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1. Introduction 

The California Air Resources Board has proposed to regulate ozone emitting air cleaners. 

The effect of this regulation is to reduce consumer exposure to ozone, a Criteria pollutant 

recognized to be associated with morbidity and mortality (Bell et al., 2005). The 

regulation has the further benefit of reducing exposure to the byproducts of ozone 

reactions with surfaces and some gas-phase compounds. I support the California Air 

Resource Board’s efforts to reduce Californian’s exposure to ozone and its byproducts, 

and provide the following outline of known indoor ozone chemistry. That ozone 

chemistry generates numerous chemicals with known and suspect adverse health 

outcomes, suggest that efforts to reduce indoor ozone levels are to be applauded and 

supported.  

2. Ozone and related chemistry  

Ozone is ozone. Whether it seeps into buildings from smog, or if it is generated by an 

electronic device. Ozone can and will react directly with some indoor materials at 

substantial rates. These reactions generate a suite of oxidized products. Early on, 

Weschler and Shields suggested ozone reactions with terpenes could lead to a substantial 

increase in aldehydes, radicals and even aerosols. Ozone reactions can generate irritants, 

carcinogens and aerosols. Formaldehyde, a carcinogen and irritant, is formed with a 

“yield” of ~0.9 (Atkinson and Arey, 2003) when it reacts with the compound, β-pinene, a 

“pine” smelling scent compound emitted by consumer products and natural materials. 
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This means that nearly every ozone molecule that reacts creates a formaldehyde 

molecule. Destaillats et al. (2005) and Singer et al. (2006) show that, when relatively high 

levels of ozone react with these kinds of scents emitted from cleaners, formaldehyde rises 

to levels (10-35 ppb) much greater than the California reference exposure level of 2 ppb. 

The reaction products include other carbonyl compounds and carboxylic acids which 

have low odor and irritancy thresholds (Cometto-Muñiz et al., 1998). Pinonaldehyde, a 

stable di-aldehyde that is formed at high yield in ozone-α-pinene reaction, is a suspected 

irritant. Organic acids are about 10-times more irritating than their analogous aldehydes; 

a number of acids (formic acid), di-acids (pinic acid) and acid/aldehyde compounds 

(norpinonic acid) are also formed.  

Several animal and human studies have evaluated the subjective and objective health 

effects of these ozone-terpene reaction mixtures. In animal studies of reactions of ozone 

with isoprene (Wolkoff et al., 2000), α-pinene (Wolkoff et al., 1999) and d-limonene 

(Clausen et al., 2001), identified products that acted as airway irritants. Neither the 

individual reactants nor the aged products were as irritating as the mixture during 

reaction. Further, the more aged reaction mixtures were less irritating than younger 

mixtures (Wilkins et al., 2003), suggesting that unidentified products, such as short-lived 

radicals, were responsible for the irritation. Simlarly, Tamás et al. (2006) found that the 

sensory load, for 20 human subjects exposed to an ozone-limonene reaction mixture, was 

much greater than for either compound alone. The reaction mixture also caused eye-blink 

frequency to increase in human subjects (Kleno and Wolkoff, 2004). Rohr et al. (2002) 

observed limited respiratory flow and possible long-term sensitization in mice exposed to 

reaction products.  

Low-vapor pressure oxidation products can self-nucleate to form small aerosols, or 

condense on and increase the mass of existing aerosols. Collectively, these are known as 

secondary organic aerosols (SOAs). Weschler and Shields (1999) observed increases in 

submicron SOA concentrations in an office with elevated ozone and either limonene, α-

terpinene or a terpene mixture from a cleaner. For experiments using outdoor ozone 

(instead of injected ozone), particle concentrations followed the rise and fall of indoor 

ozone concentrations. Similarly, Long, et al. (2000) showed that a pine-scented cleaner 
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increased submicron particle concentrations in the presence of infiltrated ozone. In a 

laboratory chamber, the limonene-ozone reaction resulted in a 7 to 100 fold increase in 

the number concentration of particles with diameters less than 0.5 μm (Rohr et al., 2003; 

