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October 15, 2014  

 

Mary D. Nichols  

Chairman 

California Air Resources Board  

Headquarters Building  

1001 “I” Street  

Sacramento, CA 95812  

 

Dear Chairman Nichols, 

A public workshop conducted by the California Air Resources Board (CARB) staff on September 29, 

2014, raised a number of serious concerns about the openness, transparency, and scientific 

integrity of staff’s new indirect land use change (ILUC) analysis for the California Low Carbon Fuel 

Standard (LCFS). 

As you know, CARB staff is preparing updated ILUC values for biofuels as part of a regulatory 

package that will be proposed to the Board for LCFS “re-adoption” in early 2015. We remain deeply 

concerned that CARB staff’s ILUC analysis is unfairly biased against certain biofuels and disregards 

advances in the science that have been widely recognized and accepted by other regulatory and 

academic stakeholders in the field. 

CARB staff held a workshop in early March 2014 to discuss initial ILUC modeling results and to 

solicit stakeholder feedback. Nearly 40 substantive comments were submitted to CARB following 

the workshop, with most submissions offering new data and technical information that would 

improve CARB staff’s analysis.1 Many of the comments submitted following the March workshop 

included attachments of new peer-reviewed scientific papers published in academic journals. CARB 

also received a letter from 14 scientists and researchers (including five members of CARB’s Expert 

Work Group on ILUC) expressing concern about the direction of the agency’s ILUC analysis. 

When CARB staff presented its latest ILUC analysis during the September workshop, it was 

abundantly clear that the information submitted by stakeholders in the spring had been wholly 

disregarded. We are unable to point to a single example of changes made to CARB’s ILUC analysis 

based on feedback received from any stakeholder following the March workshop. While CARB staff 

may have reasons for rejecting the new data and stakeholder feedback, those reasons were not 

discussed during the September workshop—even when stakeholders explicitly asked for staff’s 

rationale for ignoring new information. 

Not only did CARB staff fail to respond to substantive feedback, scientific papers, and updated data 

submitted by stakeholders following the March workshop, but it also was elusive when asked about 

its plans to further review new data and analysis. Specific examples from the workshop include: 

                                                           
1 Comments are available at http://www.arb.ca.gov/fuels/lcfs/regamend14/2014lcfsletters.htm 

http://www.arb.ca.gov/fuels/lcfs/regamend14/2014lcfsletters.htm
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 CARB staff commented that it could not respond to stakeholder feedback on the emissions 

factor (“AEZ-EF”) model because there were delays in establishing a contract with an 

outside consultant to review public comments and make changes to the model. 

 

 When questioned about its decision to retain low values for the yield-price elasticity despite 

new academic literature supporting higher values, CARB staff 1) mischaracterized a 

recommendation from the Expert Work Group2, and 2) stated that the issue was still a 

“work in progress” and that a contract was established with U.C. Davis to further review the 

issue. CARB staff was somewhat elusive when asked for the names of the contractors at U.C. 

Davis. CARB staff then suggested that some ethanol stakeholders had raised concerns about 

whether a potential contractor at U.C. Davis was truly impartial and unbiased, but stated 

that CARB was going to use the contractor anyway. 

 

 CARB staff could not explain why it diverged from Purdue University’s recommended values 

for the elasticity governing land transformation, stating only that the alternate values used 

were “mostly based on assumptions” (without explaining what the assumptions were). 

Notably, CARB staff’s alternate values for this elasticity raise ILUC emissions by 14% for 

corn ethanol. 

Perhaps most concerning was CARB staff’s contention during the September workshop that 

examining real-world empirical data for actual evidence of ILUC “…is not productive.” CARB’s ILUC 

analysis is meant to simulate the effects of biofuels growth from 2001 to 2015. Thus, empirical land 

use data is available for most of the simulation period. Any objective scientist would find it prudent 

to examine the real-world data to determine whether predictive model results agreed with actual 

observed outcomes.  

Certainly, it is difficult to disentangle the real-world impact of biofuels expansion from the effects of 

other factors on actual global land use—but that does not mean CARB staff shouldn’t at least attempt 

to ground-truth its predictive results against real-world data. For example, CARB’s ILUC analysis 

predicts that biofuels growth from 2001 to 2015 would cause roughly 100,000 hectares of forest to 

be converted to cropland in the U.S. However, empirical data from the U.S. Department of 

Agriculture and U.N. Food & Agriculture Organization show no loss of forestland in the U.S. during 

that period; instead, U.S. forestland has grown by approximately 7 million hectares. 

The principles of good policymaking and sound scientific analysis require that model predictions be 

validated when possible. Indeed, other predictive models utilized by CARB for other regulatory 

purposes have been validated and results have been verified. Yet, CARB staff apparently believes it 

is “not productive” to validate or verify its ILUC analysis. We believe this is unacceptable for a 

process that is intended to be open and transparent. RFA believes that CARB staff should, at a 

minimum, follow the recommendation of U.C. Davis researcher Sonia Yeh, who suggested at the 

September workshop that CARB “back-cast” the ILUC model to determine whether the model’s 

predictions line up with observed real-world outcomes. 

                                                           
2 CARB staff stated that the Expert Work Group “recommended using values between 0.05 and 0.35,” and 
CARB staff used an average of 0.19 for its latest analysis. In reality, the Expert Work Group recommended that 
CARB should “[k]eep the central value of the yield elasticity with respect to price at 0.25…” This has 
significant implications for final ILUC emissions. 
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Because CARB staff failed to respond to the feedback we provided following the March workshop, 

we are re-attaching those comments.  We are asking again that CARB staff share its reasoning for 

accepting or rejecting the information we have provided. Further, we believe the March 2014 letter 

from 14 bioenergy researchers to Chairwoman Nichols (also re-attached, as Appendix A) 

expressing concern about CARB’s ILUC analysis deserves a well-reasoned response. 

In closing, we urge you to ensure that the CARB staff responsible for the ILUC analysis are held 

accountable for their decisions and abide by the agency’s long-standing norms for science-based 

rulemaking. Thank you for your consideration. 

 

Sincerely, 

 

Bob Dinneen 

President & CEO 

 

cc: 

Daniel Sperling, Board Member 

Phil Serna, Board Member 

John Eisenhut, Board Member 

Barbara Riordan, Board Member 

John R. Balmes, M.D., Board Member 

Hector De La Torre, Board Member 

Sandra Berg, Board Member 

Ron Roberts, Board Member 

Alexander Sherriffs, M.D., Board Member 

John Gioia, Board Member 

Judy Mitchell, Board Member 

Virgil Welch, Special Assistant to the Chairman 

Richard Corey, Executive Officer 

Mike Waugh, Chief, Transportation Fuels Branch 

John Courtis, Manager, Alternative Fuels Section 

Anil Prabhu, Air Resources Engineer 

Katrina Sideco 



 

 

 

April 9, 2014 

 

Katrina Sideco 

Air Resources Engineer, Fuels Section 

California Air Resources Board 

1001 “I” Street  

Sacramento, CA 95812 

 

Dear Ms. Sideco, 

 

The Renewable Fuels Association (RFA) appreciates the opportunity to provide comment on the 

California Air Resources Board’s (CARB) draft indirect land use change (ILUC) analysis, which was the 

subject of a stakeholder workshop held March 11, 2014. 

 

We are encouraged by the fact that CARB staff is finally revising its ILUC analysis, as directed by a 

November 2010 Board resolution.1 However, we are greatly concerned by many aspects of the draft 

analysis and we believe it needs significant revision before it can be presented to the Board for approval. 

While the attached report includes detailed comments on specific technical aspects of CARB’s draft 

analysis, we also wanted to voice several general concerns with the draft ILUC analysis. 

 

Most importantly, the results of CARB’s draft analysis are in conflict with the results of recent 

independent ILUC studies. As described in a recent letter to CARB Chair Mary Nichols from 14 scientists 

and researchers (including CARB-appointed Expert Work Group members), the corn ethanol ILUC results 

from CARB’s draft analysis are significantly higher than estimates from recent peer-reviewed scientific 

analyses (see Appendix A to the attached analysis). We believe CARB should explain and justify the 

divergence of its draft results with estimates from other recent studies. 

 

In addition, during the March 11 workshop, a stakeholder asked why the reduction in CARB’s corn ILUC 

estimate was of a far lesser magnitude than the reductions in sugarcane and soy ILUC values. Indeed, 

CARB’s draft ILUC value for soy biodiesel is 59% lower than the current value, while the draft value for 

sugarcane ethanol was similarly lowered by 47%. Meanwhile, the new draft value for corn ethanol is 

only 20% lower than the current value. At a fundamental level, one would expect the magnitude of the 

reductions resulting from GTAP improvements to be to relatively consistent across all crops and 

biofuels. Unfortunately, CARB staff did not adequately answer the stakeholder’s question during the 

workshop. We believe CARB should explain the large difference in the magnitude of reductions for corn 

ethanol ILUC compared to soy biodiesel and sugarcane ethanol. 

 

Notably, several of the assumptions and methodological approaches chosen for CARB’s draft analysis 

run counter to the recommendations of the Expert Work Group (EWG). In particular, the values selected 

                                                           
1
 California Air Resources Board Resolution 10-49. November 2010. 



by CARB for key GTAP elasticities are in conflict with values recommended by EWG and well-known 

agricultural economists. More generally, CARB’s draft analysis lacks sufficient justification for certain 

judgment calls made by staff with regard to important model parameters. We believe CARB should 

clearly explain and justify its decision to disregard certain EWG recommendations. 

 

Finally, while we appreciate that CARB extended the deadline for submittal of comments in response to 

the March 11 workshop, stakeholders have not been given a sufficient opportunity to review and 

validate the models and data used for CARB’s draft analysis. For example, the version of GTAP used by 

CARB was finally made publically available late on April 1 and some related files were posted on April 8 

(three days before the comment deadline). Given the complex nature of the GTAP model and the time 

involved in performing model runs, it was simply not possible to replicate and evaluate CARB’s 1,440 

model runs in the time allotted. 

 

We appreciate CARB’s consideration of these general concerns and the attached technical comments. 

We welcome further dialog on this subject and look forward to responses to any of the comments 

offered in the attached document. We will continue to analyze the version of GTAP used for the draft 

analysis, review the information provided by CARB, and respond with additional comments as 

appropriate.  

