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Abstract

Plants are key components of the terrestrial ecosystem carbon cycle. Atmospheric CO  is assim‐
ilated through photosynthesis and stored in plant biomass and in the soil. The use of turfgrass is
expanding due to the increasing human population and urbanization. In this review, we summa‐
rize recent carbon sequestration research in turfgrass and compare turfgrass systems to other
plant systems. The soil organic carbon (SOC) stored in turfgrass systems is comparable to that in
other natural and agricultural systems. Turfgrass systems are generally carbon-neutral or carbon
sinks, with the exception of intensively managed areas, such as golf course greens and athletic
fields. Turfgrass used in other areas, such as golf course fairways and roughs, parks, and home
lawns, has the potential to contribute to carbon sequestration if proper management practices are
implemented. High management inputs can increase the biomass productivity of turfgrass but do
not guarantee higher SOC compared to low management inputs. Additionally, choosing the ap‐
propriate turfgrass species that are well adapted to the local climate and tolerant to stresses can
maximize CO  assimilation and biomass productivity, although other factors, such as soil respi‐
ration, can considerably affect SOC. Future research is needed to document the complete carbon
footprint, as well as to identify best management practices and appropriate turfgrass species to
enhance carbon sequestration in turfgrass systems.
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1. Introduction

Carbon dioxide (CO ), methane (CH ), nitrous oxide (N O), and fluorinated gases are green‐
house gases (GHGs) that contribute to global warming. The GHG with the highest concentration
in the atmosphere is CO , which contributed 81% of the total GHG emissions in 2018 [1]. In the
ecosystem, plants are crucial players involved in carbon sequestration, which is the process of
capture and storage of atmospheric CO . While all living organisms release CO  by respiration,
atmospheric CO  only enters the terrestrial ecosystems through photosynthesis of plants [2].
Plants assimilate CO , store carbon in plant biomass, and contribute organic matter to soils.
However, plants and soils also produce CO  through respiration, and terrestrial ecosystems can
be net sources of CO  when they lose more stored carbon than CO  taken in through photosyn‐
thesis on an annual basis.

A wide range of methods and terminology is used in the carbon research literature [3,4]. Mea‐
suring changes in soil organic carbon (SOC) over a period of time is a way to determine whether
an ecosystem is a net sink or source, which is often expressed in the unit of Mg C m  yr
(conversion can be made using Table 1). Net ecosystem CO  exchange (NEE) is another mea‐
sure of whether a plant–soil system is a net sink or source of atmospheric CO  at an annual time
step. More importantly, whether a positive or negative NEE value indicates a sink of atmospher‐
ic CO  needs to be specified. Over short time scales (<10 years), NEE provides a more sensitive
approach for quantifying carbon sequestration than measuring changes in SOC. The fluxes of
CO  can be measured regularly with sealed gas chambers or with eddy covariance systems to
estimate annual NEE. The units of SOC accumulation rate and NEE are in either weight of ele‐
mental carbon (C) or CO  per area per year (Table 1).
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Table 1

Carbon sequestration rate unit conversion.

Unit
To Covert Other Units to Mg C ha  yr ,
Multiply by

Mg CO  ha  yr 0.2727

kg CO  ha  yr 0.0002727

kg C ha  yr 0.001

kg CO  m  yr 2.727

kg C m  yr 10

g CO  m  yr 0.002727

g C m  yr 0.01

Mg CO  km  yr 0.002727

Turfgrass covers an estimated 12.8 to 20 million ha of land in the United States [5], which will
likely increase with human population and urban landscape growth. Turfgrasses are broadly
used for sports (golf, football, soccer, baseball, tennis, etc.), residential and commercial areas
(home lawns and commercial real estate), and public municipalities (parks, schools, and road‐
sides). In addition to their aesthetic value and functions, Morgan et al. [2] estimated that 5 Tg (1
Tg = 10  g) of carbon was sequestered annually by turfgrass systems across the continental
United States. Due to the higher soil carbon density relative to other land uses, residential lawns
are potentially large pools for soil carbon [6,7,8]. However, maintaining high-quality turfgrass is
reliant on repeated cultural practices, such as mowing, irrigation, and fertilization. Some inten‐
sively managed areas for sports, such as golf course tees and greens, as well as athletic fields,
also require vertical cutting, aerification, sand topdressing, and pesticide applications. Fuel con‐
sumption and energy use for mowers and other machinery, irrigation pumps as well as produc‐
tion and transportation of fertilizers and pesticides for high-maintenance areas could offset the
carbon sequestration benefits of turfgrass. Another concern associated with turfgrass manage‐
ment, like many agricultural systems, is the N O emissions from irrigation and fertilization,
which can contribute significantly to net GHG flux [9,10,11].

Due to the large range of turfgrass uses, species, age, and management practices, as well as the
environmental settings in which turfgrass is grown, turfgrass can be a net source or a net sink of
GHGs. The purpose of this literature review is to provide a general understanding of turfgrass
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systems, summarize current research on their climate impacts, and highlight potential ways to
reduce their climate footprint. First, we describe the plant and soil components of turfgrass sys‐
tems, as well as their carbon stocks and rate of carbon accumulation. Second, we compare car‐
bon dynamics in turfgrass systems managed for different uses and compare turfgrass to other
systems. Third, we summarize the key components that could affect carbon sequestration in turf‐
grass systems, including the age of turfgrass, grass species selection, turfgrass use, and manage‐
ment practices. Fourth, we provide an overview of methods used in studying turfgrass carbon
dynamics for potential future research. Finally, we propose management practices that could po‐
tentially increase carbon gains and reduce carbon losses in turfgrass ecosystems.

2. Turfgrass Systems

Turfgrasses are perennial plants that have long growing seasons and form a uniform ground
cover when managed properly. In the turfgrass ecosystem, the uptake of atmospheric CO
through photosynthesis occurs in the shoots under light, whereas respiration of the turfgrass
(shoots and roots) and soil respiration contribute to the release of CO  under light and dark con‐
ditions (Figure 1). Unlike forage grasses, other crops, and woody plants, turfgrasses are not bred
or grown for high aboveground biomass yields, which would require increased mowing inputs.
Therefore, turfgrasses are expected to store smaller amounts of carbon as aboveground plant
biomass [12]. An extensive root system is an important trait for turfgrass to sustain adverse
stress conditions [13]. However, when root turnover rate is taken into consideration, the carbon
stored in the root biomass may not be a reliable carbon pool. High turnover rates of turfgrass
roots indicate that roots are rapidly decomposed and turned over approximately every two years
[12,14,15]. The carbon in turfgrass systems is therefore primarily stored in the soil as organic
carbon. The SOC in turfgrass soils usually decreases with soil depth, and the most rapid accu‐
mulation usually occurs near the soil surface [16,17,18,19,20].

Figure 1

Biological components of the carbon cycle in a turfgrass–soil system. Blue boxes indicate carbon gains in the
turfgrass system, and gray boxes indicate carbon losses in the turfgrass system or carbon emissions to the at‐
mosphere. This figure describes common scenarios in which clippings are returned or composted to be added
back to the soil. Some rare scenarios are not described in this figure, such as when clippings are burnt and the
carbon captured in clippings is released into the atmosphere.
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2.1. Soil Organic Carbon Stocks

In the literature, turfgrass lawns are generally reported to be carbon sinks, with the caveat that
management practices can considerably affect carbon production and storage. Fine-textured soils
with high clay content are better at stabilizing SOC and reducing the rate of decomposition [21];
however, soils with high clay content are prone to compaction and are therefore not suitable for
turfgrass under traffic, such as sports turf and golf courses. For this reason, sports fields, as well
as golf course greens and tees, are commonly constructed using sand and typically have less
SOC than lawns grown on native soils [22,23]. However, research has shown that soil texture
does not always have a significant influence on SOC stocks in residential lawns [16,17,24,25].

Wide ranges have been reported for turfgrass SOC stocks due to the wide range of environmen‐
tal settings in which turfgrasses are grown. Selhorst and Lal [18] reported a mean SOC stock of
45.8 ± 3.5 Mg C ha  in various cities in the USA, ranging from 20.8 to 96.3 Mg C ha . An‐
other commonly used unit in the literature for SOC stocks is kg m ; for consistency with car‐
bon sequestration rates reported in Mg C ha  yr , SOC stocks were converted to Mg C ha
by multiplying kg m  by 10 (1 kg m  = 10 Mg ha ). In line with the study by Selhorst and
Lal [18], studies on mature residential lawns have also reported a wide range of carbon stocks of
155 [26], 108.3 [24], 69.5 [20], 65.0 [27], 50.2 [17], 38.6 [16], and 19.7 Mg C ha  [28]. Pouyat
et al. [6] compiled data from multiple cities and estimated mean SOC stocks of 71 and 144 Mg
C ha  for parks and residential turfgrass, respectively. In New Zealand, Weissert et al. [29] re‐
ported a SOC stock of 48 Mg C ha  for urban parklands. When surveying 13 golf courses in
southeastern suburbs of Melbourne, Australia, Livesley et al. [30] reported that SOC density
varied from 49.8 to 147.5 Mg C ha  in rough and fairway soils. Other urban turfgrass soils (in‐
cluding park lawns, campus lawns, roadside turf, and athletic fields) were also reported as SOC
stocks of 13–49 Mg C ha  to 15 cm depth [31] and 106–262 Mg C ha  to 1 m depth [32].

