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Chapter 9

Climate Change: Uncertainties,
Shifting Baselines, and Fire
Management

Cathy Whitlock1, Dominick A. DellaSala2, Shaye Wolf3 and
Chad T. Hanson4
1Department of Earth Sciences and Montana Institute on Ecosystems, Montana State University,

Bozeman, MT, USA, 2Geos Institute, Ashland, OR, USA, 3Center for Biological Diversity,

San Francisco, CA, USA, 4John Muir Project of Earth Island Institute, Berkeley, CA, USA

9.1 TOP-DOWN CLIMATE FORCING FIRE BEHAVIOR

There is no doubt that today’s climate is changing, primarily from increased

greenhouse gases from fossil fuel emissions (Romero-Lankao et al., 2014).

The combination of rising temperatures and changes in seasonal and annual pre-

cipitation affects the size, severity, and occurrence of fires around the world

(e.g., Krawchuk et al., 2009; Bowman et al., 2009; Flannigan et al., 2009).

Because climate will increasingly dominate fire behavior in the future

(Figure 9.1), it is important to draw on as broad a base of knowledge as possible

to understand fire-climate interactions and identify appropriate management

strategies.

In this chapter, we argue that the period chosen for comparison to current or

future conditions is critical for understanding fire trends. Too short a period can

overlook the influence of legacy conditions, the importance of extreme fire

weather conditions, and the long-term climate conditions that have shaped fire

activity in particular biomes. A suitable historical baseline or reference period

must thus capture a long-enough span of time (reviewed by Papworth et al.

(2008) and DellaSala et al. (2013)) to adequately reflect the dynamics of the

disturbance and postfire recovery, as well as fire-climate variability. Selecting

the wrong baseline, or one that is too short, can actually lead to poor manage-

ment decisions and novel ecosystems (see DellaSala et al., 2013).

The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix

Copyright © 2015 by Dominick A. DellaSala and Chad T. Hanson. Published by Elsevier Inc. All rights reserved. 265



FIGURE 9.1 (A) Fuel-limited fire regimes depicting the interaction of climate, vegetation/fuels,

and topography as generally equivalent influences of fire behavior. (B) Climate-limited fire regime

depicting the top-down influence of climate on fire behavior. Many fire regimes are shifting from A

to B as climate increasingly becomes the limiting factor of fire behavior. (Also see Littell et al.

(2009)).
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9.2 USING THE PALEO-RECORD TO CONSTRUCT
A FIRE ENVELOPE

Fire history for any given location is a unique body of knowledge for establishing

fire baselines because it describes fire causes and consequences over awide range

of climate conditions, land-use activities, and vegetation types. By providing a

long-term perspective on fire regimes, historical data make us mindful of the

short time span that serves as a reference condition for many forest management

decisions, as well as the potential role of fire ahead with future climate and

land-use changes. To effectively utilize historical fire information requires some

level of understanding of the data sets that are available, as well as the time

domains at which they describe fire. It also requires an appreciation of human

influences on fire, including the degree to which people have altered past fire

regimes through deliberate burning, land-use change, and the introduction of

new species. Finally, fire history should be viewed not as irrelevant storytelling,

but rather as vital information that describes the range of possible fire conditions

under a broader array of spatial and temporal scales than we can observe at

present.

9.3 RECONSTRUCTING PAST FIRE REGIMES

Multiple data sets are available to describe fire activity at different spatial and

temporal scales (Gavin et al., 2007; Kehrwald et al., 2013) (Figure 9.2). On time

scales of days to decades, remotely sensed data and historical documents reg-

ister fire occurrence and are used to estimate global area burned (also see the

Preface). On longer time scales of decades to centuries, tree-ring records, both

fire scars on living trees and forest stand structures, provide information on pre-

historic fire occurrence, fire frequency, and fire severity. Studies of tree rings in

the western United States have been instrumental in describing low- and mixed-

severity fire regimes (e.g., Brown et al., 1999), the character of postfire vege-

tation development following high-severity fires (Romme, 1982; Sherriff et al.,

2001; Odion et al., 2014), and modes of climate variability that lead to years and

decades of large fires (Swetnam and Betancourt, 1990; Heyerdahl et al., 2008;

Trouet et al., 2010). Fire-scar tree-ring records can produce a reconstruction of

fire history with yearly and sometimes seasonal precision and extend our

knowledge of past fires back centuries and in some cases millennia, but they

are less useful in understanding the history of forests that experience high-

severity stand-replacing fires. In these settings, analysis of stand ages and post-

fire age structure provides information on past fire events as well as postfire

vegetation development. In mixed fire regimes, a combination of stand age

and fire scars has been effectively used to reveal the mosaic of burned and

unburned vegetation patterns (Taylor and Skinner, 2003; Schoennagel et al.,

2011; Odion et al., 2014).
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Sedimentary Charcoal Analysis

On time scales of centuries to millennia, sedimentary records from lakes and

natural wetlands provide information about fire history, and particulate charcoal

is often a primary proxy. Charcoal records are less spatially resolved and tem-

porally less precise in comparison to tree-ring data, but they have the advantage

of examining fire response to a broader range of climate conditions and vege-

tation types than exist in the recent past. Evidence of fire in the form of black

carbon, charcoal particles, and chemical signatures also is available in marine

and ice cores that span several millennia (Daniau et al., 2013; Kehrwald

et al., 2013).