 

 

Sincerely, 

 

 

 

Geoff Cooper 

Senior Vice President 

  

  

 

 

cc: 

Richard Correy 

Mike Waugh 

John Courtis 

Anil Prabhu 

Jim Duffy 

http://www.vletter.com/downloads.htm
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EVALUATION OF 
CALIFORNIA AIR RESOURCES BOARD (CARB) 

INDIRECT LAND USE CHANGE (ILUC) DRAFT ANALYSIS 
 
The California Air Resources Board (CARB) staff held a stakeholder workshop March 11, 2014, to 
discuss the draft results of new analysis on indirect land use change (ILUC). It is expected that 
the staff analysis will inform potential amendments to the carbon intensity values used for the 
LCFS program.  
 
This report critically evaluates the information presented by CARB staff during the workshop, as 
well as material released subsequently. We also offer recommendations for improvement of 
CARB’s draft analysis. This report is organized in the following manner: 
 

 Discussion and recommendations on yield-price elasticity 
 Discussion and recommendations on elasticity of yield with respect to area expansion 
 Initial evaluation of emissions factors (AEZ-EF model) 
 Recommendation regarding purported “food consumption” effects 

 
The report contains the following Appendices: 

 Appendix A: Letter from scientists and researchers to CARB Chair Mary Nichols regarding 
advancements in ILUC analysis 

 Appendix B: Note from Taheripour & Tyner to CARB staff following March 11 workshop 
 Appendix C: Comparison of YDEL values used by CARB to long-run yield-price elasticities 

from the literature 
 Appendix D: Comparison of ETA values used by CARB to values from Tyner et al. (2010) 
 Appendix E: L. Guanter et al. 2014. “Global and time-resolved monitoring of crop 

photosynthesis with chlorophyll fluorescence.” PNAS 2014, published ahead of print 
March 25, 2014. 
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1. CARB should adopt a range of 0.14-0.53 for the yield-price elasticity based on the most 
recent studies of long-run yield responses. At a minimum, CARB’s range for this elasticity 
should reflect the Expert Work Group’s recommendation to use a central value of 0.25. 

 
The yield-price elasticity (represented by the code “YDEL” in the GTAP model) is an important 
parameter that significantly influences the final results of CARB’s ILUC analysis. In essence, the 
parameter simulates the responsiveness of crop yields to changes in the net crop returns. It is a 
basic concept that rational economic actors will endeavor to maximize returns by increasing 
productivity in response to higher prices. In the case of crop production, the most economical 
and efficient method of increasing productivity to capture higher market prices is to invest in 
technologies that increase crop yields on existing cropland. 
 
CARB utilized a range of 0.05-0.30 for the YDEL parameter in its draft analysis (implying a central 
value of 0.175). The range used in CARB’s draft analysis disregards the recommendations of the 
CARB Expert Work Group (EWG), is inconsistent with recently estimated long-run elasticity values 
from the literature, confuses short-term versus long-term responses, and ignores the effect of 
double-cropping. Additionally, CARB appears to misrepresent the results from some price-yield 
elasticity studies. 
 
As described in more detail below, a range of 0.14-0.53 is scientifically justified, properly 
recognizes that the price-yield effect occurs primarily over the medium or long term, and 
appropriately incorporates the effect of double-cropping. 
 

a. Values at the low end of the range used in CARB’s draft analysis represent short-
run yield responses to price changes. Values representing a short-run response 
are inappropriate for use in medium or long-term modeling scenarios and should 
therefore be removed from CARB’s analysis. 

 
The literature review presented by CARB showed price-yield elasticity estimates ranging from 
0.00 to 0.76 (average value of 0.29).1 However, the older studies (which generally show higher 
elasticity values) were excluded by CARB when deriving the YDEL range used in the draft analysis. 
CARB staff stated that “recent estimates…vary from zero to 0.30,” but noted that 0.05 was 
selected as the lower bound because using a value of 0.00 in GTAP results in error generation. 
Importantly, in deriving the range used in the draft analysis, CARB made no distinction between 
elasticity estimates that represent short-run yield responses (e.g., intra-seasonal or one-year) 
and estimates that represent medium- or long-run yield responses.  
 
During the March 11 workshop, Purdue University Prof. Wally Tyner explained why it is 
inappropriate to include short-run estimates in the range used for CARB’s analysis, stating: 

 
The yield-price elasticity is a medium-term elasticity…and 
we normally think of that as about 8 years. I personally 

                                                           
1 CARB Presentation, Slide 27. March 11, 2014. Available at: 
http://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/iluc_presentation_031014.pdf 

http://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/iluc_presentation_031014.pdf
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think, and our group thinks, that any of those papers in the 
literature that represent one year are totally irrelevant to 
this. They may be fine for a one-year estimate, but a one-
year estimate is totally irrelevant. Most of the short-term 
estimates are very low and most of the medium-term 
[estimates] were much higher—in the range of the 0.25 that 
we currently use.2 

 
Prof. Tyner underscored this point again in a note to CARB (Appendix B) following the March 11 
workshop: “The yield to price elasticity does not measure changes over one crop year. In fact, 
any estimate done over one year would be totally inappropriate for GTAP and should be excluded 
from consideration in determining appropriate values for the parameter.” 
 
Iowa State University Prof. Bruce Babcock and other members of the Expert Work Group’s 
Elasticity Subgroup agreed that the use of a short-run elasticity is inappropriate for the purposes 
of CARB’s GTAP scenario runs: 
 

…to the extent that existing studies provide reliable one-
year estimates, they underestimate the long-run response 
of yields to price. There are sound theoretical reasons for 
believing that there are lags in the response to higher crop 
prices. Farmers have an incentive to adopt higher-yielding 
seed technologies and other management techniques with 
higher prices. Switching from one seed variety or 
technology such as seed-planting populations, may require 
more than a single season to accomplish. And there are 
likely five to 15 year lags involved in developing new seed 
varieties and new management techniques that may be 
only profitable under high prices.3 

   
The Berry & Schlenker paper that serves as the basis for the lower end of CARB’s price-yield 
elasticity range is based on the short-run response of yield to price changes. Moreover, the Berry 
& Schlenker paper draws heavily from work by Roberts & Schlenker, which was critiqued by the 
EWG’s Elasticities Subgroup. The subgroup raised several concerns with the Roberts & Schlenker 
work, none of which (to our knowledge) have been adequately addressed by CARB staff. In short, 
the Elasticities Subgroup found that, “[t]he Roberts and Schlenker (2010) results provide no 
evidence that there is not a price-yield relationship, they just find evidence that any short-run 
price yield relationship is overwhelmed by variations in yields caused by weather.”4  
 

                                                           
2 Audio of Prof. Tyner comments are available at: http://domesticfuel.com/2014/03/12/carb-stresses-iluc-update-is-
preliminary/. (emphasis added) 
3 ARB Expert Work Group. 2011. “Final Recommendations from the Elasticity Values Subgroup.” Available at: 
http://www.arb.ca.gov/fuels/lcfs/workgroups/ewg/010511-final-rpt-elasticity.pdf  
4 Id. (emphasis added) 

http://domesticfuel.com/2014/03/12/carb-stresses-iluc-update-is-preliminary/
http://domesticfuel.com/2014/03/12/carb-stresses-iluc-update-is-preliminary/
http://www.arb.ca.gov/fuels/lcfs/workgroups/ewg/010511-final-rpt-elasticity.pdf
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It is also important to point out that the Berry & Schlenker paper cited by CARB overtly admits 
that “…we don’t have an estimate for a price-yield elasticity…”5 Indeed, rather than using a 
method that directly estimates the price-yield elasticity, Berry & Schlenker “…back out an 
implied yield-price elasticity for non-marginal land…” using an opaque and convoluted 
methodology that involves estimating the productivity of marginal lands relative to non-marginal 
lands relative to changes in price.6 Importantly, Berry & Schlenker say the short-run price-yield 
elasticity is “…no higher than roughly 0.1.” While 0.1 is a low estimate compared to others in the 
literature, it is not zero, as characterized by CARB. In the end, however, whether the Berry & 
Schlenker estimate was 0.0 or 0.1 is not relevant because they examined a short-run response. 
 
CARB also referenced work by Smith & Sumner that purportedly shows a negative elasticity value. 
After an exhaustive search of the literature, we were unable to locate any publications by Smith 
& Sumner that estimated price-yield elasticity. RFA requested that CARB staff make the cited 
Smith & Sumner paper available for public review. In response, RFA received a 2011 slide 
presentation by Smith & Sumner that presents some price-yield elasticity values estimated by 
the authors; the presentation makes clear that the effects modeled are “short-term,” and 
therefore would be inappropriate for use by CARB in a long-term modeling scenario. In any event, 
it is not clear from the slide presentation how the elasticity values were estimated. 
 
Because CARB’s GTAP modeling scenarios are meant to simulate ethanol expansion over an 11-
year period, the use of short-term price-yield elasticities is clearly indefensible and inappropriate. 
CARB should re-run its GTAP analysis using a range of price-yield elasticity values that omits 
values representing short-term responses (i.e., short-run values from Berry & Schlenker and 
Smith & Sumner should not be used in the range). 

 
b. CARB appears to have misrepresented the results of some price-yield elasticity 

studies. In particular, the upper bounds of estimated elasticity values from recent 
studies were omitted and the results of Kaufmann & Snell were incorrectly 
reported. 

 
The literature review presented by CARB often included the extreme lower price-yield elasticity 
estimates from recent studies, but curiously omitted the extreme higher-end estimates. The 
Goodwin et al. paper cited by CARB found that “[t]he long-run price-yield elasticities range from 
0.15 to 0.43 at the state-level.”7 Yet, CARB represented Goodwin et al. as finding a long-run range 
of 0.19-0.27. Similarly, the Rosas Perez research cited by CARB estimated the long-run price-yield 
elasticity at 0.14-0.53.8 However, CARB’s literature review presented only the median value (0.29) 
from this work. CARB’s reasoning for excluding the upper bounds from these studies in its 

                                                           
5 S. Berry & W. Schlenker. 2011. “Technical Report for the ICCT: Empirical Evidence on Crop Yield Elasticities.” Prepared 
for ICCT. 
6 Id. 
7 B.K. Goodwin, M. Marra, N. Piggott & S. Mueller. 2012. “Is Yield Endogenous to Price? An Empirical Evaluation of Inter- 
and Intra-Seasonal Corn Yield Response.” Available at: 
http://ageconsearch.umn.edu/bitstream/124884/2/Goodwin_Marra_Piggott_Mueller.pdf 
8 Rosas Perez, J.F. 2012. “Essays on the environmental effects of agricultural production.” Ph.D. Dissertation, Iowa State 
University, 186 pages; Pub. No. 3539418.  

http://ageconsearch.umn.edu/bitstream/124884/2/Goodwin_Marra_Piggott_Mueller.pdf
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literature review is unclear, particularly when extreme lower bounds were included for several 
studies. 
 