Despite the wide range in SOC stocks reported for turfgrass, studies have shown much more
similar SOC stocks in residential lawns than in natural vegetation (such as forests, grasslands,
and desert ecosystems depending on the climate) in cities with distinct climates [7,33]. For ex‐
ample, similar SOC stocks were reported between Baltimore, MD (110 Mg C ha ), and Denver,
CO (127 Mg C ha ), residential turfgrass soils, likely due to the greater management efforts in
the Denver region to offset the constraint of the dry climate [7]. In arid climates, turfgrass is of‐
ten reported to have higher SOC stocks than native vegetation [7,33,34,35]. A study conducted
on urban land use in Phoenix, AZ, also concluded that mesic landscaping with well-watered tur‐
fgrass was a net CO  sink [36]. However, such studies highlight a tradeoff between water re‐
sources and the potential carbon sequestration benefits of turfgrass. While turfgrasses can accu‐
mulate large SOC stocks in arid climates, they require irrigation and other management prac‐
tices. Using the CENTURY model to simulate turfgrass systems, Trammell et al. [37] demon‐
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strated that management practices could be a potential driver for SOC accumulation. Research
on turfgrass management practices is summarized and discussed separately in another section of
this review.

2.2. Biomass and Net Primary Productivity

High SOC stocks in turfgrass systems are driven by high carbon inputs from plant biomass
[38,39]. Newly seeded turf rapidly increased biomass carbon stocks; both aboveground and root
biomass (1.8–3.4 and 1.0–2.2 Mg C ha , respectively) at three years after establishment were
more than double the amount of biomass compared to one year after establishment [40]. Despite
rapid growth rates, the amount of carbon stored in the turfgrass biomass was relatively low (2.4
[28] and 2.4–6.0 Mg C ha  [41]). Kong et al. [31] reported 0.5–2.1 Mg C ha  stored in turf‐
grass aboveground biomass as opposed to 12.6–48.9 Mg C ha  in the turfgrass soils.

Net primary productivity or production (NPP) is a measure of carbon inputs into an ecosystem.
NPP can be calculated as the sum of the positive increments in the standing biomass, which re‐
quires periodic sampling. Falk (1980) proposed a calculation for NPP that uses turnover rates to
estimate biomass production [15].

NPP = ∑clippings + stubble  × θ  + root  × θ , (1)

In this equation, NPP is the sum of the total clippings collected at each mowing, stubble produc‐
tion, and root production. Stubble or root production is calculated by multiplying maximum bio‐
mass (stubble  or root , respectively) by a turnover rate for stubble (θ  or θ , respectively).
In that study, root and stubble turnover rates were measured, and an average NPP of 16.5 Mg
ha  was reported in dry weight for lawns [15]. Qian et al. [42] also reported biomass alloca‐
tions of 4.70, 3.37, 8.08, and 3.25 Mg ha  in biomass dry weight for clippings, verdure, thatch,
and roots, respectively. Based on Equation (1) and turnover rates reported by Falk [14,15], Qian
et al. [42] reported an NPP of 12.6 Mg ha  in biomass weight. However, these studies reported
NPP in biomass dry weight; the amount of carbon in the biomass was not quantified and can
vary depending on tissue type. The NPP rates in biomass weight can be converted to Mg C ha
yr  by multiplying by the appropriate carbon content (%) of each tissue type. For example, Gol‐
ubiewski [34] reported that the carbon content of harvested clippings was 44.7% by weight. In
another study, total standing biomass of a tall fescue [Festuca arundinacea Schreb. = Schedo‐
norus arundinaceus (Schreb.) Dumort.] lawn averaged 6.04 Mg C ha  with slightly more car‐
bon in roots than in stubble, and NPP averaged 4.50 Mg C ha  yr  [43]. Using a modeling ap‐
proach, Milesi et al. [5] reported a wide range of NPP values from 0.22 to 10.6 Mg C ha  yr
associated with different management regimes.
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It was unclear how much carbon was in thatch biomass in early turfgrass carbon research (for
example, research by Falk in 1980 [15]), in which thatch might not be separated from other plant
tissues when measuring standing biomass. This likely occurred because thatch was less com‐
monly observed in older turfgrass cultivars (except for intensively managed areas, such as golf
course putting greens). Benefiting from advances in turfgrass breeding, modern cultivars are
denser and more aggressive in lateral growth than older cultivars [44]. Due to high plant density
and lack of soil disturbance, turfgrass usually develops a distinct thatch or organic matter layer (
Figure 2). Thatch in turfgrass has been defined as a layer of dead and living stems and roots that
accumulates faster than decomposition between the green vegetation and the soil surface [45]. A
study in 2020 reported that thatch built up rapidly after turfgrass establishment and contributed
to carbon accumulation in turfgrass systems [46]. Turfgrass thatch layers have a higher carbon
concentration (due to a higher lignin content) than verdure, roots, and underlying soils [47,48].
Therefore, thatch is a potential carbon pool in turfgrass systems [39,46,47].

Figure 2

Turfgrass thatch development (approximately 2–3 cm as shown) in different turfgrass systems: creeping bent‐
grass (Agrostis stolonifera) maintained at a golf course fairway height (left), fine fescue (Festuca sp.) main‐
tained as a lawn (middle), and tall fescue (F. arundinacea) maintained as a lawn (right).

Despite the fact that thatch layers are commonly observed in turfgrass systems, carbon studies
vary as whether to include the thatch layer in determining SOC or total system carbon. The
thatch layer has a comparable carbon content to that of soil [46,47]; therefore, this layer can also
be a pool for carbon. A few studies have reported the carbon sequestration potential in thatch
layers [39,42]. Thatch is commonly not included in soil carbon sequestration calculations
[18,38,49,50,51]. Thatch has distinct physical and chemical properties different from verdure or
roots. In Kentucky bluegrass (Poa pratensis L.) (rhizomatous), Qian et al. [42] separated thatch
from verdure and roots and reported an annual thatch production (biomass of thatch × thatch
turnover) of 4.362 Mg dry weight ha . Thatch has similar lignin content to that of roots and
was therefore included as belowground biomass production [42]. Conversely, thatch and verdure
have also been considered aboveground biomass [38,52]. Thatch can account for a substantial
portion of the standing biomass, depending on grass species (more discussion is provided in a
later section). However, thatch contributes to the softness of athletic fields; therefore, athletic
fields require renovation and thatch removal to provide firm and smooth surfaces for the safety
of players [53,54].
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2.3. Ecosystem Respiration

Accumulation of carbon in turfgrass systems is controlled, in part, by carbon losses through res‐
piration. The total plant, animal, and microbial respiratory loss of carbon from the ecosystem in
the form of CO  is defined as ecosystem respiration (R ). Also referred to as total respiration,
R  is composed of autotrophic respiration (R ) from plants and heterotrophic respiration (R )
from microbes and animals. Kong et al. [31] reported a lower R  (4.23 to 8.84 µmol m  s )
in the dry season and higher rates (7.45 to 20.26 µmol m  s ) in the wet season in Hong Kong.
In a Singapore urban turfgrass system, Ng et al. [55] reported an R  rate of 7.9 µmol m  s ,
and R  contributed a substantial portion. Simply converting respiration rates reported in µmol
CO  m  s  to an annual rate in Mg C ha  yr  is not appropriate if CO  fluxes were only
measured periodically or from a partial year because soil fluxes can vary considerably within a
year. Song et al. [56] also reported a wide range of R  rates depending on mowing height and
air temperature. Fertilization can also increase R  associated with turfgrass lawns [57];
whether elevated R  rates are the result of higher soil respiration or higher R  from increased
plant biomass in response to fertilization needs to be further investigated.

Ecosystem respiration can be equivalent to soil respiration in ecosystems without plants (such as
bare soil) or in which plants (or plant parts) were removed when measuring respiration. Howev‐
er, many studies have not specified whether respiration from plants (R ) was included in soil res‐
piration measurements. Studies quantifying respiration with sealed gas chambers have suggested
that soil respiration contributes to CO  emissions, also known as biogenic emissions, in turf‐
grass systems [29,40,55,58,59,60]. A few studies continuously surveyed CO  fluxes for more
than one year and calculated annual soil respiration rates of 10.5 [59], 9.2 [28], and 4.58 Mg C
ha  yr  [61], which were converted to Mg C ha  yr  using Table 1 for ease of comparison to
SOC accumulation rates. Using a modeling approach, R  was estimated to be 0.31–1.21 Mg C
ha  yr  with minimal management (mowing only as needed) and 1.38–9.22 Mg C ha  yr
under other management regimes on a nationwide scale in the USA [5]. Soil respiration from
plant systems, including turfgrass, varies both spatially and temporally and can account for a
substantial portion of urban carbon emissions [60]. Biogenic emissions measured from turfgrass
soils were substantially higher than the fuel emissions from mowing [28,61].

