CALIFORNIA EXHAUST EMISSION STANDARDS AND TEST PROCEDURES FOR 2018 AND SUBSEQUENT MODEL ZERO-EMISSION VEHICLES AND HYBRID ELECTRIC VEHICLES, IN THE PASSENGER CAR, LIGHT-DUTY TRUCK AND MEDIUM-DUTY VEHICLE CLASSES

Adopted: March 22, 2012
Amended: December 6, 2012
NOTE: This document is incorporated by reference in section 1962.2, title 13, California Code of Regulations (CCR). Additional requirements necessary to complete an application for certification of zero-emission vehicles and hybrid electric vehicles are contained in other documents that are designed to be used in conjunction with this document. These other documents include:

1. “California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles” (incorporated by reference in section 1961(d), title 13, CCR);

2. “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles” (incorporated by reference in section 1976(c), title 13, CCR);

3. “California Refueling Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles” (incorporated by reference in section 1978(b), title 13, CCR);

4. OBD II (section 1968, et seq. title 13, CCR, as applicable);

5. “California Environmental Performance Label Specifications for 2009 and Subsequent Model Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Passenger Vehicles” (incorporated by reference in 1965, title 13, CCR);

6. Warranty Requirements (sections 2037 and 2038, title 13, CCR);

7. “Specifications for Fill Pipes and Openings of Motor Vehicle Fuel Tanks” (incorporated by reference in section 2235, title 13, CCR);

8. Guidelines for Certification of Federally Certified Light-Duty Motor Vehicles for Sale in California (incorporated by section 1960.5, title 13, CCR); and

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>A-1</td>
</tr>
<tr>
<td>B.</td>
<td>B-1</td>
</tr>
<tr>
<td>1.</td>
<td>B-1</td>
</tr>
<tr>
<td>2.</td>
<td>B-6</td>
</tr>
<tr>
<td>C.</td>
<td>C-1</td>
</tr>
<tr>
<td>D.</td>
<td>D-1</td>
</tr>
<tr>
<td>1.</td>
<td>D-1</td>
</tr>
<tr>
<td>2.</td>
<td>D-1</td>
</tr>
<tr>
<td>3.</td>
<td>D-3</td>
</tr>
<tr>
<td>E.</td>
<td>E-1</td>
</tr>
<tr>
<td>F.</td>
<td>F-1</td>
</tr>
<tr>
<td>1.</td>
<td>F-1</td>
</tr>
<tr>
<td>2.</td>
<td>F-1</td>
</tr>
<tr>
<td>3.</td>
<td>F-1</td>
</tr>
<tr>
<td>4.</td>
<td>F-4</td>
</tr>
<tr>
<td>5.</td>
<td>F-4</td>
</tr>
<tr>
<td>6.</td>
<td>F-5</td>
</tr>
<tr>
<td>7.</td>
<td>F-10</td>
</tr>
<tr>
<td>8.</td>
<td>F-12</td>
</tr>
<tr>
<td>9.</td>
<td>F-17</td>
</tr>
<tr>
<td>G.</td>
<td>G-1</td>
</tr>
<tr>
<td>1.</td>
<td>G-1</td>
</tr>
<tr>
<td>2.</td>
<td>G-1</td>
</tr>
<tr>
<td>3.</td>
<td>G-1</td>
</tr>
<tr>
<td>4.</td>
<td>G-2</td>
</tr>
<tr>
<td>5.</td>
<td>G-2</td>
</tr>
<tr>
<td>6.</td>
<td>G-11</td>
</tr>
<tr>
<td>7.</td>
<td>G-15</td>
</tr>
<tr>
<td>8.</td>
<td>G-20</td>
</tr>
</tbody>
</table>
10. State-of-Charge Net Change Tolerances.. G-23
11. Calculations – Equivalent All-Electric Range for Off-Vehicle Charge
 Capable Hybrid Electric Vehicles.. G-25
12. The Calculations of the Combined Green House Gas Regulatory Rating of
 Off-vehicle Charge Capable Hybrid Electric Vehicles.................................. G-29

H. Off-Vehicle Charge Capable Hybrid Electric Vehicle Exhaust Emission Test
 Sequence. ... H-1

I. Examples of Off-Vehicle Charge Capable Hybrid Electric Vehicle
 Terminology... I-1

J. Advanced Technology Demonstration Program data requirements............. J-1
 1. Project Description ... J-1
 2. Vehicle data ... J-1
 3. Vehicle specifications .. J-1
A. Applicability

The emission standards and test procedures in this document are applicable to 2018 and subsequent model-year zero-emission passenger cars, light-duty trucks, and medium-duty vehicles, and 2018 and subsequent model-year hybrid electric passenger cars, light-duty trucks, and medium-duty vehicles. The general procedures and requirements necessary to certify a vehicle for sale in California are contained in the “California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles” (hereinafter “LDV/MDV TPs”), and apply except as amended herein.
B. Definitions and Terminology.

1. Definitions.

In addition to the following, these test procedures incorporate by reference the definitions and abbreviations set forth in the Title 40 Code of Federal Regulations (CFR) §86.1803-01, the definitions and abbreviations set forth in the LDV/MDV TPs, and the definitions set forth in section 1900, title 13, CCR.

“Advanced technology PZEV” or “AT PZEV” means any PZEV with an allowance greater than 0.2 before application of the PZEV early introduction phase-in multiplier.

“All-Electric Range” or “AER” means the total miles driven electrically (with the engine off) before the engine turns on for the first time, after the battery has been fully charged.

“All-Electric Range (AER) Test” means a test sequence used to determine the range of an electric vehicle or of a hybrid electric vehicle without the use of its auxiliary power unit. The All-Electric Range Test cycle consists of the Highway Fuel Economy Schedule and the Urban Dynamometer Driving Schedule (see section E of these test procedures).

“Alternate Continuous Urban Test Schedule” means a series of the following sequence: UDDS, 10 minute key-off hot soak, UDDS, and 10-20 minute key-off hot soak. This alternate procedure may be substituted for the Continuous Urban Test Schedule when the Continuous Urban Test Schedule cannot be performed.

“Alternate Continuous Highway Test Schedule” means a series of the following sequence: HFEDS, 15 second key-on pause, HFEDS, and 10-20 minute key-off hot soak or a 15 second key-on pause. This alternate procedure may be substituted for the Continuous Highway Test Schedule when the Continuous Highway Test Schedule cannot be performed.

“Auxiliary power unit” or “APU” means a device that converts consumable fuel energy into mechanical or electrical energy. Some examples of auxiliary power units are internal combustion engines, gas turbines, or fuel cells. For the purposes of range extended battery electric vehicles, auxiliary power unit means any device that provides electrical or mechanical energy, meeting the requirements of subdivision C.3.2, to a BEVx, after the zero emission range has been fully depleted. A fuel fired heater does not qualify under this definition for an APU.

“Battery electric vehicle” or “BEV” means any vehicle that operates solely by use of a battery or battery pack, or that is powered primarily through the use of an electric battery or battery pack but uses a flywheel or capacitor that stores energy produced by the electric motor or through regenerative braking to assist in vehicle operation.

“Battery or Battery pack” means any electrical energy storage device consisting of any number of individual battery modules or cells that is used to propel a battery electric or hybrid electric vehicle. These terms may also generically refer to capacitor and flywheel energy storage devices in the context of hybrid electric vehicles.
“Battery state-of-charge” means the quantity of electrical energy remaining in the battery relative to the maximum rated capacity of the battery expressed in percent.

“Blended off-vehicle charge capable hybrid electric vehicle” means an off-vehicle charge capable hybrid electric vehicle that uses the engine to supplement battery/electric motor power during charge depleting operation.

“Blended operation mode” means an operating mode in which the energy storage state-of-charge decreases, on average, while the vehicle is driven and the engine is used occasionally to support power requests.

“Charge-depleting net energy consumption” means the net electrical energy, E_{cd}, measured in watt-hours consumed by vehicle over the charge depleting cycle range, R_{cdc}. E_{cd} can be expressed as AC or DC watt hours, where appropriate.

“Charge-depleting (CD) mode” means an operating mode in which the energy storage state-of-charge (SOC) may fluctuate but, on average, decreases while the vehicle is driven. Hybrid electric vehicles are required to be classified as either charge-sustaining or charge-depleting over each driving cycle (i.e. UDDS, HFEDS, US06, or SC03).

“Charge depleting actual range” or “R_{cd}” means the distance traveled on the Urban Charge Depleting Test Procedure at which the state-of-charge is first equal to the average state-of-charge of the two consecutive UDDS used to end the Urban Charge Depleting Test Procedure. This range must be reported to the nearest 0.1 miles. (See section F.11.9.)

“Charge depleting actual range, highway” or “R_{cdh}” means the distance traveled on the Highway Charge Depleting Test Procedure at which the state-of-charge is first equal to the average state-of-charge of the HFEDS used to end the Highway Charge Depleting Test Procedure. This range must be reported to the nearest 0.1 miles.

“Charge depleting cycle range” or “R_{cdc}” means the distance traveled on the Urban or Highway Charge Depleting Procedure up to the test cycle prior to where the state-of-charge is above the lower bound state-of-charge tolerance for one test cycle. This range will appear as the sum of a discrete number of test cycle distances. This range shall be reported to the nearest 0.1 miles. (See section F.11.8.)

“Charge-sustaining net energy consumption” means the net electrical energy, E_{cs}, measured in watt-hours consumed by vehicle during charge sustaining operation. For charge sustaining operation, this number should be ~ 0.

“Charge-sustaining (CS) mode” means an operating mode in which the energy storage SOC may fluctuate but, on average, is maintained at a certain level while the vehicle is driven. Hybrid electric vehicles are required to be classified as either charge-sustaining or charge-depleting over each driving cycle (i.e. UDDS, HFEDS, US06, or SC03).

“Consumable fuel” means any solid, liquid, or gaseous matter that releases energy when consumed by an auxiliary power unit.

“Continuous Urban Test Schedule” means a repeated series comprised of an Urban Dynamometer Driving Schedules (UDDS), 40 CFR, Part 86, Appendix I, which is incorporated herein by reference; each test is followed by a 10 minute key-off soak period.

“Continuous Highway Test Schedule” means a repeated series comprised of
four consecutive key-on Highway Fuel Economy Driving Schedules (HFEDS) with a 15 second key-on pause in-between each HFEDS. If this schedule cannot be performed continuously, a key-off soak up to 30 minutes is permitted after every fourth HFEDS.

“Continuous US06 Test Schedule” means a repeated series of US06 driving schedules (US06) with a key-on idle period of not less than one minute and not greater than two minutes between each US06.

“Conventional rounding method” means to increase the last digit to be retained when the following digit is five or greater. Retain the last digit as is when the following digit is four or less.

“Discounted PZEV and AT PZEVs” means credits earned under section 1962 and 1962.1 by delivery for sale of PZEVs and AT PZEVs, discounted according to subdivision C.7.2(f).

“East Region pool” means the combination of Section 177 states east of the Mississippi River.

“Electric drive system” means an electric motor and associated power electronics, which provide acceleration torque to the drive wheels sometime during normal vehicle operation. This does not include components that could act as a motor, but are configured to act only as a generator or engine starter in a particular vehicle application.

“Electric range fraction” means the fraction of electrical energy derived from off-vehicle charging and regenerative braking energy relative to total traction energy used over the charge depletion range on a specified drive cycle.

