react to weather shocks in a manner that is endoge-

nous to market conditions during the growing season, their impacts on yields are not.

3 The Bioenergy-Land Use Debate

Rising oil prices, uncertain oil sources and possible environmental gains of renewable fuels

have led to policy-driven mandatory increases of ethanol production. A new mandate for up

to 7.5 billion gallons of ”renewable fuel” to be used in gasoline by 2012 was included in the

Energy Policy Act of 2005 (Farrel et al, 2006). Further, the 2007 Energy Independence and

Security Act of 2007, or CLEAN Energy Act, mandates an increase of ethanol production

from 4.7 billion gallons in 2007 to 15.2 billion gallons in 2012 to 36 billion gallons in 2022

(U.S.GPO, 2007).3

Searchinger et al. (2008) is perhaps the first study to point out that while the majority of

studies analyzing greenhouse gas (GHG) emissions of biofuels compared to those of fossil fuels

rely on the fact that growing biofuel feedstock removes carbon dioxide from the atmosphere,

and thus reduce GHG, (sequestration effect or feedstock carbon uptake credit), they do not

take into account the carbon costs, carbon storage, and sequestration sacrificed by diverting

land from their existing uses. Further, Fargione et al. (2008) observe that converting native

3The Act further specifies that 21 billion gallons must be derived from non-cornstarch products, such as
sugar and cellulose.
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habitats to crop land releases CO2 as a result of burning or microbial decomposition of

organic carbon stored in biomass and soil. They define a “biofuel carbon debt” as the first

50-year period of CO2 emissions caused by ethanol-triggered land conversion. The authors

argue that rising grain prices would cause a substantial portion of the acreage currently

enrolled in the U.S. Conservation Reserve Program be converted to cropland. Further, they

estimate that ethanol from corn produced on newly converted U.S. central grassland results

in a biofuel carbon debt repayment time of 93 years. Overall, they conclude that converting

rainforest, peat lands, savannas, and grassland to produce crop based biofuels in Brazil,

Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to

420 times more CO2 than the annual GHG reductions that these biofuels would provide

by displacing fossil fuels. It is argued that until the carbon debt is repaid, biofuels from

converted lands have greater GHG impacts than those of the fossil fuels they displaced.

Some studies go even further to state that the indirect land use effects completely out-

weigh the carbon savings from some biofuels, relative to petroleum products (Laborde, 2011;

Hertel, et al. 2010), which implies that the carbon debt would never be repaid. It is difficult

to compare the studies because they use different data sets, different modeling approaches,

and different assumptions in their models, but it seems unlikely that either extreme (not

considering ILU effects at all or assuming they completely outweigh the gains from biofuels)

is plausible.4

The California Low Carbon Fuel Standard (LCFS) and the Renewable Fuels Standard

(RFS2) are sets of criteria (state and Federal, respectively) that take account of the effect of

the production of various types of renewable fuels, such as corn-based ethanol, on changes

in land use and those changes’ effects on the environment, especially the carbon cycle. The

Global Trade Analysis Project (GTAP) model and similar computable general equilibrium

models are used to predict land use change in response to higher demand for ethanol. The

4Although beyond the scope of this study, the extent to which double cropping has mitigated potential
increases in acreage use is a factor that has not been addressed in any systematic manner, at least to our
knowledge.
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accuracy of the output of this and other computer models depends on empirical inputs con-

cerning agricultural input use and output responses to input and output prices. Particularly,

estimated changes in land use triggered by higher corn demand are highly sensitive to the

price-yield elasticity parameter used in GTAP runs.

As part of his participation on the Expert Working Group for the California Low Carbon

Fuel Standard development, Berry (2011) provides a critical review of the current price

yield elasticity literature. Berry’s general view of the literature is expressed as follows (page

8): ”However, there is a literature that attempts to estimate the price elasticity of yield.

Unfortunately, most of this literature is quite bad.” One of the papers critically reviewed

by Berry is a 2009 publication by Keeney and Hertel, which relies on Houck and Gallagher,

Menz and Pardey, and Choi and Helmberger to form the intellectual basis for the inclusion

of a corn price-yield elasticity of 0.25 assumed in the GTAP model.

Berry argues that GTAP relies on a misleading reading of the empirical literature regard-

ing price-yield elasticities and that the assumed price-yield elasticity parameter is erroneous.