Fire-history research based on sedimentary charcoal records has undergone

a renaissance in recent decades, in part motivated by interest in understanding

recent large, severe fires that seem to have little precedence in historic time.

Whether such conflagrations occurred in the more distant past and the extent

to which they were caused by unusual climate conditions or human activities

are topics of both scientific and public concern. Charcoal analysis is based

on the premise that charred particles are carried aloft during the fire and travel

some distance in the atmosphere before settling on the ground and lake surface.

The charcoal particles that fall on lakes and wetlands eventually become

FIGURE 9.2 Types of data and models used to reconstruct past fire on different temporal and spa-

tial scales. (After Gavin et al. (2007).)

268 The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix



sequestered in sediment, and changes in particle abundance at different depths

in sediment cores provide a proxy of past fire activity (Whitlock and Larsen,

2001). A suite of radiocarbon dates or other chronologic markers establishes

an independent chronology in most fire-history studies. The primary data are

presented as charcoal accumulation rates (CHAR particles per cm2 per year),

although several metrics have been used (Conedera et al., 2009). High-

resolution charcoal investigations from lake sediments refer to the examination

of large charcoal particles (>125 microns in diameter) in contiguous thin slices

of the core. Because large particles are transported relatively short distances,

they provide a record of local fires, and continuous sampling allows reconstruc-

tions with decadal precision (Figure 9.3).

The CHAR time-series data from a particular site are decomposed statisti-

cally to reconstruct the fire history (Marlon et al., 2006; Higuera et al., 2009).

The long-term trend in the data is attributed to slowly varying changes in bio-

mass burning, which is a function of both fuel composition and distribution

(a)

(b)

(c) (d)

FIGURE 9.3 Fire-history analysis from lake sediments involves collecting a suite of cores from

small lakes from an anchored platform (A); extruding and describing each sediment core in the field (B);

slicing the core into contiguous 0.5-cm intervals and washing the material through sieves (C); and

tallying black charcoal particles under the microscope for each sample (D). (Photo 9.3D courtesy of

Janet Wilmshurst, Landcare Research, Lincoln NZ.)
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(vegetation) and fire severity. Calibration studies and process-based models of

charcoal transport suggest that CHAR trends are a good proxy of area burned

within a <30 km radius of small lakes being studied, and the source area often

matches that of pollen records from the same core used to reconstruct the veg-

etation history (Higuera et al., 2011; Kelly et al., 2013). Statistically significant

CHAR peaks above a prescribed threshold are attributed to individual fire epi-

sodes (i.e., one or more fires occurring in the time span of the sample). Peak

detection is used to identify fire episodes and describe variations in the fre-

quency as well as the magnitude of fire episodes. Some studies make efforts

to identify and separate grass and wood charcoal at each stratigraphic level

as a tool to discriminate between surface and crown fires (Whitlock et al.,

2006; Walsh et al., 2008). Additional precision also comes when the charcoal

particles are themselves identified, a technique that comes from archeology

(Carcaillet and Thinon, 1996; Marguerie and Hunot, 2007).

9.4 FIRE HISTORY ACROSS A MOISTURE GRADIENT

The goals of fire-history research are to distinguish the drivers of fire activity,

be they climate, fuel, or anthropogenic factors; understand the extent and nature

of past fire activity; and assess fire’s long-term ecological effects. These objec-

tives require (1) examining multiple charcoal records to separate local from

regional patterns; (2) modeling studies to examine fire-ecosystem feedbacks;

and (3) data-model comparisons (Henne et al., 2011; Marlon et al., 2013;

Pfeiffer et al., 2013). One way to understand fire’s role in different ecosystems

is to examine its importance across a moisture gradient (Figure 9.4). At the dry

end, deserts experience frequent ignitions and low fuel and soil moisture, but

discontinuous fuel often prohibits fire spread, and fires of any significant size

are infrequent. At the wet end, fuels are abundant in rainforests, but the dry

FIGURE 9.4 The magnitude of human influences on natural fire regimes varies along a broad

moisture gradient of vegetation types. Climate exerts strong control over fire activity at the extreme

wet and dry ends of the moisture gradient as a result of low combustion potential of fuels in mesic

settings and the scarcity and disconnected arrangement of fuels in arid regions. Humans have the

potential to alter fire regimes (shown by positive and negative arrows) by changing ignition fre-

quency, fuel composition, and pattern as well as by suppressing fires (dashed line). (After
Whitlock et al. (2014)).
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season is short and natural ignitions are infrequent or do not coincide with the