Wainman et al., 2000). Sarwar et al.(2004) showed, in laboratory chamber experiments, 

that SOAs increase substantially when realistic levels of ozone combine with terpenes 

from cleaners, air fresheners and perfumes. Shown in Figure 1 is an experiment (Sarwar 

et al., 2004) in which a solid air freshener is introduced into a chamber with an air 

exchange rate of 0.62 h
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-1, and with ozone initially at ~110 ppb. A sharp increase in 

aerosols occurs due to the reaction of the terpene mixture and ozone, and is sustained for 

several hours. Note that the reported particle mass concentration rises above outdoor 

standards. Similarly, Singer et al. (2006) observed an increase of as much as 100 μg m-3 

in aerosol mass concentration due to the use of terpenoid containing cleaners in the 

presence of ozone. Hubbard et al. (2005) recently demonstrated that ozone generating 

particle filters, advertised as “air cleaners” designed to reduce indoor particle 

concentrations, actually increase particle mass substantially in the presence of terpene 

fragrances.  

Aerosol generation by the ozone-terpene reaction can significantly increase indoor levels 

of small aerosols. A large body of epidemiological literature indicates that increases in 

ambient aerosol concentrations are associated with increased mortality. In particular, an 

increase of 25 μg m-3 in particle mass concentration for PM2.5 (total particle mass for 

particles with an aerodynamic diameter < 2.5 μm) is correlated with a 1-3.5% increase 

over baseline mortality and a 1-12% increase in hospitalization for respiratory and 

cardiovascular disease (USEPA, 2004). For typical indoor ozone concentrations, in the 

presence of a pine cleaner, Weschler and Shields (1998) observed a 15-20 μg m-3 

increase in particles <1.0 mm in diameter. Similarly, Wainman et al. (Wainman et al., 

2000) found that a 20 μg m-3 increase due to these reaction is probable under typical 

indoor conditions. Where ozone is introduced by an ozone generating air filter in field 

homes, Hubbard et al. (2005) observed a 10-20 μg m-3 increase in particles <1.0 mm in 

diameter due to the ozone reaction with a variety of terpene sources. A recent screening 

study indicates that perfume wearers will be subjected to a “personal reactive cloud” of 
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reaction products, such as fine aerosols (Karamalegos et al., 2005). Increasing ventilation 

rates tends to decrease SOA concentrations by dilution, but also tends to shift the 

respirable particle size distribution to smaller sizes (Weschler and Shields, 2003) because 

the particles have less time to grow or coagulate. Although these reactions result in 

increased respirable aerosol mass, little is known about human health effects associated 

with these particular condensed reaction products. Tamás et al. (2006) observed a 

correlation between the number concentration of SOAs, from the limonene-ozone 

reaction in an office, and sensory load reported by 20 human subjects.  

Ozone will also react with indoor surfaces, and carbonyls (aldehydes and ketone) are the 

prominent products observed. In ozone reactions with carpet, Morrison and Nazaroff 

(2002) found the aldehyde yield to range from 0.1 to 0.74 for summed aldehydes. 

Interestingly, lower-volatility products may also contribute to aerosol growth by 

partitioning from the indoor surface to existing aerosols (Aoki et al., 2005; Bekö et al., 

2005). In the first study of its kind, Weschler et al. (1992) discovered that ozone reacted 

with carpet surfaces generating formaldehyde, acetaldehyde and C4-C10 aldehydes. 

Ozone converted some of the condensed phase material on the carpet to volatile species, 

demonstrating for the first time that surface chemistry can increase the gas-phase VOC 

concentration. Morrison and Nazaroff (2002) observed similar reaction products, but also 

observed unsaturated aldehydes generated on new carpet. Based on product yield studies, 

2-nonenal was predicted to significantly exceed odor thresholds under typical conditions 

and that odorous conditions could persist for years. Field measurements of secondary 

emissions from carpet (Wang and Morrison, 2006) showed that one- to two-year old 

carpet is more reactive and aldehyde yields are higher than for carpet that had been 

installed for over 10 years. Thus, secondary emissions can persist for at least two years. 

Knudsen et al. (2003) performed sensory evaluations on carpet and other materials that 

had been exposed to ozone. They found that carpet in particular exhibited significantly 

higher odor intensity as a result of secondary emissions. 

