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Recommendations 

1.1 Immediate 

1. Estimates of ILUC by all methodologies should incorporate complete and systematic 

characterization of their inherent uncertainties.  

2. For existing models, characterize the uncertainty in each model component to allow (in the 

medium-term) the propagation of uncertainty through an integrated model of indirect effects. 

3. ARB should analyze and clarify the objectives it proposes to seek through the LCFS and those it 

thinks inappropriate. 

4. Improvements in modeling and data (see other subgroup reports) will probably reduce 

uncertainty ranges for specific fuel g values; this will make accounting for uncertainty in LCFS 

implementation easier, but will not avoid explicit decision analysis of the types we describe. 

5. Establish a formal multi-disciplinary expert elicitation process to improve the analysis of 

uncertainty, compare expected outcomes with expert opinions, and produce probability 

distributions for ILUC emissions or for parameters to models of ILUC emissions (Morgan et al 

2009). 

1.2 Medium-term 

1. Propagate uncertainty through at least one integrated model of indirect effects. Use this model 

to perform a global sensitivity analysis, which will quantify the relative contribution to variance 

of each uncertain model parameter in the context of the full model. These results will be useful 

for focusing further research efforts on those uncertainties that substantively affect model 
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results. We note, however, that this approach does not account for model uncertainty, which is 

also substantial.  

2. Formally recognize the difference between γ – the actual changes in global warming caused by 

using a fuel, and g – the value selected to represent this in the LCFS. No model can estimate γ 

perfectly; CARB must select the value for g that best achieves its goals. 

3. Examine and characterize the cost of error at least for important possible asymmetries such as: 

a. climate (∆T) cost 

b. future evolution of biofuel technology, especially advanced (high-yield, cellulosic, non-

land based, etc) biofuels 

c. non-climate costs (e.g., food, economic impacts, biodiversity, sustainability) 

d. system response (e.g., petroleum rebound effect)    

1.3 Long-term 

1. Explore a meta-model that combines results from several models of ILUC emissions. If available, 

include alternative models that are not based on economic equilibrium alone, such as system 

dynamics and agent-based models. This analysis would help understand whether the intra-

model uncertainty overwhelms the infra-model uncertainty. 

2. In lieu of focusing only on quantitative values for iLUC, establish an expert elicitation process to 

recommend adaptive decision rules and guidance for categorizing feedstocks and fuel pathways 

according to relative iLUC risk, based on an assessment of all available information. 

 

 

General Observations 

How much should be invested to reduce uncertainty?  

--LUC is a complex social and biophysical phenomenon with significant variation across space 

and time.   

--Validating the role of any one factor/driver of LUC is difficult, at best, and very information-

intensive.     

--So, even with substantial additional investments in GTAP, some uncertainties surrounding 

current iLUC estimates are irreducible.  

What might be done to constructively address this uncertainty? 

“...in many situations, limitations of data, scientific understanding, and the predictive capacity of models 

will make (uncertainty) estimates unavailable, with the result that they must be supplemented with 

other sources of information."   

--Morgan et al. (2010), "Best Practices for Characterizing, Communicating, and Incorporating 

Scientific Uncertainty in Climate Decision making." 
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"Expert elicitation" is a formal assessment by individual experts, based on the full range of scientific 

evidence, of their best judgment of a subjective probability distribution for the value in question. Expert 

elicitations have been used to address many questions of climate science (e.g., role of aerosols).  While 

not a substitute for further research, expert elicitation can allow for a formal expression of diversity of 

opinion not fully reflected in the literature. Experts could review full suite of information defining the 

influence of biofuels on iLUC, not only from GTAP, but including other models (FASOM/FAPRI), 

databases, and studies from other disciplines.    

Perspectives 

Not all subgroup members were in full agreement with the following perspectives.   