“Energy storage device” means a storage device able to provide the minimum power and energy storage capability to enable engine stop/start capability, traction boost, regenerative braking, and (nominal) charge sustaining mode driving capability. In the case of TZEVs, a minimum range threshold relative to certified, new-vehicle range capability is not specified or required.

“Enhanced AT PZEV” means any model year 2009 through 2011 PZEV that has an allowance of 1.0 or greater per vehicle without multipliers and makes use of a ZEV fuel. Enhanced AT PZEV means Transitional Zero Emission Vehicle.

“Equivalent all-electric range” or “EAER” means the portion of the total charge depleting range attributable to the use of electricity from the battery over the charge depleting range test.

“Fuel cell vehicle” or “FCV” means any vehicle that receives propulsion solely from an onboard fuel cell power system.

“Fuel-fired heater” means a fuel burning device that creates heat for the purpose of warming the passenger compartment of a vehicle but does not contribute to the propulsion of the vehicle.

“Grid-connected hybrid electric vehicle” means a hybrid electric vehicle that has the capacity for the battery to be recharged from an off-board source of electricity and has some all-electric range.

“Highway Fuel Economy Driving Schedule” or “HFEDS” means highway fuel economy driving schedule. See 40 CFR Part 600 §600.109(b).

“Hybrid electric vehicle” or “HEV” means any vehicle that can draw propulsion energy from both of the following on-vehicle sources of stored energy: 1) a consumable fuel and 2) an energy storage device such as a battery, capacitor, or flywheel.
“Hybrid fuel cell vehicle” or “HFCV” means any vehicle that receives propulsion energy from both an onboard fuel cell power system and either a battery or a capacitor.

“Hydrogen fuel cell vehicle” means a ZEV that is fueled primarily by hydrogen, but may also have off-vehicle charge capability.

“Hydrogen internal combustion engine vehicle” means a TZEV that is fueled exclusively by hydrogen.

“Majority ownership situations” means when one manufacturer owns another manufacturer more than 33.4%, for determination of size under CCR Section 1900.

“Manufacturer US PC and LDT Sales” means a manufacturer’s total passenger car and light duty truck (up to 8,500 pounds loaded vehicle weight) sales sold in the United States of America in a given model year.

“Neighborhood Electric Vehicle” or “NEV” means a motor vehicle that meets the definition of “low-speed vehicle” either in section 385.5 of the Vehicle Code or in 49 CFR §571.500 (July 1, 2000), and is certified to zero-emission vehicle standards.

“NIST” means the National Institute of Standards and Technology.

“Off-vehicle charge capable” means having the capability to charge a battery from an off-vehicle electric energy source that cannot be connected or coupled to the vehicle in any manner while the vehicle is being driven. A grid-connected hybrid electric vehicle is one example of an off-vehicle charge capable hybrid electric vehicle.

“Placed in service” means having been sold or leased to an end-user and not just to a dealer or other distribution chain entity, and having been individually registered for on-road use by the California Department of Motor Vehicles.

“Proportional value” means the ratio of a manufacturer’s California applicable sales volume to the manufacturer’s Section 177 state applicable sales volume. In any given model year, the same applicable sale volume calculation method must be used to calculate proportional value.

“Partial Zero Emission Vehicle” or “PZEV” means any vehicle that is delivered for sale in California and that qualifies for a partial ZEV allowance of at least 0.2, under section 1962.1.

“Range Extended Battery Electric Vehicle” or “BEVx” means a vehicle powered predominantly by a zero emission energy storage device, able to drive the vehicle for more than 75 all-electric miles, and also equipped with a backup APU, which does not operate until the energy storage device is fully depleted, and meeting requirements in subdivision C.4.5(g),

“Regenerative braking” means the partial recovery of the energy normally dissipated into friction braking that is returned as electrical current to an energy storage device.

“Section 177 State” means a state that is administering the California ZEV requirements pursuant to section 177 of the federal Clean Air Act (42 U.S.C. § 7507).

“SC03” means the U.S. EPA SC03 driving schedule representing vehicle operation with air conditioning, as set forth in Appendix I of 40 CFR Part 86.

As Amended: December 6, 2012
“State of Charge (SOC) Net Change Tolerance” means the state-of-charge net change tolerance that is applied to the SOC Criterion for charge-sustaining hybrid electric vehicles when validating an emission test. See section E.9 and F.10 of these procedures for tolerance specifications.

“State of Charge (SOC) Criterion” means the state-of-charge criterion that is applied to a charge-sustaining hybrid electric vehicle to validate an emission test. The SOC Criterion requires that no net change in battery energy occurs over a given test cycle, i.e. the final battery state-of-charge that is recorded at the end of the emission test must be equivalent to the initial battery state-of-charge that is set at the beginning of the emission test. The SOC Net Change Tolerance shall be applied to the SOC Criterion.

“Transitional Zero Emission Vehicle” or “TZEV” means a PZEV that has an allowance of 1.0 or greater, and makes use of a ZEV fuel.

“US06” means the US06 driving schedule for aggressive driving as set forth in Appendix I of 40 CFR Part 86.

“UDDS” means urban dynamometer driving schedule as set forth Appendix I of 40 CFR Part 86.

“West Region pool” means the combination of Section 177 states west of the Mississippi River.

“Zero-emission vehicle” or “ZEV” means a vehicle that produces zero exhaust emissions of any criteria pollutant (or precursor pollutant) or greenhouse gas under any possible operational modes or conditions.

“Zero-emission Vehicle Miles Traveled” or “zero emission VMT” means the vehicle miles traveled with zero exhaust emissions of any criteria pollutant (or precursor pollutant).

“ZEV fuel” means a fuel that provides traction energy in on-road ZEVs. Examples of current technology ZEV fuels include electricity, hydrogen, and compressed air.
2. Terminology.

<table>
<thead>
<tr>
<th>Description</th>
<th>Abbreviation</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge Depleting Actual Range (urban cycle)</td>
<td>R_{cda}</td>
<td>mi</td>
</tr>
<tr>
<td>Charge Depleting to Charge Sustaining Range</td>
<td>R_{cdcs}</td>
<td>mi</td>
</tr>
<tr>
<td>Charge Depleting Net Energy Consumption</td>
<td>E_{cd}</td>
<td>wh</td>
</tr>
<tr>
<td>Charge Depleting CO$_2$ Produced</td>
<td>M_{cd}</td>
<td>g/mi</td>
</tr>
<tr>
<td>Charge Sustaining CO$_2$ Produced</td>
<td>M_{cs}</td>
<td>g/mi</td>
</tr>
<tr>
<td>Highway Charge Depleting Actual Range</td>
<td>R_{cdah}</td>
<td>mi</td>
</tr>
<tr>
<td>Highway Charge Depleting Cycle Range</td>
<td>R_{cdch}</td>
<td>mi</td>
</tr>
<tr>
<td>Highway Electric Range Fraction</td>
<td>ERF_h</td>
<td>%</td>
</tr>
<tr>
<td>Highway Equivalent All-Electric Range</td>
<td>$EAER_{h}$</td>
<td>mi</td>
</tr>
<tr>
<td>Highway Equivalent All-Electric Range Energy</td>
<td>$EAEREC_{h}$</td>
<td>wh/mi</td>
</tr>
<tr>
<td>Urban Charge Depleting Cycle Range</td>
<td>R_{cdcu}</td>
<td>mi</td>
</tr>
<tr>
<td>Urban Electric Range Fraction</td>
<td>ERF_u</td>
<td>%</td>
</tr>
<tr>
<td>Urban Equivalent All-Electric Range</td>
<td>$EAER_{u}$</td>
<td>mi</td>
</tr>
<tr>
<td>Urban Equivalent All-Electric Range scaled to 40 mi limit</td>
<td>$EAER_{u40}$</td>
<td>mi</td>
</tr>
<tr>
<td>Urban Equivalent All-Electric Range Energy Consumption</td>
<td>$EAEREC_{u}$</td>
<td>wh/mi</td>
</tr>
</tbody>
</table>
C. Zero-Emission Vehicle Standards.

1. **ZEV Emission Standard.** The Executive Officer shall certify new 2018 and subsequent passenger cars, light-duty trucks and medium-duty vehicles as ZEVs if the vehicles produce zero exhaust emissions of any criteria pollutant (or precursor pollutant) or greenhouse gas, excluding emissions from air conditioning systems, under any and all possible operational modes and conditions.

2. **Percentage ZEV Requirements**

2.1 **General Percentage ZEV Requirement.**

(a) *Basic Requirement.* The minimum percentage ZEV requirement for each manufacturer is listed in the table below as the percentage of the PCs and LDT1s, and LDT2s to the extent required by subdivision C.2.2(c), produced by the manufacturer and delivered for sale in California that must be ZEVs, subject to the conditions in subdivision C.2.2. The ZEV requirement will be based on the annual NMOG production report for the appropriate model year.

<table>
<thead>
<tr>
<th>Model Year</th>
<th>Credit Percentage Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>4.5%</td>
</tr>
<tr>
<td>2019</td>
<td>7.0%</td>
</tr>
<tr>
<td>2020</td>
<td>9.5%</td>
</tr>
<tr>
<td>2021</td>
<td>12.0%</td>
</tr>
<tr>
<td>2022</td>
<td>14.5%</td>
</tr>
<tr>
<td>2023</td>
<td>17.0%</td>
</tr>
<tr>
<td>2024</td>
<td>19.5%</td>
</tr>
<tr>
<td>2025 and subsequent</td>
<td>22.0%</td>
</tr>
</tbody>
</table>

(b) *Calculating the Number of Vehicles to Which the Percentage ZEV Requirement is Applied.* For 2018 and subsequent model years, a manufacturer's production volume for the given model year will be based on the three-year average of the manufacturer's volume of PCs and LDTs, produced and delivered for sale in California in the prior second, third, and fourth model year [for example, 2019 model year ZEV requirements will be based on California production volume average of PCs and LDTs for the 2015 to 2017 model years]. This production averaging is used to determine ZEV requirements only, and has no effect on a manufacturer's size determination (eg. three-year average calculation method). In applying the ZEV requirement, a PC or LDT, that is produced by one manufacturer (e.g., Manufacturer A), but is marketed in California by another manufacturer (e.g., Manufacturer B) under the other manufacturer's (Manufacturer B) nameplate, shall be treated as having been produced by the marketing manufacturer (i.e., Manufacturer B).

1. [Reserved]

2. **[Reserved]**
(3) A manufacturer may apply to the Executive Officer to be permitted to base its ZEV obligation on the number of PCs and LDTs, produced by the manufacturer and delivered for sale in California that same model year (ie, same model-year calculation method) as an alternative to the three-year averaging of prior year production described above, for up to two model years, total, between model year 2018 and model year 2025. For the same model-year calculation method to be allowed, a manufacturer’s application to the Executive Officer must show that their volume of PCs and LDTs produced and delivered for sale in California has decreased by at least 30 percent from the previous year due to circumstances that were unforeseeable and beyond their control.

(c) [Reserved]

(d) Exclusion of ZEVs in Determining a Manufacturer’s Sales Volume. In calculating a manufacturer’s applicable sales, using either method described in subdivision C.2.1(b), a manufacturer shall exclude the number of NEVs produced and delivered for sale in California by the manufacturer itself, or by a subsidiary in which the manufacturer has more than 33.4% percent ownership interest.