Turfgrass thatch is a porous layer with stems and roots that also harbors macro- and micro-or‐
ganisms [62,63] and is therefore expected to have a high respiration rate. Although the effects of
turfgrass thatch on carbon sequestration are not fully understood, Raturi et al. [47] suggested
significant differences in microbial biomass carbon between thatch and the soil underneath. In‐
terestingly, thatch had higher microbial biomass carbon and lower carbon loss through mainte‐
nance respiration, suggesting that turfgrass thatch was acting as a temporary carbon sink, where‐
as the reduced microbial biomass and increased maintenance respiration associated with soils
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suggested that soils under thatch serve as sources of atmospheric CO  [47]. Nevertheless, soil
respiration is an important process for soil nutrient cycling and can serve as an indicator of mi‐
crobial activities. Soil respiration from turfgrass systems was reported to be higher than that
from bare soil [55,59,64], gravel mulch [65], and agricultural soils [35,64,66], indicating rela‐
tively higher microbial activities in turfgrass soils. Soil respiration rates measured in turfgrass
systems are also comparable to other natural or managed ecosystems (Table 2) and were shown
to be affected by soil temperature and moisture [29,59].

Table 2

Carbon sequestration in turfgrass systems compared with other systems.

* Systems were ranked from high to low; ≈ indicates that the former had a higher mean or median but was not
statistically different from others at p < 0.05 level. SOC, soil organic carbon; ANPP, aboveground net primary
productivity; R , soil respiration.

2.4. Hidden Carbon Cost and Net Greenhouse Gas Emissions

Reference Location Comparison *

Carbon gain in the system

Acuña E. et al. [50] Central Chile SOC: turfgrass > bare soil

Bae and Ryu [59] Seoul, South Korea SOC: mixed forest > wetland > lawn > bare soil

Upadhyay et al. [64] Varanasi, India
SOC: urban plantation ≈ lawn> agriculture ≈ grassland

> bare soil

Bowne and Johnson [66]
Elizabethtown, PA,

USA
SOC: lawn ≈ corn field

Burghardt and Schneider
[26]

Ruhr, Germany SOC: vegetable garden ≈ lawn > meadow

Byrne et al. [65] Central PA, USA SOC: lawn ≈ bark > unmanaged vegetation> gravel

Campbell et al. [27] Virginia, USA Soil carbon: forest ≈ lawn

Golubiewski [34] Colorado, USA
SOC: turfgrass ≈ tree

SOC: urban green space > native grassland >
agricultural field

Huyler et al. [67] Auburn, AL, USA
SOC (only at 0–15 cm): lawn with tree > lawn without

tree

2
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Although turfgrass systems continuously assimilate atmospheric CO  through photosynthesis
and accumulate SOC, there are concerns about turfgrass maintenance emissions, which can shift
turfgrass systems from being carbon sinks to carbon sources [10,19,23,31]. Hidden carbon costs
(HCCs) and net GHGs are expressed as CO  equivalents (CO -e) and are occasionally reported
as C equivalents (C-e) in the literature, which are calculated by multiplying CO -e values by
0.2727 (molecular weight of C/molecular weight of CO ). Some studies have estimated HCCs
and GHGs in established turfgrass systems, accounting for fuel, irrigation, fertilization, and N O
emissions [23,72]. Zhang et al. [72] also included HCCs from production and transportation of
pesticides, which accounted for the smallest portion among other factors. Two major types of
turfgrass systems are lawns and golf courses, which can vary considerably in HCCs and net
GHG emissions and are therefore discussed in detail in the following two sections.

Nitrous oxide (N O) has a global warming potential (GWP) 298 times that of CO . In turfgrass
systems, N O emissions related to fertilization and irrigation are a major component of net
GHGs. Braun and Bremer [11] provided an in-depth review of N O emissions in turfgrass sys‐
tems and compared them to other crops and ecosystems. For the purpose of this review, we fo‐
cus on the carbon cycle. Research on CH  in turfgrass systems is limited, although a few assess‐
ments have indicated that CH  fluxes are relatively small, except for during or immediately after
rain or irrigation events [9,22]. Turfgrass systems are generally reported to be CH -neutral or
sinks [9,10,68,70,71].

2.4.1. Lawns Selhorst and Lal [18] demonstrated that lawns across the USA are potential sinks
for atmospheric CO ; however, standard lawn management practices of mowing and fertilization
contributed to HCCs of 0.190 and 0.064 Mg C-e ha  yr , respectively. Furthermore, Kong et
al. [31] provided detailed HCCs of fuel use, electricity, irrigation, pesticides, and fertilizers asso‐
ciated with urban lawn maintenance, which contributed a total of 1.7 to 6.3 Mg C-e ha  yr  in
carbon emissions. Such high HCCs can offset the carbon sink capacity of turfs in 5–24 years
[31].

Ornamental lawns were reported to accumulate SOC at a rate of 1.40 Mg C ha  yr , which is
greater than the GWP of N O emissions in that system [23]. Therefore, the authors reported
lawns sequestered CO  at the rate of 0.29 Mg C-e ha  yr  under a low fertilization scenario
(10 g N m  yr ) after accounting for measured N O emissions and estimated CO  emissions
generated by fuel combustion, fertilizer production, and irrigation [23]. However, under a high
fertilizer scenario (75 g N m  yr ), lawns were estimated to contribute to a carbon loss of 0.78
Mg C-e ha  yr . However, the 75 g N m  yr  of fertilizer applied to lawns is almost four
times higher than the fertilization rate recommended by the local university extension office [73]
and therefore not realistic. The reported net GHG also took N O emissions into account, which
were estimated to be 0.1 to 0.3 g N m  yr , depending on the fertilization rate and, when con‐
verted to GWP, resulted in +0.123 to +0.395 Mg C-e ha  yr  [23]. Similarly, Gu et al. [10]
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reported that carbon sequestration by turfgrass lawns was offset by N O emissions and HCCs to
maintain turfgrasses. In another case in Australia, when converting a well-established pasture to
a turfgrass lawn, the turfgrass system was reported to produce net GHG emissions of 0.415 Mg
CO -e ha  (0.113 Mg C-e ha ) in the first 80 days after conversion [9]. Therefore, understand‐
ing each plant–soil system is of great importance, and land conversion should be carefully con‐
sidered.

2.4.2. Golf Courses Golf courses are unique turfgrass systems in which highly managed putting
greens and tees account for only 5% of the average maintained turf acreage of 111.5 acres,
whereas fairways and roughs account for 28.6% and 60% of golf course acreage, respectively
[74]. Fairways and roughs are potential carbon sinks if such large-acreage turfgrass areas are
managed with low inputs. For example, a golf course fairway turf in Manhattan, KS, was report‐
ed to have an average carbon sequestration rate of 1.01 Mg C ha  yr  [75]. In central Ohio,
fairways and roughs were estimated to have sequestration rates of 3.55 and 2.64 Mg C ha  yr ,
respectively [19]. Large areas of fairways and roughs contributed to carbon sequestration, which
offset the net emissions from greens and tees, with a net sequestration rate of the whole course
of 1.47 and 0.44 Mg C-e ha  y  for a Parkland course and a Links course, respectively [76].
Additionally, naturalized roughs on golf courses are unmanaged areas covered by turfgrasses or
a mixture of turfgrasses and other plants, which often do not require management inputs (no
HCC). Despite the increasing popularity of such naturalized areas, owing to their environmental
benefits [77,78], their carbon sequestration potential is largely unknown. We speculate that car‐
bon stored in unmanaged roughs would be similar to that in the meadow-like lawns studied by
Poeplau et al. [79] or unirrigated and mowed-as-needed roughs investigated by Qian et al. [38],
which had less SOC than managed turfgrass areas. Studies in which the carbon budget for entire
golf courses was calculated reported that golf courses were potential carbon sinks [76,80].