Further, it appears CARB misrepresented the results of the Kaufmann & Snell paper, suggesting 
that the authors found a price-yield elasticity of “~0.” In reality, Kaufmann & Snell estimated the 
elasticity for corn at 0.0002-0.65, which they wrote is “…similar to the range of 0.24-0.76 
calculated by Houck and Gallagher.”9 As stated above, CARB also appears to have misrepresented 
the short-run estimate from Berry & Schlenker. CARB portrays the estimate as “0”, whereas the 
authors state that the elasticity is “…no higher than roughly 0.1.” While not inconsequential to 
the results of GTAP scenario runs, this distinction is largely irrelevant for the purposes of our 
comments because we recommend omitting short-run responses when considering the 
appropriate range for the price-yield elasticity. 
 

c. CARB’s Expert Work Group recommended using a central value of 0.25, which is 
43% higher than the central value from CARB’s draft analysis (0.175). 

 
By using a price-yield elasticity range of 0.05-0.30 (median value of 0.175) for its draft analysis, 
CARB staff is clearly going against the recommendations of the EWG. In its final report, the 
Elasticities Subgroup recommended that CARB should “[k]eep the central value of the yield 
elasticity with respect to price at 0.25 if only one value can be used for all crops and all 
countries.”10 The subgroup’s interim report recommended using a range of 0.1-0.4 for sensitivity 
analysis around this parameter, while the final report suggested using a central value of 0.25 and 
an upper bound of 0.35. At the March 11 workshop, CARB staff did not provide any explanation 
for why it is ignoring the recommendations of the EWG with regard to this elasticity. This is 
particularly puzzling given that CARB adopted a number of other subgroup recommendations.  
 
It is also worth noting that the EWG recommendations for this elasticity were adopted by the 
International Food Policy Research Institute (IFPRI) for use in the MIRAGE model, which has been 
used to inform European Union biofuels policy decision-making.11   
 

d. The GTAP model’s inability to explicitly consider double-cropping further justifies 
the use of a higher range of price-yield elasticity values. 

 
As explained by CARB’s EWG, “…higher prices give farmers a greater incentive to double crop.”12 
Indeed, there is empirical evidence that double-cropping has significantly increased during the 
recent period of higher commodity prices. For example, Allendale, Inc., a commodity advisory 
firm, estimates that 10% of soybean acreage was double-cropped in 2013—a record amount and 
up substantially from just 3% in 2010 (see also Babcock & Carriquiry13). Unfortunately, GTAP 
                                                           
9 See Keeney, R. and T. W. Hertel. 2008. “Yield Response to Prices: Implications for Policy Modeling.” GTAP Working 
Paper 08 - 13. 
10 ARB Expert Work Group. 2011. “Final Recommendations from the Elasticity Values Subgroup.” Available at: 
http://www.arb.ca.gov/fuels/lcfs/workgroups/ewg/010511-final-rpt-elasticity.pdf 
11 Laborde, D. & Valin, H. 2011. “Assessing the EU biofuel land use change effects: estimates with the MIRAGE-BioF 
model and uncertainty.” Paper presented at the 14th GTAP Conference, Venice, June, 16-18, 2011. 
12 Id. 
13 Babcock, B. A. and M. Carriquiry, 2010. “An Exploration of Certain Aspects of CARB’s 

http://www.arb.ca.gov/fuels/lcfs/workgroups/ewg/010511-final-rpt-elasticity.pdf
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simulations do not explicitly allow increased demand for agricultural commodities to be satisfied 
through increased double-cropping. Recognizing this shortfall, the Elasticities Subgroup 
recommended that the price-yield elasticity parameter could be used to partially account for 
double-cropping responses. In its final report, the subgroup explained that “the reality of double 
cropping” by itself justified the use of a positive (i.e., non-zero) value for the price-yield 
elasticity.14 The subgroup recommended that “…for countries that have the opportunity to 
double crop, such as the U.S., Brazil, Argentina, and some Asian rice producing countries such as 
Thailand…an additional increment should be given to the price-yield elasticity.”15 To date, CARB 
staff has failed to account for increased double-cropping in its GTAP modeling scenarios. 
 

e. CARB’s derivation of an “effective” price-yield elasticity value and its assertion 
that GTAP includes an endogenous price-yield effect is fundamentally incorrect. 

 
During the March 11 workshop, CARB staff stated that there are “two effects of [price-yield 
elasticity] within the model: exogenous and endogenous.” CARB staff asserted that the use of 
0.25 as the YDEL input parameter effectively results in an elasticity value of 0.39 in the model 
because of an “endogenous effect.” This suggestion is not accurate. CARB apparently derived the 
0.39 figure by dividing the modeled change in crop yields by the change in crop prices. This 
method is clearly inappropriate because there are several other factors within the model that 
would cause both yields and prices to change in response to a demand shock. CARB’s approach 
drew a strong rebuke from Prof. Tyner during the workshop: 
 

The main point I want to make is that [CARB’s] yield-price 
elasticity slides…are basically just incorrect. [The elasticity] 
is only for the intensive margin, not for the extensive 
margin. There is no such thing as an endogenous and 
exogenous [effect] if you measure it correctly. So, I think 
that whole discussion was misleading and I wouldn’t want 
people to leave thinking that represents the state of the 
art.16 

 
Taheripour & Tyner further illuminated this issue in a note to CARB (Appendix B) following the 
March 11 workshop: 

 
It is not correct to divide the weighted average of 
percentage changes in crop yields by the weighted average 
of percent changes in crop prices as was done in the CARB 
presentation. This calculation incorporates area changes as 

                                                                                                                                                                                           
Approach to Modeling Indirect Land Use from Expanded Biodiesel Production.” Center for 
Agricultural and Rural Development Iowa State University Staff Report 10-SR 105. 
14 ARB Expert Work Group. 2011. “Final Recommendations from the Elasticity Values Subgroup.” Available at: 
http://www.arb.ca.gov/fuels/lcfs/workgroups/ewg/010511-final-rpt-elasticity.pdf 
15 Id. 
16 Audio of Prof. Tyner comments are available at: http://domesticfuel.com/2014/03/12/carb-stresses-iluc-update-is-
preliminary/. Emphasis added. 

http://www.arb.ca.gov/fuels/lcfs/workgroups/ewg/010511-final-rpt-elasticity.pdf
http://domesticfuel.com/2014/03/12/carb-stresses-iluc-update-is-preliminary/
http://domesticfuel.com/2014/03/12/carb-stresses-iluc-update-is-preliminary/
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well as yield changes. One must take into account 
percentage changes in variable costs of production as well. 
The calculated value from the CARB presentation of 0.39 for 
yield to price elasticity for US for the corn ethanol 
expansion is meaningless because it includes many factors. 
…Furthermore, CARB has ignored the fact that the yield to 
price ratio only cover the percentage change in intensive 
yield not total yield. In their calculations, percentage 
changes in total yield instead of intensive yield were used. 

 
f. Based on the latest scientific analyses of long-run yield-price responses, CARB 

should adopt a range of 0.14-0.53 for the yield-price elasticity. 
 
For its initial ILUC analysis in 2009, CARB used a yield-price elasticity range of 0.20 to 0.40. Seven 
different cases were evaluated with various yield-price elasticities and the average elasticity 
value was 0.32. During the EWG process in 2010, CARB staff stated that there were no reliable 
recent data or analyses to support the continued use of the 0.20-0.40 range or a central value of 
0.25 (as recommended by GTAP). CARB attempted to justify this position by emphasizing and 
promoting the work of Berry & Schlenker. 
 
However, two detailed analyses of the yield-price elasticity have been completed since the EWG 
process concluded. As referenced above, both studies analyzed recent periods and found a 
significantly positive medium- or long-run response of yields to price. Goodwin et al. found that 
“[t]he long-run price-yield elasticities range from 0.15 to 0.43 at the state-level.” Meanwhile, 
Rosas Perez estimated the long-run price-yield elasticity of corn at 0.14-0.53. The range from 
Rosas Perez includes the entire range from Goodwin et al., as well as the only other recent long-
run estimate (0.15 from Huang & Khana). Thus, the lowest long-run estimate from studies 
examining recent periods is 0.14—this value should be used as the lower bound of CARB’s range. 
The highest long-run value from the recent studies is 0.53—this should be used as the upper 
bound of the range.  
 
Again, one could argue for an even higher upper bound due to the fact that GTAP does not 
explicitly treat double-cropping. The proposed range of 0.14-0.53 is inclusive of the CARB EWG 
recommendations (0.25 as a central value and 0.35 as upper bound). We believe CARB should re-
run its analysis using the range of 0.14-0.53 and varying the elasticity in increments of 0.05. For 
the sake of simplicity, the range could be slightly adjusted to 0.15-0.50. Using this range 
appropriately reflects the best available science, supports the EWG recommendations, properly 
recognizes that the yield-price effect occurs primarily over the medium or long term, and 
properly recognizes the effect of double-cropping. The table below and Appendix C provide the 
basis for the recommended range of 0.14-0.53. 
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Studyᵠ 

 
Period 

Elasticity 
(Corn) 

Short-Run 
Response 

Medium- or Long-
Run Response 

Houck & Gallagher (1976) 1951-1971 0.24-0.76  X 
Lyons & Thompson (1981) 1961-1973 0.22  X 
Menz & Pardey (1983) 1951-1971 0.61  X 
Choi & Helmberger (1993) 1964-1988 0.27  X 
Kaufmann & Snell (1997)ˣ 1969-1987 0.0002-0.65 X X 
Huang & Khana (2010) 1977-2007 0.15  X 
Berry & Schlenker (2011)° 1961-2009 <0.10 X  
Goodwin et al. (2012) long-run 
(aggregate model)  

1996-2010 0.15-0.43 
(0.19-0.27) 

 X 

Goodwin et al. (2012) short-run 1996-2010 0.006-0.011 X  
Rosas Perez (2012) 
(mean) 

1960-2004 0.14-0.53 
(0.29) 

 X 

     

Range of Medium- or Long-Term Response 
(midpoint) 

 0.14-0.76 
(0.45) 

 X 

Range of Medium- or Long-Term, Recent Period† 
(midpoint) 

 0.14-0.53 
(0.335) 

 X 

     

EWG Recommendation  
(central value) 

 ‡-0.35 
(0.25) 

 X 

Keeney & Hertel (2008) Recommendation  0.25  X 
ᵠ This table includes the same studies as presented in CARB’s March 11 literature review (slide 27) with the exception 
of Smith & Sumner, which could not be located for review. Red values represent short-run responses, which are 
inappropriate for inclusion in CARB’s GTAP analysis. 
ˣ CARB’s March 11 literature review incorrectly presented the Kaufmann & Snell estimate as ”~0”, when in fact the 
authors estimated the elasticity for corn at 0.0002-0.65, which they wrote is “…similar to the range of 0.24-0.76 
calculated by Houck and Gallagher.” 
° CARB’s March 11 literature review incorrectly presented the Berry & Schlenker estimate as “0”, when in fact the 
authors estimate the elasticity as being “…no higher than roughly 0.1.” 
† “Recent Period” refers to study periods that include post-2000 data. 
‡ The CARB EWG Elasticities Subgroup did not recommend a specific lower-bound value, but specified that the “lower 
bound on this elasticity should not be zero because of strong theoretical considerations (input use responds to crop 
price) and the reality of double cropping.”  