period of dry fuels. In such wet settings fires are also infrequent, although they

can be severe when ignition and drought coincide. At the intermediate scale,

temperate dry forests and savanna meet both requirements of sufficient amount

and dryness of fuel and frequency of ignition, and these vegetation types support

frequent low- and mixed-severity fires (Williams and Baker, 2012; Odion et al.,

2014). Thus fires are infrequent at wet and dry ends of the moisture spectrum,

and severe fires tend to characterize ignition-limited systems (Whitlock et al.,

2010; Archibald et al., 2013; McWethy et al., 2013). Of course, these relation-

ships are compromised by human activities, including where people alter the

natural ignition frequency (e.g., the arrival of people on the Pacific Islands;

McWethy et al., 2010; Chapter 7), introduce nonnative species that affect flam-

mability (Brooks et al., 2004), or fragment natural landscape patterns (e.g.,

through logging and fire suppression; Odion et al., 2014).

9.5 CASE STUDIES OF LONG-TERM FIRE HISTORY
IN THE WESTERN UNITED STATES

Tree-ring and charcoal data frommiddle- and high-elevation forests in the west-

ern United States indicate that past variations in fire activity are strongly linked

to a changing climate. On long time scales, a primary driver of past fire activity

has been slow variations in the seasonal cycle of insolation. In the early

Holocene (�12,000-6000 calendar years before present (cal year BP), with

“present” set at 1950 AD), summer insolation (generally, the degree of sun

exposure) was 8% higher than at present, and winter insolation was lower by

the same amount. Higher summer insolation led directly to higher-than-present

summer temperatures and effectively decreasedmoisture; it indirectly produced

a strengthened northeastern Pacific subtropical high-pressure system, which

further suppressed summer moisture in the northwestern United States. Most

parts of the northwestern United States show higher fire activity in the early

Holocene compared with the late Holocene (Whitlock et al., 2008). At the same

time, stronger-than-present monsoonal circulation, also driven by the summer

insolation maximum, may have led to wet summer conditions and fewer fires in

the southwestern United States (Bartlein et al., 1998; Anderson et al., 2008).

On decadal to century time scales, ocean-atmosphere interactions (El Niño

Southern Oscillation, Pacific Decadal Oscillation, American Multidecadal

Oscillation) may contribute to fire occurrence and severity through atmospheric

configurations that create persistent drought (Kitzberger et al., 2007; Trouet

et al., 2010), although the strength of the these short-term relationships varies

greatly from region to region.

Greater Yellowstone Region

In the greater Yellowstone ecosystem, regional analysis of charcoal records

describe broad trends in climate, fire, and vegetation change over the past
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15,000 years (Iglesias et al., 2015). These data indicate that highest fire activity

in the region occurred between 12,000 and 10,000 cal year BP, when summers

were warmer than today, winters were colder, and winter precipitation was gen-

erally high. The high-fire period was associated with decline in fire-vulnerable

Engelmann spruce (Picea engelmannii) and an increase in whitebark pine

(Pinus albicaulis) at all elevations.
On the rhyolite (a type of silica-rich volcanic rock) plateaus of central

Yellowstone, charcoal data highlight the direct connections between fire and

climate through time (Millspaugh et al., 2000). This area has supported lodge-

pole pine (Pinus contorta) forest for the past 11,000 years because of the strong
edaphic (relating to the soil) controls on vegetation composition. By contrast,

past fire activity was more dynamic than the vegetation history, showing the

highest occurrence between 11,000 and 7,000 cal year BP during the summer

insolation maximum and decreasing frequencies to the present day. Most pre-

historic fires were likelymixed- or high-severity events, given the persistence of

lodgepole pine. Other studies of Yellowstone show the occurrence of infrequent

large fires during the Little Ice Age (1600-1900 AD), and fewer and likely small

fire events during the Medieval Climate Anomaly (800-1200 AD) (Meyer et al.,

1995; Pierce et al., 2004;Whitlock et al., 2012). By contrast, an analysis of post-

fire sediment deposits in alluvial fans in ponderosa pine (Pinus ponderosa) for-
ests in southern Idaho revealed large, severe-fire events well above recent levels

during a warm period from 1050 to 650 cal year BP (Pierce et al., 2004).

Pacific Northwest

The fire history of the Pacific Northwest region also was strongly influenced by

shifts in the duration and severity of summer drought and the composition of the

forest. Between 9500 and 5000 cal year BP, drier-than-present summers sup-

ported forests with abundant Douglas-fir (Pseudotsuga menziesii), red alder

(Alnus rubra), and bracken fern (Pteridium). This forest composition resembled

current early seral forest stages, and—not surprisingly—fires were more fre-

quent than today. In valley floors, woodland, prairie, and savanna habitats were

expanded in the early Holocene compared with their present distribution, again

in association with more fires. As summer insolation decreased in the late

Holocene, summers became cooler and wetter than before, and forests of meso-

phytic (referring to plants adapted to moderate levels of moisture) conifers (e.g.,

western hemlock (Tsuga heterophylla), western red cedar (Thuja plicata), fir
(Abies spp.), and Sitka spruce (Picea sitchensis)) prevailed. In association with
this cooling trend, fires were less frequent, but, given the vegetation composi-

tion, they were likely more severe than in earlier times (Walsh et al., 2008;

Whitlock et al., 2008; Gavin et al., 2013).