However, the emissions generated by maintenance can offset the carbon sequestration of turf‐
grass and trees on golf courses and should not be neglected. Selhorst and Lal [19] estimated
large carbon losses (estimated 0.30 Mg C-e ha  yr ) associated with maintenance practices,
shifting golf courses from being carbon sinks to carbon sources within 30 years. The HCCs con‐
sidered in their study included fertilizers, herbicides, insecticides, fungicides, irrigation, unlead‐
ed gasoline, and diesel fuel, with the highest HCC from diesel fuel combustion [19]. Bekken and
Soldat [81] surveyed golf courses in the northern USA and estimated the total GHG emissions
associated with maintenance to be 1.17 Mg C-e ha  yr , including onsite emissions (primarily
fuel use), offsite emissions (primarily offsite electricity generation), and supply chain (upstream)
emissions (primarily from the production and transport of machines, fertilizers, pesticides, etc.).
Additionally, a few studies have reported detailed energy use and GHG emissions from manage‐
ment practices on greens, tees, fairways, and roughs [19,76,80,82]. Intensively managed turfs,
such as golf course greens, consume energy and emit CO  [76,80]. Carbon losses from turfgrass
systems are often expected when aboveground tissues and underground organic matter are re‐
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moved. Daily mowing with clippings removed when grasses are actively growing is a standard
practice for golf course greens and tees [83]. In addition to removal of clippings by mowing,
cultivation, including verticutting to remove grass tissues and hollow-tine aerification to physi‐
cally remove plant materials and organic matter, is likely to reduce the carbon pool in turfgrass
systems. Other practices, such as solid-tine aerification and topdressing, add sand to the soil pro‐
file without removing organic matter and plant material [62]. Such practices dilute the organic
matter in the root zone profile to promote better growth of turfgrass and are therefore unlikely to
reduce the productivity of turfgrasses. Research has been limited on the cultivation effects on the
NPP and SOC of turfgrass, and the net carbon budget needs to be analyzed accounting for the
HCCs of cultivation machine operations.

3. System Comparison

With increasing population and urbanization, vegetation and soil in the urban landscape are un‐
able to balance the carbon emissions from human activities [84]. In urban landscapes, turfgrass
helps to stabilize the soil, prevent wind and water erosion, and build up organic matter [85]. Ur‐
ban turfgrass systems have received more carbon sequestration research attention compared to
other turfgrass systems. Research on a nationwide scale in the USA has suggested that turfgrass
systems in the urban landscape are potential carbon sinks [5,6,8,18,86], whereas many other
studies have been conducted on smaller scales, such as cities, residential blocks, and individual
lawns. Research by Qian and Follett [21] indicated the significance of turfgrass in carbon se‐
questration, which was comparable to USA lands in the Conservation Reserve Program. Gordon
et al. [87] published a letter to the editor comparing turfgrass systems with other systems and
concluded that turfgrasses are able to sequester CO  at a rate similar to that of land used for
agricultural and forestry practices, although carbon stored in the recalcitrant soil carbon pool is
considered to be very limited due to the high turnover rate. In contrast to the large number of
urban studies, very limited information is available on the carbon balance in agriculture systems
where turfgrass sod and seeds are produced. Pahari et al. [88] reported that a warm-season turf‐
grass sod farm sequestered CO  at a rate of 4.51–5.15 Mg C ha  yr . Research on the carbon
footprint of turfgrass seed production is lacking.

Vegetative components of urban landscapes consist of trees, shrubs, herbaceous plants, and
grasses. Comparing the impact of different urban landscape vegetation on carbon sequestration
can be challenging for many reasons. Biomass can be directly measured in turfgrass systems,
whereas it is often not feasible to harvest and measure above- and belowground biomass in sys‐
tems with trees; instead, models are often used to estimate the biomass of trees. In addition, ur‐
ban landscapes often receive carbon inputs on one landscape type from other onsite vegetation
(such as tree leaves falling on a lawn) or from outside sources (such as compost additions in the
urban landscape), making it difficult to derive the source of carbon in each system. Collecting
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data on two city blocks in Chicago, Jo and McPherson [12] concluded that larger carbon pools
were stored in woody vegetation, such as trees and shrubs, compared to the intermediate pools
of vegetation of turfgrass plants and no carbon storage in the herbaceous plants, whereas the ma‐
jority of the carbon was stored in the soil (78.7% and 88.7% for the two blocks).

Soil organic carbon in the urban environment has also been explored (Table 2). Soil samples
collected under tree canopies were shown to have higher SOC than samples from golf course
fairways [30], whereas similar SOC values were observed between soils of turfgrass and trees in
an urban landscape study [34]. Interestingly, lawns with trees were shown to have higher SOC at
the 0–15 cm depth but similar SOC at soil depths of 15–30 cm and 30–50 cm when compared to
lawns without trees [67]. These findings are contrary to the hypothesis that trees are expected to
influence SOC at deeper soil depths because they have deeper root systems than turfgrasses. The
authors also implied that turfgrass would be the main contributor to SOC at 0–15 cm [67]; there‐
fore, one speculation is that tree canopies may have provided cooler and less stressful conditions
than the full sun (possible heat stress environment) for turfgrass growth in the southern USA,
where the study was conducted. A study in Auckland, New Zealand, compared ten urban forests
dominated by trees with six urban parklands dominated by grasses; the authors concluded that
the SOC was higher in the grass-dominated landscape (48 Mg ha ) compared to the tree-domi‐
nated landscape (27 Mg ha ) in the upper 10 cm [29]. Similarly, soil carbon density in the top
100 cm of residential soils was reported to be higher than in forest soils of similar types in a
study conducted in Baltimore, MD [20].

Another landscape option is to grow non-turf herbaceous plants. A study in Germany sampled
soils from 14 vegetable gardens and 13 lawns, revealing that vegetable patches contained a mean
SOC stock of 164 Mg ha  and lawns contained 155 Mg ha  in the top 30 cm of soil compared
to four samples from a local meadow, which contained 111 Mg ha  [26]. However, the ability
to compare the SOC stock data between vegetable patches and lawns is complicated by the fact
that lawn clippings and garden debris are often composted and later placed on vegetable patches.
Vegetable gardens and mulch beds are common urban land cover options; such soils receive car‐
bon additions, such as compost and wood mulch, and no differences were reported in SOC be‐
tween these land covers and turfgrass [26,65,68].

Many research studies have compared turfgrass systems to adjacent ecosystems (Table 2). High‐
er SOC values in turfgrass systems compared to native grassland systems have been reported in
numerous studies [7,26,34,35,64]. Moreover, lawns often have higher SOC values than agricul‐
tural soils [34,35,64,69], with the exception of one report showing similar SOC values between
lawns and corn fields [66]. However, research conclusions in the literature are inconsistent when
comparing forest with turfgrass ecosystems (Table 2). Forests are more complicated systems for
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carbon stocks, depending on the tree species (for example, deciduous broadleaf vs. evergreen
needleleaf) and climate. Wildfire is another major concern with respect to carbon loss in forest
ecosystems [89].

Comparing turfgrass sites to bare soil, Acuña E. et al. [50] reported that SOC increased over a
26-month period with nine turfgrasses in Chile, whereas the SOC in bare soil decreased (likely
the labile SOC pool). This is consistent with other studies reporting higher SOC in lawns com‐
pared to bare soil [59,64]. Lawns also have higher soil respiration rates compared to bare soil
[55,59,64]. Soil respiration, i.e., the process of releasing CO  back to the atmosphere, represents
a carbon loss from the plant–soil system. However, Bae and Ryu [59] reported that high soil res‐
piration was correlated with high SOC stocks when comparing various systems: mixed forest,
deciduous broadleaf forest, evergreen needleleaf forest, lawn, wetland, and bare land. One spec‐
ulation is that high soil respiration is an indication of high microbial activities, which recycles
nutrients from plant litter, subsequently adding carbon to the soil. Therefore, soil respiration
alone cannot be the sole indicator of the net carbon balance of an ecosystem.

Higher soil respiration rates of lawns compared to agriculture lands and grasslands have been
consistently reported in the literature [35,64,66]. There is no general agreement when comparing
lawns with forests, likely due to spatial and temporal variations (Table 2). Wood-chip- or bark-
mulched beds were shown to have similar high soil respiration rates relative to lawns [65,68];
such systems without plants do not have any carbon inputs from photosynthesis.

4. Age of Turfgrass

Numerous studies have reported higher SOC associated with older turfgrass systems, indicating
the accumulation of SOC. Studies reporting SOC accumulation rates in turfgrass systems of
varying ages are summarized in Table 3, which does not include studies utilizing model simula‐
tions (discussed in a separate section) or studies measuring SOC over time with repeated mea‐
surements. Carbon accumulation rates reported in studies with repeated measures over time
were reported as 1.408 and 1.629 Mg C ha  yr  for Kentucky bluegrass and tall fescue, re‐
spectively [52]; 1.01 Mg C ha  yr  for zoysiagrass (Zoysia japonica Steud.) [75]; and 0.32,
0.74, and 0.78 Mg C ha  yr  for Kentucky bluegrass, fine fescue mixture (Festuca spp.), and
creeping bentgrass (Agrostis stolonifera L.), respectively [38]. Soil total carbon accumulates
over time; however, the ability of turfgrass systems to sequester and store carbon is not unlimit‐
ed. Studies reported that carbon was linearly accumulated beneath turfgrasses over 33 years at a
rate of 1.4 Mg C ha  yr  [23], 44 years at a rate 0.82 Mg C ha  yr  [20], 40 years at a rate of
0.69 Mg C ha  yr  [90], and 100 years at a rate of 0.30 Mg C ha  yr  [25]. As turfgrass
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ages, carbon is expected to reach an equilibrium in the system. Research has shown that initial
SOC accumulation is greatest when turfgrasses are newly established; then, carbon sequestration
rates decline as turfgrass systems age [10,21,42,49,91,92].

