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Abstract. Burn severity products created by the Monitoring Trends in Burn Severity (MTBS) project were used to
analyse historical trends in burn severity. Using a severity metric calculated by modelling the cumulative distribution of

differenced Normalized Burn Ratio (dNBR) and Relativized dNBR (RdNBR) data, we examined burn area and burn
severity of 4893 historical fires (1984–2010) distributed across the conterminous US (CONUS) and mapped by MTBS.
Yearlymean burn severity values (weighted by area), maximum burn severitymetric values, mean area of burn, maximum

burn area and total burn area were evaluated within 27 US National Vegetation Classification macrogroups. Time series
assessments of burned area and severity were performed using Mann–Kendall tests. Burned area and severity varied by
vegetation classification, but most vegetation groups showed no detectable change during the 1984–2010 period. Of the 27
analysed vegetation groups, trend analysis revealed burned area increased in eight, and burn severity has increased in

seven. This study suggests that burned area and severity, as measured by the severity metric based on dNBR or RdNBR,
have not changed substantially for most vegetation groups evaluated within CONUS.
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Introduction

Some research has shown increasing wildfire frequency and
burned area in many regions within the conterminous US
(CONUS) over the past 30 years, likely because of climate and

related changes in fuels (Morton et al. 2013; Dennison et al.

2014) and management practices (e.g. fire exclusion) (Keane
et al. 2002). It is less clear whether the burn severity of these

fires has increased concurrently. Burn severity is defined by
the Monitoring Trends in Burn Severity (MTBS) project
(Eidenshink et al. 2007) and in the present paper as fire-related

visible change in biomass and soils that can be remotely sensed.
Using Landsat imagery, MTBSmaps the burn severity of all

reported fires (i.e. State and Federal fire records) greater than
404 ha in thewestern CONUS and 202 ha in the eastern CONUS.

Within the 1984–2010 timeframe,MTBS assessed burn severity
using Normalized Burn Ratio (NBR) products derived from pre-
fire and post-fire Landsat ThematicMapper (TM) and enhanced

TM Plus (ETMþ) satellite imagery. NBR is calculated by
differencing satellite near-infrared (0.77–0.90-mm) and mid-
infrared (2.09–2.35-mm) bands, dividing that result by their

sum, and multiplying the value by 1000. Differenced NBR

(dNBR) products are created by subtracting post-fire from
pre-fire NBR values to yield continuous values between
�2000 and 2000. Higher dNBR values relate to the higher

amounts of vegetation damage and soil exposure (Key and
Benson 2006). Relativized dNBR (RdNBR) is calculated by
adjusting the dNBR value by the pre-fire NBR value to account

for the amount of pre-fire vegetation cover and greenness
(Miller and Thode 2007). MTBS analysts then visually estimate
unburned, low, moderate and high burn severity breakpoints to

classify the continuous dNBR image. However, classified burn
severity images cannot be used to estimate the total burn severity
because they are imprecise: burn severity class proportions are
only a reflection of the analyst’s skill in assessing burn severity

(Lutz et al. 2011).
Lutz et al. (2011) developed the severity metric (SM) to

consistently characterise the overall burn severity as a function

of the distribution of burn severity over the entire burned area.
The SM is a unitless number ranging from0 to 1 and is calculated
from cumulative probability distribution of the continuous
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dNBR or RdNBR pixel values from within the fire perimeter,
and provides a single-value summary of burn severity for the
entire burn. SM is highly correlated with the mean dNBR or

RdNBR for fires with unimodal distributions and is a good
approximation of burn severity (Cansler and McKenzie 2014).
Quantification of burn severity change is achieved by comparing

SM values through time using nonlinear methods.
In this paper, we compare the SM values for 1984–2010 fires

assessed byMTBS todeterminewhether burn severity and burned

area have changed for 27 vegetation groups within CONUS.