Perspective 1 
Regarding current published estimates of ILUC, peer review is generally a good standard but poor papers 

also get accepted.  Beyond that, this is a difficult standard to meet in a new and emerging field.  We 

could be just one new paper away from a new paradigm in an early stage of understanding.  In addition, 

expert judgment also counts for a great deal, may be superior to published conclusions, and in some 

analyses is used as a basis for parameter estimation and decision making.  Bauen et al (reference added 

below) suggest based on their analytical approach, that at least one crop-based biofuel (British wheat) 

has very low ILUC values, bordering on 0. 

To reduce the risk to terrestrial carbon stocks and large additions of C to the atmosphere from their loss, 

Bauen et al., recommend measures to directly protect high carbon stock land, the use of land with low 

soil organic matter levels or the production of crops and use of management practices which conserver 

or increase soil carbon, the use of advanced, high yielding agricultural methods that increase yields at a 

greater rate than inputs used for production, better supply chain efficiency, complete use of co-products 

and associated integration of crop and livestock systems to optimize resource use and minimize the 

landscape footprint of these systems.  They call these approaches action-based and contrast them with 

the use of ILUC factors generated by models like GTAP.  Their analysis leads to a preference for specific 

actions over the use of inferential values generated by models. 

While these measures are not part of the current AB32 framework, that may be more a matter of 

omission than intent.  I can see no reason why the state cannot enter into performance contracts with 

willing foreign entities to directly protect significant areas.  It need not act alone and could be joined by 

other willing jurisdictions, NGO’s, etc.  A tax on fuel to do this could provide revenue.  This may be more 

cost effective than the current policy itself.  Thus the recommendation is for CARB to extend policy 

scope to address the greatest uncertainty and largest GHG effects which are associated with a few 

landscape types and areas.  CARB should consider a separate policy restricting use of such landscapes 

for economic purposes may reduce uncertainty and the risk of policy failure more than improved 

analysis and modeling. 
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Perspective 2 
 

Much of the discussion of uncertainty has revolved around "scores" from a common set of economic 

models using land cover data which has been shown to be unreliable for estimating land use (CBES 

2009).  However, given the inherent uncertainty of data, assumptions and relationships underpinning 

those models, we may later discover that they were not useful tools for estimating ILUC. Indeed, 

economic models driven by differential prices are unlikely to enlighten estimates of “hollow frontiers” 

yet, that is precisely what they attempt to do when simulating first-time conversion of land areas (Rueda 

2010, Turner 2010). Turner states, “Land change research, by definition, must establish the land-use and 

-cover changes in question, commonly reported by the full area of the study.”  These steps have not 

been taken to support modeling of ILUC.  There is no scientific consensus on the conceptual framework 

showing a chain of causality between the proposed LCFS policy and new land clearing. While prices 

affect decisions about what to plant, other factors predominated in the processes that by necessity 

occurred previously and determined what land was cleared.   

 

Furthermore, the current models do a very poor job of depicting direct land use in the USA - something 

that needs to be improved as a prerequisite if we hope to eventually get better estimates of indirect 

effects.  For example, data need to be analyzed to verify the degree of impact that bioenergy policy may 

have on keeping US land in production, and what emission profile changes occur with and without 

bioenergy policy.   

 

However, even with substantial additional investments in data and analysis, there seem to be real limits 

to the degree to which quantitative estimates of the role of any one factor influencing LUC can be 

improved.  Land use change (LUC) is a highly complex social and biophysical phenomenon that exhibits 

significant variation across space and time.  Turner et al. (2007) observe that “…no facet of land change 

research has been more contested than cause,” and describe how results of LUC evaluations differ 

depending on the discipline of the investigator,the methods applied, the spatial scale and timeframe of 

evaluation, and the quality of underlying data.  And while economic factors and market conditions have 

captured demand for land reasonably well at a macro scale, these relationships are often observed to 

break down when analyzed with finer resolution. Finally, they note that the role of biophysical factors in 

LUC has, in general, received less attention than economic and institutional ones.   

