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Biofuels from crop residue can reduce soil carbon
and increase CO2 emissions
Adam J. Liska1,2*, Haishun Yang2, Maribeth Milner2, Steve Goddard3, Humberto Blanco-Canqui2,
Matthew P. Pelton1, Xiao X. Fang1, Haitao Zhu3 and Andrew E. Suyker4

Removal of corn residue for biofuels can decrease soil organic
carbon (SOC; refs 1,2) and increase CO2 emissions3 because
residue C in biofuels is oxidized to CO2 at a faster rate
than when added to soil4,5. Net CO2 emissions from residue
removal are not adequately characterized in biofuel life cycle
assessment (LCA; refs 6–8). Here we used amodel to estimate
CO2 emissions from corn residue removal across the US
Corn Belt at 580 million geospatial cells. To test the SOC
model9–11, we compared estimated daily CO2 emissions from
corn residue and soil with CO2 emissions measured using eddy
covariance12–14, with 12% average error over nine years. The
model estimated residue removal of 6Mgper ha−1 yr−1 overfive
to ten years could decrease regional net SOC by an average of
0.47–0.66MgCha−1 yr−1. These emissions add an average of
50–70g CO2 per megajoule of biofuel (range 30–90) and are
insensitive to the fraction of residue removed. Unless lost C
is replaced15,16, life cycle emissions will probably exceed the US
legislativemandateof60%reduction ingreenhousegas (GHG)
emissions compared with gasoline.

Crop residues are abundant feedstocks that are used for biofuel
production globally17,18. By 2022, the US Energy Independence and
Security Act (EISA) mandates production capacity for cellulosic
ethanol and advanced biofuels to be 61 billion litres per year (bly)
and 19 bly, respectively17. Corn residue is predominantly used in US
cellulosic ethanol biorefineries, with a combined capacity of 0.38 bly
in 2014 (ref. 19). An additional 0.42 bly of US hydrocarbon biofuels
mostly uses wood19, but could also be derived from crop residue20.
Absolute changes in soil organic carbon (SOC) from corn residue
removal have been estimated in LCA (ref. 6), but few have estimated
net changes in SOC and CO2 emissions compared with no residue
removal7,8,21,22, as required by consequential LCA (ref. 23).

Recent research suggests soil CO2 emissions from residue
removal could produce life cycle GHG emissions for cellulosic
ethanol that exceed the mandated emissions reduction8. Incubation
experiments with soil and corn residue showed that SOC is oxidized
to CO2 at 0.54–0.80Mg C ha−1 per season when residues are
completely removed3. Modelled removal of all corn residue in
Austria projected an SOC loss of 0.35MgC ha−1 yr−1, which
represents nearly 50%of life cycleGHGemissions fromabiorefinery
system24. Modelled SOC oxidation to CO2 from removal of sweet
sorghum residue showed these emissions could eliminate all GHG
emissions benefits of the resulting biofuel compared with gasoline25.
Similar net losses of C stocks have also been projected for biofuels
from forestry in some cases26.

Changes in SOC occur by two dominant processes: soil erosion
by water and wind, and soil respiration where SOC is oxidized to

CO2 (refs 4,5). Soil erosion has significantly depleted SOC across the
US Corn Belt, with a recent loss of 1.7 billion tons of soil in the US in
2007 (ref. 27). Crop residue has conventionally been left on the field
after harvest to reduce soil erosion andmaintain the SOC stocks and
soil fertility of the Corn Belt1. Although some soil measurements
in the Corn Belt have shown that complete residue removal
reduces SOC compared with no removal28,29, other studies found
no significant differences16. Measuring SOC change accurately is
limited owing to the high spatial variability in SOC stocks, the
inability to detect a small annual percentage change, short-term
studies, and failure to express SOC results in an equivalent mass
basis to account for changes in soil bulk density30,31. Furthermore,
when crop residue is removed, it is essential to determine whether
SOC loss is due to erosion or respiration, to accurately estimate the
resulting net CO2 emissions.