Methods

Fire perimeter, dNBR, RdNBR and classified burn severity
images were obtained from MTBS (http://www.mtbs.gov,
accessed 1 January 2016) for CONUS. The MTBS project maps

prescribed fires and wildfires, but we assessed only wildfires.
For consistency in vegetation during the time period, fires were
grouped by LANDFIRE 2010 Environmental Site Potential

(ESP) climate-constrained vegetation types (see Rollins 2009;
for a full description of ESP). ESP types were further grouped
into USNational Vegetation Classification (NVC)macrogroups

(hereafter: ‘vegetation groups’) to regionally subdivide the
vegetation within CONUS into smaller, ecologically meaningful

units. A summary of the ESP types and related NVC vegetation
groups is provided in Table S1 and Fig. S1 in the supplementary
material (available online). The dominantNVCvegetation group,

i.e. largest area, was determined for each fire. We excluded all
herbaceous vegetation-dominated fires from analysis because
other studies have found it difficult to assess burn severity in

grasslands, which are usually totally consumed when burned
(Roy et al. 2006; Stambaugh et al. 2015). We also excluded
vegetation groups that had a sample size of less than 30 fires. In

all, 27 NVC vegetation groups were examined (Table 1).
We sampled a maximum of 1100 pixels per fire, yielding

,7 000 000 pixels. Pixels were chosen based on the percentage
of pixels in the unburned, low, moderate and high burn severity

classes within the burned perimeter, and then stochastically
selecting the same percentage of coincident pixels from the
dNBRandRdNBR images to provide a samplewith a distribution

representative of all pixels within the burned boundary.
The distribution of dNBR and RdNBR pixels for each fire

was examined using the diptest (Hartigan and Hartigan 1985;

Hartigan 1985; Mächler 2004) to determine if the distribution of
the data was multimodal. Multimodal fires (diptest: P # 0.05)
were dropped (Table 1) because their cumulative distribution

residuals violated the assumption of normality (Lutz et al. 2011).
From the total of 10137 fires assessed by MTBS, 4893 fires

Table 1. Vegetation groupings examined in this study

Area sample size (n), sample size of fires (n) examined by differenced Normalized Burn Ratio (dNBR) and relativised dNBR (RdNBR), total area (ha)

of all included fires (Area), area of reburn (Overlap) and percentage of dominant vegetation type per vegetation grouping (% Veg) examined in this

study that are not composed solely of grassland and have at least 30 samples

Vegetation group Area n dNBR n RdNBR n Area (ha) Overlap (ha) % Veg

California chaparral 122 120 114 740 113 257 502 62%

California coastal scrub 117 115 113 311 033 201 269 62%

California forest and woodland 232 228 219 683 803 208 394 74%

Central Midwest oak forest 190 185 185 254 272 92 576 76%

East Cascades oak–ponderosa pine forest and woodland 165 159 155 516 503 51 846 72%

East Gulf coastal plain northern loess bluff forest 134 124 123 103 826 59 079 63%

Great Basin and Intermountain tall sagebrush shrubland and steppe 1189 1133 1152 4 867 008 2 663 129 77%

Great Basin saltbush scrub 148 147 147 817 386 415 888 52%

Great Plains sand grassland and shrubland 54 52 52 307 387 5782 67%

Intermountain singleleaf pinyon–Utah juniper–Western juniper woodland 540 503 508 1 895 365 640 298 61%

Laurentian and Acadian northern hardwood–conifer mesic forest 43 41 41 169 867 49 916 59%

Longleaf pine woodland 72 65 64 54 251 30 548 55%

Madrean lowland evergreen woodland 114 112 108 301 964 89 363 56%

Mojave–Sonoran semi-desert scrub 248 235 237 932 302 260 725 71%

North American Atlantic and Gulf coast salt marsh 59 59 59 77 382 139 428 93%

North American boreal flooded 36 36 36 155 260 230 040 62%

Northern Rocky Mountain foothill conifer wooded steppe 383 374 367 1 455 491 170 740 68%

Pond-cypress basin swamp 102 94 90 98 202 32 458 68%

Rocky Mountain subalpine–high montane conifer forest 148 119 110 894 083 123 752 78%

Sonora–Mojave mixed salt desert scrub 51 51 51 96 011 38 742 68%

Southern coastal plain evergreen hardwood and conifer swamp 79 70 72 68 842 24 327 53%

Southern Rocky Mountain lower montane forest 180 177 173 601 256 126 511 78%

Southern Rocky Mountain two-needle pinyon–one-seed juniper woodland 232 214 215 437 388 67 174 61%

Vancouverian lowland and montane forest 41 37 35 76 912 12 931 83%

Vancouverian subalpine forest 38 38 38 43 635 6326 54%

Warm and cool desert alkali-saline wetland 88 85 86 242 445 163 111 37%

Warm interior chaparral 88 81 80 176 081 38 796 59%

Total or mean 4893 4654 4630 16 378 068 6 200 650 66%
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remained for analysis. The exclusions resulted in sample data not
being available for every vegetation group for every year.