 

In our view, estimating the incremental influence of biofuel demand on land use and corresponding GHG 

impacts through the use of an international trade model coupled with incomplete land cover data is 

likely too reductive an approach for a policy instrument as complex as LCFS.  This leaves policymakers 

facing uncertainties that are, at their core, irreducible.   

 

It has been argued that good biofuel policy can (and should) have positive impacts on deforestation and 

land use (Kline et al. 2009). Policy can best address potential negative effects when it sets goals that are 

performance-based and measurable. Could the bar be raised to create stronger incentives to maintain 

or increase the carbon stocks on all land used for bioenergy production? Could policy more effectively 
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reinforce efforts (such as those by Brazil) to develop and apply land use planning, transparent 

monitoring and carbon stock accounting, to reduce emissions from forest degradation and loss? These 

questions can best be addressed if policy makers are informed with data, scientific research and analysis 

of policy effects – all important tools that could provide more robust estimates in conjunction with 

modeling.   

 

Given the uncertainty surrounding the basic conceptual model framework for ILUC, efforts for reducing 

uncertainty should begin by developing better representations of the current and potential relationships 

between the LCFS policy and land use; ones that are grounded on empirical data and scientific analytical 

approaches (verifiable, replicable, based on evidence).  Some specific suggestions for CARB along these 

lines include:  

a. Develop and verify analyses of recent empirical evidence to guide the adaptation of regulations to 

better fulfill defined goals for an effective, efficient, performance-based, LCFS.   

b. Establish a system to regularly update the analysis of policy effects with respect to targets: 

1. Assess factors affecting progress toward meeting goals for reduced emissions 

2. Focus on manageable time horizons for targets and assessments (4-6 years)  

3. Consider regulatory options that reduce uncertainty and transaction costs, and facilitate 

evaluation of performance 

c. Support research to clarify interactions among policy, shifting production, and domestic and global 

markets. For example, to: 

1. Better reflect trends and production capacities in baselines 

2. Distinguish how the current economy responded to “advance notice” – expected biofuel targets 

over time - versus how it was modeled as an imposed “demand shock” on a prior economy  

3. Assess how an expanding production base interacts with cyclic markets, volatility and risks to 

disruption (from weather, policy) 

4. Refine regulations to provide incentives for improved efficiency and more sustainable land 

management practices (per specific examples offered in Perspective 1) 

 

Perspective 3 
 

 Uncertainty about the size of indirect land use change GHG discharge (ILUC) triggered by biofuel 

cultivation has been a salient theme in biofuel policy debate since ILUC was first estimated.  The Low 

Carbon Fuel Standard (LCFS) requires the Air Resources Board to assign a global warming index to each 

fuel in the California vehicle fuel system, an index that includes so-called “direct” emissions of GHG per 

energy unit of the fuel and also its attributed ILUC (which some advocate should be taken as zero).   This 

discussion attends to uncertainty about ILUC
1
, a quantity estimated by different models and methods to 

have a wide range of values that will probably shrink with further research but not to zero in the time 

the LCFS must operate.  

                                                           
1
 But note discussion in Appendix A regarding uncertainty in “direct” emission estimates. 
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 In the following discussion, we distinguish three quantities:  

• g*ij   =  estimate of “physical” GWI of fuel i from model j  

• γi  = real “physical” GWI:  if fuel i is substituted for fuel k on a MJ/MJ basis, additional GHG 

release is (γi  - γk).  

• gi  = operational GWI of fuel i used in LCFS implementation. 

γi  cannot be observed directly, and uncertainty about its real value leads to analytic questions 

regarding how the ARB should best implement its task of assigning gi values to fuels.  