Table 3

Soil organic carbon (SOC) accumulation rates reported in previous studies.

* For studies in which SOC increased linearly and hyperbolically, the max SOC was reached in the oldest re‐
ported system. Numbers in parentheses indicate soil depths.

The rate of carbon accumulation and the time it takes for turfgrass systems to reach maximum
carbon storage vary among turfgrasses depending on use (Table 3). Qian and Follett [21] ana‐
lyzed the soil data of golf courses between the ages of 1.5 and 45 years and reported that rapid
carbon sequestration occurred during the first 25 years after turfgrass establishment, at average
rates of 0.9 to 1.0 Mg C ha  yr  to the 11.4-cm depth. In that study, soil carbon was reported
to increase for approximately 45 years in putting greens and 31 years in fairways, as putting

Reference
Turf
Use

Location
Turf
Age
(Year)

Soil
Depth
(cm)

Regression
Response

Number of
Years to
Reach Max
SOC *

SOC
Accumulation
Rate
(Mg C ha
yr )

Townsend-
Small and

Czimczik [23]
Lawn Irvine, CA 2–33 20 Linear 33 1.4

Raciti et al.
[20]

Lawn
Baltimore,

MD
4–44 100 Linear 44 0.82

Smith et al.
[25]

Lawn
Salt Lake
City, UT

7–100 40 Linear 100 0.30

Sapkota et al.
[93]

Lawn Lubbock, TX 0–63 10 Quadratic 53.6 0.21

Huh et al. [90] Green
Palmerston
North, New

Zealand
5–40 25 Linear 40 0.69

North
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greens are established on sand with very low initial soil organic matter [21]. Other studies on
putting green turf reported that SOC accumulation increased linearly in the top 25-cm soil at a
rate of 0.69 Mg C ha  yr  for 40 years [90] and hyperbolically in the top 7.6-cm soil at a rate
of 0.59 Mg C ha  yr  for 25 years [91]. Two studies on bermudagrass (Cynodon spp.) fair‐
ways also suggested a decreasing rate of carbon accumulation over time [49,94]. Soil carbon in
the top 15 cm of fairways increased hyperbolically as accumulation rates declined from 6 Mg C
ha  yr  to less than 0.5 Mg C ha  yr  in the first 20 years [94]. Gautam et al. [49] reported
that soil carbon in the top 7.5 cm of fairways was accumulated at a rate of 0.22 Mg C ha  yr
and reached equilibrium after 46.4 years, whereas the 7.5–15 cm soil continued to sequester car‐
bon for up to 62.5 years. Similarly, the time to attain equilibrium increased with an increase in
soil depth; the time for the 0–2.5 cm soil of fairways and roughs to reach equilibrium was 14 and
12 years, respectively, whereas, the 10–15 cm soil depth was able to sequester carbon for up to
81 and 91 years, respectively [19].

Low rates of SOC were reported in residential lawns, with a linear accumulation of 0.29 Mg C
ha  yr  at the 0–40 cm depth over the 100-yr chronosequence [25] and with a quadratic in‐
crease of 0.21 Mg C ha  yr  at the 0–10 cm depth for 53.6 years [93]. With 16 home lawn
sites studied, Selhorst and Lal [18] revealed a wide range of SOC sequestered at the 0–15 cm
depth, ranging from 0.9 to 5.4 Mg C ha  yr , depending on location. Land-use histories also
alter the ability of residential lawns to sequester carbon. For instance, Raciti et al. [20] reported
a rate of 0.82 Mg C ha  yr  accumulated in residential sites built on agricultural land but no
correlation between age and SOC in lawns developed on forest land. One explanation they pro‐
posed is that residential lawns established on former forest land had higher initial soil carbon
than those established on former agricultural land [20]. Campbell et al. [27] suggested that con‐
verting unmanaged Appalachian hardwood forests into managed residential lawns resulted in
little change in the soil carbon of the upper 30 cm depth they sampled. Therefore, converting
forests to residential lawns may not have any benefits with respect to SOC sequestration. Land-
use history and land conversion are of considerable research interest; future meta-analysis is
needed to elucidate the effects of land-use histories on carbon sequestration for decision making
regarding land conversions.

Although numerous reports discussed above indicate that SOC accumulation rates decrease over
time in turfgrass systems, there is no evidence of a notable decrease in turfgrass growth and car‐
bon production. Shi et al. [94] summarized research results and implied that increased rates of
soil organic matter degradation as turfgrass systems age are due to microbial activity. In support
of this theory, microbial biomass and activity were found to be positively correlated with the
accumulation of soil organic matter in aging turfgrass systems [95,96,97]. Although the accu‐
mulation rate seems to decrease, soil organic matter becomes more recalcitrant as turf increases
in age [97].
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In residential lawns, the accumulation of soil carbon over time is often reported in reference to
the age of the home because house age is often an indicator of time since soil disturbance. In
Salt Lake Valley, UT, SOC was reported to increase linearly with house age from 7 to 100 years
[25]. In Manchester, NH, soil carbon stocks at 0–10, 10–20, 20–30, and 30–40 cm were posi‐
tively correlated with house age [24]. In Colorado’s Front Range, residential sites >7 years had
higher soil carbon concentrations in the surface soils (0–10 cm) than sites <7 years old, and
homes >25 years in age had higher soil carbon concentrations in the subsurface soils (10–20 cm
and 20–30 cm) than homes <25 years in age [34]. In Auburn lawns, soil carbon accumulated at
low rates in the 0–15 cm depth (0.21 to 0.26 Mg C ha  yr ) compared to other residential turf‐
grass studies, with no relationship with home age observed at the 15–30 and 30–50 cm depths
[16,17]. In Montgomery County and Roanoke County, VA, Campbell et al. [27] reported a posi‐
tive correlation between soil carbon concentration in the top 0–5 cm and time since residential
parcel development (2–52 years). In an analysis of SOC data from 16 sites across the USA, Sel‐
horst and Lal [18] indicated that home lawns did not have the benefit of sequestering carbon be‐
tween 66 and 199 years with standard management practices, however, reduced inputs could fur‐
ther extend the time before emissions would cancel out sequestration.

In summary, turfgrass systems can accumulate SOC for 25 years or more (Table 3). Apart from
being limited by the soil carbon capacity, turfgrass sites can deteriorate overtime due to pests,
diseases, and weed invasion, which could contribute to a reduced sequestration rate. It is still
unclear whether overseeding (with minimal soil disturbance) can affect carbon sequestration and
extend the number of years for turfgrass systems to reach their carbon sequestration and storage
capacity; therefore, future research is warranted.

5. Grass Species Selection

Many perennial grass species in the Poaceae family are used as turf and are adapted to a wide
range of climates. Carbon stocks and sequestration rates can differ among turfgrass species.
Acuña E. et al. [50] reported a range of SOC sequestration rates of 0.1–0.9 Mg C ha  yr
among turfgrass species tall fescue, strong creeping red fescue (F. rubra L. ssp. rubra), common
bermuda (C. dactylon L.), hybrid bermuda (C. dactylon L. × C. transvaalensis Burtt Davy),
Kentucky bluegrass, rough bluegrass (P. trivialis L.), and perennial ryegrass (Lolium perenne
L.) in central Chile. By measuring seasonal physiological parameters, the authors found that in
the summer, common bermuda (a C4 species) had high CO  assimilation rates, low stomatal
conductance, and high photosynthetic water use efficiency, which was calculated as the ratio be‐
tween the simultaneously measured carbon gain in photosynthesis and water loss in transpira‐
tion. In the same study, tall fescue (a C3 species) maintained constant photosynthetic activity
across all seasons. Both turfgrass species were shown to be promising species to increase carbon
sequestration and to better use irrigation water in central Chile [50]. In another study, zoysia‐
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grass was reported to have the highest mean levels of sequestered total carbon in biomass and
soil when compared to other warm-season grasses (C4) for lawns, likely due to relatively higher
shoot density [39]. In that study, zoysiagrass was reported to sequester carbon at a rate of 5.54
Mg C ha  yr  compared to 2.09 and 4.23 Mg C ha  yr  for hybrid bermuda and centipede‐
grass [Erecholmoa ophroides (Munroe) Hack.], respectively [39]. Turfgrass species with high
shoot density are likely better at assimilating atmospheric CO  (increased carbon inputs into the
turfgrass–soil system). Therefore, high aboveground NPP is often correlated with high SOC
[79]. On the other hand, high root biomass or high carbon allocation to root biomass likely con‐
tributes to greater SOC stocks [98,99]. This relationship of root biomass and SOC has not been
clearly described in turfgrass. Hamido et al. [39] reported that the highest root biomass and root
carbon were observed in zoysiagrass, followed by centipedegrass and hybrid bermuda, corre‐
sponding to their SOC sequestration. Using isotopes, Qian et al. [38] demonstrated that root bio‐
mass differences in hard fescue (F. brevipila Tracey) and sheep fescue (F. ovina L.) mixture,
Kentucky bluegrass, and creeping bentgrass contributed significantly to SOC, although other
factors could also affect the total SOC.