Models are necessary to confidently estimate small percentage
annual changes in regional SOC stocks due to respiration30,31, as
extensive gas exchange measurements are too costly. Although soil
moisture and texture are often used in SOCmodels4, a robust model
can estimate daily changes in SOC due to oxidation to CO2 based on
initial SOC (C0), C inputs from agricultural crops (Ci), and average
daily temperature (Ta), as shown below9–11. The SOC model used
here is based on exponential oxidation coefficients for SOC (ks, Ss)
and cereal crop residues (kr, Sr) from 36 field studies across North
America, Europe, Africa and Asia10 (see Supplementary Table 1 and
Methods). An additional term in the equation is added for each year
of new C inputs to the soil from residue and roots.
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To test the model in the central US, we compared model results
with measured CO2 emissions, residue biomass, and SOC from
an irrigated no-till continuous corn field experiment in eastern
Nebraska (Mead) from 2001 to 2010 (refs 12–14). The model
estimated that 83% of initial residue C input was oxidized during
the first three years, which closely agreed with field measurements
that found an average of 20% remained14 (Supplementary Fig. 1)
Cellulose, hemicellulose and protein in residue rapidly oxidize,
whereas the more recalcitrant lignin fraction (∼18% dry matter6)
undergoes a slower oxidation process and contributes to SOC
(ref. 4). The model estimated 80.9% of initial SOC remained after
nine years (56.1 of 69.4MgC ha−1) in the 0–30 cm depth, and net
C from residue (8.53MgC ha−1) contributed to the maintenance of
a total of 93.2% of the initial SOC stock (Fig. 1). When compared
with soil measurements, the model predicted net SOC loss within
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Figure 1 | Modelled soil organic carbon decrease due to removal of 6Mg
corn residue per hectare per year over nine years compared with no
removal under irrigated continuous corn. Daily modelled oxidation of soil
organic carbon (SOC) and residue to CO2 is based on field measurements
of initial SOC (0–30 cm soil depth), corn residue input, and temperature at
Mead, Nebraska. The average annual net loss of SOC is 0.47 Mg C ha−1

yr−1, but declines exponentially from 1.13 to 0.25 Mg C ha−1 yr−1 over the
first eight years.

17% accuracy during the first four years of the experiment
(Supplementary Table 2). Eddy covariance was used to measure net
CO2 fluxes to the atmosphere to estimate ecosystem respiration,
which was partitioned into emissions from crop respiration and
from soil and residue32 (Methods). The model predicted annual
measured net CO2 emissions to the atmosphere from soil and
residue with an error of 12.4% on average (range 34 to −22%;
Supplementary Tables 3 and 4). While using coefficients for SOC
oxidation derived from a global span of field measurements, the
modeled SOC dynamics agreed well with the field measurements of
CO2 emissions, residue remaining, and SOC. The global character of
the model assumptions combined with these regional tests indicates
the model has enough accuracy to confidently estimate the average
direction of change in net CO2 emissions and SOC from residue
removal across the Corn Belt.

The model was used to estimate geospatial changes in SOC
from hypothetical residue removal under continuous corn across
the Corn Belt. Input data included measurement-derived estimates
of initial SOC stock (C0), C inputs from county crop yields
(Ci) (2001–2010), and monthly average temperature (Ta, Methods).
Four supercomputer simulations (R1–R4) applied the SOC model
at 580 million grid cells of size 30m × 30m (> 52× 106 ha in
total), at monthly intervals from 2001 to 2010: R1 estimated
baseline SOC change with no residue removal, and R2, R3, and R4
correspond to 2, 4 and 6Mg ha−1 yr−1 residue removal, respectively,
with the highest being ∼50–100% removal. To simulate each
dry metric ton of residue harvested, Ci was reduced by
0.4MgCha−1 yr−1, resulting in a modelled decrease in SOC
compared with no removal33.

To test the geospatial application of the model, we compared
simulated oxidation of SOC based on field measurements of
initial SOC, crop yield, and temperature at Mead with the
geospatial method for the same site. Modelled removal of
6Mg residue ha−1 yr−1 based on site measured parameters
resulted in an average loss of 0.47 ± 0.29 (s.d.) MgCha−1 yr−1
(range 0.25–1.13) over the nine years compared with no removal
(Fig. 1) and the geospatial application found a similar average
loss of 0.50±0.34MgCha−1 yr−1 (Supplementary Fig. 2). This
comparison suggests geospatial application of the model using

independently derived gridded data agrees well with site-specific
modelling based on field measurements for the same site.