The sources of uncertainty about ILUC include  

• Errors in assumed conceptual frameworks: relationships between biofuel policy and land use 

change 

• Errors and variety in model structures 

• Errors in model parameters estimated from data 

• Intrinsic variation in real-world variables over time and space 

• Variation in judgment on the part of different stakeholders and experts 

• Concern that existing models rely on a narrow land use data base 

• Uncertainty about the correct metric used to compare fuels and represent policy effects 

 

Other subgroups are attending to better modeling and prediction practice that can reduce these 

sources; our discussion begins with a refractory remaining non-trivial uncertainty, uncertainty on whose 

importance ILUC modelers agree: 

The lesson for policymakers is that results from economic models depend heavily on 

assumptions, and because we are trying to predict long-run human behavior, there can be 

legitimate differences in these assumptions.”– Dumortier et al. 2009 

…this modeling project has demonstrated how the current limits to data availability create 

significant uncertainty regarding outcomes predicted by these policy simulations. – Al-Riffai 

et al. (IFPRI) 2010 

…our experience with modeling, data, and parameter estimation and assumptions leads us 

to conclude that one cannot escape the conclusion that modeling land use change is quite 

uncertain. Of course, all economic modeling is uncertain, but it is important to point out 

that we are dealing with a relatively wide range of estimation differences. – Tyner et al. 

2010 

Unfortunately, the research base on which the present analysis rests is currently quite thin, and 

important elements remain to be filled in.  Estimates of ILUC from different analysts report uncertainty 

incompletely and inconsistently, sometimes varying a few key parameters or model features and 

reporting the range, sometimes presenting a Monte Carlo analysis including variation of only a partial 

set of parameters or inputs. We are not aware of published research linking uncertainty in ILUC 
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estimation to the specific assignment of GWI values, nor of other jurisdictions engaged with biofuels 

policy having adopted a systematic approach to ILUC uncertainty. 

Although the number of estimates of ILUC emissions is growing, virtually all the studies to date have 

relied exclusively on local sensitivity analyses to generate a range of values from their models. These 

alternative model runs do not illuminate the overall uncertainty in the estimates, nor do they identify 

the model parameters that contribute the bulk of the variance in the result. A more systematic analysis 

of uncertainty will be extremely useful. 

Key assumptions and spatial relationships, including causality analysis and more detailed analysis of 

where LUC and ILUC occur and the corresponding GHG emission implications, remain untested . 

 

Error! Reference source not found. shows the ranges of results reported in several studies of ILUC 

emissions induced by expanding corn ethanol production in the US. These values are discussed in more 

detail in Plevin, O'Hare et al. (2010b). The range shown for Tyner, Taheripour et al. (2010) results only 

from different base years and different treatment of demand growth and the relative productivity of 

converted cropland. The range for Hertel, Golub et al. (2010a) is based on a combination of high and low 

values for various uncertain economic model parameters. The range in Dumortier, Hayes et al. (2009) is 

based on evaluating alternative versions of the FAPRI model. Values for USEPA (2010) reflect the 95% 

confidence interval around mean, considering only the uncertainty in satellite data analysis and carbon 

accounting. Al-Riffai, Dimaranan et al. (2010) estimated the range of results of an additional 10
6
 GJ of 

biofuel beyond meeting the 5.6% mandate and for greater trade liberalization. 

 The fact that there is such high variability in these reported results is noteworthy given that these 

results are limited to a few computational equilibrium economic models using common sources of data 

for key emission factors. Specifically, the results were all based on economic equilibrium modeling that 

“shocked” an assumed static production case with increased biofuel demand for feedstock.  Some 

experts doubt that such an approach is an appropriate representation of LCFS policy.  Secondly, the 

models used a common data set for estimated average carbon stocks on the land assumed to be 

converted.  This controlled for another area of large recognized uncertainty – e.g. the assumed values 

are not supported by analysis of areas where new land is being brought into production in response to 

markets.  