The temperate wet forests of the Pacific Northwest do not seem to have been

particularly vulnerable to prehistoric human activities, even though people

lived in the region throughout the Holocene and the population density at the
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time of European arrival was relatively high (Boyd, 1990). Several ecological

and cultural factors may account for the limited influence of people in shaping

Pacific Northwest fire regimes, but among them is the pyrogenicity of the dom-

inant tree species in wet temperate forests: Douglas-fir. This conifer has evolved

with fire and displays several life-history traits that allow it to persist across a

wide range of fire frequencies and severities (Tepley et al., 2013). Its rapid

establishment and growth of seedlings after mixed-severity fires and its ability

to establish beneath and above competing shrubs promote rapid recovery of

Douglas-fir canopy, often within decades after fire (Tepley et al., 2014).

The presence of partially intact forest within most burned areas also enables

Douglas-fir to rapidly colonize adjacent high-severity patches. Given these

factors, it seems highly unlikely that a targeted ignition strategy by prehistoric

peoples in the Pacific Northwest would have resulted in large-scale forest con-

version, as occurred, for example, in the temperate wet forests of New Zealand

(Whitlock et al., 2015).

Further south in the Pacific Northwest, the fire history is more complex in

terms of spatial and temporal variability, particularly in the Klamath-Siskiyou

region of southwestern Oregon and northern California (Taylor and Skinner,

2003; Colombaroli and Gavin, 2010; Odion et al., 2010; Briles et al., 2011).

A study of Bolan Lake showed infrequent fires in the early postglacial period

(17,000-14,500 cal year BP), when the climate was cooler than present and sub-

alpine parklands of lodgepole pine, spruce, and mountain hemlock (Tsuga mer-
tensiana) were present (Briles et al., 2005). Warming after 14,500 cal year BP

was associated with forest closure and increased fire activity. After 11,000 cal

year BP, open xerothermic (pertaining to plants adapted to relatively hotter,

drier conditions) forests of pine, oak (Quercus), incense cedar (Calocedrus
decurrens), and Ceanothus developed, and fires became more frequent than

during the late-glacial period. During the middle Holocene (7000-4500 cal year

BP), a closed forest of fir, Douglas-fir, red alder, and oak became established,

and the frequency of fire episodes reached its highest levels. In the past

4000 years, fir-dominated forests have developed at middle elevations, and

mountain hemlock has expanded at high elevations. At most sites, fire fre-

quency has declined in the late Holocene, with the exception of elevated fire

activity during the Medieval Climate Anomaly (Briles et al., 2011).

Colorado Rocky Mountains

The fire history of subalpine forests in the Colorado Rocky Mountains shows the

importance of changes in forest composition and density on fire behavior

(Higuera et al., 2014). Tree-ring records indicate that subalpine forests of Engel-

mann spruce, subalpine fir (Abies lasiocarpa), and lodgepole pine have supported
low-frequency, stand-replacing fires in recent centuries (Buechling and Baker,

2004; Sibold and Veblen, 2006). The vegetation and fire frequency have shown

little variation over the past 6000 years, despite long-term trends toward lower

Climate Change Chapter 9 273



summer temperatures and less effective moisture (where effective moisture ¼
precipitation � evaporation) (see Figure 9.5). Mean fire return intervals have

ranged between 150 and 250 years during the past 6000 years, although the var-

iability around the long-term fire return interval mean correlated well with shifts

in summer moisture (i.e., more fires during drier summers). Levels of biomass
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FIGURE 9.5 Millennial-scale vegetation, fire, and climate history from subalpine forests in Rocky

Mountain National Park. (A) The Picea-to-Pinus pollen ratio (points) is a composite from three pol-

len records (black curves and grey envelopes represent the 95% confidence intervals). The ratio

shifts to lower values (more pine) at 5400 and 2400 cal yr BP (calendar years before present).
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smoothed to 500 years. (D) Holocene insolation for the summer and winter solstice at 40°N latitude.

(From Higuera et al. (2014)).
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burned (inferred from CHAR trends) decreased significantly at 2400 cal year BP,

despite little change in vegetation or fire frequency. This shift is interpreted as

evidence of less biomass burned per fire and a decrease in crown fire severity.

In the past 1500 years fire severity has steadily increased in these forests.

Higuera et al. (2014) suggest that in Rocky Mountain subalpine forests (1) fire

severity is likely more responsive to climate change than is fire frequency, and

(2) the indirect influence of climate on vegetation and fuels is as important as

the direct effects of climate on fire activity.