2.2 Requirements for Large Volume Manufacturers.

(a) [Reserved]

(b) [Reserved]

(c) [Reserved]

(d) [Reserved]

(e) Requirements for Large Volume Manufacturers in 2018 and through 2025 Model Years. LVMs must produce credits from ZEVs equal to minimum ZEV floor percentage requirement, as enumerated below. Manufacturers may fulfill the remaining ZEV requirement with credits from TZEVs, as enumerated below.

<table>
<thead>
<tr>
<th>Model Years</th>
<th>Total ZEV Percent Requirement</th>
<th>Minimum ZEV floor</th>
<th>TZEVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>4.5%</td>
<td>2.0%</td>
<td>2.5%</td>
</tr>
<tr>
<td>2019</td>
<td>7.0%</td>
<td>4.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>2020</td>
<td>9.5%</td>
<td>6.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>2021</td>
<td>12.0%</td>
<td>8.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>2022</td>
<td>14.5%</td>
<td>10.0%</td>
<td>4.5%</td>
</tr>
<tr>
<td>2023</td>
<td>17.0%</td>
<td>12.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
(f) Requirements for Large Volume Manufacturers in Model Year 2026 and Subsequent. In 2026 and subsequent model years, a manufacturer must meet a total ZEV credit percentage of 22%. The maximum portion of a manufacturer’s credit percentage requirement that may be satisfied by TZEV credits is limited to 6% of the manufacturer’s applicable California PC and LDT production volume. ZEV credits must satisfy the remainder of the manufacturer’s requirement.

2.3 Requirements for Intermediate Volume Manufacturers. For 2018 and subsequent model years, an intermediate volume manufacturer may meet all of its ZEV credit percentage requirement, under subdivision C.2, with credits from TZEV.

2.4 Requirements for Small Volume Manufacturers and Independent Low Volume Manufacturers. A small volume manufacturer is not required to meet the ZEV credit percentage requirements. However, a small volume manufacturer may earn, bank, market, and trade credits for the ZEVs and TZEVs it produces and delivers for sale in California.

2.5 [Reserved]

2.6 [Reserved]

2.7 Changes in Small Volume, Independent Low Volume, and Intermediate Volume Manufacturer Status.

(a) Increases in California Production Volume. In 2018 and subsequent model years, if a small volume manufacturer’s average California production volume exceeds 4,500 units of new PCs, LDTs, and MDVs based on the average number of vehicles produced and delivered for sale for the three previous consecutive model years (i.e., total production volume exceeds 13,500 vehicles in a three-year period), for three consecutive averages, the manufacturer shall no longer be treated as a small volume manufacturer, and must comply with the ZEV requirements for intermediate volume manufacturers beginning with the next model year after the last model year of the third consecutive average. For example, if (a small volume) Manufacturer A exceeds 4,500 PCs, LDTs, and MDVs for their 2018–2020, 2019–2021, and 2020–2022 model year averages, Manufacturer A would be subject to intermediate volume requirements starting in 2023 model year.

If an intermediate volume manufacturer’s average California production volume exceeds 20,000 units of new PCs, LDTs, and MDVs based on the average number of vehicles produced and delivered for sale for the three previous consecutive model years (i.e., total production volume exceeds 60,000 vehicles in a three-year period), for three consecutive averages, the manufacturer shall no longer be treated as
an intermediate volume manufacturer and shall comply with the ZEV requirements for large volume manufacturers beginning with the next model year after the last model year of the third consecutive average. For example, if (an intermediate volume) Manufacturer B exceeds 20,000 PCs, LDTs, and MDVs for its 2018 – 2020, 2019 – 2021, and 2020 – 2022 average, Manufacturer B would be subject to large volume manufacturer requirements starting in 2023 model year.

Any new requirement described in the this subdivision will begin with the next model year after the last model year of the third consecutive average when a manufacturer ceases to be a small or intermediate volume manufacturer in 2018 or subsequent years due to the aggregation requirements in majority ownership situations.

(b) Decreases in California Production Volume. If a manufacturer's average California production volume falls below 4,500 or 20,000 units of new PCs, LDT1 and 2s, and MDVs, based on the average number of vehicles produced and delivered for sale for the three previous consecutive model years, for three consecutive averages, the manufacturer shall be treated as a small volume or intermediate volume manufacturer, as applicable, and shall be subject to the requirements for a small volume or intermediate volume manufacturer beginning with the next model year. For example, if Manufacturer C falls below 20,000 PCs, LDTs, and MDVs for its 2019 – 2021, 2020 – 2022, and 2021 – 2023 averages, Manufacturer C would be subject to IVM requirements starting in 2024 model year.

(c) Calculating California Production Volume in Change of Ownership Situations. Where a manufacturer experiences a change in ownership in a particular model year, the change will affect application of the aggregation requirements on the manufacturer starting with the next model year. When a manufacturer is simultaneously producing two model years of vehicles at the time of a change of ownership, the basis of determining next model year must be the earlier model year. The manufacturer's small or intermediate volume manufacturer status for the next model year shall be based on the average California production volume in the three previous consecutive model years of those manufacturers whose production volumes must be aggregated for that next model year. For example, where a change of ownership during the 2019 calendar year occurs and the manufacturer is producing both 2019 and 2020 model year vehicles resulting in a requirement that the production volume of Manufacturer A be aggregated with the production volume of Manufacturer B, Manufacturer A’s status for the 2020 model year will be based on the production volumes of Manufacturers A and B in the 2017 – 2019 model years. Where the production volume of Manufacturer A must be aggregated with the production volumes of Manufacturers B and C for the 2019 model year, and during that model year a change in ownership eliminates the requirement that Manufacturer B’s production volume be aggregated with Manufacturer A’s, Manufacturer A’s status for the 2020 model year will be based on the production volumes of Manufacturers A and C in the 2017 – 2019 model years. In either case, the lead time provisions in subdivisions 1962.2(b)(7)(A) and (B) will apply.
3. **Transitional Zero-Emission Vehicles (TZEV).**

3.1 **Introduction.** This subdivision C.3 sets forth the criteria for identifying vehicles delivered for sale in California as TZEVs.

3.2 **TZEV Requirements.** In order for a vehicle to be eligible to receive a ZEV allowance, the manufacturer must demonstrate compliance with all of the following requirements:

(a) **SULEV Standards.** Certify the vehicle to the 150,000-mile SULEV 20 or 30 exhaust emission standards for PCs and LDTs in subdivision 1961.2(a)(1). Bi-fuel, fuel flexible and dual-fuel vehicles must certify to the applicable 150,000-mile SULEV 20 or 30 exhaust emission standards when operating on both fuels. Manufacturers may certify 2018 and 2019 TZEVs to the 150,000-mile SULEV exhaust emission standards for PCs and LDTs in subdivision 1961(a)(1);

(b) **Evaporative Emissions.** Certify the vehicle to the evaporative emission standards in subdivision 1976(b)(1)(G) or 1976(b)(1)(E);

(c) **OBD.** Certify that the vehicle will meet the applicable on-board diagnostic requirements in sections 1968.1 or 1968.2, as applicable, for 150,000 miles; and

(d) **Extended Warranty.** Extend the performance and defects warranty period set forth in subdivisions 2037(b)(2) and 2038(b)(2) to 15 years or 150,000 miles, whichever occurs first, except that the time period is to be 10 years for a zero emission energy storage device used for traction power (such as a battery, ultracapacitor, or other electric storage device).

3.3 **Allowances for TZEVs.**

(a) **Zero Emission Vehicle Miles Traveled TZEV Allowance Calculation.** A vehicle that meets the requirements of subdivision C.3.2 and has zero-emission vehicle miles traveled (VMT), as defined by and calculated by this test procedure and measured as equivalent all electric range (EAER) capability will generate allowance according to the following equation:

<table>
<thead>
<tr>
<th>UDDS Test Cycle Range (AER)</th>
<th>Allowance</th>
</tr>
</thead>
<tbody>
<tr>
<td><10 all electric miles</td>
<td>0.00</td>
</tr>
<tr>
<td>≥10 miles range</td>
<td>TZEV Credit = [(0.01) \times \text{EAER} + 0.30]</td>
</tr>
<tr>
<td>>80 miles (credit cap)</td>
<td>1.10</td>
</tr>
</tbody>
</table>

(1) Allowance for US06 Capability. TZEVs with US06 all electric range
capability (AER) of at least 10 miles shall earn an additional 0.2 allowance. US06 test cycle range capability shall be determined in accordance with section G.7.5 of these test procedures.

(B) [Reserved]

(C) [Reserved]

(D) [Reserved]

(e) Credit Hydrogen Internal Combustion Engine Vehicles. A hydrogen internal combustion engine vehicle that meets the requirements of subdivision C.3.2 and has a total range of at least 250 UDDS miles will earn an allowance of 0.75, which may be in addition to allowances earned in subdivision C.3.3(a), and subject to an overall credit cap of 1.25

4. Qualification for Credits From ZEVs.

4.1 [Reserved]

4.2 [Reserved]

4.3 [Reserved]

4.4 [Reserved]

4.5 Credits for 2018 and Subsequent Model Years.

(a) ZEV Credit Calculations. Credits from a ZEV delivered for sale are based on the ZEV’s UDDS all electric range, determined in accordance with these test procedures using the following equation:

\[
\text{ZEV Credit} = (0.01) \times (\text{UDDS range}) + 0.50
\]

1. A ZEV with less than 50 miles UDDS range will receive zero credits.

2. Credits earned under this provision C.4.5(a) are be capped at 4 credits per ZEV.

(b) [Reserved]

(c) [Reserved]

(d) [Reserved]

1. Provisions for 2018 through 2025 Model Years. Large volume manufacturers
and intermediate volume manufacturers with credits earned from hydrogen fuel cell vehicles that are certified to the California ZEV standards applicable for the ZEV’s model year, delivered for sale and placed in service in California or in a section 177 state, may be counted towards compliance in California and in all section 177 states with the percentage ZEV requirements in subdivision C.2. The credits earned are multiplied by the ratio of a manufacturer’s applicable production volume for a model year, as specified in subdivision C.2.1(b), in the state receiving credit to the manufacturer’s applicable production volume as specified in subdivision C.2.1(b), for the same model year in California (hereafter, “proportional value”). Credits generated from ZEV placement in a section 177 state will be earned at the proportional value in the section 177 state, and earned in California at the full value specified in subdivision C.4.5(a).

(2) Optional Section 177 State Compliance Path.