 
2. CARB should adopt a higher range of values for the elasticity of yield with respect to area 

expansion based on empirical evidence and Expert Work Group analysis. 
 
Another important elasticity in the GTAP model governs the productivity of crops on newly 
converted lands (represented by the code “ETA” in GTAP). This elasticity is essentially meant to 
represent a ratio of crop yields on newly converted acres to crop yields on existing cropland.  
The elasticity is governed in recent versions of GTAP by the Terrestrial Ecosystem Model (TEM), 
which estimates net primary productivity (NPP) as a surrogate for crop yield potential. We agree 
with CARB that “[t]he use of biophysical models such as the TEM may be a weak substitute for 
measuring yield potential in GTAP.”17 However, we understand development of a robust 
methodology to measure actual yield potential takes time and resources and that the TEM 
approach is currently the best available method. To the extent that CARB continues to rely on the 
NPP approach, the agency should give strong consideration to recent research published in PNAS 

                                                           
17 CARB Presentation, Slide 37. March 11, 2014. Available at: 
http://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/iluc_presentation_031014.pdf 

http://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/iluc_presentation_031014.pdf
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showing the productivity of cropland in the central U.S. has been habitually underestimated by 
conventional NPP methodologies by 40-60% (Appendix E). 
 
Further, where quality data exist to guide the use of this input parameter, we believe CARB 
should consider integrating it into the analysis. CARB’s draft analysis assumes that the ratio of 
crop yields on newly converted lands to yields on existing cropland will be as low as 0.43 and no 
higher than 0.90. We note that Tyner et al. (2010) used values in the range of 0.91-1.00—which is 
outside of CARB’s range—for 58% of the AEZ regions in which land is available.18 In fact, across all 
AEZ regions, the values selected by CARB for the draft analysis agree with just 42% of the values 
used by Tyner et al. (2010). Without explanation or scientific justification, CARB has deviated from 
the values used in Tyner et al. and has adopted an artificial upper bound of 0.90. A comparison of 
the ETA values used by CARB to the values used by Purdue is found in Appendix D. 
 
Common sense and basic economic theory dictate that farmers will not convert non-agricultural 
land to cropland if there is a high likelihood that yields on newly converted acres would be 
equivalent to just half of the yield on existing cropland. CARB’s EWG Elasticities Subgroup 
highlighted this logical fallacy, stating, “…from a microeconomic perspective, we would hardly 
expect investments in new areas if the yield of the new crop would be half of the traditional 
area, as assumed with an elasticity of 0.5 proposed by CARB staff.”19  
 
But the notion that farmers won’t convert unproductive land isn’t simply based on 
microeconomic theory—it is also supported by empirical data and analysis. The EWG Elasticities 
Subgroup showed that crop yields on converted acreage in the U.S. and Brazil (i.e., where GTAP 
assigns the bulk of ILUCs) have not been materially different than yields on existing cropland in 
those countries.  With regard to the U.S., Babcock & Carriquiry (2010) examined a time series of 
county-level acreage and yield data to determine the ratio of crop yields on expanded cropland 
to crop yields on existing cropland. For 14 major U.S. crops, they found that the ratio of crop 
yields on expanded lands to the corresponding crop yields on existing cropland was 0.82-1.23. 
The average ratio for corn was 0.95. The planted area-weighted average across all crops was 
0.98, meaning actual crop yields on expanded acreage were nearly identical to actual crop yields 
on existing acreage. These results are summarized in the EWG Elasticities Subgroup final report. 
 
Based on the empirical data, the Elasticities Subgroup suggested using average elasticity values 
of 0.98 in the U.S. and 0.90-0.95 for Brazil. CARB’s reasoning for disregarding this EWG 
recommendation is unclear, as is the decision to deviate from the Tyner et al. (2010) analysis by 
choosing an arbitrary limitation of 0.90 for the upper bound. We believe CARB should revisit its 
elasticity values for each AEZ and region based on the EWG recommendations, the empirical data 
presented by the Elasticities Subgroup, and the values used in Tyner et al. (2010). 
 

                                                           
18 Tyner, W. E., F. Taheripour, Q. Zhuang, D. Birur, U. Baldos, 2010. “Land use changes and consequent CO2 emissions 
due to US corn ethanol production: a comprehensive analysis.” Department of Agricultural Economics, Purdue 
University, Final Report (Revised). Table A2. 
19 ARB Expert Work Group. 2011. “Final Recommendations from the Elasticity Values Subgroup.” Available at: 
http://www.arb.ca.gov/fuels/lcfs/workgroups/ewg/010511-final-rpt-elasticity.pdf 

http://www.arb.ca.gov/fuels/lcfs/workgroups/ewg/010511-final-rpt-elasticity.pdf
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3. The AEZ-EF model appears to be an improvement over the previous approach to 
emissions factors (i.e., ad hoc use of Woods Hole data). However, CARB should consider 
additional refinements to the model that would enhance its reliability. 
  

RFA is still reviewing the AEZ-EF model and the documentation that was posted to the LCFS web 
site on March 14. Based on an initial review, however, it appears the AEZ-EF represents a 
considerable improvement over the previous method for assigning emissions factors to ILUCs. 
Still, the documentation accompanying the AEZ-EF model contains several debatable 
assumptions and highlights important sources of uncertainty. The most critical issues from our 
initial review are discussed below. 
 

a. AEZ-EF does not include transition of cropland-pasture to (permanent) pasture or 
forest.  

 
AEZ-EF estimates the CO2-equivalent emissions released or sequestered when land cover is 
converted from one class to another. Table 11 of the report shows that eight transitions are 
included in the model. However, the model does not include transitions from the cropland-
pasture class to either the pasture class or forest class. The report explains that “[w]e assume 
that cropland-pasture is exchanged only with cropland.” There is no explanation or scientific 
basis given for this assumption. Conversion of cropland-pasture to permanent pasture and forest 
has been observed (e.g., in its latest edition of Major Uses of Land in the United States20, USDA 
reclassified 36 million acres of previous cropland-pasture as permanent grassland), and thus 
there is no reason to omit these potential transitions from AEZ-EF. 

 
b. The model coarsely assumes emissions from conversion of cropland-pasture to 

cropland are equivalent to 50% of the emissions from converting pasture to 
cropland.  

 
AEZ-EF assumes that conversion of cropland-pasture to cropland results in half the emissions 
caused by converting pasture to cropland in each region. This is a tenuous assumption in that 
cropland-pasture is part of an active long-term crop rotation and thus is not sequestering as 
much carbon as permanent pasture (or even CRP) over the long term. As such, it seems 
implausible that conversion of cropland-pasture to cropland would result in emissions equivalent 
to 50% of the emissions from pasture conversion. The AEZ-EF report admits that this assumption 
“is not empirically-based” and “[u]ncertainty surrounding these estimates is likely quite high.” 
Given that cropland-pasture is typically the first land class to transition to cropland in response 
to higher crop prices, it is important that CARB establish a more rigorous and defensible method 
for estimating emissions from conversion of cropland-pasture. 

 
c. The model’s treatment of harvested wood products (HWP) ignores the fraction of 

wood harvested and removed for the purposes of energy production.  
 
The AEZ-EF model assumes 2-36% (depending on region) of above ground carbon remains 

                                                           
20 Available at: http://www.ers.usda.gov/data-products/major-land-uses.aspx 

http://www.ers.usda.gov/data-products/major-land-uses.aspx
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sequestered in HWP after 30 years. While this estimate is consistent with other estimates of 
carbon storage in products and landfills, it ignores that some harvested wood products are used 
for energy production that offsets fossil fuel use.  Heath et al. (1996)21 examined the fate of 
carbon from wood harvested and removed from U.S. forests from 1900 to 1990.  The authors 
concluded that “…by 1990 approximately 35% of the total C removed is stored in products and 
landfills, 30% has been returned to the atmosphere through decay or burning without energy 
production, and 35% has been burned for energy, partially offsetting fossil fuel use.”  According 
to the authors, use of this wood to produce energy mitigates increasing atmospheric CO2 
concentrations by offsetting fossil fuel use, and in this respect it is not equivalent to emissions 
from decay. AEZ-EF should account for harvested wood that is used for bioenergy production.       
 

d. Emissions related to litter and deadwood are extremely uncertain and estimates 
are not reliable enough for policy decision-making.  
 

Unlike CARB’s previous ILUC analysis, the AEZ-EF model includes emissions from dead organic 
matter (e.g., deadwood and litter). CARB assumes that if not for conversion from forest to some 
other land class, deadwood and litter carbon stocks would remain in equilibrium and there would 
be no net emissions from this material. However, this approach ignores the fact that carbon 
emissions from deadwood and litter would occur in any case. That is, these emissions did not 
occur as the result of land conversion, and thus should not be charged to the ILUC. Aside from 
this logical infirmity, the existing estimates of emissions from litter and deadwood are highly 
uncertain and variable. The authors of the AEZ-EF report acknowledge this dilemma, noting 
“[l]itter estimates include variability in original data, imperfect mapping to Region AEZs, 
uncertainty in the ratio of broadleaf to needleleaf forests, and uncertainty whether these 
estimates represent forests actually converted…” Given the high degree of uncertainty and the 
fact that these emissions will occur even in the absence of a land conversion, we recommend 
excluding litter and deadwood emissions from the AEZ-EF. 
 