The dNBR pixel values between �200 and 1200 accounted

for 99% of the range of the calculated dNBR values for each
vegetation group except California coastal scrub and North
American boreal flooded (98%). A sigmoidal curve function

was fitted to the cumulative dNBR distribution using Eqn 1,
wherea is the steepness of the curve and b is themidpoint x value:

y ¼ 1:0

1:0þ e�aðx�bÞ ð1Þ

SMwas calculated by subtracting the area under the curve from 1
(Lutz et al. 2011):

SM ¼ 1�
X1200

i¼�200

Proportion of pixels � i

1401
ð2Þ

The entire range of data assessed (iþ 1)was equal to 1401 (Eqn 2)

for dNBR. Higher SM values indicate higher overall burn
severity.

We compared the dNBR and RdNBR SM estimates in all

analyses using the Wilcoxon signed rank sum paired test to
determine if they were significantly different from one another
(P, 0.001). Values between �600 and 2000 were found to

account for 99% of the calculated RdNBR data values in all
vegetation groups except California coastal scrub (97%), North
American Atlantic and Gulf Coast Marsh (98%) and North
American boreal forest (97%).

Burn severity has been shown to be correlated with fire size
(Lutz et al. 2009; Miller and Safford 2012; Cansler and
McKenzie 2014). To reduce bias in evaluating mean severity

per year and reassess whether burn severity has increased over
the 1984–2010 time frame, an area-weighted mean SM value
(SMA, Eqn 3) was calculated using the following formula

(A, area in hectares):

SMA ¼
P

SMðAÞP
A

ð3Þ

Unitless SMA values range from 0 to 1. The yearly maximum
SM value was found to assess whether extreme fire events are
increasing in severity. Yearly SMA and maximum SM

(SMmax) values were then assessed through time using
Mann–Kendall tests (Mann 1945; Kendall 1975). Slope
trends were calculated using the Theil–Sen estimator (Theil

1950; Sen 1968).We assumed a P value,0.05 is indicative of
the significance for the Mann–Kendall tests (slope not equal
to zero). Slope values indicate the trend’s relative rate of

change. Using Mann–Kendall tests has the potential to cause
Type II errors (Yue et al. 2002) when assessing trends for
shorter time series and result in errors due to temporal
autocorrelation (von Storch 1999). Additionally, there were

years when no SMA or SMmax data were available. To address
these problems and identify whether a trend existed over the
27 years of the time series, we performed a bootstrap resam-

pling procedure where the data were randomly resampled
10 000 times to determine whether their Theil–Sen slopes were
significantly different from zero using the same methodology

as Dennison et al. (2014). The trend assessment methodologies
(including bootstrapping procedures) were also applied to
assess mean and maximum fire area to determine whether

changes in fire size were evident through time in the vegetation
groups.

Results

Fire time series analyses

Seven of the 27 vegetation groups exhibited a significant
increasing trend in either SMmax or SMA during the 1984–2010

time period as determined by both the Mann–Kendall and
bootstrapped Mann–Kendall tests (Table 2 and Fig. 1).
Decreasing burn severity through time was not evident in any of
the vegetation groups. Different trends were identified

depending on whether the dNBR or RdNBR assessment was
used. dNBR-assessed severity exhibited changes in SMA (n¼ 3)
and SMmax (n¼ 4), whereas RdNBR (n¼ 3) only exhibited

Table 2. Vegetation groups that showeda statistical increase in the severitymetric (SM) through time derived fromdifferenced

Normalized Burn Ratio (dNBR) and relativised dNBR (RdNBR)

Mann–Kendall time series assessment of the significant changes (Sen’s slope; slope in severity metric per year) by yearly mean

(weighted by area) or maximum (Max) dNBR and RdNR Severity Metric (SM) values during the 1984–2010 time period, stratified by