(A) Reduced ZEV and TZEV Percentages. Large volume manufacturers and intermediate volume manufacturers that have fully complied with the optional section 177 state compliance path requirements in subdivision 1962.1(d)(5)(E)3. are allowed to meet ZEV percentage requirements and optional TZEV percentages reduced from the minimum ZEV floor percentages and TZEV percentages in subdivision C.2.2(e) in each section 177 state equal to the following percentages of their sales volume determined under subdivision 1962.2(b)(1)(B):

ZEVs

<table>
<thead>
<tr>
<th>Model Year</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Minimum ZEV Floor</td>
<td>2.00%</td>
<td>4.00%</td>
<td>6.00%</td>
<td>8.00%</td>
</tr>
<tr>
<td>Section 177 State Adjustment for Optional Compliance Path</td>
<td>62.5%</td>
<td>75%</td>
<td>87.5%</td>
<td>100%</td>
</tr>
<tr>
<td>Minimum Section 177 State ZEV Requirement</td>
<td>1.25%</td>
<td>3.00%</td>
<td>5.25%</td>
<td>8.00%</td>
</tr>
</tbody>
</table>

TZEVs

<table>
<thead>
<tr>
<th>Model Year</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing TZEV Percentage</td>
<td>2.50%</td>
<td>3.00%</td>
<td>3.50%</td>
<td>4.00%</td>
</tr>
<tr>
<td>Section 177 State Adjustment for Optional Compliance Path</td>
<td>90.00%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>New Section 177 State TZEV Percentage</td>
<td>2.25%</td>
<td>3.00%</td>
<td>3.50%</td>
<td>4.00%</td>
</tr>
</tbody>
</table>

Total Percent Requirement

<table>
<thead>
<tr>
<th>Model Year</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Total Section 177 State Optional Requirements</td>
<td>3.50%</td>
<td>6.00%</td>
<td>8.75%</td>
<td>12.00%</td>
</tr>
</tbody>
</table>
1. **Trading and Transferring ZEV and TZEV Credits within West Region Pool and East Region Pool.** Manufacturers that have fully complied with the optional section 177 state compliance path requirements in subdivision 1962.1(d)(5)(E)3. may trade or transfer specified model year ZEV and TZEV credits within the West Region pool to meet the same model year requirements in subdivision C.4.5(e)(2)(A) and will incur no premium on their credit values. For example, for a manufacturer to make up a 2019 model year shortfall of 100 credits in State X, the manufacturer may transfer 100 (2019 model year) ZEV credits from State Y, within the West Region pool. Manufacturers that have fully complied with the optional section 177 state compliance path requirements in subdivision 1962.1(d)(5)(E)3. may trade or transfer specified model year ZEV and TZEV credits within the East Region pool to meet the same model year requirements in subdivision C.4.5(e)(2)(A), and will incur no premium on their credit values. For example, for a manufacturer to make up a 2019 model year shortfall of 100 credits in State W, the manufacturer may transfer 100 (2019 model year) ZEV credits from State Z, within the East Region pool.

2. **Trading and Transferring ZEV and TZEV Credits between the West Region Pool and the East Region Pool.** Manufacturers that have fully complied with the optional section 177 state compliance path requirements in subdivision 1962.1(d)(5)(E)3. may trade or transfer specified model year ZEV and TZEV credits to meet the same model year requirements in subdivision C.4.5(e)(2)(A).a. between the West Region pool and the East Region pool; however, any credits traded will incur a premium of 30% of their value. For example, in order for a manufacturer to make up a 2019 model year shortfall of 100 credits in the West Region Pool, the manufacturer may transfer 130 (2019 model year) credits from the East Region Pool. No credits may be traded or transferred to the East Region pool or West Region pool from a manufacturer’s California ZEV bank, or from the East Region pool or West Region pool to a manufacturer’s California ZEV bank.

(B) **Reporting Requirements.** On an annual basis, by May 1st of the calendar year following the close of a model year, each manufacturer that elects the optional section 177 state compliance path under subdivision 1962.1(d)(5)(E)3 shall submit, in writing, to the Executive Officer and each section 177 state a report, including an itemized list, that indicates where vehicles have been placed within the East Region pool and within the West Region pool. The itemized list shall include the following:

1. The manufacturer’s total applicable volume of PCs and LDTs delivered for sale in each section 177 state within the regional pool, as determined under subdivision C.2.1(b).
2. Make, model, vehicle identification number, credit earned, and section 177 state where delivery for sale of each TZEV and ZEV occurred and to meet manufacturer’s requirements under subdivision C.4.5(e)(2)(A).

(C) **Failure to Meet Optional Section 177 State Compliance Path Requirements.** A manufacturer that elects the optional section 177 state compliance path subdivision 1962.1(d)(5)(E)3 and does not meet the modified percentages in subdivision C.4.5(e)(2)(A) in a model year or make up their deficit within the specified time and with the specified credits allowed by subdivision C.7.7(a) in all section 177 states of the applicable pool, shall be treated as subject to the ZEV percentage requirements in section C.2 in each section 177 state. The pooling provisions in subdivision C.4.5(e)(2)(A) shall not apply. Any transfers of ZEV or TZEV credits between section 177 states will be null and void if a manufacturer fails to comply, and ZEV or TZEV credits will return to the section 177 state in which the credits were earned. Penalties shall be calculated separately by each section 177 state where a manufacturer fails to make up the ZEV deficits by the end of the 2018 model year.

(D) The provisions of section C shall apply to a manufacturer electing the optional section 177 state compliance path, except as specifically modified by this subdivision C.4.5(e)(2).

(f) **NEVs.** NEVs must meet the following to be eligible for 0.15 credits:

(1) **Specifications.** A NEV earns credit when it meets all the following specifications:

 (A) **Acceleration.** The vehicle has a 0-20 mph acceleration of 6.0 seconds or less when operating with a payload of 332 pounds and starting with the battery at a 50% state of charge.

 (B) **Top Speed.** The vehicle has a minimum top speed of 20 mph when operating with a payload of 332 pounds and starting with the battery at a 50% state of charge. The vehicle’s top speed shall not exceed 25 mph when tested in accordance with 49 CFR 571.500 (68 FR 43972, July 25, 2003).

 (C) **Constant Speed Range.** The vehicle has a minimum 25 mile range when operating at constant top speed with a payload of 332 pounds and starting with the battery at 100% state of charge.

 (2) **Battery Requirement.** A qualifying NEV must be equipped with sealed, maintenance-free batteries.

 (3) **Warranty Requirement.** A NEV drive train, including battery packs, must be covered for a period of at least 24 months. The first 6 months of the NEV warranty
period must be covered by a full warranty; the remaining warranty period may be
optional extended warranties (available for purchase) and may be prorated. If the
extended warranty is prorated, the percentage of the battery pack’s original value to be
covered or refunded must be at least as high as the percentage of the prorated
coverage period still remaining. For the purpose of this computation, the age of the
battery pack must be expressed in intervals no larger than three months. Alternatively,
a manufacturer may cover 50 percent of the original value of the battery pack for the full
period of the extended warranty.

Prior to allowance approval, the Executive Officer may request that the
manufacturer provide copies of representative vehicle and battery warranties.

(5) **NEV Charging Requirements.** A NEV must meet charging connection
standard portion of the requirements specified in subdivision 1962.3(c)(2).

(g) **BEVx.** A BEVx must meet the following in order to receive credit, based
on its zero emission UDDS range, through subdivision C.4.5(a):

(1) **Emissions Requirements.** BEVxs must meet all TZEV requirements,
specified in subdivision C.3.2 (a) through (d).

(2) **APU Operation.** The vehicle’s UDDS range after the APU first starts and
enters “charge sustaining hybrid operation” must be less than or equal to the vehicle’s
UDDS all-electric test range prior to APU start. The vehicle’s APU cannot start under
any user-selectable driving mode unless the energy storage system used for traction
power is fully depleted.

(3) **Minimum Zero Emission Range Requirements.** BEVxs must have a
minimum of 75 miles UDDS zero emission range.

5. [Reserved]

6. [Reserved]

7. **Generation and Use of ZEV Credits; Calculation of Penalties**

7.1 **Introduction.** A manufacturer that produces and delivers for sale in
California ZEVs or TZEVs in a given model year exceeding the manufacturer’s ZEV
requirement set forth in subdivision C.2 shall earn ZEV credits in accordance with this
subdivision C.2.

7.2 **ZEV Credit Calculations.**

(a) **Credits from ZEVs.** The amount of credits earned by a manufacturer in a
given model year from ZEVs shall be expressed in units of credits, and shall be equal to
the number of credits from ZEVs produced and delivered for sale in California that the
manufacturer applies towards meeting the ZEV requirements, or, if applicable, requirements specified under subdivision C.4.5(e)(2)(A) for the model year subtracted from the number of ZEVs produced and delivered for sale in California by the manufacturer in the model year.

(b) *Credits from TZEVs.* The amount of credits earned by a manufacturer in a given model year from TZEVs shall be expressed in units of credits, and shall be equal to the total number of TZEVs produced and delivered for sale in California that the manufacturer applies towards meeting its ZEV requirement, or, if applicable, requirements specified under subdivision C.4.5(e)(2)(A) for the model year subtracted from the total number of ZEV allowances from TZEVs produced and delivered for sale in California by the manufacturer in the model year.

(c) *Separate Credit Accounts.* Credits from a manufacturer’s ZEVs, BEVxs, TZEVs, and NEVs shall each be maintained in separate accounts.

(d) *Rounding Credits.* ZEV credits and debits shall be rounded to the nearest 1/100th only on the final credit and debit totals using the conventional rounding method.

7.3 ZEV Credits for MDVs and LDTs Other Than LDT1s. Credits from ZEVs and TZEVs classified as MDVs, may be counted toward the ZEV requirement for PCs and LDTs, and included in the calculation of ZEV credits as specified in this subdivision C.7 if the manufacturer so specifies.

7.4 ZEV Credits for Advanced Technology Demonstration Programs.

(a) [Reserved]

(b) ZEVs. ZEVs, including BEVxs, excluding NEVs, placed in a small or intermediate volume manufacturer’s California advanced technology demonstration program for a period of two or more years, may earn ZEV credits even if the vehicle is not “delivered for sale” or registered with the California DMV. To earn such credits, the manufacturer must demonstrate to the reasonable satisfaction of the Executive Officer that the vehicles will be regularly used in applications appropriate to evaluate issues related to safety, infrastructure, fuel specifications or public education, and that for 50 percent or more of the first two years of placement the vehicle will be operated in California. Such a vehicle is eligible to receive the same credit that it would have earned if delivered for sale, and for fuel cell vehicles, placed in service. To determine vehicle credit, the model year designation for a demonstration vehicle shall be consistent with the model year designation for conventional vehicles placed in the same timeframe. Manufacturers may earn credit for up to 25 vehicles per model, per section 177 state, per year under this
7.5 ZEV Credits for Transportation Systems.

(a) [Reserved]

(b) [Reserved]

(c) Cap on Use of Transportation System Credits.

(1) ZEVs. Transportation system credits earned or allocated by ZEVs or BEVxs pursuant to subdivision 1962.1(g)(5), not including any credits earned by the vehicle itself, may be used to satisfy up to one-tenth of a manufacturer’s ZEV obligation in any given model year, and may be used to satisfy up to one-tenth of a manufacturer’s ZEV obligation which must be met with ZEVs, as specified in subdivision C.2.2(e), or, if applicable, requirements specified under subdivision C.4.5(e)(2)(A).

(2) TZEVs. Transportation system credits earned or allocated by TZEVs pursuant to subdivision 1962.1(g)(5), not including all credits earned by the vehicle itself, may be used to satisfy up to one-tenth of the portion of a manufacturer’s ZEV obligation that may be met with TZEVs or, if applicable, the portion of a manufacturer’s obligation that may be met with TZEVs specified under subdivision C.4.5(e)(2)(A) in any given model year, but may only be used in the same manner as other credits earned by vehicles of that category.

7.6 Use of ZEV Credits. A manufacturer may meet the ZEV requirements in a given model year by submitting to the Executive Officer a commensurate amount of ZEV credits, consistent with subdivision C.2. Credits in each of the categories may be used to meet the requirement for that category as well as the requirements for lesser credit earning ZEV categories, but shall not be used to meet the requirement for a greater credit earning ZEV category, except for discounted PZEV and AT PZEV credits. For example, credits produced from TZEVs may be used to comply with the portion of the requirement that may be met with credits from TZEV, but not with the portion that must be satisfied with credits from ZEVs. These credits may be earned previously by the manufacturer or acquired from another party.