Figure 2 portrays possible probability distributions for ILUC of US corn ethanol as generated in Plevin et 

al 2010, emphasizing that while different aggregations of different model results and ranges may give 

different results, these distributions are all  asymmetric to the right.  No model of which we are aware 

has shown zero ILUC for any current biofuel, but possible combinations of plausible parameter values 

can generate very high values at least within The types of model reviewed here, which are CGE 

estimates based on an exogenous shock to biofuel consumption of the general type currently adopted 

by ARB.  
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Figure 1. Ranges of results from models of ILUC emissions. This figure is derived from the data 

presented in Plevin, O'Hare et al. (2010b), with the addition of the entry for Tyner et al. (2010). 
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Figure 2. Probability distributions for ILUC for US corn ethanol, from models of ILUC emissions using 

each of four forms of distribution for elements of the reduced-form model. This figure is derived from 

the data presented in Plevin, O'Hare et al. (2010b), with the addition of the entry for Tyner et al. 

(2010). Whiskers are total range, ticks are 95% HDRs. 

 

 

The uncertainty documented in these two figures is that observed in the selected economic 

models and may not necessarily reflect an estimate of uncertainty of model results compared to “the 

real world.” 

Uncertainty in regulatory environmental modeling 
All models are simplifications and approximations of reality (NRC 2007). Best practice for regulatory 

decision making based on models includes quantification and communication of uncertainty. For 

example, the draft guidance from US EPA’s Council for Regulatory Environmental Modeling (CREM) 

recommends performing sensitivity and uncertainty analyses to inform users of the confidence that can 

be placed in model results (Pascual, Stiber et al. 2003). A report (NRC 2007) by the National Research 

Council’s Committee on Models in the Regulatory Decision Process, convened at the request of the 

CREM, says: 
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In some cases, presenting results from a small number of model scenarios will provide an adequate 

uncertainty analysis (for example, cases in which the stakes are low, modeling resources are limited, or 

insufficient information is available). In many instances, however, probabilistic methods will be necessary 

to characterize properly at least some uncertainties and to communicate clearly the overall uncertainties. 

The NRC report notes that a full probabilistic analysis is frequently infeasible for large models, but rather 

than using this as justification for avoiding uncertainty analysis, the NRC suggests combining sensitivity 

analysis, probabilistic methods, and scenario analysis to characterize uncertainty as well as possible 

under time and data constraints. In a study by Resources for the Future—commissioned by EPA—

Krupnick et al (2006, p. 7) concur, writing:  

Overall, there is a tendency to avoid formal uncertainty analyses unless the uncertainties can be included 

comprehensively and quantified precisely. An alternative—arguably, preferred approach—would be to 

conduct uncertainty analysis as best as possible, even if abilities are limited; almost any uncertainty analysis is 

better than none at all. 

Incorporation of uncertainty in ARB LCFS implementation 
Against the background described above, we now examine the specific task confronting the ARB, which 

is to move from the variety of estimates and sketchy uncertainty portrayals for each to a single value of 

each fuel’s GWI.   

Options: 

• ARB can use the central, most likely, or single reported value of gij* for a chosen model estimate 

as the operational gi.  In turn, this chosen model may be specified by a prespecified rule such as 

“most recent peer-reviewed published value”, or by staff analysis of competing estimates. 

• ARB can average different estimates, with or without weights representing some measure of 

confidence in each. 

Both of the foregoing treat uncertainty especially heavy-handedly or ignore it.  In situations of poorly 

structured uncertainty like ILUC, where variability in estimates is rooted not only in sampling from well-

behaved stochastic processes but also in differences in model structure and assumptions, heuristic 

practices like  

• ARB can develop a structured expert elicitation of opinion to construct an operative probability 

density  function  

This may be useful, particularly if ARB convokes a multi-disciplinary panel with expertise in dealing with 

global data on land cover and land-use change, and those experienced in addressing land-use change 

challenges – e.g. people who are working in the field to address land-use change and therefore have 

practical understanding of the relationships between LUC drivers and policies at various levels.  It is 

important to get feedback from field-based experts concerning which policy and regulatory options are 

most likely to be helpful  (or harmful) to efforts to improve land management  and curb destructive  

land-use change   
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Sometimes it is possible to choose an action that is robust across a wide range of possible values of an 

uncertain quantity, or to invoke some version of the “precautionary principle” and avoid actions that 

might cause especially great and/or irreversible damage.  What these would look like within the 

constraints of the LCFS as currently structured, which requires a precise operational value of g for each 

fuel  (as opposed to designing a completely different policy to reduce vehicle GHG) is not clear at 

present. 