Vegetation Group. Refer to Table 1 for the sample size per assessment type (i.e. dNBR n and RdNBR n). P values from 10 000-iteration

blocked bootstrapping procedure were also calculated where significance is indicated by one asterisk (0.01.P# 0.05), two asterisks

(0.001.P # 0.01) and three asterisks (P # 0.001)

Vegetation group Assessment type SM type Slope P value

California chaparral dNBR Max 0.006 0.010**

California chaparral dNBR Mean 0.005 0.041*

Central Midwest oak forest dNBR Max 0.009 0.036*

Central Midwest oak forest RdNBR Max 0.012 0.025*

Madrean lowland evergreen woodland RdNBR Max 0.005 0.024*

Rocky Mountain subalpine–high montane conifer forest dNBR Max 0.009 0.038*

Southern Rocky Mountain lower montane forest dNBR Max 0.007 0.005**

Southern Rocky Mountain lower montane forest RdNBR Max 0.013 0.001***

Warm and cool desert alkali-saline wetland dNBR Mean 0.002 0.048*

Warm interior chaparral dNBR Mean 0.005 0.018*
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trends in SMmax. In only two vegetation groups did both dNBR
and RdNBR show the same trend in SMmax.

Large wildfires significantly increased in area for only 8 of
the 27 vegetation groups (Fig. 2).Mean,maximumand total area
significantly increased through time for five, five and six

groups, respectively (Table 3). All significant trends in area,
except maximum area for Madrean lowland evergreen wood-
land, were also significant when assessed by bootstrapped
Mann–Kendall tests.

Discussion

Our results indicate that burn severity, as estimated by SM, is not
increasing within most of the vegetation groups assessed.
Increased mean burn severity was evident in only 3 of 27

vegetation groups; however, where burn severity is increasing,
yearly extreme fire events appear to be getting more severe. Our
results also indicated that fire size is not increasing inmost of the
vegetation groups assessed. However, in areas where burn
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Fig. 1. Time series of area-weighted mean (Mean; dark grey line) or maximum (Max; black line) dNBR or RdNBR

severitymetric (SM) value for each vegetation group that exhibited a significant trend in SM over time. Trend lines perMean

orMax SM time series are included (dashed lines). dNBR, differenced Normalized Burn Ratio; RdNBR, relativized dNBR.
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severity increased, fires got larger, with pronounced increases
from 2000 onward, and burn severity became more variable
during the study period (Figs 1 and 2).

Variation in fire size and burn severity

Other studies have shown increasing fire size within US regions

(Finco et al. 2012; Dennison et al. 2014; Zhao et al. 2015).
Observed trends in total areawere similar between our study and
the study of Dennison et al. (2014) within warm interior cha-
parrals and the Madrean lowland evergreen woodlands of

Arizona–New Mexico Mountains and for large fires within

warm deserts (warm interior chaparral) and Mediterranean
California (California chaparral). We did not find trends in total
area or large fires related to vegetation groups in the Southern

Plains or trends in large fires in the Arizona–New Mexico
Mountains as did Dennison et al. (2014), who also did not find
significant burned area trends in the Rocky Mountains, whereas

we did (Fig. 2). We also found similarities in trends between the
finding of Zhao et al. (2015) of increasing fire size in the northern
Rocky Mountains, although their results were not significant.
Differences between the studies’ results may be attributable to

how fires were assigned to vegetation groups and the associated
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Fig. 2. Time series of total (black line), maximum (Max; light grey line) and mean (Mean; dark grey line)

area (hectares� 104)) for each significant vegetation group that exhibited a significant trend in area over

time. Trend lines per Total, Mean or Max area time series are included (dashed lines).
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variation in the number of fires examined. We utilised finer

vegetation groupings to divide the fires into landscape-scale
ecological subunits that are relevant to land managers.

Our observed trends in MTBS burn severity differed from

previous studies that examined burn severity in the western US
(Dillon et al. 2011; Miller and Safford 2012). We did not
observe an increase in burn severity within Californian forests

and woodlands as Miller and Safford (2012) or Mallek et al.