(a) Use of Discounted PZEV and AT PZEV Credits and NEV Credits. For model years 2018 through 2025, discounted PZEV and AT PZEV credits, and NEV credits may be used to satisfy up to one-quarter of the portion of a manufacturer’s requirement that can be met with credits from TZEVs or, if applicable, the portion of a manufacturer’s obligation that may be met with TZEVs specified under subdivision C.4.5(e)(2)(A). Intermediate volume manufacturers may fulfill their entire requirement with discounted PZEV and AT PZEV credits, and NEV credits in model years 2018 and 2019. These credits may be earned previously by the manufacturer or acquired from another party. Discounted PZEV and AT PZEV credits may no longer be used after model year 2025 compliance.
(b) **Use of BEVx Credits.** BEVx credits may be used to satisfy up to 50% of the portion of a manufacturer’s requirement that must be met with ZEV credits.

(c) **GHG-ZEV Over Compliance Credits.**

(1) **Application.** Manufacturers may apply to the Executive Officer, no later than December 31, 2016, to be eligible for this subdivision C.7.6(c), based on the following qualifications:

(A) A manufacturer must have no model year 2017 compliance debits and no outstanding debits from all previous model year compliance with sections 1961.1 and 1961.3, or compliance with the National greenhouse gas program as allowed by subdivisions 1961.1(a)(1)(A)(ii) and 1961.3(c), and

(B) A manufacturer must have no model year 2017 compliance debits and no outstanding debits from all previous model year compliance with section 1962.1, and

(C) A manufacturer must submit documentation of its projected product plans to show over compliance with the manufacturer’s section 1961.3 requirements, or over compliance with the National greenhouse gas program requirements as allowed by subdivision 1961.3(c), by at least 2.0 gCO₂/mile in each model year through the entire 2018 through 2021 model year period.

(2) **Credit Generation and Calculation.** Manufacturers must calculate their over compliance with section 1961.3 requirements, or over compliance with the National greenhouse gas program requirements as allowed by subdivision 1961.3(c) for model years 2018 through 2021 based on compliance with the previous model year standard. For example, to generate credits for this subdivision C.7.6(c), for model year 2018, manufacturers would calculate credits based on model year 2017 compliance with section 1961.3, or compliance with the National greenhouse gas program requirements as allowed by subdivision 1961.3(c).

(A) At least 2.0 gCO₂/mile over compliance with section 1961.3, or over compliance with the National greenhouse gas program as allowed by subdivision 1961.3(c) is required in each year and the following equation must be used to calculate the amount of ZEV credits earned for purposes of this subdivision C.7.6(c):

\[
\frac{[(\text{Manufacturer US PC and LDT Sales}) \times (\text{gCO}_2/\text{mile below manufacturer GHG standard for a given model year})]}{(\text{Manufacturer GHG standard for a given model year})}
\]

(B) Credits earned under subdivision 1961.3(a)(9), or credits
earned under 40 CFR, part 86, Subpart S, 86.1866-12(a), 86.1866-12(b), or 86.1870-12 may not be included in the calculation of gCO₂/mile credits for use in the above equation in subdivision (A). All ZEVs included in the calculation above must include associated upstream emission values found in section 1961.3.

(C) Banked gCO₂/mile credits earned under 1961.1 and 1961.3, or under the National greenhouse gas program requirements as allowed by subdivision 1961.3(c) from previous model years or from other manufacturers may not be included in the calculation of gCO₂/mile credits for use in the above equation in subdivision (A).

(3) Use of GHG-ZEV Over Compliance Credits. A manufacturer may use no more than the percentage enumerated in the table below to meet either the total ZEV requirement nor the portion of their ZEV requirement that must be met with ZEV credits, with credits earned under this subdivision C.7.6(c).

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>50%</td>
</tr>
<tr>
<td>2019</td>
<td>50%</td>
</tr>
<tr>
<td>2020</td>
<td>40%</td>
</tr>
<tr>
<td>2021</td>
<td>30%</td>
</tr>
</tbody>
</table>

Credits earned in any given model year under this subdivision C.7.6(c) may only be used in the applicable model year and may not be used in any other model year.

Credits calculated under this provision must also be removed from the GHG compliance bank, and cannot be banked for future compliance toward section 1961.3, towards compliance with the National greenhouse gas program requirements as allowed by subdivision 1961.3(c).

(4) Reporting Requirements. Annually, manufacturers are required to submit calculations of credits for this subdivision C.7.6(c) for the model year, any remaining credits/debits from previous model years under section 1961.3, or under the National greenhouse gas program requirements as allowed by subdivision 1961.3(c), and projected credits/debits for future years through 2021 under section 1961.3, or under the National greenhouse gas program requirements as allowed by subdivision 1961.3(c), and this subdivision C.7.6(c).

If a manufacturer, who has been granted the ability to generate credits under this subdivision C.7.6(c), fails to over comply by at least 2.0 gCO₂/mile in any one year, the manufacturer will be subject to the full ZEV requirements for the model year and future model years, and will not be able to earn credits for any other model year under this subdivision C.7.6(c).

7.7 Requirement to Make Up a ZEV Deficit.

(a) General. A manufacturer that produces and delivers for sale in California fewer ZEVs than required in a given model year shall make up the deficit by the next model year by submitting to the Executive Officer a commensurate amount of ZEV credits. The amount of ZEV credits required to be submitted shall be calculated by
[i] adding the number of credits from ZEVs produced and delivered for sale in California by the manufacturer for the model year to the number of credits from TZEVs produced and delivered for sale in California by the manufacturer for the model year (for a LVM, not to exceed that permitted under subdivision C.2.2), and [ii] subtracting that total from the number of credits required to be produced and delivered for sale in California by the manufacturer for the model year. BEVx, TZEV, NEV, or converted AT PZEV and PZEV credits are not allowed to be used to fulfill a manufacturer’s ZEV deficit; only credits from ZEVs may be used to fulfill a manufacturer’s ZEV deficit.

7.8 **Penalty for Failure to Meet ZEV Requirements.** Any manufacturer that fails to produce and deliver for sale in California the required number of ZEVs and submit an appropriate amount of credits and does not make up ZEV deficits within the specified time allowed by subdivision C.7.7(a) shall be subject to the Health and Safety Code section 43211 civil penalty applicable to a manufacturer that sells a new motor vehicle that does not meet the applicable emission standards adopted by the state board. The cause of action shall be deemed to accrue when the ZEV deficit is not balanced by the end of the specified time allowed by subdivision 1962.2(g)(7)(A). For the purposes of Health and Safety Code section 43211, the number of vehicles not meeting the state board’s standards shall be equal to the manufacturer’s credit deficit, rounded to the nearest 1/100th, calculated according to the following equation, provided that the percentage of a manufacturer’s ZEV requirement for a given model year that may be satisfied with TZEVs or credit from such vehicles may not exceed the percentages permitted under subdivision C.2.2:

\[
\text{(No. of ZEV credits required to be generated for the model year)} - \text{(Amount of credits submitted for compliance for the model year)}
\]

8. **Severability.** Each provision of these standards and test procedures is severable, and in the event that any provision of these standards and test procedures is held to be invalid, the remainder of the standards and test procedures remains in full force and effect.

9. **Public Disclosure.** Records in the Board’s possession for the vehicles subject to the requirements of section C shall be subject to disclosure as public records as follows:

(a) Each manufacturer’s annual production data and the corresponding credits per vehicle earned for ZEVs (including ZEV type), TZEVs, AT PZEVs, and PZEVs for the 2018 and subsequent model years; and

(b) Each manufacturer’s annual credit balances for 2018 and subsequent years for:
(1) Each type of vehicle: ZEVs (minus NEVs), BEVx, NEV, TZEV, and discounted AT PZEV and PZEV credits; and

(2) Advanced technology demonstration programs; and

(3) Transportation systems; and

(4) Credits earned under section C.4.4(c), including credits acquired from, or transferred to another party, and the parties themselves.
D. Certification Requirements.

1. Durability and Emission Testing Requirements. All ZEVs, excluding Type I.5x and Type IIx vehicles, are exempt from all mileage and service accumulation, durability-data vehicle, and emission-data vehicle testing requirements.

2. Information Requirements: Application for Certification. Except as noted below, the Part I (40 CFR §86.1843-01(c)) certification application shall include the following:

 2.1 Identification and description of the vehicle(s) covered by the application.

 2.2 Identification of the vehicle weight category to which the vehicle is certifying: PC, LDT 0-3750 lbs. LVW, LDT 3751-5750 lbs. LVW, LDT 3751 lbs. LVW - 8500 lbs. GVW, or MDV (state test weight range), and the curb weight and gross vehicle weight rating of the vehicle.

 2.3 Identification and description of the propulsion system for the vehicle.

 2.4 Identification and description of the climate control system used on the vehicle.

 2.5 Projected number of vehicles produced and delivered for sale in California, and projected California sales.

 2.6 Identification of the energy usage in kilowatt-hours per mile from:
 (a) the battery output (DC energy) (to be submitted with the Part II certification application (40 CFR §86.1843-01(d)));
 (b) the point when electricity is introduced from the electrical outlet (AC energy); and
 (c) the operating range in miles of the vehicle when tested in accordance with the All-Electric Range Test set forth in section F, below. For off-vehicle charge capable hybrid electric vehicles certifying to section G, the manufacturer shall provide the energy usage in kilowatt hours per mile from the Urban Equivalent All-Electric Range and the Highway Equivalent All-Electric Range.

 2.7 For those vehicles that use fuel-fired heaters, the manufacturer shall provide:
 (a) a description of the control system logic of the fuel-fired heater, including an evaluation of the conditions under which the fuel-fired heater can be operated and an evaluation of the possible operational modes and conditions under which evaporative emissions can exist;
(b) the exhaust emissions value per mile produced by the auxiliary fuel-fired heater operated between 68°F and 86°F; and
(c) the test plan which describes the procedure used to determine the mass emissions of the fuel-fired heater.

2.8 All information necessary for proper and safe operation of the vehicle, including information on the safe handling of the battery system, emergency procedures to follow in the event of battery leakage or other malfunctions that may affect the safety of the vehicle operator or laboratory personnel.

2.9 Method for determining battery state-of-charge, battery charging capacity and recharging procedures, and any other relevant information as determined by the Executive Officer.

2.10 Battery specific energy data and calculations as specified in section F.4 of these procedures including the weight of the battery system and the three hour discharge rate (C/3) energy capacity.

2.11 Vehicle and battery break-in period, and the method used to determine them, as specified in sections F.2 and G.2 of these test procedures.

2.12 Labeling shall conform with the requirements specified in section 1965, title 13, CCR and the “California Environmental Performance Label Specifications for 2009 and Subsequent Model Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Passenger Vehicles” (incorporated by reference therein).

2.13 For a ZEV, extended range HEV or PZEV that qualifies to receive one or more multipliers under sections C.3 - C.7, the manufacturer shall provide all information relevant to the vehicle’s qualification for, and the estimated value of, the multiplier(s). The Executive Officer may request additional information needed to appropriately characterize the vehicle. Based on the submitted information and other relevant data, the Executive Officer shall assign to the vehicle the highest multiplier(s) for which the manufacturer has demonstrated the vehicle qualifies at that time.