Simulated R4 removal across the entire Corn Belt resulted in an
average loss of 0.66±0.08MgCha−1 yr−1 (range 0.17–0.79, Fig. 2b)
over the first five years and an average of 0.47±0.4MgCha−1 yr−1
(range 0.22–0.56, Fig. 2b) for ten years compared with no removal
(R1), owing to decreasing C loss over time as SOC reaches a
new equilibrium (Fig. 2a,b and Supplementary Table 5). Estimated
average trends in SOC across the larger region unexpectedly agreed
well with the Nebraska site. Importantly, this loss of SOC as
respiration corresponds to only 0.3–0.4% per year of initial average
SOC stock for the Corn Belt at 73.8MgC ha−1 yr−1 (0–30 cm depth)
(Supplementary Fig. 3 and Table 6). The actual amount of SOC loss
to CO2 on average across the region could be greater than or less
than estimated here, but these results indicate the likely direction
of change and relative magnitudes. The resulting map indicates that
Minnesota, Wisconsin and Iowa have the highest net loss of SOC
(Fig. 2a). This region has high SOC stocks from low temperatures,
which slow oxidation of SOC and residue, and increase the relative
change in SOC from residue removal.

In LCA, emissions of CO2 from SOC loss in grams permegajoule
of biofuel energy (g CO2 MJ−1) can be determined by dividing
the average geospatial emissions by the simulated biofuel energy
yield8. Cellulosic ethanol yields per ton of residue were from current
and expected future commercial production34. More energy dense
hydrocarbon fuels (for example, FT-diesel) from crop residue have
similar energy yields per ton of residue compared to ethanol but
they generally have a lower volume yield20 (Supplementary Table 8).
Owing to the LCA calculation, when net SOC losses are divided
by the energy yields, R1–R4 estimated CO2 emissions average
70±6.4 g CO2 MJ−1 (range 30–90, Fig. 2c) and are similar over the
first five years for all three residue removal levels (R1–R4, R1–R3,
R1–R2). Over ten years, average emissions estimates are lower at
49±4.3 g CO2e MJ−1 (range 33–63) owing to declining C loss over
time. Importantly, for the same time interval, the average intensity
of CO2 emissions per amount of residue removed is roughly the
same for all removal levels; less residue removed causes less decrease
in SOC but is associated with a smaller biofuel energy yield. On
a relative basis, biofuels from crop residue yield a low amount of
energy and oxidize a large C pool, producing high CO2 emissions
per unit energy, which is similar to the previously identified
phenomenon for indirect land use change from biofuels23,35.

Adding the five-year average emissions to other net production
emissions (for example, biorefinery) of about 30 g CO2-equivalent
per megajoule (g CO2e MJ−1) results in net GHG emissions for
cellulosic ethanol at 100 g CO2e MJ−1 (Fig. 3 and Supplementary
Tables 7 and 8). The average value is 7% greater than gasoline
(93.7 g CO2e MJ−1; ref. 7), and 62 g CO2e MJ−1 above the 60%
GHG reduction set by EISA. The range of SOC loss modelled is
30–90 gCO2eMJ−1 (Fig. 2c and Supplementary Fig. 4), whichmakes
cellulosic ethanol 60–120 g CO2e MJ−1; decreasing the time interval
would further increase these values (Fig. 1). Whereas previous
estimates for single locations do not represent regional variability
in CO2 emissions from residue removal21,22, these average geospatial
estimates for the region can be applied to US Environmental
ProtectionAgency standards for the industry (or see Supplementary
Fig. 4), irrespective of the amount of crop residue removed,
assuming a consistent time interval; these estimates assume that
crop residue is removed and no mitigation action is taken, which
seems to predominantly occur.

To meet the EISA mandate for cellulosic ethanol and advanced
biofuel from corn residue (79.5 bly by 2022), 46 million hectares
with a yield of 6Mg ha−1 yr−1 is needed, which is 88% of the
Corn Belt area modelled. Emissions of CO2 from SOC in this
area would be 81.8–117 Tg CO2 yr−1 (10–5 year average loss
rates), equivalent to 1.4–2.0% of net US GHG emissions in 2011.
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Figure 2 | Modelled soil organic carbon respiration to CO2 in the US Corn
Belt from corn residue removal. a, Geospatial modelling of soil organic
carbon (SOC) loss from 6 Mg ha−1 yr−1 of residue removal (first five years)
relative to no removal (580 million cells; Mead, Nebraska, is indicated). b,
Loss of SOC compared with no removal by removal level and time. c, CO2
emissions increase in the biofuel life cycle corresponding to b.

Instead of increasing CO2 emissions and reducing agricultural SOC
stocks, an alternative strategy would be to make vehicles more
efficient and decrease fuel demand (consistent with the 2012 US
CAFE standards), thus potentially making the expanded fuel supply
from the RFS2 unnecessary36. Alternatively, development of other
bioenergy systems, such as perennial grasses or forestry resources,
may provide feedstocks that could have less negative impacts on
SOC, GHG emissions, soil erosion, food security and biodiversity
than from removal of corn residue36–39.