(2013) found; however, Lutz et al. (2011) also did not find a
trend. Differences between the studiesmay be attributed to study

scale, i.e. large scale (Sierra NevadaMountains, CA; Miller and
Safford 2012) versus smaller scale (Yosemite National Park,
CA; Lutz et al. 2011). These differences may also be attributed
to local land management. For example, Miller et al. (2012)

found trends in the Sierra NevadaMountains (CA) on US Forest
Service lands but no trends in National Park Service lands with
the same vegetation, presumably because of prescribed fires on

Park Service lands. We did find evidence of increasing burn
severity in the southern Rocky Mountain lower montane forest,
Madrean lowland evergreen woodland, and warm interior chap-

arral, which aligns with the findings Dillon et al. (2011) that
burn severity increased in the Southwest. Like Dillon et al.

(2011), we also found that burn severity had not increased in
vegetation groups within the northwestern US. Discrepancies

are likely due to the reduction in the number of fires that were
examined in the present study. We only examined the MTBS
fires that met our criteria, and that was less than half of all

MTBS fires.
Both dNBR and RdNBR showed trends in burn severity;

however, they did not exhibit the same trends (Table 2). Burn

severity trend estimates were only similar for both dNBR and
RdNBR in the central Midwest oak forest and southern Rocky
Mountain lower montane forest vegetation groups. Variances

may be explained by the different suitability of dNBR and
RdNBR to estimate burn severity in different vegetation groups.
RdNBR has been shown to work well in areas of heterogeneous
vegetation (Miller and Thode 2007;Miller et al. 2009) and some

areas of dense vegetation within the western US (Cansler and
McKenzie 2014; Parks et al. 2014a), whereas dNBR has been

shown to be more effective in other areas of dense evergreen

forests in western Canada (Soverel et al. 2010) and the south-
eastern US (Picotte and Robertson 2011). The dNBR and
RdNBR sensitivity to vegetation heterogeneity and density

may also explain the differences in the trend assessments within
Madrean lowland evergreen woodland, Rocky Mountain
subalpine–high montane conifer forest, and warm and cool

desert alkali-saline wetlands. It is concerning that RdNBR did
not show similar trends in SMA and SMmax when comparedwith
dNBR estimates in California chaparral. De Santis et al. (2010)

found RdNBR to be a better estimator of burn severity when
compared with ground-estimated burn severity in Californian
chaparral. However, Keeley et al. (2008) found dNBR to be
more correlated with ground-estimated burn severity. These

mixed findings suggest that there may be problems in using
RdNBRor dNBR to assess burn severity in chaparral and similar
vegetation.

The small number of discernible burn severity trends in the
vegetation groups examined may have also been influenced by
the reburning of previously burned areas. On average, 38% of

the fire area within the vegetation groups burned at least twice
(Overlap, Table 1). Areas recently burnedmay exhibit lower burn
severity because there is less fuel to burn (Parks et al. 2014b;
Prichard and Kennedy 2014), although some areas previously

burned with prescribed fire can reburn with higher severity
(Thompson and Spies 2009; Perry et al. 2011). Additionally, if
an area has been severely burnt in the past, it may have undergone

a vegetative change (e.g. reduction in tree density) and cannot
burn as severely as its past vegetative state (van Mantgem et al.

2011).

Potential MTBS limitations

Using Landsat reflectance imagery to assess burn severity is

problematic because it only characterises severity based on its
spectral characteristics, which are further influenced by vari-
ables such as time since fire and the quality of pre- and post-fire
imagery. Both dNBR and RdNBR have variable success when

compared with ground-collected burn severity assessments
(Miller and Thode 2007; De Santis et al. 2010; Cansler and

Table 3. Vegetation groups that showed a significant increase in fire area through time

Mann–Kendall time series assessment of the changes (Sen’s slope; slope in mean area and maximum area per year) in yearly mean or maximum area

values during the 1984–2010 time period, stratified by Vegetation Group. Refer to Table 1 for the sample size (Area n) for each vegetation group.