Whether cool-season (C3) and warm-season (C4) turfgrasses differ in carbon sequestration abili‐
ty is still unclear. In a Mediterranean climate, common bermuda (C4) was shown to have higher
photosynthetic capacity in the summer but was sensitive to mild or low temperatures; thus, there
was no clear distinction between the carbon sequestration ability of C3 and C4 turfgrasses [50].
Another study indicated that common bermuda (C4) had lower SOC than tall fescue and Ken‐
tucky bluegrass (C3) in east Tennessee, likely because the higher temperature of the warm-sea‐
son turfgrass growing season is also favorable for microbial decomposition of SOC [69]. A
study of lawns with various turfgrass species in different climates suggested that higher SOC
was associated with lower mean annual temperature [86]. Although temperature affects soil mi‐
crobe activities and soil respiration, another possible factor is that cool-season grasses have a
longer growing season compared to warm-season grasses, which become dormant during winter.
Such speculation assumes cool- or warm- season turfgrasses are grown in the regions where
they are adapted. Modeling the NEE of turfgrass on a nationwide scale, Milesi et al. [5] also im‐
plied that growing season length could affect the NPP of turfgrass.

The NPP and carbon allocation in turfgrass biomass can affect the carbon inputs in the turf‐
grass–soil system. Similar to Acuña E. et al. [50], Law et al. [100] reported that newly estab‐
lished (<3 years) tall fescue accumulated more labile soil carbon, total soil carbon, and soil or‐
ganic matter than Kentucky bluegrass. In contrast, Law and Patton [52] evaluated tall fescue and
Kentucky bluegrass cultivars with varying growth rates and concluded that in the short term,
growth did not affect soil carbon accumulation but that slow-growing cultivars can have higher
net carbon accumulation with less mowing requirements and fuel emissions. Qian et al. [38]
quantified the soil carbon sequestration and SOC decomposition in C3 cool-season turfgrasses
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and reported higher net carbon sequestration rates for irrigated fine fescue rough (0.74 Mg C
ha  yr ) and creeping bentgrass fairway (0.78 Mg C ha  yr ) than for Kentucky bluegrass
short rough (0.32 Mg C ha  yr ). Fine fescues were also shown to have great potential for soil
carbon accumulation in the surface 20 cm profile relative to other C3 cool-season turfgrasses,
which were ranked in the following order: red fescues (F. rubra spp.) > sheep fescue > creeping
bentgrass, tall fescue, Kentucky bluegrass > perennial ryegrass [46]. Interestingly, such variation
among turfgrass species and subspecies was related to thatch thickness [46]. In another study,
carbon stored in the thatch layer varied from 0.05 to 0.1 Mg C·ha  yr  in the order of zoysia‐
grass < hybrid bermuda < centipedegrass lawns [39]. Zoysiagrass, hybrid bermuda, and cen‐
tipedegrass are warm-season grasses that propagate by stolons and/or rhizomes.

Fast-growing and dense turfgrasses, as well as rigorous lateral growth type turfgrass species,
often favor thatch development. Stolons are aboveground stems, whereas rhizomes are under‐
ground stems, both allowing turfgrass to spread horizontally. More importantly, stolons and rhi‐
zomes are major storage regions for carbohydrate reserves [101]. Creeping bentgrass (stolonifer‐
ous) and zoysiagrass (rhizomatous and stoloniferous) thatch was reported to have high carbon
contents of 77.7 and 73.4 g kg , respectively, and the authors also suggested that thatch can be
a temporary carbon sink [47]. The thatch biomass of Kentucky bluegrass, creeping bentgrass,
and fine fescue (hard fescue and sheep fescue mixture) was greater than that of verdure or root
biomass [38,42]. Additionally, Evers et al. [46] showed that carbon accumulation in the
thatch/mat layers was higher than that in the 0–20 cm soil depth. Given that thatch has been
shown to have high carbon content [48], whether turfgrass species with thatch-forming tendency
have greater potential for carbon sequestration needs to be further investigated.

Research on the adaptation of turfgrass species on a nationwide or global scale is critically im‐
portant but very limited. High CO  assimilation rates and long growing seasons can be equally
important when choosing turfgrass species. Turfgrass species that are adapted to local climates,
as well as those that are tolerant to environmental (cold, heat, drought, etc.) and biotic (diseases,
insects, etc.) stresses are able to maintain turf color and cover to assimilate atmospheric CO
without going into dormancy under adverse conditions. The growth rate of turfgrass species is
not a reliable indicator of carbon sequestration rate. Other factors, such as biomass production
and allocation of carbon to shoots, roots, and thatch, also need to be considered. Enhancing car‐
bon sequestration through grass species selection and adaptation is an important direction for
future research.

6. Turf Use and Management Intensity
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High management inputs often ensure healthy and dense turf, producing greater amounts of
above- and belowground biomass, which increases primary productivity. Using models, a num‐
ber of studies have predicted that increasing resource inputs (such as fertilization and irrigation)
would increase carbon sequestration [5,10,42]. However, operations and maintenance contribute
a significant portion of carbon emissions in the turfgrass carbon budget.

Home lawns vary considerably in terms of management practices and intensity. Despite the lim‐
ited scale of research comparing two lawn sites, early research showed that more intensive man‐
agement led to greater aboveground production but similar NPP [15]. Although changes in NPP
were insignificant, Lilly et al. [43] demonstrated that maintenance practices had substantial ef‐
fects on how carbon was allocated in the production of root, stubble, and clipping biomass. Ad‐
ditionally, Golubiewski [34] reported that high management increased the aboveground NPP and
biomass. High maintenance ensures the density and quality of turfgrass, resulting in increased
biomass. Using a modeling approach, Zirkle et al. [8] was able to analyze soil data on a large
scale and concluded that low management with minimal input (mowing only) resulted in the
lowest net SOC sequestration rate (accounting for HCC) of 0.254 to 1.142 Mg C ha  yr ,
whereas do-it-yourself management by homeowners and high management based on best man‐
agement practices resulted in sequestration rates of 0.806 to 1.830 Mg C ha  yr  and 0.517 to
2.043 Mg C ha  yr , respectively. In another study, Gu et al. [10] showed that greater manage‐
ment intensity could contribute to higher SOC and higher net GHG emissions. Reducing man‐
agement practice intensity could effectively reduce net GHGs and N O emissions; however,
lawns without irrigation and fertilization were gradually depleting the SOC pool [10].

In other cases, management practices have very limited effects on soil carbon [16,75]. Intensive‐
ly managed turfs, such as golf course greens, consume energy and emit CO  [76,80], whereas
fairways and roughs require less input. Braun and Bremer [75] reported that a higher-input man‐
agement (urea fertilization and medium irrigation regime) was shown to have higher HCCs and
did not increase net carbon sequestration compared with a low management input (no N fertil‐
ization and low irrigation regime). High management intensity does not always guarantee carbon
gains in turfgrass systems but contributes to significant HCCs; therefore, the effects of each
management practice on carbon sequestration need to be evaluated.

7. Management Practices

Proper management practices are crucial for minimizing biotic and abiotic stresses in turfgrass.
When turfgrass is under stress, respiration exceeds photosynthesis, resulting in CO  release into
the atmosphere. Irrigation, fertilization, and mowing practices can positively or negatively affect

−1 −1

−1 −1
−1 −1

2

2

2

10/11/24, 6:47 AM
Page 20 of 38



the ability of turfgrass systems to assimilate and store carbon. Many studies have evaluated the
individual effects of irrigation, fertilization, and mowing or a combination of these cultural man‐
agement practices.

Mowing is considered the most energy-consuming practice in turfgrass management [82]. Irri‐
gation and fertilization are primary cultural practices that can promote the production of shoot
and root biomass, as well as NPP, but also increase soil respiration [5]. Another concern is that
irrigation and fertilization could lead to the emission of GHGs. Gu et al. [10] raised concerns
about N O emissions with irrigation and fertilization practices. Research by Livesley et al. [68]
demonstrated that N O emissions increased sharply and peaked following a fertilizer application
and rainfall event. Braun and Bremer [11] provided a review of N O research in turfgrass sys‐
tems and reported a wide range of N O emission factors (0.17% to 5.1%) of applied N fertilizer
with an average of 1.9%. There is a need for research-based information to utilize management
practices that increase carbon gains and reduce carbon costs.

7.1. Irrigation

Research showed that low soil water content (<0.15 m  m ) can limit the ability of turfgrass to
assimilate atmospheric CO  in response to high light intensity, whereas under adequate water
soil conditions (>0.15 m  m ), the NEE of turfgrass increased as light intensity increased [88].
Under warm conditions, irrigation can also promote microbial activities, which consequently
decompose soil organic matter. Therefore, irrigation was reported to increase both SOC input
and decomposition [38].