9.6 HISTORICAL RECORD AND THE FIRE ENVELOPE

Most studies describing current and projected trends in fire activity draw on a

short baseline of historical data for comparison. In the conifer forests of North

America a variety of methodological approaches have been used to establish his-

torical reference conditions, including analysis of spatially explicit historical

records of high-severity fire, reconstructions of past fire severity using aerial pho-

tographs to determine the number of emergent (surviving) trees in a particular

study area, age analyses of stands in current unlogged forests, and analyses of

stand structure based on historical field plot data (Baker, 2012; Williams and

Baker, 2012; Baker, 2014; Odion et al., 2014; Hanson and Odion, 2015a; see also

Chapter 1 for more detailed descriptions). An examination of historical data rel-

ative to current estimates of high-severity fire rates highlights the problem of

using a baseline that is too short (and recent) to fully capture the historical var-

iability of particular fire regimes.We focus, in particular, on areas where there is a

tendency for recent trends in high-severity fire—whether increases or

decreases—to be erroneously considered outside of the context of historical base-

line variability. In such cases, land managers and policymakers assume that cur-

rent fires exceed natural levels, despite historical data (pertaining, in this section,

to the past few centuries) that indicate a substantial decline in fire activity (Baker,

2014; Odion et al., 2014; Hanson and Odion, 2015a). As a result, current condi-

tions are misinterpreted in the development of management prescriptions.

For example, while area burned has increased in the boreal forests of Canada

in recent decades (1959-1999) (Kasischke and Turetsky, 2006; Chapter 8), the

pattern is not uniform when placed in a longer-term context and does not hold

for high-severity fire (“stand-initiating” fire). Overall, high-severity fire and

rotation intervals have decreased (i.e., less high-severity fire, on average, per

year or decade) by two- to threefold in the boreal forests of eastern and western

Canada. Based on stand-age analyses, high-severity fire rotations are much lon-

ger (i.e., less high-severity fire) currently than they were before the mid-1800s

(Bergeron et al., 2001, 2004a,b). Studies analyzing longer time periods also

report decreases in fire activity in many regions of western Canada.

Wallenius et al. (2011) indicate a significant decrease in burned area in north-

western Canada (northeast British Columbia, northwest Alberta, southeast

Yukon Territory, and southwest Northwest Territories) from 1800 to 2000,
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and the findings are consistent with other long-term studies that describe

decreases in boreal fire activity since 1850 (see Girardin et al., 2009). This

decline has been attributed mainly to long-term shifts toward warmer, wetter

conditions (with some fluctuations in the opposite direction in the early twen-

tieth century) since the mid-1800s (Larsen, 1996; Bergeron et al., 2001, 2004a,

b). For example, Meyn et al. (2013) report a significant decrease in burned area

in British Columbia from 1920 to 2000 that was linked to increased precipita-

tion, which outweighed the effects of rising temperatures and drought severity.

In mixed-conifer and ponderosa pine forests of western North America,

historical high-severity fire rotation intervals typically ranged from about

150 to 400 years before the effects of fire suppression and logging (Leiberg,

1900, 1902; Bekker and Taylor, 2001; Baker, 2012, 2014; Williams and

Baker, 2012; Hanson and Odion, 2015a). Since the early twentieth century,

high-severity fire has declined by approximately two- to fourfold in most for-

ests, and current high-severity fire rotations are generally 600-1000 years across

broad regions (Odion and Hanson, 2013; Odion et al., 2014). This decline in fire

is likely a result of fire suppression, long-term climate change, or both. Because

many species in these forests benefit from and depend on the unique habitat cre-

ated by high-severity fires (Chapters 3-6), alteration of fire frequency or sever-

ity threatens biodiversity and ecosystem dynamics. Increases or decreases in

fire occurrence in the past few decades, and those projected in the future, must

be understood within an ecological context informed by long-term fire regimes

and high-severity fire rotation intervals.

9.7 UNDERSTANDING THE INFLUENCE OF
ANTHROPOGENIC CLIMATE CHANGE ON FIRE

Given the strong influence of climate on fire activity, anthropogenic climate

change is likely to alter fire activity around the globe (Bowman et al., 2009;

Flannigan et al., 2009; Krawchuk et al., 2009). Because climate change is plac-

ing stress on ecosystems (Parmesan 2006), a common assumption is that anthro-

pogenic climate change will increase fire activity to levels that will be

deleterious to forests. As illustrated in previous chapters, however, wildfire,

including high-severity fire, provides important ecological benefits to forest

ecosystems, and these types of fires have become uncommon in many regions

of western North America (Odion et al., 2014). Therefore, analyses linking fire

and climate change should also consider fire’s ecological benefits and the

degree to which fire has been removed from the ecosystem (the fire deficit).