He argues that studies estimating significant price-yield elasticity parameters are not only

based on outdated time series data (1951-1988), but also utilize inappropriate econometric

techniques (OLS), which ignore the simultaneous equation bias implicit in the estimation of

supply equations. Berry favors two recent studies of yields providing evidence of a price-yield

elasticity ranging from 0.0 (Roberts and Schlenker) to 0.15 (Huang and Khanna).

4 The Timing of Production Decisions

While researchers often profess an ability to adequately apply an econometric model to rep-

resent the actions of economic agents, they are also often guilty of ignoring basic institutional

details that can be gleaned from a simple discussion with farmers. To this end, an important

component of this research effort involved a “focus–group” type of meeting with growers
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and seed dealers.5 Producers and those with direct interest in the timing of production were

queried about the timing of their input decisions.

Figure 1 below presents a table derived from their responses. An important fact is

revealed from the table of results—farmers often undertake actions that will likely impact

their realized yield after planting. Notable is the fact that nitrogen application occurs in

March and April and side–dressing and the application of chemical inputs continues through

June. It is also relevant to note that longer-run production decisions such as the purchase of

seeds and fertilizer may occur in the fall months that preceded planting. Finally, it is relevant

to note that long–term, multi–year decisions such as the purchase of new farm equipment or

irrigation systems may occur over multiple years.

5 Empirical Results

The goal of our empirical analysis is to assess the extent to which yields may be responsive

to price changes. There are several important dimensions to this issue. First, as the relative

price of a commodity changes from season to season, one anticipates that producers will alter

their production by planting different crops or otherwise adjusting productive inputs. As

the focus group results indicated, farmers may choose to purchase new farm equipment or

otherwise make significant capital investments over a multi–year period. We focus on corn

production decisions in a relatively homogeneous region of the Corn Belt that is comprised

of Iowa, Indiana, and Illinois—collectively known as the “I-States.” Technological change

has had an overwhelming influence on crop yields in recent years. Any model of yields

must formally address yield trends though the modeling of such trends can be a challenging

exercise in and of itself. We focus on the modern period of production that has occurred

since the introduction of biotechnolgy for corn—1996-2010. Although our models formally

include parametric and non-parametric representations of yield trend, changes in production

practices over time lead us to focus on this recent period rather than to consider yield and

5This focus group was held on January 18, 2012 in Johnston, Iowa and included five Iowa corn growers,
representatives from the Iowa Corn Growers’ Association, and representatives of Monsanto.
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production relationships prior to 1996. It is important to also note that farm policy realized

significant structural changes with the 1996 FAIR Act. The flexibility in production afforded

to producers under this legislation would be expected to affect production decisions. This

reinforces our focus on yield behavior since 1996.

Crop yields for the three “I-States” were collected from the USDA’s National Agricultural

Statistics Service sources. We use the NASS reported yields at the crop–reporting district

level.6 Our focus on crop reporting districts is made to conform most closely to the definition

of climate zones, as we discuss below. First and foremost, we are interested in evaluating

the inter– and intra–seasonal impacts of price changes on yields. The existing research has

produced yield/price elasticity estimates that range from 0.0 to 0.25. To our knowledge, no

existing research has explicitly addressed the potential for yields to change in response to

price within the growing season.

Of course, realized yields will be significantly affected by environmental conditions at

planting and over the growing season. Considerable recent attention has been directed toward

the relationships between corn yields and such environmental factors as precipitation, soil

moisture, and temperature. Schlenker and Roberts (2010) find important nonlinear and

threshold impacts of temperature on yields. A variety of different metrics representing

weather conditions are available. On the basis of anecdotal evidence as well as published

research, we choose two specific measures of growing conditions—average temperature and

Palmer’s Z–index. Our data were collected from the National Climate Data Center. Palmer’s

Z drought index represents a normalized measure of soil moisture relative to a normal state.

Thus, high positive values indicate a surplus of moisture while negative values represent a

moisture deficit. These data are available on a monthly average for climate zones, which are

defined as a grouping of counties that are expected to have relatively homogeneous weather

conditions. The specific definition of a climate zone is not the same as that of crop reporting

districts. Thus, to construct CRD measures of weather conditions, we used the climate

6NASS typically reports yields on a harvested–acre basis. We repeated our analysis for planted acre yields
and obtained qualitatively identical results. The issues of abandonment and silage production complicate
the measurement of yield. However, this distinction did not seem to have important impacts in our analysis.
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zone metrics for each county and then aggregated county data to obtain CRD–level weather

variables. The CRD–level weather variables were given as harvested-acre weighted averages

across all counties in the district.