Carbon balance affected by irrigation can vary considerably, depending on the climate and pre‐
cipitation. The requirement for irrigation can be minimal in temperate regions where turfgrass is
well adapted, whereas irrigation plays a vital role in arid and semiarid regions and can represent
a major source of carbon consumption in turfgrass systems. The energy required for irrigation
was estimated to be about 193 g CO  m  yr  (0.526 Mg C-e ha  yr ), which is higher than
the estimated CO  emissions from fuel consumption (122 g CO  m  yr  converted to 0.333
Mg C-e ha  yr ) for maintenance because this study was conducted in Irvine, CA, a moderate‐
ly dry climate where annual precipitation is approximately 350 mm yr  [23]. In Phoenix, AZ,
mesic landscaping with irrigated turfgrass was reported to be a carbon sink primarily controlled
by plant photosynthetic activity, whereas other landscapes were unable to offset emissions from
anthropogenic processes [36]. Research conducted in College Park, MD, a temperate climate
with annual precipitation of 1065 mm yr , indicated that irrigation did not affect NPP but in‐
creased root biomass compared to no irrigation [43]. Qian et al. [38] demonstrated that carbon
sequestration rates on a golf course in Nebraska City, NE, were 0.74 and 0.52 Mg C ha  yr
for irrigated and unirrigated (twice a week at 70% ET) fine fescue mixture, respectively; howev‐
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er, this is not a direct comparison, as irrigated and unirrigated fine fescue mixtures were main‐
tained at different mowing heights (5.1 and 7.6 cm, respectively). Irrigation was reported to in‐
crease both aboveground NPP and SOC; therefore, a modeling approach by Zhang et al. [102]
predicted a 50% reduction in the annual net production when irrigation was decreased from
100% to 60% potential evapotranspiration in the Colorado Front Range, a semiarid region.

7.2. Nitrogen Fertilization

Nitrogen (N) is the most important nutrient for turfgrass establishment and growth [103]. In ad‐
dition to promoting above- and belowground biomass, N also affects stress tolerance to tempera‐
ture and pests [103]. Without N fertilization, turfgrass struggles to maintain its overall quality
and vigor. In carbon research, N was shown to promote carbon sequestration compared to no N
[51]. However, N applications only contributed to the SOC increase in the soil surface at the 0–
2.5 cm depth [51]. Similarly, increasing fertilization frequency was correlated with higher soil
carbon content at the 0–5 cm depth [27]. Nitrogen primarily promotes aboveground biomass;
hence, deposits of old leaves increase SOC at shallow soil depths.

On the contrary, increasing N rates may not be beneficial and can sometimes negatively affect
carbon sequestration in turfgrass systems. Measuring soil respiration rates with an opaque
closed gas chamber suggested that CO  emissions significantly increased from 292 to 394 kg
ha  d  as the N rate increased from 24 to 196 kg ha  in 8-yr-old ‘Tifway’ hybrid bermuda
plots, and fertilization in association with higher soil temperatures and moisture contents result‐
ed in larger fluxes of CO  [58]. The authors speculated that N fertilization stimulated microbial
and root activities, resulting in an increased CO  flux from the soil [58]. Similarly, Brandani et
al. [104] reported generally higher soil CO  emissions as the N rate increased in tall fescue and
hybrid bermuda research plots. While N is essential for newly established turfgrass, N rates can
be reduced in mature turfgrass and still achieve similar carbon sequestration in the soil [42,72].
Reducing N fertilization also reduced N O emissions [10,23,57], whereas fertilization did not
affect soil CH  exchange [68,104]. In summary, reducing fertilization can be an effective means
of mitigating GHGs from turfgrass–soil systems [10,23].

Fertilization can affect carbon allocation in turfgrass systems, which also depends on the grass
species. One study showed that fertilization did not influence the SOC concentration in a mix‐
ture of strong creeping red fescue and Kentucky bluegrass but increased the thickness of the
thatch layer [105]. Likely because both species are aggressive rhizomatous type turfgrasses, car‐
bohydrates are allocated in rhizomes for storage, resulting in thatch buildup rather than increas‐
ing SOC. Grass clippings decompose quickly, which can contribute to the SOC in the soil sur‐
face [106], whereas thatch is more resistant to decay than clippings or senescent leaves [48]. In
tall fescue lawns, increasing N fertilization increased clippings production but did not affect the
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NPP when clippings were returned [43]. An increase in clipping biomass could lead to a signifi‐
cant carbon loss from the turfgrass system if clippings are removed. Clipping management is
further discussed below. A higher-input management regime of irrigation and N fertilization did
not increase carbon sequestration compared with a low management input regime, suggesting
the potential of utilizing minimal maintenance practices to save energy [75]. Collectively, re‐
search has shown that N fertilization in turfgrass systems has limited benefits for carbon seques‐
tration and GHG mitigation, especially with mature stands.

7.3. Mowing

Mowing can affect the biomass production of turfgrass, as well as soil respiration, by altering
soil moisture and temperature. Mowing practices have received a considerable amount of re‐
search attention. The effects of mowing height, mowing frequency, and clipping management on
carbon balance in turfgrass systems have been evaluated. Few studies have shown that mowing
has a significant impact on carbon balance in turf [12,107].

Turfgrass managed under higher mowing height has greater shoot biomass and therefore greater
capacity for carbon fixation through photosynthesis [56]. In addition to an increased photosyn‐
thetic rate, Kentucky bluegrass mowed at 7.6 cm generally had a higher R  rate and canopy
photosynthesis to R  ratio compared with Kentucky bluegrass mowed at 3.8 cm [56]. R  in‐
cludes respiration from shoots, roots, and soil microorganisms. Although a higher mowing
height has greater potential to assimilate CO  from the atmosphere, cool-season turfgrass can
still act as a carbon emitter during warm months when the total respiration rate of shoots, roots,
and soil exceeds canopy photosynthesis [56]. In another study, mowing height (5 or 10 cm) did
not affect the NPP (sum of clippings, stubble, and root production) of tall fescue lawns [43].

Reducing mowing frequency reduces HCC from fuel consumption and can also affect respira‐
tion and aboveground NPP in turfgrass systems. Allaire et al. [107] reported that mowing fre‐
quency mostly influenced respiration (biogenic CO  emission) as compared to N fertilization,
and a frequently mowed turfgrass system produced CO  emissions four times higher than an in‐
frequently mowed turfgrass system. Interestingly, soil CO  fluxes were unaffected by mowing
frequency in another study, and fuel emissions from mowing were minimal compared to those
from soil respiration [61]. Frequent mowing increased aboveground NPP and SOC compared to
meadow-like lawns that were mowed once per season in some sites but not all six sites [79]. The
authors also found that root biomass was not affected by mowing, suggesting that mowing could
increase SOC by promoting aboveground NPP, which is a significant carbon input to turfgrass
systems if clippings are left on the lawn [79]. To reduce the gasoline emissions associated with
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mowing, choosing an appropriate type of mower needs to be considered. Recently, battery-,
electricity-powered mowers and manual reel mowers with much lower energy consumption have
become popular alternatives to gasoline mowers [108,109,110].

Both returning and removing clippings are common mowing practices in turfgrass management.
Grass clipping management affects the recycling of C and N and is therefore a crucial part of the
carbon balance in turfgrass systems. Research has shown that a substantial amount of carbon
fixation in turfgrass is allocated in producing aboveground biomass; therefore, clipping manage‐
ment can be a critical driver of the carbon balance in turfgrass systems [28,42,52]. Returning
clippings was demonstrated to reduce net GHGs by 12% [10]. Grass clippings are a source of N;
therefore, returning clippings could have a similar effect as adding N fertilizer. Qian et al. [42]
reported that returning clippings increased soil carbon sequestration, and such an effect was
more pronounced under a low fertilization regime. Returning clippings contributed to substantial
increases in turfgrass productivity and small increases (0.2%) in SOC [111]. Additionally, in‐
creases in carbon content and stock due to returning clippings only occurred in the top 5 cm
[105] and top 15 cm [17] soil layer but not in the deeper soil profile. Turfgrass clippings decom‐
pose rapidly; research showed that 20% of clipping carbon decomposed within seven days [106].
Fresh plant residues, including grass clippings and roots, make up the labile soil carbon pool.
Law et al. [100] reported that after two years, plots with grass clippings returned had a 3.3% in‐
crease in labile soil carbon (826 vs. 800 mg C kg ) and a 3.3% increase in total soil carbon
(24.7 vs. 23.9 g C kg ) relative to those with clippings collected. Additionally, returning clip‐
pings can reduce the need for fertilization [42,112], which can decrease the HCCs associated
with fertilizer production and transportation. In scenarios when turfgrass clippings were re‐
moved and composted on site or elsewhere, the carbon captured in the clippings should not be
considered a complete loss (Figure 1) because compost may be added to other systems, such as
vegetable gardens, or used to make compost fertilizers. In some rare scenarios, such as when
clippings were burnt [28], the carbon captured in the clippings was released to the atmosphere as
CO .