Assessment of fire-climate trends should be based on a sufficiently long-term

baseline to capture the historical range of fire variability of the ecosystem and

should also account for the role of other anthropogenic factors, such as changes

in wildfire management policies. Most current studies of fire and climate

change do not consider all of these components.
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Using a historical baseline for detecting and interpreting the effects of cli-

mate change on fire activity is particularly important in western US forests

where fire activity trends of the past century have been altered by land-use

and management practices. Stringent policies on fire suppression on US federal

lands throughout most of the twentieth century profoundly and abruptly

decreased the area burned in many western forests (Mouillot and Field,

2005; Stephens et al., 2007; Marlon et al., 2012; Odion et al., 2014). These stud-

ies indicate that a baseline that at least considers fire variability before 1900 is

needed to understand fire variability under a range of climate and fuel condi-

tions. A long-term baseline also clarifies the relative influences of nonclimate

drivers in shaping current fire conditions. The invasion of nonnative plants,

introduction of nonnative grazers, land-use change, and changes in forest man-

agement practices, for example, have caused abrupt changes in fire regimes

globally, independent of climate change (Pausas and Keeley, 2014).

Using the appropriate spatial scale is also important for understanding the

relationships between climate change and fire activity. Many studies have docu-

mented spatial variability in fire-climate relationships among western ecore-

gions (Westerling et al., 2006; Littell et al., 2009; Parisien et al., 2011, 2012)

and in the ways that climate change will affect temperature, precipitation timing

and extent, drought severity, and other key drivers of fire activity (Hartmann

et al., 2013;Melillo et al., 2014). Depending on the interplay between rising tem-

perature and changing precipitation timing and amounts, climate change will

affect fire activity differentially across regions and vegetation types

(Krawchuk andMoritz, 2011). For example, in many northern and mountainous

regions of the western United States, low precipitation andwarmer temperatures

in the seasons leading up to and including the fire season are strongly associated

with increased burned area (Littell et al., 2009), whereas increased precipitation

in summer suppresses fire (Moritz et al., 2012). By contrast, in the more fuel-

limited arid ecosystems of the southwestern United States, increased precipita-

tion before the fire season is strongly associated with increased burned area

(Littell et al., 2009), but lower precipitation before the fire season suppresses

fire activity by decreasing fuel biomass (Moritz et al., 2012).

9.8 OBSERVED TRENDS IN FIRE ACTIVITY LINKED
TO CLIMATE CHANGE

Studies of fire trends in western North America in relation to recent climate

change report a range of patterns depending on the fire activity metric (e.g.,

burned area, occurrence, severity), regional scale, and time period analyzed.

Most studies have examined trends only over recent decades (e.g., 1970s/

1980s to 2000s) rather than longer periods that would encompass a greater

range of variability. Although some studies report increases in burned area

linked to increased temperature and precipitation change in recent decades

(e.g., Westerling et al., 2006), others indicate patterns of decrease (e.g., Meyn
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et al., 2013) and areas of relative fire stability (e.g., Dennison et al., 2014). Most

current research has not detected a trend in fire severity in recent decades.

Westerling et al. (2006) is the most highly cited study linking wildfire activ-

ity with recent climate change in western North America. Using a study period

from 1970-2003 and averaging across forested regions in the western United

States, the study reported a marked shift during the mid-1980s toward a higher

frequency of large fires, a greater average annual area burned, and a longer fire

season, which the authors associated with increased spring and summer temper-

atures and an earlier spring snowmelt. However, trends since the mid-1980s are

less clear (Westerling et al., 2006).

Most subsequent studies have examined fire-activity trends on an ecoregio-

nal level and have found differing geographic patterns over short time periods.

Dillon et al. (2011) analyzed trends across six ecoregions in the southwestern

and northwestern United States from 1984 to 2006 and detected no trends in

annual area burned or proportion burned severely in the northwestern ecore-

gions (Pacific, Inland Northwest, and Northern Rockies). The study did report

a significant increase in burned area and high-severity burned area in the three

southwestern ecoregions (Southern Rockies, Colorado Plateau, and Mogollon

Rim) and a significant upward trend in fire severity (proportion of high-severity

fire) in one southwestern ecoregion (Southern Rockies). Topography (i.e., ele-

vation, aspect/slope) was identified as the most important variable in determin-

ing severe fire occurrence, followed by climate conditions.

Dennison et al. (2014) examined trends in fire activity from 1984 to 2011 in

nine ecoregions in the western United States. This study detected significant

increases in annual fire area in three of nine ecoregions (Southern Plains, warm

deserts, and Arizona-New Mexico Mountains) and significant increases in the

number of large fires in four of nine ecoregions (Southern Plains, Arizona-New

Mexico Mountains, Rocky Mountains, Sierra Nevada/Cascades). In contrast to

Westerling et al. (2006), this study did not detect a significant trend toward an

earlier fire season in any ecoregion. Dennison et al. (2014) caution against

directly attributing increases in fire activity to climate change but note that ecor-

egions with increasing trends in the number of large fires and total fire area also

experienced increasing drought severity over that period.