 If we regard assignment of a GWI to a fuel as an action, choosing the optimal value on some systematic 

grounds from many possible values,  we can frame the policy challenge as  

• solving a problem in decision theory.   

Even if ARB cannot implement this framing with complete formality, the description will highlight the 

importance of objectives and the cost of error, neither of which has received sufficient attention in the 

biofuels context to date. The elements of this framing are as follows (O’Hare et al 2010):  

A probability distribution f  for γi, the physical GWI of fuel i  in the sense described above.  The 

distributions in Figure 2 are illustrative of the asymmetry that may apply.    

 Because of this asymmetry, choosing the ‘best’ value for gi is not simply a matter of choosing the 

mode (most likely value) of the distribution, and the cost of being wrong also matters.  Regulation 

commonly chooses values “on the safe side”, that may be far from the most likely or central values, 

when the cost of being wrong is greater in one direction than the other.  For example, structural 

materials like steel are used as though they are weaker than we know they ‘really’ are, because the cost 

of overestimating their strength (collapse of structures and lost lives) is much greater than the cost of 

underestimating them (more expensive structures). 

Furthermore, the fuel market and related systems will respond to a choice of gi in ways more 

complicated than direct substitution of fuels (the fossil fuel “rebound” effect is one such potential 

response).  Representing this response as R{gi}, a vector of variables with probability distribution h, the 

value of the outcome of this system as V, a general formulation of the regulatory choice is to choose a 

set of values gi so as to maximize the expected value of V over distributions f and h 

  

Note that it is the probable asymmetry of a reasonable probability distribution for γ that forces our 

attention to the cost of error, a concept that in turn forces attention to ARB’s objectives for the LCFS. 

These are not unambiguously inferable from the regulations or the executive order itself.  For example, 

any of the following different goals might be the right ones for ARB to pursue (characterizing V in the 

expression above):  

• Climate 

– Minimize difference gi – γi ?  

– Minimize ∆T at a date (end of LCFS?) 

– Minimize  additional GHG in atmosphere at a date (end of LCFS?)  

{ } { }( )[ ]}{,,, iiihf ggVE Rγ=
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– Minimize total forcing up to a date? 

– Minimize probability that a condition will fail (LCFS increases one of the above)? 

• Other 

– Minimize social cost (including cost of ∆T, food effects, socioeconomic/welfare 

effects…?) 

– As of when (discounted how?) 

 

Figure 3 illustrates the importance of the shape of the cost of error function (the value lost if g differs 

from γ by some amount), simplifying by omitting consideration of R.  If the cost is linear and symmetric, 

the optimal value of g is the median of the distribution of γ; if it is asymmetric like the blue example, the 

optimal value is higher.   

 

Figure 3. Illustration of the relationship between uncertainty about γγγγ, the cost of g being different 

from γ,γ,γ,γ, and the optimal value of g  

Mode
Mean

Median

Cost of error

Symmetric
Asymmetric

Cost of error

 

Little is known about the cost of error in g nor has the ARB explicitly explored the implications of 

different objective frameworks on the best value to assign to fuel GWI.   A variety of considerations   

affect the symmetry,  the functional form of missing the “true” value of γ by some degree in either 

direction, including the effect on the advanced biofuels industry, effects on food consumption and cost, 

irreversibility or very slow reversibility of at least some land use change (which vary significantly by fuel 

type and location), and the uncertainty surrounding which choices could trigger catastrophic events like 
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the Gulf Stream stopping or peat decomposition feedback, and land use change that may reduce 

deforestation.  
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Appendix A: Uncertainties in estimates of fuel global warming intensity  