4. CARB should continue to resist pressure from certain stakeholders to include a penalty in 
the ILUC analysis for purported “food consumption effects.” 

 
One stakeholder at the March 11 workshop suggested CARB should penalize biofuels for model-
derived “reductions in food consumption.” The stakeholder asserted that this additional penalty 
could be developed by holding food consumption constant in GTAP and assigning the resultant 
additional ILUCs to biofuels. The suggestion to hold food consumption constant in GTAP (i.e., 
preventing a general equilibrium model from reaching equilibrium) and adjust biofuel CI scores 
was neither recommended by the EWG, nor was it discussed in the staff’s plan for ILUC updates 
that was presented and approved at the November 2010 board meeting.  
 
Moreover, the LCFS was intended to address the carbon intensity of transportation fuels used 
within the state, not theoretical economic or social effects potentially occurring in areas outside 

                                                           
21 L. Heath, R. Birdsey, C. Row, and A. Plantinga. 1996. “Carbon pools and flux in U. S. forest products.”  In: Forest 
Ecosystems, Forest Management, and the Global Carbon Cycle, M. Apps and D. Price, eds. NATO ASI Series I: Global 
Environmental Changes, Volume 40, Springer-Verlag, P. 271-278. 
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of the state. A decision to address hypothetical food consumption effects within the LCFS 
regulatory context would set a dangerous precedent and open the door to “policy creep.” For 
example, if ARB were to proceed with a food analysis, it would also need to consider factors like 
the social, economic, and geopolitical impacts of increased demand for “rare Earth” elements 
resulting from greater use of electric vehicles. Similarly, CARB would need to examine the 
economic and social impacts of using natural gas for transportation rather than for home heating 
or food preparation. In short, introducing broad-ranging, hypothetical impacts unrelated to GHG 
emissions into the LCFS would be the equivalent of opening Pandora’s Box. CARB was right to 
omit purported “food consumption” effects from its draft analysis, and it should continue to 
resist pressure from stakeholders to introduce such a factor. 
 

 



 
Appendix A 

 
Letter from scientists and researchers to CARB Chair Mary 

Nichols regarding advancements in ILUC analysis 
  



March 6, 2014 

Mary D. Nichols  

Chairwoman  

California Air Resources Board  

Headquarters Building  

1001 “I” Street  

Sacramento, CA 95812  

Dear Chairwoman Nichols, 

We, the undersigned scientists and researchers, are writing to encourage the California 

Air Resources Board (CARB) to strongly consider recent developments in the analysis of 

indirect land use change (ILUC) when contemplating potential amendments to the Low 

Carbon Fuel Standard (LCFS). We understand CARB is considering potential changes 

to the LCFS regulation’s current carbon intensity (CI) values, and that these possible 

adjustments are the subject of an upcoming stakeholder workshop on March 11.  

Many of us were members of the CARB-appointed expert work group, which convened 

in 2010 for the purposes of critically reviewing CARB’s ILUC analysis, identifying data 

gaps and areas in need of additional analysis, and recommending improvements. Upon 

completion of a year-long deliberative process, the work group recommended that 

CARB should revise its ILUC estimates using the latest version of Purdue University’s 

GTAP model. Further, many of us have independently conducted additional data 

analysis and ILUC modeling in the years following the conclusion of CARB’s expert 

work group process. In many cases, the findings from our research have been subjected 

to peer-review and published in the scientific literature. 

While ILUC analysis continues to suffer from a relatively high degree of systematic and 

data uncertainty, the quality of both the models and input data chosen for use by CARB 

have substantially improved since the Board formally adopted the LCFS. These 

improvements have resulted in corn ethanol ILUC emissions estimates that are much 

lower than CARB’s current estimates for the LCFS. The improved ILUC emissions 

estimates result from the availability of more robust data and enhanced understanding 

of: 1) the types of land most likely to be converted; 2) the likely location of predicted 

conversions; 3) crop yields on newly converted lands; 4) crop yield responses to changes 

in prices; 5) carbon stocks and emissions from land conversion; 6) the feedback effects of 

animal feed co-products on land use; and 7) crop switching, double-cropping, and cross-

commodity effects. Alternative methodologies for accounting for land use change 

emissions over time (i.e., “time accounting”) have also been established. 



Many of us continue to believe the use of point-estimate ILUC factors is inappropriate 

for the purposes of regulation. However, to the extent that CARB continues to rely upon 

the use of ILUC factors in calculating CI scores for the LCFS, we believe the Board 

should be familiar with the most recent independent modeling results. In general, our 

recent work—and analyses conducted by other experts in the field—indicates that 

CARB’s existing CI factors significantly overestimate the GHG emissions associated 

with potential ILUCs resulting from corn ethanol expansion. Analyses conducted since 

CARB adopted the LCFS in 2009 show that potential ILUC emissions associated with 

corn ethanol are more likely in the range of 6-15 grams per megajoule of CO2 

equivalent (g/MJ), compared to CARB’s estimate of 30 g/MJ. A bibliography of relevant 

corn ethanol ILUC studies conducted in recent years is provided in the attachment. 

Nearly three and a half years have passed since the Board adopted resolution 10-49, 

which directed CARB staff to prepare amendments to the LCFS by the spring of 2011. 

Among the amendments directed by the Board were CI revisions that would reflect 

“[u]pdates to the land use values for corn ethanol, sugarcane ethanol, and soy biodiesel, 

and other feedstocks…” Given this directive and CARB’s commitment to using the “best 

available science” to “determin[e] the total direct and indirect emissions associated 

with…all fuels,”[1] we believe CARB staff should give serious consideration to 

immediately adopting a lower ILUC factor for corn ethanol based on the studies 

included in the attachment. 

 

Sincerely, 

Steffen Mueller, PhD 

Principal Research Economist 

Energy Resources Center 

University of Illinois at Chicago  

CARB Expert Work Group Member 

 

Blake A. Simmons, PhD 

Vice-President 

Deconstruction Division 

DOE Joint BioEnergy Institute 

Sandia National Laboratories 

CARB Expert Work Group Member 

 
                                                           
[1]California Air Resources Board, Staff Report: Initial Statement of Reasons, Proposed Regulation to 

Implement the Low Carbon Fuels Standard: Vol. I (March 5, 2009), Page IV-48   



Jesper Kløverpris, PhD 

Sustainability Manager 

Novozymes A/S 

CARB Expert Work Group Member 

 

Richard G. Nelson, PhD 

President  

Enersol Resources Inc. 

(Former Associate Professor at Kansas State University) 

CARB Expert Work Group Member 

 

Mark D. Stowers, PhD 

Vice President and Head 

Global Research and Development 

HM.Clause 

CARB Expert Work Group Member 

 

Harvey W. Blanch, PhD 

Merck Professor of Biochemical Engineering 

Department of Chemical & Biomolecular Engineering 

University of California Berkeley 

 

Jay D. Keasling, PhD 

University of California, Berkeley 

Lawrence Berkeley National Laboratory 

Director, DOE Joint BioEnergy Institute 

Synthetic Biology Engineering Research Center 

 

Bruce E. Dale, PhD 

University Distinguished Professor  

Department of Chemical Engineering and Materials Science  

DOE Great Lakes Bioenergy Research Center  

Michigan State University  

 

C. Gregg Carlson, PhD 

South Dakota State University 

Professor, Plant Science 

 

 

 



David E. Clay, PhD 

South Dakota State University 

Professor, Plant Science and Director South Dakota Drought Center 

 

Timothy Donohue, PhD  

University of Wisconsin-Madison  

Professor of Bacteriology  

Director, DOE Great Lakes Bioenergy Research Center  

 

Seungdo Kim, PhD 

Associate Professor 

Department of Chemical Engineering and Materials Science 

Michigan State University 

 

Jon Magnuson, PhD 

Director of Fungal Biotechnology 

DOE Joint BioEnergy Institute 

 

Stefan Unnasch 

Managing Director  

Life Cycle Associates, LLC 
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Appendix B 

 
Note from Taheripour & Tyner to CARB staff  

following March 11 workshop 
  



Discussion of the Yield Price Elasticity in GTAP 
 

Farzad Taheripour and Wallace E. Tyner 
Purdue University 

 
 
 
 At the March 11, 2014 CARB meeting, there was considerable interest in the 
yield to price elasticity parameter in GTAP. There also seemed to be a good bit of 
confusion on what it does and does not do. The purpose of this note is to provide an 
explanation of the role of this parameter in GTAP, explain why it is there, and to explain 
other reasons why yields can change in GTAP. 
 
 First, the basic idea behind the parameter is that over the medium to long term 
(the time horizon of GTAP), one would expect the agricultural sector to respond to 
increases in net returns to crops with appropriate investments in improving yields of 
crops with growing returns.  This investment is certainly not limited to on-farm 
investment. In fact, a major portion of it may occur off-farm.  It could include investments 
by seed companies to produce higher yielding seeds, investments in chemical 
companies to produce better herbicides/pesticides, investments by farm equipment 
companies to produce more efficient machinery for cultivation and harvest, investments 
by farmers to improve drainage and other soil properties, and other productivity 
enhancing investments.  In other words, this parameter attempts to capture responses 
throughout the agricultural sector to higher returns in given crops. 
 
 The yield to price elasticity does not measure changes over one crop year.  In 
fact, any estimate done over one year would be totally inappropriate for GTAP and 
should be excluded from consideration in determining appropriate values for the 
parameter. 
 
 What is the precise definition of the yield to price elasticity (YDEL)? YDEL is the 
percentage change in intensive yield over the percentage changes in relative price of a 
crop over input prices.  In other words it is the intensive yield change with respect to 
change in variable returns to a crop.  If the YDEL value is 0.25, and the change in 
variable returns of a crop is 10%, then the change in intensive yield would be 2.5%. It is 
very important to emphasize that the parameter YDEL only governs changes in 
intensive yield due the changes in net return. Other factors can affect crop yields as 
well.    
 
 How else can yields change in GTAP?  Yields are affected by changes on the 
intensive and extensive margins. As noted in Hertel et al. (2010), there are two 
important sources which affect the extensive margin of yields. The first source is due to 
shifting among crops. For example, shifting from corn-soybean rotation to corn-corn 
rotation could affect yield. The second source of change in extensive yield is due to land 
conversion from forest or pasture to cropland. In the first case, if there is a corn ethanol 
shock applied to the model, more corn will be demanded, and there likely will be both 



crop switching and land cover changes to accommodate the higher demand for corn.  
With crop switching, there will be more acres of corn and fewer acres of other lower 
yielding crops. Thus, when one calculates the weighted average yields after the shock, 
the average likely would be higher.  For example, consider typical corn, soybean, and 
wheat yields of 4.5, 1.2, and 1.7 tons/ac respectively.  If the post shock crop mix has 
more corn acreage, the post shock weighted average yields can be higher even if YDEL 
were zero.  That is simply because corn has a higher mass yield per acre.   
 