2.14 When a manufacturer plans to require any scheduled maintenance for a PZEV before 150,000 miles, the manufacturer must submit information demonstrating the need for each scheduled maintenance item before 150,000 miles, including actual in-use data, engineering evaluation of the durability of the part, or other relevant information. The manufacturer may require such maintenance for a PZEV only upon the Executive Officer’s determination, prior to certification, the manufacturer has demonstrated the need for the scheduled maintenance; this determination may not unreasonably be denied.

2.15 For off-vehicle charge capable hybrid electric vehicles certifying to section F, the manufacturer shall provide the Urban Charge Depleting Cycle Range, the Urban Charge Depleting Actual Range, the Charge Depleting to Charge Sustaining Urban
Range, the Highway Charge Depleting Cycle Range, the Highway Charge Depleting Actual Range, the Charge Depleting to Charge Sustaining Highway Range, the Urban Equivalent All-Electric Range, the Highway Equivalent All-Electric Range, the Urban Electric Range Fraction, and the Highway Electric Range Fraction.

3. **ZEV Reporting Requirements.** In order to verify the status of each manufacturer’s compliance with the ZEV requirements for a given calendar year, each manufacturer shall submit a report to the Executive Officer at least annually, by May 1 of the calendar year following the close of the model year, that identifies the necessary delivery and placement data of all vehicles generating ZEV credits or allowances, and all transfers and acquisitions of ZEV credits. The manufacturer may update the report by September 1 to cover activities occurring between April 1 and June 30. If a manufacturer updates their annual California production numbers in their ZEV report, the annual NMOG production must also be updated.
E. Determination of NEV Acceleration, Top Speed, and Constant Speed Range

The “as adopted or amended dates” of the 40 CFR Part 86 regulations referenced by this document are the dates identified in the “California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles.” Unless otherwise noted, these requirements shall apply to all ZEVs (including fuel cell vehicles and hybrid fuel cell vehicles) and all HEVs, except off-vehicle charge capable HEVs.

1. Electric Dynamometer. All ZEVs and HEVs must be tested using a 48-inch single roll electric dynamometer meeting the requirements of 40 CFR Subpart B, §86.108-00(b)(2) [October 22, 1996].

2. Vehicle and Battery Break-In Period. A manufacturer shall use good engineering judgment in determining the proper stabilized emissions mileage test point and report same according to the requirements of section D.2.11 above.

3. All-Electric Range Test for Zero-Emission Vehicles (including Fuel Cell Vehicles and Hybrid Fuel Cell Vehicles). All 2012 and subsequent ZEVs shall be subject to the All-Electric Range Test specified below for the purpose of determining the energy efficiency and operating range of the ZEV.

3.1 Determination of Urban All-Electric Range for Zero-Emission Vehicles.

3.1.1 Determination of Urban All-Electric Range for Battery Electric Vehicles.

(a) Cold soak. The vehicle shall be stored at an ambient temperature not less than 68°F (20°C) and not more than 86°F (30°C) for 12 to 36 hours. During this time, the vehicle’s battery shall be charged to a full state-of-charge. Charge time shall not exceed soak time.

(b) At the end of the cold soak period, the vehicle shall be placed or pushed, onto a dynamometer and operated through successive Urban Dynamometer Driving Schedules (UDDS), 40 CFR, Part 86, Appendix I [July 13, 2005], which is incorporated herein by reference. A 10-minute soak shall follow each UDDS.

(c) For vehicles with a maximum speed greater than or equal to the maximum speed on the UDDS, this test sequence shall be repeated until the vehicle is no longer able to maintain either the speed or time tolerances in 40 CFR §86.115-00 (b)(1) and (2) [October 22, 1996], or the manufacturer determines that the test should be
terminated for safety reasons, e.g. excessively high battery temperature, abnormally low battery voltage, etc.

(d) For vehicles with a maximum speed less than the maximum speed on the UDDS, the vehicle shall be operated at maximum available power (or full throttle) when the vehicle cannot achieve the speed trace within the speed and time tolerances specified in 40 CFR §86.115-00(b)(1) and (2) [October 22, 1996]. The test shall be terminated when the vehicle speed when operated at maximum available power (or full throttle) falls below 95 percent of the maximum speed initially achieved on the UDDS or when the battery state-of-charge is depleted to the lowest level allowed by the manufacturer, or the manufacturer determines that the test should be terminated for safety reasons, e.g. excessively high battery temperature, abnormally low battery voltage, etc., whichever occurs first.

3.1.2 Determination of Urban All-Electric Range for Fuel Cell Vehicles and Hybrid Fuel Cell Vehicles.

(a) The urban all-electric range for a fuel cell vehicle and a hybrid fuel cell vehicle shall be determined in accordance with SAE J2572. As an option, a manufacturer may elect to determine the urban all-electric range for a fuel cell vehicle or a hybrid fuel cell vehicle in accordance with section F.3.1.1 above.

3.2.1 Determination of Highway All-Electric Range for Battery Electric Vehicles.

(a) Cold soak. The vehicle shall be stored at an ambient temperature not less than 68°F (20°C) and not more than 86°F (30°C) for 12 to 36 hours. During this time, the vehicle’s battery shall be charged to a full state-of-charge. Charge time shall not exceed soak time.

(b) At the end of the cold soak period, the vehicle shall be either placed or pushed onto a dynamometer and operated through Continuous Highway Test Schedules of the Highway Fuel Economy Driving Schedule (HFEDS).

(c) For vehicles with a maximum speed greater than or equal to the maximum speed on the HFEDS, this test sequence shall be repeated until the vehicle is no longer able to maintain either the speed or time tolerances in 40 CFR §86.115-00 (b)(1) and (2) [October 22, 1996], or the manufacturer determines that the test should be terminated for safety reasons, e.g. excessively high battery temperature, abnormally low battery voltage, etc.

(d) For vehicles with a maximum speed less than the maximum speed on the HFEDS, the vehicle shall be operated at maximum available power (or full throttle)
when the vehicle cannot achieve the speed trace within the speed and time tolerances specified in 40 CFR §86.115-00(b)(1) and (2) [October 22, 1996]. The test shall be terminated when the vehicle speed when operated at maximum available power (or full throttle) falls below 95 percent of the maximum speed initially achieved on the HFEDS or when the battery state-of-charge is depleted to the lowest level allowed by the manufacturer, or the manufacturer determines that the test should be terminated for safety reasons, e.g. excessively high battery temperature, abnormally low battery voltage, etc., whichever occurs first.

(e) NEVs are exempt from the all-electric range highway test.

3.2.2 Determination of Highway All-Electric Range for Fuel Cell Vehicles and Hybrid Fuel Cell Vehicles.

(a) The highway all-electric range for a fuel cell vehicle and a hybrid fuel cell vehicle shall be determined in accordance with SAE J2572. As an option, a manufacturer may elect to determine the highway all-electric range for a fuel cell vehicle or a hybrid fuel cell vehicle in accordance with section F.3.2.1 above.

3.3 Recording requirements.

For all battery electric vehicles and hybrid electric vehicles, except off-vehicle charge capable hybrid electric vehicles: Once the vehicle is no longer able to maintain the speed and time requirements specified in F.3.1 or F.3.2 above, the vehicle shall be brought to an immediate stop and the following data shall be recorded:

(a) mileage accumulated during the All-Electric Range Test;
(b) Net DC energy from the battery that was expended during the All-Electric Range Test (may be reported as the total DC battery energy output and the total DC battery energy input during the All-Electric Range Test);
(c) AC energy required to fully charge the battery after the All-Electric Range Test from the point where electricity is introduced from the electric outlet to the battery charger;
(d) DC energy required to fully charge the battery after the All-Electric Range Test from the point where electricity is introduced from the battery charger to the battery; and
(e) Measured AC and DC watt hours and amp hours shall be reported to the nearest hundredths of a kilowatt hour and tenths of an amp hour.

Battery charging shall begin within 1 hour after terminating the All-Electric Range Test.

3.4 Regenerative braking. Regenerative braking systems may be utilized during the range test. The braking level, if adjustable, shall be set according to the manufacturer’s specifications for normal driving conditions prior to the commencement
The driving schedule speed and time tolerances specified in F.3.1 or F.3.2 shall not be exceeded due to the operation of the regenerative braking system.

3.5 **Measurement Accuracy.** For battery electric vehicles, the overall error in voltage and current recording instruments shall be NIST traceable and accurate to ±1% of the maximum value of the variable (AC/DC volts and amps) being measured. Suggested equipment: amp meter/power meter capable of sampling voltage and current. Voltage and current shall be sampled at a minimum rate of 20 hz.

3.6 **Watt Hour Calculation for Battery Electric Vehicles.**

DC energy (watt-hours) shall be calculated as follows

\[\text{DC energy} = \int v(t) \cdot i(t) \, dt \]

Where \(v \) = vehicle DC main battery pack voltage
\[i = \text{vehicle DC main battery pack current} \]

AC energy (in watt-hours) shall be calculated as follows

\[\text{AC energy} = \int v(t) \cdot i(t) \, dt \text{ in watt-hours} \]

Where \(v \) = AC instantaneous voltage
\[i = \text{AC instantaneous current} \]

3.7 **Charger Requirements for Battery Electric Vehicles.**

The standard charging apparatus (or equivalent) normally furnished with or specified for the vehicle shall be used for charging during vehicle testing.

4. **Determination of Battery Specific Energy for ZEVs.**

Determine the specific energy of batteries used to power a ZEV in accordance with the U.S. Advanced Battery Consortium’s Electric Vehicle Battery Procedure Manual (January 1996), Procedure No. 2, “Constant Current Discharge Test Series,” using the C/3 rate. The weight calculation must reflect a completely functional battery system as defined in the Appendix of the Manual, including pack(s), required support ancillaries (e.g., thermal management), and electronic controller.

5. **Determination of the Emissions of the Fuel-fired Heater for Vehicles Other Than ZEVs.**

The exhaust emissions result of the fuel-fired heater shall be determined by operating at a maximum heating capacity with a cold start between 68°F and 86°F for a period of 20 minutes and dividing the grams of emissions by 20. The resulting grams per minute shall be multiplied by 3.0 minutes per mile to obtain a grams per mile value.

Alternative procedures may be used if shown to yield equivalent results and if approved in advance by the Executive Officer of the Air Resources Board.

6.1 **Vehicle Preconditioning.**

To be conducted pursuant to the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles” with the following supplemental requirements:

6.1.1 For hybrid electric vehicles that do not allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at a level that causes the hybrid electric vehicle to operate the auxiliary power unit for the maximum possible cumulative amount of time during the preconditioning drive.

6.1.2 For hybrid electric vehicles that allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at a level that satisfies one of the following conditions:

(i) If the hybrid electric vehicle is charge-sustaining over the UDDS, battery state-of-charge shall be set at the lowest level allowed by the manufacturer.

(ii) If the hybrid electric vehicle is charge-depleting over the UDDS, battery state-of-charge shall be set at the level recommended by the manufacturer for activating the auxiliary power unit when operating in urban driving conditions.

6.1.3 After setting battery state-of-charge, the hybrid electric vehicle shall be pushed or towed to a work area for the initial fuel drain and fill according to section III.D.1.4. of the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles.”

