January 21, 2022

California Air Resources Board
Clerk’s Office
1001 I Street
Sacramento, California 95814

RE: COMMENTS IN RESPONSE TO 2022 SCOPING PLAN WORKSHOP ON BUILDING DECARBONIZATION ON DECEMBER 13, 2021

A. O. Smith appreciates the opportunity to submit comments to the California Air Resources Board (CARB) regarding its Public Workshop: 2022 Scoping Plan Update - Building Decarbonization held on December 13, 2021. Presentations from the workshop included building decarbonization activities undertaken at the various agencies. The workshop also included discussions on affordability, equipment costs and market trends.

As a leading manufacturer of both residential and commercial heat pump water heaters (HPWHs), A. O. Smith has a keen interest in this Scoping Plan update. The path to achieving carbon neutrality will require a number of changes in California. HPWHs will play a vital role in two key California policy priorities – reducing the carbon footprint of our buildings as the state transitions water heaters from primarily gas-fired to electricity and helping to manage the integration of increasing amounts of renewable energy as HPWHs may shift load and serve as thermal energy storage devices.

HPWHs and grid-interactive electric storage water heaters offer the ability to provide thermal storage serving as a battery for assisting the integration of renewable energy into local distribution grids in both residential and commercial applications. Flexible demand [or Smart] water heaters, which include grid-enabled electric resistance storage water heaters and HPWHs, have additional controls that allow the utility or third-party aggregator to control their energy use (e.g., load shifting) during the course of the day. Within a given local territory, a fleet of water heaters can be controlled to be a flexible energy storage system that can adjust the load on the grid. Given that every home in the state has a water heater, smart water heaters can play a key role in load management and carbon reduction within the built environment.
About A. O. Smith
A. O. Smith is a global leader applying innovative technology and energy-efficient solutions to products manufactured and marketed worldwide. Our company is one of the world's leading manufacturers of residential and commercial water heating equipment and boilers, as well as a manufacturer of water treatment and air purification products. Along with its wholly owned subsidiaries, A. O. Smith is the largest manufacturer and seller of residential and commercial water heating equipment, high efficiency residential and commercial boilers, and pool heaters in North America.

Building Electrification Requires Significant Investments
Conventional wisdom leads us to believe that California is on the path towards all electric requirements under the state’s Title 24 building code standards for new residential and commercial buildings beginning in 2026. However, to attain carbon neutrality across the entire building stock in the state by 2035, or 2045, a massive investment will be required from both the public and private sectors given California's current building and electric grid infrastructure. This investment would need to be exponentially larger if a requirement that existing buildings be retrofitted to be all-electric by 2035. Therefore, it is critical that CARB considers the economics of retrofitting millions of households and commercial buildings and the need for sustained programs and incentives for property owners and businesses.

Affordability and Costs Impacts for Building Electrification
In California, about 75 percent of homes (or 9.75 million) were built before 1990. Older homes are less likely to have adequately sized electric panels to accommodate all electric appliances. In addition to the cost of the electric appliance, an older home may also require an electric panel upgrade. The California Energy Commission estimates that a panel upgrade can cost between $2,500 - $4,000 and would likely be borne by the home or property owner. In a scenario in which every house built before 1990 requires an electric panel upgrade, an investment between $25 - $40 billion dollars would be required. Another study on building electrification by the not-for-profit organization, Pecan Street, found that it would cost approximately $100 billion to upgrade electric panels in the residential sector across the country. Regardless of the exact amount, it's important to note that just one component of electrification, updating the main electrical panel of a home, will require a tremendous financial investment. The figures shared here do not even account for the cost of upgrading electric appliances that in many cases are more expensive than their gas counterparts. According to the Building Decarbonization Coalition, the cost to electrify low-to-moderate income (LMI) households in California would require investments in the magnitude of $72 - $150 billion over the next several decades. Consistent and long-term funding

2 Ibid. pg 85.
for GHG reduction programs and incentives is essential in aiding consumers in making different purchasing decisions and accepting new technologies.

Application of HPWHs for the Current Built Environment

A. O. Smith recommends a pragmatic approach to reach electrification goals, and we look forward to working with CARB and other state agencies in this regard. As noted during the workshop, the age and characteristics of some of the existing building stock can prove challenging to totally electrify. In addition to a panel upgrade, space constraints of an older home can make it difficult to install a HPWH. Most gas water heaters are placed inside a small closet, whereas a HPHW requires more space for the appliance to function efficiently and as intended. Given that some homes may lend themselves to a cheaper, faster, and overall easier transition to electrification, A. O. Smith recommends a system of prioritization to help target homes that are immediately ready for replacement while continuing to develop plans for buildings that are harder to electrify. In the State of New York, for example, some local jurisdictions are pursuing a pragmatic step-wise approach for building electrification by completing energy audits of buildings (residential and commercial) as a first step to identify, tier, and prioritize which buildings can transition to all-electric end-uses ahead of others.