 Yields can also change when more or less productive acres come into corn from 
other uses.  Crop switching can result in higher or lower productivity. However, land 
cover changes from pasture or forest typically tends to reduce yields because new land 
could be lower productivity. The productivity of converted land is affected by the ETA 
parameter. 
 
 Since GTAP is a CGE model, yields can also be influenced by a myriad of other 
changes such as changes in relative price of variable inputs.  The bottom line is that 
while yields can be and are affected by many factors working in GTAP, the YDEL 
parameter is only designed to capture the incentive to invest over the medium term in 
crops with increasing returns. 
 
 It is not correct to divide the weighted average of percentage changes in crop 
yields by the weighted average of percent changes in crop prices as was done in the 
CARB presentation. This calculation incorporates area changes as well as yield 
changes. One must take into account percentage changes in variable costs of 
production as well. The calculated value from the CARB presentation of 0.39 for yield to 
price elasticity for US for the corn ethanol expansion is meaningless because it includes 
many factors. If we follow the CARB approach and calculate the same measure for 
Brazil due to the US corn ethanol shock, we get a yield to price elasticity of -0.16 for 
Brazil, which obviously does not make sense. Furthermore, CARB has ignored the fact 
that the yield to price ratio only cover the percentage change in intensive yield not total 
yield. In their calculations, percentage changes in total yield instead of intensive yield 
were used.            
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Comparison of ETA values used by CARB to  

values from Tyner et al. (2010) 
 

  



Top row in each AEZ shows values used in Tyner et al. (2010)
Bottom row in each AEZ shows values used by CARB for 2014 draft analysis
RED denotes CARB use of a value lower than corresponding Tyner et al. value; GREEN denotes CARB use of the same value as Tyner et al.

AEZ/Region R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19
0.00 0.00 0.91 0.00 0.00 0.00 0.93 1.00 0.95 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.68 0.61 1.00
0.00 0.00 0.90 0.00 0.00 0.00 0.90 0.90 0.90 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.68 0.61 0.90
0.00 0.00 0.92 0.00 0.00 0.00 0.89 1.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 1.00 1.00
0.00 0.00 0.90 0.00 0.00 0.00 0.89 0.90 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.90 0.90
0.00 0.00 0.93 0.00 0.00 0.00 0.86 1.00 0.90 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.89 0.74
0.00 0.00 0.90 0.00 0.00 0.00 0.86 0.90 0.90 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.90 0.89 0.74
0.00 1.00 0.89 0.00 0.00 1.00 0.93 1.00 0.88 0.00 0.88 0.89 1.00 0.00 0.00 0.00 0.86 0.92 0.92
0.00 0.90 0.89 0.00 0.00 0.90 0.90 0.90 0.88 0.00 0.88 0.89 0.90 0.00 0.00 0.00 0.86 0.90 0.90
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0.89 0.86 0.90 0.00 0.90 0.90 0.90 0.90 0.84 0.00 0.00 0.90 0.90 0.00 0.89 0.00 0.00 0.90 0.90
0.92 1.00 0.00 0.55 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.63 0.97 0.00 0.00 0.00 0.00
0.90 0.90 0.00 0.55 0.00 0.90 0.90 0.00 0.90 0.90 0.00 0.00 0.90 0.63 0.90 0.00 0.00 0.00 0.00
0.51 0.89 0.00 0.80 0.00 0.92 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.90 1.00 0.95 0.00 0.00 0.00
0.51 0.89 0.00 0.80 0.00 0.90 0.90 0.00 0.90 0.90 0.00 0.00 0.90 0.90 0.90 0.90 0.00 0.00 0.00
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0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Photosynthesis is the process by which plants harvest sunlight to
produce sugars from carbon dioxide and water. It is the primary
source of energy for all life on Earth; hence it is important to
understand how this process responds to climate change and
human impact. However, model-based estimates of gross primary
production (GPP, output from photosynthesis) are highly uncer-
tain, in particular over heavily managed agricultural areas. Recent
advances in spectroscopy enable the space-based monitoring of
sun-induced chlorophyll fluorescence (SIF) from terrestrial plants.
Here we demonstrate that spaceborne SIF retrievals provide
a direct measure of the GPP of cropland and grassland ecosystems.
Such a strong link with crop photosynthesis is not evident for
traditional remotely sensed vegetation indices, nor for more
complex carbon cycle models. We use SIF observations to provide
a global perspective on agricultural productivity. Our SIF-based
crop GPP estimates are 50–75% higher than results from state-of-
the-art carbon cycle models over, for example, the US Corn Belt
and the Indo-Gangetic Plain, implying that current models severely
underestimate the role of management. Our results indicate that
SIF data can help us improve our global models for more accurate
projections of agricultural productivity and climate impact on crop
yields. Extension of our approach to other ecosystems, along with
increased observational capabilities for SIF in the near future,
holds the prospect of reducing uncertainties in the modeling of
the current and future carbon cycle.

crop productivity | carbon fluxes | Earth observation | carbon modeling |
spaceborne spectroscopy

The rapidly growing demand for food and biofuels constitutes
one of the greatest challenges for humanity in coming decades

(1). It is estimated that we must double world food production by
2050 to meet increasing demand (2), but the once rapid growth
seen in the “green revolution” has stalled, and even past advances
are threatened by climate change (3–5). Much of past yield im-
provement has focused on increases in the harvest index and
resistance to pests. However, all else being equal, the quantity of
photosynthesis places an upper limit on the supply of food and
fuels from our agricultural systems.
Ironically, we currently have very limited ability to assess

photosynthesis of the breadbaskets of the world. Agricultural
production inventories provide important information about
crop productivity and yields (6–8), but these are difficult to
compare between regions and lag actual production. Carbon
cycle models, based on either process-oriented biogeochemistry

or semiempirical data-driven approaches, have been used to
understand the controls and variations of global gross primary
production (GPP, equivalent to ecosystem gross photosynthesis)
(9) and to investigate the climate impact on crop yields (10).
However, uncertainty associated with inaccurate input data and
much simplified process descriptions based on the plant func-
tional type concept severely challenge the application of these
models to agricultural systems. Recent model intercomparisons
conducted as part of the North American Carbon Project found
that GPP estimates for crop areas varied by a factor of 2 (11).
The best available estimates of GPP of crop systems are from
direct measurement of carbon dioxide exchange by so-called flux
towers over agricultural fields (12). However, these generally
sample small areas (<1 km2) and are concentrated in North
America and Europe.
Remote sensing of reflectance-based vegetation parameters

has been used in the last decades to monitor agricultural

Significance

Global food and biofuel production and their vulnerability in
a changing climate are of paramount societal importance.
However, current global model predictions of crop photosyn-
thesis are highly uncertain. Here we demonstrate that new
space-based observations of chlorophyll fluorescence, an emis-
sion intrinsically linked to plant biochemistry, enable an accurate,
global, and time-resolved measurement of crop photosynthesis,
which is not possible from any other remote vegetation mea-
surement. Our results show that chlorophyll fluorescence data
can be used as a unique benchmark to improve our global
models, thus providing more reliable projections of agricultural
productivity and climate impact on crop yields. The enormous
increase of the observational capabilities for fluorescence in the
very near future strengthens the relevance of this study.
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resources (e.g., refs. 13, 14). The signal of the so-called spectral
vegetation indices convolves leaf chlorophyll content, biomass, can-
opy structure, and cover (15, 16), such that estimating actual pro-
ductivity from vegetation indices requires additional data and
modeling steps, both associated with considerable uncertainty.
Complementing reflectance-based indices, global space-based esti-
mates of sun-induced chlorophyll fluorescence (SIF) became avail-
able recently. SIF is an electromagnetic signal emitted in the 650- to
850-nm spectral window as a by-product of photosynthesis (e.g., refs.
17–19). The first global maps of SIF were derived using data from
the Greenhouse Gases Observing Satellite (GOSAT) (20–23). De-
spite the complicated photosynthesis-SIF relationships and the
convolution of the signal with canopy structure (16), SIF retrievals
showed high correlations with data-driven GPP estimates at global
and annual scales (21, 22), as well as intriguing patterns of seasonal
drought response in Amazonia (24, 25). Recently, a global SIF data
set with better spatial and temporal sampling than that from
GOSAT was produced using spectra from the Global Ozone
Monitoring Experiment-2 (GOME-2) instrument onboard the
MetOp-A platform (26) (see SI Appendix, SIF Retrievals).
Our attention is drawn to the remarkably high SIF returns

from the US Corn Belt (CB) region (Fig. 1). This highly pro-

ductive area (Fig. 2D) accounts for >40% of world soybean and
corn production (30). We hypothesize that the high SIF indi-
cates very high GPP for this area and report here on studies
that compare SIF retrievals to GPP models and flux tower data
with the aim of gaining a unique global perspective on crop
photosynthesis.