6.1.4 Following the initial fuel drain and fill, the vehicle shall complete an initial soak period of a minimum of 6 hours. After completing the soak period, the vehicle shall be pushed or towed into position on a dynamometer and preconditioned. If the auxiliary power unit is capable of being manually activated, the auxiliary power unit shall be manually activated at the beginning of and operated throughout the preconditioning drive.

6.1.5 Within five minutes of completing preconditioning drive, battery state-of-charge shall be set at a level that satisfies one of the following conditions:
(i) If the hybrid electric vehicle does not allow manual activation of the auxiliary power unit and is charge-sustaining over the UDDS, then set battery state-of-charge to a level such that the SOC criterion in section G.10 would be satisfied for the dynamometer procedure (section F.6.2 of these procedures). If off-vehicle charging is required to increase battery state-of-charge for proper setting, off-vehicle charging shall occur during the second soak period of 12 to 36 hours.

(ii) If the hybrid electric vehicle does not allow manual activation of the auxiliary power unit and is charge-depleting over the UDDS, then no battery state-of-charge adjustment is permissible.

(iii) If the hybrid electric vehicle does allow manual activation of the auxiliary power unit, then set battery state-of-charge to manufacturer recommended level for activating the auxiliary power unit when the hybrid electric vehicle is operating in urban driving conditions.

To be conducted pursuant to 40 CFR §86.135-00 [October 22, 1996] with the following revisions. References to §86.110-94 shall mean §86.110-94 as last amended June 30, 1995.

6.2.1 Amend subparagraph (a).

Overview. The dynamometer run shall consist of two tests, a “cold” start test, after a second fuel drain and fill and a 12 to 36 hour soak period performed pursuant to the provisions of the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles” and a “hot” start test following the “cold” start test by 10 minutes. Vehicle startup (with all accessories turned off), operation over the UDDS and vehicle shutdown make a complete cold start test. Vehicle startup and operation over the UDDS and vehicle shutdown make a complete hot start test.

For all UDDS tests, the exhaust emissions are diluted with ambient air in the dilution tunnel as shown in Figure B94-5 and Figure B94-6 (§86.110-94). As an alternative, the bag mini-diluter may be used in-lieu of the constant volume sampling (CVS) method for exhaust emission measurement as described below. A dilution tunnel is not required for testing vehicles waived from the requirement to measure particulates. Four particulate samples are collected on filters for weighing; the first sample plus backup is collected during the cold start test (including
shutdown); the second sample plus backup is collected during the hot start test (including shutdown). Part 1065 of the CFR may be used as an optional particulate sampling method. Continuous proportional samples of gaseous emissions are collected for analysis during each test. For hybrid electric vehicles with Otto-cycle auxiliary power units, the composite samples collected in bags are analyzed for THC, CO, CO2, CH4 and NOx. For hybrid electric vehicles that are not “off-vehicle charge capable,” and are equipped with petroleum-fueled diesel-cycle auxiliary power units (optional for natural gas-fueled, liquefied petroleum gas-fueled, and alcohol-fueled diesel-cycle vehicles), THC is sampled and analyzed continuously pursuant to the provisions of §86.110-94. Parallel samples of the dilution air are similarly analyzed for THC, CO, CO2, CH4 and NOx. For hybrid electric vehicles with natural gas-fueled, liquefied petroleum gas-fueled, and alcohol-fueled auxiliary power units, bag samples are collected and analyzed for THC (if not sampled continuously), CO, CO2, CH4 and NOx. For hybrid electric vehicles with alcohol-fueled auxiliary power units, alcohol and formaldehyde samples are taken for both exhaust emissions and dilution air (a single dilution air formaldehyde sample, covering the total test period may be collected). Parallel bag samples of dilution air are analyzed for THC, CO, CO2, CH4 and NOx.

6.2.2 Subparagraphs (b) through (c). [No change.]

6.2.3 Subparagraph (d). [No change.]

6.2.4 Subparagraphs (e) through (g). [No change.]

6.2.5 Amend subparagraph (h): The driving distance, as measured by counting the number of dynamometer roll or shaft revolutions, shall be determined for the cold start test and hot start test. The revolutions shall be measured on the same roll or shaft used for measuring the vehicle’s speed.

6.2.6 Subparagraph (i). [No change.]

To be conducted pursuant to 40 CFR §86.137-96 [March 24, 1993] with the following revisions:

6.3.1 Amend subparagraph (a): General. The dynamometer run shall consist of two tests, a “cold” start test, after a second fuel drain and fill and a 12 to 36 hour soak period performed pursuant to the provisions of the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles” and a “hot” start test following the cold start test by 10
The complete dynamometer test consists of a cold start drive of 7.5 miles (12.1 km) and a hot start drive of 7.5 miles (12.1 km). The vehicle shall be stored prior to the emission test in such a manner that precipitation (e.g., rain or dew) does not occur on the vehicle. The vehicle is allowed to stand on the dynamometer during the 10 minute time period between each test.

6.3.2 Amend subparagraph (b) as follows.

6.3.2.1 Amend subparagraph (b)(9): Start the gas flow measuring device, position the sample selector valves to direct the sample flow into the exhaust sample bag, the alcohol exhaust sample, the formaldehyde exhaust sample, the dilution air sample bag, the alcohol dilution air sample and the formaldehyde dilution air sample (turn on the petroleum-fueled diesel-cycle THC analyzer system integrator, mark the recorder chart, start particulate sample pump No. 1, and record both gas meter or flow measurement instrument readings, if applicable), and turn the key on. If the auxiliary power unit is capable of being manually activated, the auxiliary power unit shall be activated at the beginning of and operated throughout the UDDS.

6.3.2.2 Delete subparagraph (b)(13).

6.3.2.3 Amend subparagraph (b)(14): Turn the vehicle off 2 seconds after the end of the last deceleration (at 1,369 seconds).

6.3.2.4 Amend subparagraph (b)(15): Five seconds after the vehicle is shutdown, simultaneously turn off gas flow measuring device No. 1 and if applicable, turn off the hydrocarbon integrator No. 1, mark the hydrocarbon recorder chart, turn off the No. 1 particulate sample pump and close the valves isolating particulate filter No. 1, and position the sample selector valves to the “standby” position. Record the measured roll or shaft revolutions (both gas meter or flow measurement instrumentation readings), and reset the counter. As soon as possible, transfer the exhaust and dilution air samples to the analytical system and process the samples pursuant to §86.140, obtaining a stabilized reading of the exhaust bag sample on all analyzers within 20 minutes of the end of the sample collection phase of the test. Obtain alcohol and formaldehyde sample analyses, if applicable, within 24 hours of the end of the sample period. (If it is not possible to perform analysis on the alcohol and formaldehyde samples within 24 hours, the samples should be stored in a dark cold (4°C to 10°C) environment until analysis. The samples should be analyzed within fourteen days.) If applicable, carefully remove both pairs of particulate sample filters from their respective holders, and place each in a separate petri dish, and cover.
6.3.2.5 Amend subparagraph (b)(18): Repeat the steps in paragraphs (b)(2) through (b)(17) of this section for the hot start test. The step in paragraph (b)(9) of this section shall begin between 9 and 11 minutes after the end of the sample period for the cold start test.

6.3.2.6 Delete subparagraph (b)(19).

6.3.2.7 Delete subparagraph (b)(20).

6.3.2.8 Amend subparagraph (b)(21): As soon as possible, and in no case longer than one hour after the end of the hot start phase of the test, transfer the four particulate filters to the weighing chamber for post-test conditioning, if applicable. For hybrid electric vehicles that do not allow manual activation of the auxiliary power unit and are charge-sustaining over the UDDS, a valid test shall satisfy the SOC criterion in section G.10.

6.3.2.9 Amend subparagraph (b)(24): Vehicles to be tested for evaporative emissions will proceed pursuant to the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles.”

To be conducted pursuant to 40 CFR §86.144-94 [July 13, 2005] with the following revisions:

6.4.1 Amend subparagraph (a): For light-duty vehicles and light duty trucks:

\[Y_{wm} = 0.43 \times \left(\frac{Y_c}{D_c} \right) + 0.57 \times \left(\frac{Y_h}{D_h} \right) \]

Where:

(1) \(Y_{wm} \) = Weighted mass emissions of each pollutant, i.e., THC, CO, THCE, NMOG, NMHCE, CH₄, NOₓ, or CO₂, in grams per vehicle mile.
(2) \(Y_c \) = Mass emissions as calculated from the cold start test, in grams per test.
(3) \(Y_h \) = Mass emissions as calculated from the hot start test, in grams per test.
(4) \(D_c \) = The measured driving distance from the cold start test, in miles.
(5) \(D_h \) = The measured driving distance from the hot start test, in miles.
6.4.2 Subparagraphs (b) through (e). [No change.]

6.5 Calculations - Particulate Emissions for All Hybrid Electric Vehicles, Except Hybrid Fuel Cell Vehicles and Off-Vehicle Charge Capable Hybrid Electric Vehicles.

To be conducted pursuant to 40 CFR §86.145-82 [November 2, 1982] with the following revisions. References to §86.110-94 shall mean §86.110-94 as last amended June 30, 1995.

6.5.1 Amend subparagraph (a): The final reported test results for the mass particulate (M_p) in grams/mile shall be computed as follows:

$$M_p = 0.43 \left(\frac{M_{pc}}{D_c} \right) + 0.57 \left(\frac{M_{ph}}{D_h} \right)$$

Where:
1. M_{pc} = Mass of particulate determined from the cold start test, in grams per vehicle mile. (See §86.110-94 for determination.)
2. M_{ph} = Mass of particulate determined from the hot start test, in grams per vehicle mile. (See §86.110-94 for determination.)
3. D_c = The measured driving distance from the cold start test, in miles.
4. D_h = The measured driving distance from the hot start test, in miles.

6.5.2 Subparagraph (b). [No change.]

To be conducted pursuant to 40 CFR §600.111-08 [December 27, 2006] with the following revisions.

7.1 Subparagraph (a). [not applicable - delete]

7.2 Amend subparagraph (b) as follows:

7.2.1 Amend subparagraph (b)(2): The highway fuel economy test is designated to simulate non-metropolitan driving with an average speed of 48.6 mph and a maximum speed of 60 mph. The cycle is 10.2 miles long with 0.2 stop per mile and consists of warmed-up vehicle operation on a chassis dynamometer through a specified driving cycle. A proportional part of the diluted exhaust emission is collected continuously for subsequent analysis of THC, CO,
CO₂, and NOₓ using a constant volume (variable dilution) sampler. Diesel dilute exhaust is continuously analyzed for hydrocarbons using a heated sample line and analyzer. Alcohol and formaldehyde samples are collected and individually analyzed for alcohol-fueled vehicles.

7.2.2 Amend subparagraph (b)(7)(i): The dynamometer procedure shall consist of two cycles of the Highway Fuel Economy Driving Schedule (§600.109(b)) separated by 15 seconds of idle. The first cycle of the Highway Fuel Economy Driving Schedule is driven to precondition the test vehicle and the second is driven for the fuel economy measurement.

7.2.3 Amend subparagraph (b)(7)(iii): Only one exhaust sample and one background sample shall be collected and analyzed for THC (except diesel hydrocarbons which are analyzed continuously), CO, CO₂, and NOₓ. Alcohol and formaldehyde samples (exhaust and dilution air) are collected and analyzed for alcohol-fueled vehicles.