The average of the closing price for all trading days in February for post–harvest contracts

(November for soybeans and December for corn) were used to represent expected prices. We

also constructed a measure of intra–seasonal price movements by considering the ratio of

the April and February prices for the post–harvest contracts. In logarithmic form, this

represents the percentage change between April and February for the futures contract. This

is intended to measure intra–season price movements. We also included a non–parametric

time trend (using the generalized additive models discussed below) and a measure of the

adoption of biotech varieties having insect–resistant traits. The biotech adoption statistics

were only available at the state level and thus were constrained to be the same for a given

year for all districts in a state.7 Adoption of biotech corn hybrids is illustrated below in

Figure 2. Fertilizer prices were collected from the Economic Report of the President. Price

variables were deflated by the consumer price index. Table 1 contains variable definitions

and summary statistics.

All of our models contain CRD–specific fixed effects. We first consider a standard OLS

specification with fixed effects. The issue of an appropriate price deflator is always pertinent

when considering agricultural prices observed over time. Most commonly used deflators—

such as the CPI—tend to over–adjust for the effects of deflation. This is because long–run

price levels for agricultural commodities have not risen at the same pace as the overall cost

of living. One way to address this problem is to consider relative prices. To this end, we test

whether the real price effects of corn and soybeans are of equal magnitude but of opposite

sign. We confirm that indeed this hypothesis is not rejected (with an associated F-statistic

of 0.21) and thus for the remainder of our models we consider the logarithm of the ratio of

7Prior to 2000, biotech adoption statistics are only available at a national level. The ratio of each state’s
adoption to overall adoption was used to scale the national statistics for the years 1996-1999. Note that
biotech adoption was quite low in these early years and thus the results were not particularly sensitive to
this scaling.
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corn to soybean prices as the relevant price variable. Using pooled data for the three states,

we estimated yield–response equations.

A third version of our model includes a nonparametric representation of the trend effects

common to all CRD units in the panel. We use the backfitting algorithm of Hastie and

Tibshirani (1986) with cubic spline function used to represent the nonlinear trend effects.

We use spline smoothing to represent the nonlinear trend effects and use the generalized

cross validation criterion of Wahaba (1990) to determine the bandwidth parameter used

in smoothing. We then estimate this third version of the model independently for each of

the three states considered. Parameter estimates for the aggregate models are presented in

Table 2 while estimates for the state–specific models are presented in Table 3. An illustrative

example of spline trend effects is presented in Figure 3 for each of the Iowa crop reporting

districts.

The estimates are largely consistent with prior expectations. We find that a higher

Z index in May corresponds to a lower yield while a higher Z index during the summer

period of active plant growth (July) corresponds to a significantly higher yield. The results

likely reflect the difficulties associated with excessive moisture during planting and drought

stress during July.8 Excessive heat during the July growing season is negatively related to

yield. Again, this is in accordance with the impacts of general agronomic conditions that

are associated with corn production. The effects are quite similar across all of the aggregate

model specifications. Note that the panel nature of our data suggests the potential need

for clustering–adjusted standard errors. These are also presented for Model 2. The results

demonstrate that such clustering does not have an important impact on the inferences.

Perhaps of greatest interest in the effect of intra–season price movements on yields. The

results suggest that a small but statistically–significant response of yields occurs when prices

strengthen or fall early in the growing season. The result is statistically significant in every

case. For our sample of data taken over the 1996-2010 period, prices tended to increase by

8Note that the soil moisture indexes are somewhat backward looking in that they consider soil moisture
during a month, which will be influenced by precipitation during prior months. Alternative measures of soil
moisture deficiencies that consider variable lags in moisture content are also available but are expected to
be highly correlated with Palmer’s Z index.
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about 1% on average between February and April. At the average yield value for 2010, our

results suggest that if prices rose by 2% instead of 1% (i.e., a 100% increase in the rate of

price increase between February and April), yields would be approximately 0.6-1.0% higher

than if the usual price change of 1% were to be observed.