Results and Discussion
Looking at the spatial patterns of the maximum monthly gross
carbon uptake from model results in the north temperate region
(Fig. 2), we find a generally good agreement between the data-
driven approach (27), that relies on data from a global network
of micrometeorological tower sites (FLUXNET) (12), and the
median of 10 state-of-the-art global dynamic vegetation models
from the Trendy (“Trends in net land-atmosphere carbon ex-
change over the period 1980−2010”) project (28, 29), the former
showing somewhat larger values in a small region of the US CB
(Fig. 2 A and B) (see SI Appendix, Model-Based GPP Data). It
must be stated that the Trendy models do not include explicit
crop modules, so the results from our comparisons with process-
based models are intended to illustrate the potential impact of
such crop-specific modules on simulations over agricultural re-
gions. The SIF measurements, on the other hand, show large
differences between the US CB and the cropland and grassland
areas in Western Europe, with much enhanced SIF in the US CB
(Fig. 2C). This pattern is roughly consistent with the distribution
of C4 crops in the area, predominantly corn fields (Fig. 2D).
Is the photosynthesis signal in the SIF retrievals disturbed by
other factors, or is the US CB indeed much more productive
than any area in Western Europe, which is not captured by the
carbon models?
We compare year-round monthly means of flux tower-based

GPP estimates at cropland and grassland sites in the United
States and Europe with SIF retrievals, GPP estimates from
carbon models, and spectral reflectance indices (Figs. 3 and 4
and SI Appendix, Comparison of Flux Tower-Based GPP with
Model GPP, SIF and Vegetation Indices). Data-driven model GPP
data are from the statistical model developed at the Max Planck
Institute for Biogeochemistry (MPI-BGC) (27) (Fig. 3B) and the
semiempirical moderate resolution imaging spectroradiometer
(MODIS) MOD17 GPP model (31) (SI Appendix, Fig. S4). The
same ensemble of 10 land surface models (28, 29) is used to
evaluate the performance of process-based models (Fig. 3C). We
present the comparisons in Fig. 3 without including the European
cropland sites, as we want to illustrate the strong differences

0.0 0.9 1.8 2.7 3.6 4.5
max(SIF) (mW/m2/sr/nm)

Fig. 1. Global map of maximum monthly sun-induced chlorophyll fluores-
cence (SIF) per 0.5° grid box for 2009. SIF retrievals are performed in
a spectral window centered at 740 nm (see Materials and Methods and SI
Appendix, SIF Retrievals). This maps illustrates the outstanding SIF signal
detected at the US CB, which shows the highest SIF return of all terrestrial
ecosystems. The maximum SIF over the largest part of the US CB region is
detected in July.
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Fig. 2. Spatial patterns of maximum monthly gross primary production (GPP) per 0.5° grid box for 2009 from data-driven (A) and process-based (B) models
together with maximum monthly SIF at 740 nm (C). The fraction of C4 crop area (mostly corn in this region) depicts the approximate area of the US Corn Belt
(D). The data-driven GPP data correspond to the MPI-BGC model (27), the process-based GPP corresponds to the median of an ensemble of 10 global dynamic
vegetation models from the Trendy (“Trends in net land-atmosphere carbon exchange over the period 1980−2010”) project (28, 29), and SIF was retrieved
from GOME-2 satellite measurements (26). The fraction of C4 crop data are described in Ramankutty et al. (6).
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between cropland and grassland GPP over the most homogeneous
ecosystems (the European cropland sites are highly fragmented,
which may not be properly sampled by the 0.5° resolution at which
we can grid the GOME-2 SIF retrievals; see SI Appendix, SIF
Retrievals). The comparison including all types of cropland and
grassland sites is provided in SI Appendix, Fig. S4.
We find that the peak monthly mean GPP derived from the

flux tower data in some of the US CB sites is very high
(>15 gC·m−2·d−1), whereas for the grassland sites, monthly mean
GPP never exceeds 10 gC·m−2·d−1 (Fig. 3). Process-based GPP
estimates compare well with the tower-based estimates over the
grassland sites but show a poor correlation over the US CB (Fig.
3C). Concerning the data-driven models, there is a clear non-
linear relation between flux tower and model GPP, showing that
models strongly underestimate GPP at cropland sites with high
fluxes. A piece-wise linear approximation reveals that deviations
from the linear relation appear at GPP > 10 gC·m−2·d−1 for the
MPI-BGC estimates (Fig. 3B) and at GPP > 8 gC·m−2·d−1 for
the MODIS MOD17 (SI Appendix, Fig. S4). We observe that
data-driven models produce similar peak GPP values for both
grasslands and croplands, and that grasslands have even a higher
GPP than croplands in results from the process-based models,
which is not reflected by tower-based estimates. We find that
SIF values exhibit a much stronger linear relationship with tower
GPP at these cropland and grassland sites (Fig. 3A), and that
a single linear model is able to link SIF with GPP for both
croplands and grasslands. On the other hand, the good agree-
ment between the model- and tower-based GPP estimates at
grassland sites, including similar peak values, suggests that the
direct comparison of flux tower data (typical footprint of <1 km2)
with SIF retrievals and model data at 0.5° is acceptable for
these sites.
Hence, the comparisons in Fig. 3 support the following claims:

(i) SIF captures high photosynthetic signals that are observed
from flux towers in the US CB, and (ii) the models under-
estimate crop GPP, in particular for the highly productive crop
sites at the US CB. The low correlation between the crop GPP
estimates by the process-based models at the US CB sites may be
explained by the lack of specific crop modules in the Trendy
model ensemble. Concerning the underestimation of crop GPP
by data-driven models, it can be argued that these cannot capture
the complex dynamics required to link stable and structurally
driven vegetation indices derived from remote sensing data with
a highly variable physiological measure such as crop photosyn-
thesis. On the other hand, those reflectance-based indices usually
underestimate “greenness” for very dense crop canopies with high

green biomass levels, such as cultivars with high fertilizer levels.
This can lead to the underestimation of GPP by the data-driven
models constrained by those vegetation indices.
The same flux tower-based GPP data set is compared with SIF

retrievals and the enhanced vegetation index (EVI) extracted
from the MODIS MOD13C2 product (15) in Fig. 4. This com-
parison illustrates that spectral reflectance indices, similar to the
GPP models, do not scale linearly with GPP for these biomes
despite the good representation of the temporal patterns: The
highest EVI values for grassland sites are close to the values for
some of the cropland sites, whereas GPP is very different. On the
other hand, it is difficult to find a global baseline value for EVI
to indicate the total absence of green vegetation activity. The
minimum EVI value depends on the soil nature and especially on
the presence of snow (32), which can be observed in the relatively
high variability of EVI in the months in which no photosynthetic
activity is observed (Fig. 4 C and D). This poses a problem for the
identification of start- and end-of-season times in phenological
studies based on reflectance-based remote sensing data (32). The
SIF observations, in turn, drop to zero following photosynthesis,
which provides an unambiguous signal of photosynthetical activity.
The linear relationship between SIF data and flux tower GPP

observed in Fig. 3A may be rationalized by considering that

GPP=PAR× fPAR×LUEP; [1]

where PAR is the flux of photosynthetically active radiation
received, fPAR is the fractional absorptance of that radiation,
and LUEP is the efficiency with which the absorbed PAR is used
in photosynthesis (33). SIF may be similarly conceptualized as

SIFðλÞ=PAR× fPAR×LUEFðλÞ× fescðλÞ; [2]

where λ is the spectral wavelength (∼740 nm in our GOME-2
retrievals; see Materials and Methods and SI Appendix, SIF
Retrievals), LUEF is a light-use efficiency for SIF (i.e., the frac-
tion of absorbed PAR photons that are re-emitted from the
canopy as SIF photons at wavelength λ), and fescðλÞ is a term
accounting for the fraction of SIF photons escaping from the
canopy to space. These equations can be combined making the
dependence on light implicit,

GPP≈ SIFðλÞ× LUEP

LUEFðλÞ; [3]

where we assume fescðλÞ≈ 1 because of the low absorptance of
leaves in the near-infrared wavelengths at which we perform the
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Fig. 3. Comparison of monthly mean GPP estimates at cropland flux tower
sites in the US Corn Belt and grassland sites in Western Europe. Flux tower
GPP estimates are compared with sun-induced fluorescence (SIF) observa-
tions at 740 nm (A) and with GPP estimates from the MPI-BGC data-driven
model (27) (B) and from process-based models [median of an ensemble of
10 dynamic global vegetation models (28, 29)] (C). Each symbol depicts a
monthly average for a 0.5° grid box and those months in the 2007–2011
period for which flux tower data were available (see SI Appendix, Table S1).
The P value is <0.01 in all of the comparisons. The dashed line in B and C
represents the 1:1 line. Similar comparisons but including also Western
Europe cropland sites are provided in SI Appendix, Fig. S4.
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Fig. 4. Time series of flux tower-based GPP compared with SIF retrievals (A
and B) and the MODIS MOD13C2 EVI (C and D) for the same cropland and
grassland sites and spatiotemporal averages as in Fig. 3 (monthly averages in
0.5° grid boxes and the 2007–2011 period). SIF and EVI are plotted with the
same vertical scale for cropland and grassland sites.
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SIF retrievals and the relatively simple plant structure and high
leaf area index of grasses and crops (34).
Empirical studies at the leaf and canopy scale indicate that the

two light-use efficiency terms tend to covary under the conditions
of the satellite measurement (35–37). Hence, the SIF data should
provide information on both the light absorbed and the efficiency
with which it is being used for photosynthesis. Vegetation indices
derived from reflectance measurements from spaceborne instru-
ments such as MODIS (15) and knowledge of the solar angle and
atmospheric condition can be used to estimate PAR × fPAR (Eq.
1), but LUEP is a free parameter. These data from the CB are
consistent with LUEP being much higher for intensively managed
crops than for native grasslands or less managed crops.
Based on the linear relationship obtained from the comparison

of SIF with tower-based GPP at all of the US and Western Europe
cropland and grassland flux tower sites [GPP(SIF) = −0.10 + 3.72 ×
SIF; see SI Appendix, Comparison of Flux Tower-Based GPP with
Model GPP, SIF and Vegetation Indices and Derivation of Spatially-
Explicit Crop GPP Estimates], we have produced unique global
estimates of annual crop GPP. Even though tower data outside
the US CB and Western Europe were not available for the
derivation of the empirical GPP−SIF relationship, we assume it
to hold for all of the ecosystems in which GPP is driven by
canopy chlorophyll content such as croplands and grasslands
(14). We have compared our SIF-based crop GPP estimates with
the GPP predicted by ensembles of state-of-the-art data-driven
(9) and process-based (28, 29) biogeochemistry models (see SI
Appendix, Model-Based GPP Data). We evaluate the consistency
of the different GPP estimates with the agricultural yield statis-
tics from the National Agriculture Statistics Service of the US
Department of Agriculture (USDA NASS) (38) (only North
America, years 2006–2008) and the data set by Monfreda et al.
(7) (global coverage, year 2000). These inventories provide large-
scale cropland net primary production (NPP, biomass pro-
duction by plants) estimates by combining national, state, and
county-level census statistics with maps of cropland areas (see SI
Appendix, NPP Data from Agricultural Inventories).
The comparison between our annual crop GPP estimates and