Reiss et al. (1995) showed that ozone reactions with latex paint generates formaldehyde, 

acetone and acetaldehyde. Older painted surfaces were not as reactive. They estimated 

that ozone reactions on newly applied paint would constitute 10 – 15% of the total 

emission rate of formaldehyde measured in field homes (Reiss et al., 1995). By isolating 
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wall sections in field homes and exposing the sections to ozone, Wang and Morrison 

(2006) confirmed a small generation rate of aldehydes from latex painted walls.  

 

Over time, indoor surface reactants will eventually become depleted. Therefore, ozone 

reactivity and secondary emissions of byproducts should decrease as the cumulative 

ozone exposure increases. However, consumer activities repeatedly coat surfaces with 

cooking oils, soaps, tobacco products and even human skin oils, all of which have been 

shown to react with ozone to form volatile products.  

The surfaces in HVAC systems may be regenerated by continuous deposition of reactive 

aerosols. Morrison et al. (1998) observed that used duct liners from commercial HVAC 

systems consumed more significantly ozone than new duct liners . In related work, 

several studies have recently shown that soiled HVAC filters are more ozone reactive 

than clean filters (Hyttinen et al., 2006; Hyttinen et al., 2003; Zhao et al., 2006). Hyttinen 

et al. (2003) observed formaldehyde as the only reaction product from a subset of these 

filters. Bekö et al. (2006) inferred that reaction byproducts were formed on used filters 

that were treated with ozone because they perceived as “less acceptable” than filters 

treated with plain air or nitrogen. They suggest that this chemistry may account for 

previous observations that sick building syndrome symptoms and poor occupant 

performance correlate with the presence of loaded HVAC filters (Clausen et al., 2002; 

Wargocki et al., 2003; Wyon et al., 2000). Fine aerosols have also been observed as 

indicators that semi-volatile reaction products form and partition from the soiled filter 

surface to aerosols (Bekö et al., 2005). 

Wang et al. (2005) showed that countertops that become coated with cooking oils or 

soaps will generate volatile aldehydes in the presence of ozone, in chemistry akin to 

Scheme 2. They verified in field studies (Wang and Morrison, 2006) that kitchen 

counters are a major emitter of secondary aldehydes (on a unit area basis).  

Wisthaller et al. (2005) studied ozone-surface reactions in a simulated aircraft 

environment that included used carpet, seats and other inner airplane surfaces. They also 

evaluated the presence of t-shirts worn by volunteers for a day. A key finding was that 

ozone consumption increases due to reactions with human skin oils, specifically 
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squalene, on t-shirts and other airplane surfaces. Using a very sensitive proton-transfer 

mass spectrometry system, they observed volatile oxidation products of the ozone-

squalene reaction including acetone and 6-methyl-5-heptenone. Recent work  has gone 

further to look at individual materials within an aircraft (Coleman et al., 2007) and 

complete cabin settings with live subjects (Weschler et al., 2007). They identified 

aldehydes, similar to those observed from earlier carpet studies, which may be generated 

from reactions with airline carpet and upholstery. Subjects in these studies reported a 

higher prevalence of symptoms (including headache, dizziness, mental tension, 

claustrophobia) when ozone levels were in the range of 60-70 ppb (Strom-Tejsen et al., 

2007). Note that these ozone levels are roughly in the range that arise when ozone 

generators are used indoors. 

Ozone-nicotine surface chemistry has recently been identified by Destaillats et al.(2006). 

Nicotine and other products of tobacco smoking adsorb strongly to indoor surfaces. In the 

presence of ozone, surface nicotine can form a variety of products including 

formaldehyde.  

Taken as a whole, it is probable that some fraction of ozone uptake and secondary 

emission in commercial and residential buildings is due to reactions with soaps, cooking 

oils, human skin oils, terpenes and other products of human inhabitation. As our 

understanding of indoor chemistry expands, we may discover chemical mechanisms that 

we can engineer to clean the air. However, commercial efforts to chemically improve 

indoor air with ozone have been misguided at best, dangerous at their worst. The fact that 

ozone can react rapidly to remove a small number of organic compounds have led 

manufacturers of ozone generating “air cleaners” to claim that their products effectively 

destroy organic pollutants (Boeniger, 1995). The reaction rates with most indoor odors 

are far too small to effect any significant change in exposure. For those compounds that 

are “destroyed”, such as the “terpenes” already discussed, the products of these reactions 

appear to be worse than the original compound. 
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