7.4. Plant Growth Regulator

Limited research has been conducted on plant growth regulator (PGR) effects on carbon seques‐
tration in turfgrass. López-Bellido et al. [51] found that the application of paclobutrazol and
trinexapac-ethyl (both PGRs inhibit gibberellin biosynthesis) to creeping bentgrass fairway turf
increased SOC. Because paclobutrazol promotes root growth, the authors [51] also determined
that the SOC concentration was higher with paclobutrazol applications in comparison with no
PGR for all soil depths between 0 and 15 cm. In contrast, N applications increased SOC concen‐
tration only near the soil surface (0–2.5 cm depth) in the same study [51]. Trinexapac-ethyl had
a lesser effect in promoting carbon sequestration than paclobutrazol [51].
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8. Methods for Carbon Research and Limitations

Although knowledge of the complete carbon footprint of turfgrass systems is still limited, many
studies in the literature provide useful information with respect to how turfgrass contributes to
net carbon sequestration or emissions by analyzing soil samples, photosynthesis, respiration, etc.
Direct measurement of all inputs and outputs of a turfgrass–soil system is challenging and some‐
times not feasible. Most urban research has been conducted in residential lawns by collecting
soil samples and correlating results with homeowner surveys; such a method also assumes that a
turfgrass system within the residential lot is the same age as the house. Quantifying SOC in turf‐
grass systems over time can be useful, but seasonal SOC variation needs to be considered when
determining sampling time. Unlike managing other crop systems on a monthly basis, turfgrass
management practices, such as mowing and irrigation, are conducted on a weekly or even daily
basis. Many turfgrass carbon studies have revealed seasonal variations in SOC, CO  flux, and
biomass measurements [29,40,43,50,58,113]; therefore, research needs to be conducted over a
long period of time, i.e., one or more years.

Net ecosystem CO  exchange can be measured on a small scale with a sealed gas chamber or on
a large scale with the eddy covariance method. Quantifying NEE with a sealed clear chamber
has been limited in turfgrass research [113,114]. Although many studies have measured soil res‐
piration with sealed gas chambers [29,31,35,40,55,56,58,59,61,64,66], among those studies,
only one also measured the photosynthesis rate [56]. Additionally, research continuously mea‐
suring CO  fluxes in turfgrass systems is very limited. Livesley et al. [68] used automatic cham‐
bers to measure CH  and N O fluxes for three weeks. In a recent study, Velasco et al. [28] con‐
tinuously monitored flux gradient using CO  sensors over a few years. The eddy covariance
method was used on larger turfgrass areas, such as urban landscape [36] and sod farm [88], but
has limitations to use on small turf areas [115]. Ng et al. [55] used both eddy covariance and
flux chambers to quantify carbon balance in a tropical turfgrass system.

Models are useful for simulation of medium- to long-term (100 to <1000 years) changes, which
are nearly impossible to monitor in field studies. Many models have been developed to predict
GHG emissions in agriculture. A few studies have estimated carbon cycling in turfgrass systems
by using model simulations, such as the CENTURY model [37,42,92,111], the DAYCENT mod‐
el [102], the DNDC (DeNitrification–DeComposition) biogeochemical model [10], and other
life cycle analysis models [8,76]. On a nationwide scale, Milesi et al. [5] used the Biome-BGC
ecosystem process model to simulate carbon balance of turfgrasses in the USA.

Tracking soil carbon changes over a long period of time is not always feasible. To better under‐
stand the long-term dynamics of SOC, Bandaranayake et al. [92] applied the CENTURY model
to turfgrass systems and estimated carbon sequestration in the 0–20 cm layer at the rate of 0.9 to
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1.2 Mg C ha  yr  on golf course fairways for about 30 years and 0.6 Mg C ha  yr  on
putting greens for 34 to 44 years. They also showed that the CENTURY model correlated well
with historic soil-testing data generated by Qian and Follett [21]. The CENTURY model is a
multicompartmental ecosystem model that was developed to evaluate carbon dynamics in the
Great Plains grasslands [116]. The major input variables for the CENTURY model include soil
texture, monthly air temperatures, precipitation, irrigation, lignin content of the plant, C and N
contents of plant tissue and initial soil, and soil N inputs through fertilization and atmospheric
deposition [116,117]. However, Trammell et al. [37] suggested no relationship between initial
CENTURY model simulations and observed soil carbon and demonstrated that the CENTURY
model could be improved by incorporating human disturbances and management practice fac‐
tors. Qian et al. [42] showed that the CENTURY model was able to estimate annual clipping
yield of Kentucky bluegrass. Similar to the CENTURY model, the DAYCENT model uses a dai‐
ly time scale and includes soil water and temperature dynamics [118]. The DAYCENT model
has been successfully adopted in turfgrass research to investigate long-term irrigation and fertil‐
ization effects [102] and to estimate N O emissions [72]. Limited research using DAYCENT and
DNDC models suggests that there is a need to further develop, improve, and validate these mod‐
els specifically for turfgrass systems.

Although biochemical simulation models (such as CENTURY, DAYCENT, and DNDC) are
commonly used in agriculture systems, their use in turfgrass systems is scarce. Future research
is needed to more accurately estimate the whole-system carbon exchange using simulation mod‐
els. Most studies in turfgrass evaluate some form of soil carbon; however, research on CO  flux‐
es and the total carbon budget in turfgrass systems is limited. Chronosequence studies evaluate
the effects of age by collecting soil samples from turfgrass sites varying in age, although this
method cannot exclude the initial soil properties (including SOC). The biometric approach esti‐
mates NEE by measuring the NPP of annual shoot and root growth and subtracts R ; however,
this method is very labor-intensive. Alternatively, many years of measurements are needed to
assess SOC changes as influenced by management practices because carbon change in soil is a
slow process. Therefore, studies monitoring long-term SOC dynamics are also needed.

9. Best Management Practices for Carbon Sequestration

The goal of enhancing carbon sequestration in turfgrass systems can be achieved by increasing
carbon fixation and decreasing CO  emissions. The major emissions from turfgrass systems
comprise of HCCs from operations and maintenance. Additionally, turfgrass can emit CO  into
the atmosphere under stress conditions when respiration exceeds photosynthesis. Therefore,
proper management practices are crucial to keep HCCs low but also maintain healthy turf.
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Irrigation, fertilization, and mowing are primary practices that can be optimized to promote car‐
bon sequestration. Irrigation regimes need to be developed based on the local climate to irrigate
only when rainfall is insufficient to maintain healthy turf. Irrigation increases both SOC addi‐
tions and decomposition. Evapotranspiration (ET)-based irrigation can be useful to avoid over‐
watering but still maintain turf quality for high NPP and SOC accumulation; additional research
is needed to determine the range of ET replacement for different turfgrass species to enhance
carbon sequestration. Nitrogen fertilization needs to be reduced as the age of the turfgrass stand
increases [10,102]. One major concern associated with N fertilization is N O emissions, which
have a higher GWP than CO . Both overwatering and fertilization can result in N O emissions,
which offset the carbon sequestration potential of turfgrass systems. Therefore, fertilization effi‐
ciency should not be neglected by turf managers and homeowners to avoid intensifying the
greenhouse effect. Reduced irrigation and controlled-release forms of N fertilizers are recom‐
mended to reduce N O emissions in turfgrass [11]. When irrigation and fertilization inputs are
low, reduced mowing needs should be expected, which saves fuel without sacrificing turfgrass
quality and health. On the other hand, when turfgrass is actively growing, avoiding mowing is
not an appropriate management practice. Alternatively, more energy efficient mowers (battery-
and electricity-powered mowers, as well as manual reel mowers) can be used in some turfgrass
systems to reduce the HCC of fuel emissions. Higher mowing height within the optimal mowing
height range determined according to turfgrass species, as well as returning clippings, can also
contribute to enhancing carbon sequestration. Golf courses, as a whole, have the potential to act
as carbon sinks; the focus should be to reduce the HCCs of turfgrass maintenance practices from
diesel and gasoline.

Another critical source of carbon losses from the turfgrass system is ecosystem respiration. Re‐
search shows that the combination of high soil moisture and temperature can boost soil micro‐
bial activities to decompose SOC, which are reflected as high ecosystem respiration
[28,29,40,58]. Other organic management practices incorporating carbon into turfgrass soils,
such as adding biochar and compost, need to be explored. Adding compost to lawns can increase
SOC, but at the same time it also increases soil respiration [119,120]. Research evaluating the
effects of management practices on minimizing ecosystem respiration is lacking.

Finally, selecting appropriate turfgrass species that are well adapted to the local climate can save
significant maintenance carbon costs associated with irrigation, fertilization, mowing, and pesti‐
cides. Planting turfgrass varieties that are adapted to local conditions, as well as those tolerant to
environmental (cold, heat, drought, etc.) and biotic (diseases, insects, etc.) stresses can ensure
healthy turf with a longer growing season and a shorter period of dormancy, resulting in in‐
creased capacity to assimilate CO . Although extensively managed turfgrasses for sports fields
and putting greens may not be reliable carbon sinks, other moderately or minimally managed
turf areas are potential sinks of atmospheric CO . Future research needs to focus on reducing
HCCs associated with turfgrass management, as well as other GHGs, such as N O.
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