the NPP from the USDA NASS inventory at the US CB shows
that SIF-based GPP estimates are, similar to the flux tower
comparisons, more linearly related to the inventory-based NPP
than the model GPP (Fig. 5). Again, data-driven GPP estimates
show a strongly nonlinear relationship with the inventory-based
NPP, whereas the comparison with the process-based GPP
estimates presents more scatter compared with the SIF-based
and the data-driven estimates. The same conclusions hold for the
comparison of the different GPP estimates over the US CB and
Western Europe with the NPP data set from Monfreda et al. (7)
(see SI Appendix, NPP Data from Agricultural Inventories). As-
suming that annual GPP and NPP covary linearly across the
entire US CB area, this result confirms our initial statement that
GPP models substantially underestimate the photosynthetic up-
take of highly productive crops. However, it is challenging to
relate GPP and yield-based NPP estimates in a quantitative way,
as it is difficult to account for heterogeneous land cover given the
coarse resolution of current SIF retrievals. For example, much of
Northern Europe is a mosaic of forests (which have low SIF) and
agricultural fields. This may partly explain the apparently lower
productivity of European agricultural regions.
Continuing the comparison of model estimates to SIF-based

crop GPP over the globe (Figs. 6 and 7 and SI Appendix, Deri-
vation of Spatially-Explicit Crop GPP Estimates), spatial patterns
of SIF-based crop GPP estimates differ from data-driven models
by 40–60% in the US CB area and by 50–75% in some regions of
the Indo-Gangetic Plain, the North China Plain, and the Sahel belt
in Africa. Smaller differences within 0–10% are found in Europe.
In terms of area-integrated annual GPP estimates (SI Appendix,
Table S2), the largest differences are found in the US CB region
(+43% for the data-driven models and +18% for the process-
based models) and the Indo-Gangetic Plain (+55% and +39%,
respectively). A remarkable difference of −38% is also obtained

between the SIF- and the process-based model estimates in the
cropland areas between Brazil and Argentina. This area is often
specified in biogeochemistry models as C4 grasslands, which
have higher productivity than the C3 grasslands. Despite the
relatively important local differences, the global cropland GPP
estimated from SIF is in excellent agreement with the data-
driven models (17.04 ± 0.19 PgC·y−1 and 17 ± 4 PgC·y−1, re-
spectively), whereas a difference about −12% is found with the
process-based models (global cropland GPP of 20 ± 9 PgC·y−1).
These annual GPP numbers must be compared with the 14.8
PgC·y−1 given by Beer et al. (9) for croplands, and 123 PgC·y−1 for
the total of all biomes.
Time series of SIF- and model-based crop GPP over some

selected agricultural regions give insight into the differences
observed in the annual GPP estimates (Fig. 7). The variation
range of the monthly GPP estimates from SIF observations
agrees well with the estimates from data-driven models in all of
the selected cropland regions, which supports the consistency of
our approach of scaling SIF to GPP using direct comparisons
between GOME-2 SIF data and flux tower-based GPP. Also, the
seasonal variations of data-driven and SIF-based GPP estimates
are in general very consistent in all regions, and especially in
Western Europe and China (Fig. 7 B−D). Estimates over the US
CB and the Indo-Gangetic Plain also show the same phenological
trends, but the SIF-based GPP estimates over the US CB are
systematically higher than data-driven estimates by about 20%
throughout the year (Fig. 7A). Over India, both GPP estimates
coincide for the so-called Rabi crops sown in winter and har-
vested in the spring, but SIF-based GPP is about 40% higher
than data-driven GPP for the Kharif or monsoon crops sown
around June and harvested in autumn (Fig. 7C). This large dif-
ference in the estimated crop GPP over India in autumn explains
the time shift of the global SIF-based crop GPP with respect to
the data-driven models (Fig. 7F). On the other hand, the tested
process-based models from the Trendy ensemble compare very
well with data-driven models and SIF over the Western Europe
region despite the lack of crop-specific modules in the Trendy
models. We hypothesize that this is due to the fact that West
European crops mostly follow the seasonality of grasslands, by
which crops are often represented in the models. However, these
models fail to describe crop phenology at the other regions and,
more significantly, the multiple cropping in China and India. A
time shift of the peak GPP estimates at the US CB with respect to
SIF-based and data-driven GPP can be explained by modeling
uncertainties associated to irrigation and also by the fact that
sowing and harvesting time in the US CB is different from the
lifetime of natural grassland (peak in June), as opposed to Western
Europe. Also, process-based models substantially underestimate
the peak GPP values for the US CB, India, and China regions, and
tend to overestimate GPP in South America, which explains the
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Fig. 5. Comparison of net primary production (NPP) estimates over the US
Corn Belt (35°N–50°N, 80°W–105°W) from the USDA agricultural inventory
(8) with crop GPP estimates from SIF retrievals (A) and data-driven and
process-based model ensembles (B and C). Points correspond to 1° grid boxes
with fraction of cropland area higher than 20%. GPP and NPP values are
given in per-total-area units (see SI Appendix, NPP Data from Agricultural
Inventories). The squared Pearson’s correlation coefficient r2 and the P value
of the comparisons are shown. An analogous comparison with the inventory-
based NPP from Monfreda et al. (7), which also includes Western Europe, can
be found in SI Appendix, NPP Data from Agricultural Inventories.
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spatial patterns observed in the annual GPP comparisons in Fig. 6.
These results illustrate the need for specific crop modules in global
dynamic vegetation models.
Considering the growing pressure on agricultural systems to

provide for an increasing food and biofuel demand in the world, a
global, time-resolved, and accurate analysis of crop productivity is

critically required. Crop-specific models or improved process-
based biogeochemistry models including explicit crop modules
could provide projections of agricultural productivity and climate
impact on crop yields (e.g., refs. 39–41). However, local in-
formation such as meteorology, planting dates and cultivar
choices, irrigation, and fertilizer application are needed. In this
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Fig. 6. Spatial details of the annual SIF-based crop GPP estimates over cropland areas (A), fraction of cropland area per grid box (B), and absolute and relative
differences between annual SIF-based crop GPP estimates and the output of data-driven models (C and E) and process-based models (D and F). Spatially
explicit GPP is derived through the scaling of SIF retrievals with the relationship GPP(SIF) = −0.10 + 3.72 × SIF (see SI Appendix, Derivation of Spatially-Explicit
Crop GPP Estimates). Cropland GPP is given in per-total-area units. The absolute difference ΔGPP is calculated as GPP(SIF) − GPP(model), and the relative
difference is calculated as ΔGPP over GPP(model).
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Fig. 7. (A–F) Time series of monthly crop GPP de-
rived from SIF retrievals, process-based models, and
data-driven models over different cropland regions
in 2009. GPP area averages are weighted by the
fraction of cropland area per grid box. Data-driven
GPP corresponds to the MPI-BGC data-driven model
(27). Process-based GPP estimates are calculated
as the median of the monthly GPP estimates from
the Trendy process-based model ensemble (28, 29)
(see also SI Appendix, Table S2).
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work, we have demonstrated that spaceborne SIF retrievals can
provide realistic estimates of photosynthetic uptake rates over
the largest crop belts worldwide without need of any additional
information. This finding indicates that SIF data can help us
improve our current models of the global carbon cycle, which we
have shown to substantially underestimate GPP in some large
agricultural regions such as the US CB and the Indo-Gangetic
Plain. The launch of the Orbiting Carbon Observatory-2 and the
Sentinel 5-Precursor satellite missions in 2014 or 2015 will
enormously improve the observational potential for SIF, up to
a 100-fold increase in spatiotemporal resolution (42, 43). This
will especially benefit measurements over the typically frag-
mented agricultural areas, which suggests that SIF-based esti-
mates of crop photosynthesis will soon become a unique data set
for both an unbiased monitoring of agricultural productivity and
the benchmarking of carbon cycle models.

Materials and Methods
We have used monthly averages of SIF retrievals (26) from the GOME-2 in-
strument onboard the MetOp-A platform to produce unique estimates of
global cropland GPP. GOME-2 SIF retrievals are performed in the 715- to
758-nm spectral window. Single retrievals are quality-filtered and aggre-
gated in a 0.5° grid. The GOME-2 SIF data set used in this study covers the
2007–2011 time period (see SI Appendix, SIF Retrievals).

Ensembles of process-based and data-driven biogeochemistry models have
been analyzed to assess the ability of global models to represent crop GPP
(see SI Appendix, Model-Based GPP Data). The process-based model ensemble
comprises the 10 global dynamic vegetation models (CLM4C, CLM4CN,
HYLAND, LPJ, LPJ-GUESS, OCN, Orichidee, SDGVM, TRIFFID, and VEGAS) in-
cluded in the Trends in net land carbon exchange over the period 1980–2010
(Trendy) project (28, 29). It must be noted that these models do not include
explicit crop modules. The data-driven model ensemble consists of the
MTE1, MTE2, ANN, KGB, and LUE models used by Beer et al. (9). In addition,
monthly GPP estimates from the MPI-BGC data-driven model (27), which
corresponds to the MTE1 in the data-driven model ensemble, and the MODIS
GPP product (MOD17) (31) have been compared with monthly flux tower-
based GPP over croplands and grasslands to evaluate the ability of data-
driven models to reproduce GPP at those biomes. Cropland GPP is calculated
from the SIF observations and the model ensembles as the product of the
total GPP in each 0.5° grid box by the fraction of cropland area given by
Ramankutty et al. (6) (see SI Appendix, Derivation of Spatially-Explicit Crop
GPP Estimates). EVI data in Fig. 4 and SI Appendix, Comparison of Flux

Tower-Based GPP with Model GPP, SIF and Vegetation Indices, have been
extracted from the MODIS MOD13C2 product (15).

Flux tower-based GPP estimates covering the 2007–2011 period were
extracted from 14 sites in Midwest United States and Western Europe. Sites
correspond to the Ameriflux and the European Fluxes Database networks.
Only the most spatially homogeneous sites have been selected to enable
direct comparisons with the SIF observations and the GPP model outputs
available in 0.5° grid cells. The relationship GPP = −0.1 + 3.72 × GPP derived
from the comparison of GOME-2 monthly SIF composites with flux tower
GPP data has been used to scale SIF to GPP (see SI Appendix, Comparison of
Flux Tower-Based GPP with Model GPP, SIF and Vegetation Indices).

Large-scale NPP estimates have been derived from the USDA-NASS (38)
and Monfreda et al. (7) agricultural inventory data sets. The USDA inventory
covers North America and the 2006–2008 period. It is based on a statistical
method to upscale county-level crop NPP data from the USDA National
Agricultural Statistics Service (8, 38). The inventory by Monfreda et al. (7) is
for 2000. It is based on the aggregation of 175 crop classes in a 5 min by
5 min grid. Inventory-based NPP is converted from per-harvested-area to per-
total-area units through scaling by the fraction of harvested area, following
Monfreda et al. (7) (see SI Appendix, NPP Data from Agricultural Inventories).
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