Retrofitting existing commercial buildings have similar issues as retrofitting a residential home: type and size of equipment, age of the building, and space constraints. However, the primary challenge in commercial applications is being able to match the customers hot water needs (i.e., load) in converting from as gas-fired product to a HPWH. In certain applications the economics of the conversion will not be favorable, including the potential to increase the annual operating costs to the business owner or property owner. According to a report on the assessment of building decarbonization by the California Energy Commission, small business owners and property owners of small and medium size commercial buildings could incur retrofit costs of up to $40,000. Therefore, ensuring the correct application of the equipment will be critical. A. O. Smith recommends a step-wise approach to reaching electrification goals by allowing high efficiency gas condensing equipment to be used in limited cases where there is no viable electric alternative. Using hybrid heat pumps with options for gas/electric back-up may also be necessary for certain space constrained and larger thermal load applications, such as health care facilities, in certain areas of the state.

Providing Manufacturers with Business Certainty

The California Energy Commission assumes a turnover rate of 7 percent in water heaters in the existing single-family homes and multi-family units, which equates to 861,000 water heaters being replaced annually. To capture even 10 percent of this market means installing 86,000 units per year. The number of HPWH units sold annually across the entire country in 2020 was approximately 100,000. To convert the entire annual California market of water heaters to HPWHs would require a ten-fold increase of nationwide HPWH manufacturing capacity. These figures are meant to illustrate that meeting

6 ENERGY STAR® Unit Shipment and Market Penetration Report Calendar Year 2020 Summary, pg 6.
California’s demand for HPWHs at even a modest pace would require significant ramp up of manufacturing and have vast impacts on the supply chain. This sort of increase takes time to orchestrate as new manufacturing capacity and production lines must be created. As stated in previous comments, having a clear and reliable policy scheme will be necessary to provide manufacturers with the business certainty needed to make the massive investments required to increase manufacturing capacity at this unprecedented scale.

Streamlined Process for Electrifying Existing Buildings

As discussed in other settings, HPWHs do not yet have widespread adoption in California. While many local governments have passed ordinances to require new construction to be all electric, customers still have the option to choose a gas or propane-fired water heater when replacing their water heater. Hence, if the state seeks to incent customers to convert from a gas or propane-fired water heater to a HPWH, conversion rates will be low if the conversion process is slow, expensive, and complicated. Therefore, incentives for HPWH must not only provide funding to offset the cost increase compared to their gas or propane counterparts, but deploy a simple conversion process. Unlike other technologies where customers are accustomed to waiting (as in the case of adding solar or storage to a home), a water heater is a critical piece of home (and public health) infrastructure and residents expect replacement within hours, not days, or weeks, or months. Californians need a streamlined, easy-to-use program to assist homeowners and property owners in embracing this high efficiency technology.

Transitioning to Low Global Warming Potential Refrigerants in HPWHs

Today’s typical HPWHs currently use a small amount (i.e., “charge”) of hydrofluorocarbon (HFC) refrigerants that are used in refrigerators, air-conditioners, and space-heating heat pumps. A. O. Smith, like many appliance manufacturers that utilize heat pump technology, continue to evaluate next generation HFC technology for use in our equipment, including transitioning to low-GWP refrigerants. At A. O. Smith, we agree that we must do all we can to lower the greenhouse gas (GHG) emissions profile of equipment. The marketplace for broad-based and cost-effective low-GWP refrigerants for water heating continues to evolve - driven primarily by international agreements, such as the Montreal Protocol, the recently enacted American Innovation and Manufacturing (AIM) Act of 2020 at the federal level, California’s action directed by Senate Bill (SB) 1383, and the regulations promulgated by CARB, as well as larger users of refrigerants such as the space cooling and automobile industry.

We request that CARB examine refrigerant regulations to reduce the allowable GWP of refrigerants over time, in consultation with HPWH manufacturers and other market actors. Given the implications of the AIM Act on the refrigerant supply chain, A. O. Smith respectfully asks for adequate time to plan, source, build and test any new products designed to meet or exceed California’s HFC regulatory requirements.

Conclusion

A. O. Smith appreciates the opportunity to provide comments on these important policy matters. We urge CARB to take a pragmatic, clear and reliable approach as it builds upon the state’s decarbonization strategy to reach carbon neutrality. In addition to having consistent programs that provide incentives
and consumer awareness and education on HPWHs, we urge continued agency coordination to align federal, state and local policies and rules to help achieve California’s climate goals.

We look forward to working with CARB as the Scoping Plan process moves forward and collaborating with CARB and other stakeholders to design a program that helps achieve our GHG reduction goals as effectively as possible.

Sincerely,

Joshua C. Greene
Corporate Vice President, Government and Industry Affairs
A. O. Smith Corporation
jcgreene@aosmith.com