The few studies that have examined trends in fire severity also use short time

periods and indicate that fire severity has not increased in recent decades in

most forested regions in the western United States: Pacific Northwest and Cal-

ifornia (Schwind, 2008), Pacific Northwest and Southwest except the Southern

Rockies (Dillon et al., 2011), northwestern California (Miller et al., 2012), the

Klamath/Siskiyou region and Eastern Cascades (Hanson et al., 2009), and

Sierra Nevada and Southern Cascades (Collins et al., 2009; Hanson and

Odion, 2014; however, see Miller et al., 2009; Miller and Safford, 2012).

Hanson and Odion (2014) found that use of a vegetation data set that postdates

the time series being analyzed tends to result in a statistically significant bias

toward reporting an increasing trend in severity. For example, conifer forest that
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experiences high-severity fire in the earlier years of the time series is dispropor-

tionately reclassified later as nonconifer vegetation, thus creating the false

appearance of increasing severity. Safford et al. (2015) hypothesized that an

increasing trend would be found if analysis focused solely on wildland fires

in mixed-conifer and ponderosa/Jeffrey pine forests on national forest lands.

Hanson and Odion (2015b) tested this hypothesis and again found no trend

in increasing fire severity.

9.9 PROJECTED CHANGES IN FIRE ACTIVITY IN RESPONSE
TO CLIMATE CHANGE

Studies projecting how climate change will affect future fire activity typically use

one of three modeling approaches, each with its own limitations: statistical

models, changes in fire activity indices, and dynamic global vegetation models

(DGVMs) (see Yue et al., 2013). Statistical models correlate empirical observa-

tions of fire activity (e.g., area burned, fire occurrence, fire probability) with envi-

ronmental variables expected to affect fire. The models are used to project fire

activity under future climate conditions derived from a global or regional climate

model. This approach is similar to species distribution models that forecast shifts

in species ranges under climate change, and they have similar limitations (e.g.,

Guisan and Thuiller, 2005). A second approach projects changes in a fire activity

index, such as a drought index, severity rating, or energy release component, to

estimate future fire potential as a result of climate change; a primary limitation is

the accuracy of the index in representing fire activity. A third approach is to incor-

porate a fire module into a DGVM, which is a process-based biogeochemical

model that simulates vegetation dynamics in response to climate change driven

by climate data from global climate models (GCMs). Modeling fire in DGVMs

can be challenging because it requires a mechanistic understanding of how cli-

mate and fire interact, and this approach is often limited by the accuracy of repre-

senting historical fire activity patterns.

Fire projection studies differ not only in their modeling approaches but also

in the number and choice of GCMs, emissions scenarios, climate variables,

spatial scale (i.e., global or regional), and the historic baseline for deriving

fire-climate relationships and for comparing projected versus historic fire activ-

ity, all of which can create significant variation among study results and inter-

pretations. One important source of uncertainty is the large differences across

GCMs in the projected change in precipitation timing and amount in western

North America (Roy et al., 2012; Peterson et al., 2013). The choice of GCMs

has the potential to create divergent projections of future fire activity depending

on whether selected models forecast wetter or drier futures.

Modeling studies have projected a range of responses in future fire activity

across the globe and in western North America, including areas of decrease,

increase, and relative stability in wildfire probability, occurrence, and biomass

burned (Scholze et al., 2006; Krawchuk et al., 2009; Gonzalez et al., 2010; Liu
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et al., 2010; Pechony and Shindell, 2010;Moritz et al., 2012). These global stud-

ies show a general lack of spatial concordance in their projections, likely

because of differences in modeling approaches, climate variables used, and

the number and selection of GCMs (see Moritz et al., 2012). For example, using

changes in drought index to measure fire potential, Liu et al. (2010) projected

future global fire patterns nearly opposite those of Moritz et al. (2012) that

employed a statistical modeling approach.

Analyses of the western United States and Canada have primarily projected

increases in fire activity (e.g., area burned and fire potential) in response to cli-

mate change, although there is significant variability among studies and ecor-

egions, in particular forested ones. Using one GCM in a statistical modeling

approach, Spracklen et al. (2009) projected an average increase in burned area

of 54% across the western United States overall by midcentury, although sig-

nificant increases occurred in only three of six western ecoregions (Pacific

Northwest forests, desert Southwest, Rocky Mountains forests). Yue et al.

(2013), using 15 GCMs, projected an average increase in burned area of

61% across the western United States by midcentury, but increases in ecore-

gions varied substantially depending on whether a statistical or process-based

modeling approach was used. Fire projection studies at smaller regional scales

have suggested increases in fire activity for some regions—the Pacific North-

west (Rogers et al., 2011) and Southern Rockies (Litschert et al., 2012)—and

conflicting patterns of increases and decreases for others: California, Nevada,

southern Oregon, southwestern Idaho, western Utah, and western Arizona

(Westerling and Bryant, 2008, Krawchuk and Moritz, 2012). Projection studies

typically have not examined changes in fire severity (but see Rogers et al.,

2011), but focus on occurrence, probability, and area burned.