P values from 10 000-iteration blocked bootstrapping procedure were also calculated where significance is indicated by * (0.01.P # 0.05) and

** (0.001.P # 0.01)

Mean area Maximum area Total area

Vegetation group Slope P value Slope P value Slope P value

California chaparral 141.900 0.005** 421.000 0.007** 732.841 0.010**

California forest and woodland 52.968 0.037* 118.109 0.243 229.016 0.453

Central Midwest oak forest 43.300 0.093 223.332 0.008** 996.633 0.003**

Madrean lowland evergreen woodland 66.308 0.05* 180.738 0.035 512.918 0.031*

Northern Rocky Mountain foothill conifer wooded steppe 31.527 0.332 405.900 0.094 1422.408 0.015**

Rocky Mountain subalpine–high montane conifer forest 107.795 0.138 850.850 0.023** 2229.500 0.018*

Southern Rocky Mountain lower montane forest 58.444 0.001** 209.816 ,0.001** 938.058 ,0.001**

Warm interior chaparral 50.244 0.013** 131.689 0.015** 167.529 0.102
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McKenzie 2012) such as the Composite Burn Index (CBI), and
can have,60% agreement in forested ecosystems (Cansler and
McKenzie 2012). Agreement between CBI and dNBR or

RdNBR was ,50% in grasslands (Stambaugh et al. 2015) and
the use of NBR has been found to be problematic in African
savannas (Roy et al. 2006). Areas with trees or shrubs with a

herbaceous understorey, however, can have .60% agreement
with CBI (Picotte and Robertson 2011; Stambaugh et al. 2015),
which suggests that dNBR and RdNBR may be adequate to

assess burn severity in mixed woody and herbaceous areas.
Differences in the accuracy of dNBR or RdNBR estimates of
burn severity are therefore likely to be vegetation-dependent.
Neither dNBR nor RdNBR may represent ecosystem responses

post-fire (Keeley et al. 2008), which further reduces their use-
fulness in monitoring post-fire ecosystem response.

In the current study, all initial (i.e. assessment immediately

after fire during the same growing season) and extended (i.e.
assessment within 1–2 years post-fire during the peak of the
growing season) assessments of burn severity were pooled

together. This could introduce error due to differences in the
amount of time between fire end date and post-fire Landsat
scene date. Burn severity estimates can change through time

because of the regrowth of vegetation and delayed death of fire-
damaged trees (Key 2005; Zhu et al. 2006; Picotte and Robertson
2011). This problem is mitigated by the MTBS protocol to map
areas of rapid regrowth (southeastern CONUS) with initial

assessments and areas of slower regrowth (western CONUS)
with extended assessments.

Some fires assessed byMTBS after 2003 were mapped using

Landsat 7 ETMþ imagery, which is missing up to 22% of its
data owing to the failure of the Scan Line Corrector (SLC) on 31
May 2003. MTBS products that were generated using SLC-off

imagery may have significant areas masked out, thereby dis-
torting the true distribution of pixels in each severity class.
Furthermore, all imagery is subject to data gaps resulting from
clouds, cloud shadows and ephemeral water. All of these data

gaps have the potential to skew the SM values by changing the
cumulative distribution of dNBR and RdNBR pixel values.

These potential problems are compounded by the fact that the

Landsat TM and ETMþ historical archive encompasses a short
time period. Past fire history, climate and land management
practices (i.e. before 1984) have shaped the fire-prone eco-

systems within CONUS. Twenty-seven years is a fairly narrow
slice of fire history and not necessarily representative of an
area’s longer-term trends in burn severity. The lack of signifi-

cant trends found in the 1984 to 2010 data record may be an
artefact and not reflect actual trends, which are confounded by
different management practices or obscured by interannual
variability. Additionally, there are data gaps that could impact

the robustness of the trend analysis results. These findings
suggest that more detailed regional assessments of trends in
severity are needed.

Conclusions

Overall, we found that burned area and burn severity did not
change for most vegetation groups. In those few vegetation
groups where we were able to find distinct increases in burn
severity over time, we did not assess whether these changes

corresponded with on-the-ground changes in burn severity. It is
possible that the satellite-based trends do not correspond to
actual landscape conditions, although our observed trends in the

southern Rockies are similar to a previous study that utilised
ground data (Dillon et al. 2011). dNBR and RdNBR SM values
that do not consistently agree suggest that care should be taken

when using eithermetric and the optimal remote sensingmethod
should be used, when known, for a specific vegetation group.
This is the first study that has attempted to use satellite-derived

datasets to quantitatively determine whether burn severity
is changing throughout CONUS, using the reduced MTBS
archive. More work will be needed to assess whether SM is
suitable for all vegetation groups within CONUS.
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