 

Although our primary focus here is indirect land use change, it’s important to recognize that fuel life 

cycle assessment (and LCA more generally) is always uncertain, and that LCAs of natural systems are 

more uncertain than those of engineered systems. In particular, the global warming intensity of biofuels 

is much more uncertain than that of fossil fuels, owing to variability and uncertainty in yield, soil carbon 

fluxes, co-product credits, and N2O emissions (Edwards, Szekeres et al. 2008). In contrast, approximately 

80% of the climate effects of refined fossil fuels results from CO2 released during combustion, about 

which there is relatively little uncertainty.  

In the CARB model, which adds GREET fuel cycle results to ILUC estimates, the uncertainty in ILUC 

emissions, which we believe has a right tail (Plevin, O'Hare et al. 2010a) must be combined with the 

uncertainty in the GREET model result, which for many biofuels also has a right tail. 

In principle, the best way to understand how these uncertainties affect the estimate of ILUC would be to 

combine the economic, landcover change detection, emissions, and time handling in a single model that 

could be run stochastically, e.g., using Monte Carlo simulation. This would allow us to understand (i) the 

contribution to uncertainty of different components, and (ii) estimate the uncertainty in the estimate of 

ILUC emissions produced by the combined model. It would also allow us to use an estimator such as 

mean or median rather than a point estimate for use in the LCFS. Importantly, the mean or median will 

differ from a point estimate produced using average inputs when the output distribution is skewed. 

Analysis using a reduced-form model of ILUC emissions suggests that the distribution for these 

emissions may have a long right tail (Plevin, O'Hare et al. 2010a). 

However, a stochastic simulation of an integrated model poses some challenges: 

• As used by CARB, GTAP requires about 10 minutes per solution on a typical desktop computer. A 

simulation with a relatively small number of trials (say, 1000) would take about a week of 

continuous (24/7) run time. This time could be reduced by splitting the analysis over a number 

of computers, assuming each was able run GTAP. (This may be more a licensing issue than a 

technical one.) 

• Many of the economic model parameters are poorly characterized. However, given this 

ignorance, it may be more appropriate to define poorly-characterized parameters using a 

uniform distribution over a plausible range rather than choosing a single point estimate as is 

currently done. 

• Correlation among model parameters is frequently difficult to characterize. 

• Differences in results across economic models used to estimate ILUC indicate much model 

uncertainty. Propagating uncertainty through the CARB modeling system would not capture this 

model uncertainty. 
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Hertel et al. used a version of GTAP with per-region emission factors built into the model to examine 

uncertainty using GTAP’s Systematic Sensitivity Analysis (SSA) feature (Hertel, Golub et al. 2010a; Hertel, 

Golub et al. 2010b). A significant limitation of this approach is that it permits only symmetric 

distributions, and produces only symmetric distributions as output. The SSA is therefore unable to 

inform us about skewness. Nor can it inform us about the contribution to variance of individual 

parameters. However, if Monte Carlo analysis is deemed too difficult, the SSA at least offers some 

indication of overall uncertainty. 

USEPA performed a Monte Carlo analysis to propagate uncertainties in their estimates of ILUC for the 

RFS2 program. Their analysis, however, treated as uncertain only those parameters related to remote 

sensing of changes in land cover types and to emission factors for land conversion: economic model 

output was treated as though known with certainty. However, uncertainties in the output of the 

economic model—namely, the magnitude and location of ILUC—appear to contributes more to the 

variance in ILUC emissions than do the remote sensing or emission factor uncertainties (Plevin, O'Hare 

et al. 2010a). Therefore, EPA’s frequency distributions cannot be used reliably to test compliance with 

RFS2. However, the underlying analysis will be useful for developing a more complete analysis of 

uncertainty, especially if CARB transitions to using the Winrock emission factor model. 
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