Soil CO2 emissions from residue removal, however, can be
mitigated by a number of factors and management options. As
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Figure 3 | Contribution of modelled CO2 emissions from SOC to the life
cycle of biofuel from corn residue. Error bars are± one standard deviation,
based on Fig. 2c. Data are also from Fig. 1 and Supplementary Tables 7 and 8.

residue is a source of N2O emissions, residue removal would
lower these emissions by ∼4.6 g CO2e MJ−1, or ∼8% of SOC
emissions (Supplementary Table 8). The lignin fraction of residue
can also potentially be burned to produce electricity, off-setting coal-
generated electricity and saving emissions of up to∼55g CO2 eMJ−1
(ref. 7). Furthermore, use of improved soil and crop management
practices, such as no-till cover crops, forage-based cropping systems,
animal manure, compost, biochar and biofuel co-products, could
replace the estimated SOC loss after residue removal15,16. These
management options require more research under different residue
removal practices to ensure SOC stocks are maintained where crop
residue is removed.

Methods
Soil organic carbon model. Oxidation rate coefficients were estimated for soil
organic matter (SOM) and plant residue (kS and kr, respectively) and the rate of
ageing of SOM and plant residue (SS and Sr, respectively) from 306 datasets from
36 studies covering a wide range of residue substrates, soil types and climatic
conditions globally10 (Supplementary Table 1). Average oxidation response due to
temperature (Q10) is based on previous research. Decomposition rates were
modelled for all C components (nine years of residue inputs and initial SOC) at
the field site based on daily average temperature data and measured C0 and Ci

values (Supplementary Fig. 1 and Tables 2,3). If Ta is greater than the reference
temperature (Tr, 10 ◦C), Ta is subtracted from Tr and divided by 10, and placed as
an exponent on Q10 in the model; this term is the temperature coefficient (Tco). If
Ta is less than Tr, then Tco is assumed to change linearly with Ta, with a rate of
0.1 per degree of Ta; no oxidation occurs below 0 ◦C. The sum of Tco (total heat
accumulated) determines the amount of C remaining at time t .

Comparison of model with field CO2 measurements. Fluxes of CO2 were
measured using tower eddy covariance above continuous corn from 2001 to 2010
at Mead, Nebraska. Inputs of C to soil at Mead were estimated based on measured
grain and residue yield, and estimated root biomass (Supplementary Table 3).
Measured ecosystem total respiration was partitioned into emissions from: live
root and aboveground biomass of the growing crop, irrigation water, and SOC
and crop residue (Supplementary Table 4). The gas measurements account for net
CO2 flux from the entire soil profile depth, and modelling of CO2 emissions from
the top 0–30 cm is expected to underestimate measured flux emissions; but as the
majority of SOC is often in the top 30 cm in the Corn Belt, modelling the
dynamics of this zone would probably account for the majority of emissions.

Geospatial data and supercomputer simulations. A 10m Soil Survey
Geographic grid (gSSURGO) of representative 30 cm depth SOC values was
resampled to 30×30m and converted to MgC ha−1 (30 cm)−1 (Supplementary
Fig. 2). All other spatial inputs were resampled to 30m and aligned with the SOC
grid space using zero-valued SOC masks of the area planted in corn or soybean
in 2010. Monthly maximum and minimum average temperatures from the
PRISM database (2001–2010) were used. Rainfed county corn grain yield
estimates from NASS (2001–2010) were converted to Mg C ha−1 yr−1 using a
harvest index (0.53), and estimated C from roots was added (Supplementary
Fig. 2 and Table 3). Simulated removal of C was limited to the actual amount of
aboveground C estimated in each grid per year.
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A massive amount of data was used to produce these results. Processing on a
PC with ESRI’s ArcGIS 9.3 limited input file size to the state level (1-2 gigabytes
(GB)). Data were analysed using high-performance computer clusters in the
Holland Computing Center (HCC) at University of Nebraska-Lincoln
(http://hcc.unl.edu) that employ parallel programs to speed up computation. The
uncompressed input data totalled ∼3 terabytes (TB) and the uncompressed
output data totalled >30 TB. The program split each state’s input file into
∼40 megabyte (MB) files, and then executed computations on the smaller files in
parallel. The output files were then joined together in a single state file, for each
of the 12 states. If input files had not been split, the computational speed would
have been significantly reduced owing to opening and closing of files and because
loading an entire large disk file into memory at once is infeasible.
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