Most fire projection studies use a short historical baseline spanning the past

few decades, which does not provide a useful context for determining whether

projected changes fall within the range of historical variability. Illustrating

important exceptions, Bergeron et al. (2010) projected a 125% increase in burn

rate in the eastern Canadian boreal forest by the end of the century compared

with the recent period from 1961 to 1999, but they determined that the increase

fell well within the long-term variability for this region during the past

7000 years, as well as a shorter baseline of the past 300 years. By contrast,

Westerling et al. (2011) suggest enormous increases in area burned in the forests

of the greater Yellowstone ecosystem, projecting a nearly 10-fold (900%)

increase by midcentury and a 1000-fold (100,000%) increase by the end of

the century. If true, this level of burning would lie well outside the range of var-

iability of the past 10,000 years. Some studies have projected increases in total

annual area burned in California ranging from 9% and 11% to 15% by the end of

the century compared with that in 1895-2003 (Lenihan et al., 2008), and

increases in the number of large fires ranging from 12%, 23%, and 34% to

53% by the end of the century compared with that during 1961-1990

(Westerling and Bryant, 2008). Given that the average annual burned area in
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California in the past several decades (1950-2009) was at least several times

lower than the burned area before 1800 (Stephens et al., 2007; Odion et al.,

2014), these projected increases in fire activity in California would likely

remain within the historical range of the past several centuries.

9.10 CONCLUSIONS

Understanding the causes and effects of wildland fire in forest ecosystems

depends on the temporal and spatial scale of interest. In this regard, fire triangles

are a common starting point for conceptualizing the suite of biophysical factors

operating at particular scales as well as cross-scale interactions (Figures 9.1

and 9.6). Taken together, the fire envelope is defined by a hierarchy of temporal

FIGURE 9.6 Controls of fire at multiple temporal and spatial scales conceptualized as fire trian-

gles (modified from Parisien and Moritz, 2009). The side of each triangle indicates the dominant

drivers at different temporal and spatial scales, and the overlap of triangles shows their nested nature.

Paleoecological data suggest the need for a broader conceptualization of fire regimes that considers

the variability of fire characteristics over the lifespan and spatial extent of a biome. (From Whitlock

et al. (2010)).
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and spatial conditions (or triangles) that shape biomass burning over time and

space. At the smallest scale, the fire fundamentals triangle links oxygen, heat,

and fuel at time scales of hours to years. At the next temporal and spatial scale,

the fire event triangle links weather, fuels, and topography as factors that

influence ignition probability, rate of fire spread, and fire intensity over seasons

and years (Rothermel, 1972; Bowman et al., 2009). On decadal-to-millennial

time scales, the fire regime triangle describes variables that determine the

characteristic pattern, frequency, and intensity of fire at landscape and broader

scales, reflecting the linkages between vegetation as a determinant of fuel, cli-

mate conditions as creators of fire weather, and ignition sources, be they human

or natural (Parisien and Moritz, 2009; Krawchuk and Moritz, 2011). Our under-

standing of the paleofire record suggests that a larger and longer scale should

also be considered in the fire envelope. A meta-fire regime triangle describes

insights gained from the range of conditions that govern fire history over the

duration of a vegetation type at time scales of centuries to millennia and fire

variability at the scale of regions.

Understanding past human-vegetation-climate linkages of fire regimes has

gained wider attention and appreciation in the face of projected future climate

change. Although many definitions of a fire baseline implicitly consider time,

historical data are rarely used to define a fire envelope. More often, baselines

rest on recent fire statistics that are at best imprecise and at worst inaccurate in

capturing fire activity over long time scales. What may seem like a stationary

response on short time scales is often nonstationary when viewed on longer time

scales and over a broader range of bioclimatic forces (Swetnam, 1993). In many

parts of the western United States, for example, current levels of fire are con-

siderably less than what climate would predict based on long-term linkages.

This notion of a present-day fire deficit in many forest types implies that current

fire management is decoupling the natural relationship between area burned and

climate (Marlon et al., 2012).

We recommend that observed and projected changes in fire-climate linkages

be understood in terms of (1) fire’s ecological benefits, (2) the current fire def-

icit in most forested regions of North America, and (3) a sufficiently long base-

line to capture the historical range of fire variability within the particular biome.

Detecting and interpreting the significance of climate-driven fire patterns

requires information on the magnitude and direction of change in comparison

to the long-term fire occurrence within the ecosystem as well as the relative

influences of climatic and nonclimatic drivers. Ideally, a fire regime should

describe the size, severity, and frequency of fires at different stages of forest

development and consider the climate, fuel properties, and human influences

that have influenced fire history. This broad temporal and spatial context is

essential if we are to accurately project and understand the consequences and

benefits of fires in the future.
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