Table 4 presents price elasticity estimates for all six models considered. In general,

the aggregate models suggest a long-run price–yield elasticity of about 0.19-0.27, which is

consistent with the 0.25 estimate currently used in the GTAP modeling framework. The

results are quite similar to the survey of existing elasticity estimates presented elsewhere

in the literature. Again, at the average price change and yield levels, intra–seasonal price

elasticities of about 0.006-.0108 are revealed, suggesting a modest but statistically significant

intra–seasonal response of yields to price changes. The long–run price–yield elasticities range

from 0.15 to 0.43 at the state–level. In that these states make up a significant proportion

of total corn production in the US, these results may suggest adopting a relatively more

elastic yield response to price when modeling land use and other economic factors in general

equilibrium models.

Evidence gleaned from a review of the literature as well as the focus group discussions with

Iowa farmers suggested that fertilizer application during the early part of the growing season

may be an important mechanism by which realized yields may be affected by intra-seasonal

price changes. To examine the extent to which fertilizer demand appeared to be sensitive

to price, we collected fertilizer usage data and relevant variables for the 1964-2009 period.

Fertilizer usage is represented in terms of the total uptake by corn divided by planted corn

acreage. The relative price of nitrogen is given by the ratio of the ammonia price to the corn

price. Parameter estimates and relevant statistics are presented in Table 5. The estimates

confirm a positive and statistically significant relationship between fertilizer application and

intra–seasonal price changes. Statistically significant impacts on nitrogen use in response to

price changes between February and April are confirmed. Again, this result suggests that

producers’ self-protection and crop management practices may differ according to changes in
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market conditions early in the growing season. This confirms one possible avenue by which

the impacts of weather shocks on yields may be endogenous to price.9

6 Summary and Conclusions

This paper reports on an investigation of the relationship between yields and relevant eco-

nomic factors, including prices. We find that year–to–year price changes tend to correspond

to acreage adjustments that are similar to those commonly reported in the literature. In

particular, a long–run elasticity of about 0.25 exists for the yield response to prices. We

also find that yields respond in a very small but statistically significant way to changes in

prices during the growing season, represented here as the February to April period. At the

mean values, if the percentage rate of change in prices rose from its average value of 1%

to 2%, yields would increase by about 0.1%. These results are consistent with focus group

discussions that suggested the potential for intra–seasonal adjustments that would increase

realized yields. These results may have important implications for the ongoing debate over

structural identification of price impacts. In particular, if the potential for adjusting input

usage and production practices exists during the growing season and after planting, the ef-

fects of market–level structural shocks such as weather may actually be endogenous to prices.

Put differently, if yields adjust to intra–seasonal price changes, agents may react differently

to weather shocks when prices are rising than is the case when prices are in a decline.

Future research may benefit from exploring short–run and long–run mechanisms by which

producers react to changes in market fundamentals. The link between weather, input usage,

yield, and price merits additional study. In particular, future research may benefit from

examining interactions of weather, price, and input use.

9Concerns regarding the potential endogeneity of fertilizer prices and biotech adoption are valid. We
considered lagged versions of the price and biotech adoption and obtained qualitatively identical results.
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Table 4. Yield–Price Elasticity Estimates

Long-Run Short-Run

Specification Inter-Seasonal Intra-Seasonal

Model 1: OLS With Real Prices 0.2499 0.0085

Model 2: OLS With Price Ratio 0.2732 0.0087

Model 3: GAM With Price Ratio 0.1906 0.0074

Model 4: Illinois (GAM With Price Ratio) 0.4253 0.0108

Model 5: Indiana (GAM With Price Ratio) 0.1512 0.0098

Model 6: Iowa (GAM With Price Ratio) 0.2830 0.0061

aEvaluated at 2010 Average Yield of 154 bu/acre and 1996-2010 average intra-seasonal
price movement of 0.01.
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Table 5. OLS Regression Estimates of Aggregate US Corn Fertilizer Use (1964-2009)a

Variable Estimate Std. Error t-Ratio

Intercept 0.0178 0.0042 4.22∗

ln(Pc/Ps) 0.0046 0.0053 0.86

ln(PAPR/PFEB) 0.0155 0.0088 1.76∗

Fertilizer Price −0.0015 0.0019 −0.78

Nitrogent−1 0.7946 0.0546 14.56∗

Biotech −0.0013 0.0040 −0.31

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2 0.8725

aAn asterisk indicates statistical significance at the α = .10 or smaller level.
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Figure 1: Iowa Corn Growers Focus Group Results of Production Decisions
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Figure 2: Aggregate Adoption of Insect-Resistant and Stacked-Trait Biotech Corn Hybrids
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