7.2.4 Add subparagraph(b)(7)(v): For hybrid electric vehicles that do not allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at a level that causes the hybrid electric vehicle to operate the auxiliary power unit for the maximum possible cumulative amount of time during the HFEDS preconditioning cycle. For hybrid electric vehicles that allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at a level that satisfies one of the following conditions:

 (i) If the hybrid electric vehicle is charge-sustaining over the HFEDS, battery state-of-charge shall be set at the lowest level allowed by the manufacturer.

 (ii) If the hybrid electric vehicle is charge-depleting over the HFEDS, battery state-of-charge shall be set at the level recommended by the manufacturer for activating the auxiliary power unit when operating in highway driving conditions.

7.2.5 Amend subparagraph (b)(9)(v): Operate the vehicle over one HFEDS preconditioning cycle according to the dynamometer driving schedule specified in §600.109-08(b) [December 27, 2006]. If the auxiliary power unit is capable of being manually activated, the auxiliary power unit shall be manually activated at the beginning of and operated throughout the HFEDS preconditioning cycle.

7.2.6 Amend subparagraph (b)(9)(vi): When the vehicle reaches zero speed at the end of the HFEDS preconditioning cycle, the driver has 17 seconds to prepare for the HFEDS emission measurement cycle of the test. Reset and enable the roll revolution counter. During the idle period, one of the following conditions shall apply:
(i) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-sustaining over the HFEDS, the vehicle shall be momentarily turned off for 5 seconds and turned back on during the idle period. The battery state-of-charge shall be recorded after the hybrid electric vehicle has fully turned on.

(ii) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-depleting over the HFEDS, the vehicle shall remain turned on during the idle period.

(iii) For hybrid electric vehicles that allow the auxiliary power unit to be manually activated, the vehicle shall remain turned on with the auxiliary power unit operating during the idle period.

7.2.7 Add subparagraph (b)(9)(viii): At the conclusion of the HFEDS emission test, one of the following conditions shall apply:

(i) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-sustaining over the HFEDS, record the battery state-of-charge to determine if the SOC criterion in section F.10 is satisfied. If the SOC criterion is not satisfied, then repeat dynamometer test run from subparagraph (b)(9)(vi) and (b)(9)(vii). A total of three highway emission tests shall be allowed to satisfy the SOC criterion.

(ii) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-depleting over the HFEDS, the emission test is completed.

(iii) For hybrid electric vehicles that allow the auxiliary power unit to be manually activated, the emission test is completed.

7.2.8 Delete subparagraph (b)(10).

7.3 Delete subparagraphs (c) through (e).

8.1 US06 Vehicle Preconditioning

To be conducted pursuant to 40 CFR §86.132-00 [October 22, 1996] with the following revisions.
8.1.1 Subparagraphs (a) through (m). [No change.]

8.1.2 Amend subparagraph (n): Aggressive Driving Test (US06) Preconditioning.

8.1.2.1 Amend subparagraph (1) as follows: If the US06 test follows the exhaust emission urban, highway, or evaporative testing, the refueling step may be deleted and the vehicle may be preconditioned using the fuel remaining in the tank (see paragraph (c)(2)(ii) of this section). The test vehicle may be pushed or driven onto the test dynamometer. For vehicles that allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at according to the following conditions:

If the hybrid electric vehicle is charge-sustaining over the US06, battery state-of-charge shall be set at the lowest level allowed by the manufacturer. The auxiliary power unit shall be manually activated at the beginning of and operated throughout the US06 preconditioning cycle.

If the hybrid electric vehicle is charge-depleting over the US06, battery state-of-charge shall be set at the level recommended by the manufacturer for activating the auxiliary power unit when operating in highway driving conditions. The auxiliary power unit shall be manually activated at the beginning of and operated throughout the US06 preconditioning cycle.

8.1.2.1.1 Subparagraphs (i) through (iv). [No change.]

8.1.2.2 Subparagraph (2). [No change.]

8.1.3 Subparagraph (o). [No change.]

8.2 US06 Emission Test.

To be conducted pursuant to 40 CFR §86.159-08 [December 27, 2006] with the following revisions.

8.2.1 Amend subparagraph (a): Overview. The dynamometer operation consists of a single, 600 second test on the US06 driving schedule, as described in appendix I, paragraph (g), of this part. The hybrid electric vehicle is preconditioned in accordance with §86.132-00, to bring it to a warmed-up stabilized condition. This preconditioning is followed by a 1 to 2 minute idle period that proceeds directly into the US06 driving schedule during which continuous proportional samples of gaseous emissions are collected for analysis. If engine stalling should occur during testing, follow the provisions of §86.136-90 (engine starting and restarting). For hybrid electric vehicles with Otto-cycle
auxiliary power units, the composite samples collected in bags are analyzed for THC, CO, CO₂, CH₄ and NOₓ. For hybrid electric vehicles with diesel-cycle auxiliary power units, THC is sampled and analyzed continuously according to the provisions of §86.110. Parallel bag samples of dilution air are analyzed for THC, CO, CO₂, CH₄ and NOₓ. The US06 cycle after the preconditioning cycle shall be used to calculate emissions and shall meet the state-of-charge net tolerances as calculated in section F.9.

8.2.2 Amend subparagraph (b) as follows.

8.2.2.1 Amend subparagraph (b)(2): Position the test vehicle on the dynamometer and restrain.

8.2.3 Subparagraph (c). [No change.]

8.2.4 Amend subparagraph (d): Practice runs over the prescribed driving schedule may be performed at test point to permit sampling system adjustment.

8.2.5 Subparagraph (e). [No change.]

8.2.6 Amend subparagraph (f) as follows.

8.2.6.1 Amend subparagraph (f)(2)(i): Immediately after completion of the US06 preconditioning cycle, idle the vehicle. The idle period is not to be less than one minute or not greater than two minutes. During the idle period, one of the following conditions shall apply:

(i) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-sustaining over the US06, the vehicle shall be momentarily turned off for 5 seconds and turned back on during the idle period. The battery state-of-charge shall be recorded after the hybrid electric vehicle has fully turned on.

(ii) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-depleting over the US06, the vehicle shall remain turned on during the idle period.

(iii) For hybrid electric vehicles that allow the auxiliary power unit to be manually activated, the vehicle shall remain turned on with the auxiliary power unit operating during the idle period.

8.2.6.2 Amend subparagraph (f)(2)(ix): At the conclusion of the US06 emission test, one of the following conditions shall apply:
(i) For hybrid electric vehicles that do not allow manual activation of the auxiliary power unit and are charge-sustaining over the US06, record the battery state-of-charge to determine if the SOC criterion in section F.10 is satisfied. If the SOC criterion is not satisfied, then repeat dynamometer test run from subparagraph (f)(2)(i) without the preconditioning cycle. A total of three US06 emission tests shall be allowed to satisfy the SOC criterion.

(ii) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-depleting over the US06, turn off vehicle 2 seconds after the end of the last deceleration.

(iii) For hybrid electric vehicles that allow the auxiliary power unit to be manually activated, turn off vehicle 2 seconds after the end of the last deceleration.

8.3 SC03 Vehicle Preconditioning.

To be conducted pursuant to 40 CFR §86.132-00 [October 22, 1996] with the following revisions.

8.3.1 Subparagraphs (a) through (n). [No change.]

8.3.2 Amend subparagraph (o): *Air Conditioning Test (SC03) Preconditioning.*

 8.3.2.1 Amend subparagraph (1) as follows: If the SC03 test follows the exhaust emission FTP or evaporative testing, the refueling step may be deleted and the vehicle may be preconditioned using the fuel remaining in the tank (see paragraph (c)(2)(ii) of this section). The test vehicle may be pushed or driven onto the test dynamometer. For hybrid electric vehicles that allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at a level that satisfies one of the following conditions:

 If the hybrid electric vehicle is charge-sustaining over the SC03, battery state-of-charge shall be set at the lowest level allowed by the manufacturer. The auxiliary power unit shall be manually activated at the beginning of and operated throughout the SC03 preconditioning cycle.

 If the hybrid electric vehicle is charge-depleting over the SC03, battery state-of-charge shall be set at the level recommended by the manufacturer for activating the auxiliary power unit when operating in highway driving conditions. The auxiliary power unit shall be manually activated at the beginning of and operated throughout the SC03 preconditioning cycle.
8.3.2.1.1 Subparagraphs (i) and (ii). [No change.]

8.3.2.2 Subparagraphs (2) through (3). [No change.]

8.4 SC03 Emission Test.

To be conducted pursuant to 40 CFR §86.160-00 [December 8, 2005] with the following revisions.

8.4.1 Amend subparagraph (a): Overview. The dynamometer operation consists of a single, 594 second test on the SC03 driving schedule, as described in appendix I, paragraph (h), of this part. The hybrid electric vehicle is preconditioned in accordance with §86.132-00 of this subpart, to bring the vehicle to a warmed-up stabilized condition. This preconditioning is followed by a 10 minute vehicle soak (vehicle turned off) that proceeds directly into the SC03 driving schedule, during which continuous proportional samples of gaseous emissions are collected for analysis. The entire test, including the SC03 preconditioning cycle, vehicle soak, and SC03 emission test, is either conducted in an environmental test facility or under test conditions that simulate testing in an environmental test cell (see §86.162-00 (a) for a discussion of simulation procedure approvals). The environmental test facility must be capable of providing the following nominal ambient test conditions of: 95°F air temperature, 100 grains of water/pound of dry air (approximately 40 percent relative humidity), a solar heat load intensity of 850 W/m², and vehicle cooling air flow proportional to vehicle speed. Section 86.161-00 discusses the minimum facility requirements and corresponding control tolerances for air conditioning ambient test conditions. The vehicle’s air conditioner is operated or appropriately simulated for the duration of the test procedure (except for the 10 minute vehicle soak), including the preconditioning. If engine stalling should occur during testing, follow the provisions of §86.136-90 (engine starting and restarting). For hybrid electric vehicles with Otto-cycle auxiliary power units, the composite samples collected in bags are analyzed for THC, CO, CO₂, CH₄ and NOₓ. For hybrid electric vehicles with diesel-cycle auxiliary power units, THC is sampled and analyzed continuously according to the provisions of §86.110. Parallel bag samples of dilution air are analyzed for THC, CO, CO₂, CH₄ and NOₓ. The SC03 cycle after the preconditioning cycle shall be used to calculate emissions and shall meet the state-of-charge net tolerances as calculated in section F.9.

8.4.2 Amend subparagraph (b) as follows.

8.4.2.1 Amend subparagraph (b)(2): Position the test vehicle on the dynamometer and restrain.

8.4.3 Amend subparagraph (c) as follows.
8.4.3.1 Amend subparagraph (c)(9): Start vehicle (with air conditioning system also running). If the auxiliary power unit of the hybrid electric vehicle is capable of being manually activated, the auxiliary power unit shall be manually activated at the beginning of and operated throughout the SC03 emission test. Fifteen seconds after the vehicle starts, begin the initial vehicle acceleration of the driving schedule.

8.4.4 Amend subparagraph (d) as follows.

8.4.4.1 Amend subparagraph (d)(10): At the conclusion of the SC03 emission test, one of the following conditions shall apply:

(i) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-sustaining over the SC03, record the battery state-of-charge to determine if the SOC criterion in section F.10 is satisfied. If the SOC criterion is not satisfied, then turn off the cooling fan(s), allow the vehicle to soak in the ambient conditions of paragraph (c)(5) of this section for 10 ± 1 minutes, and repeat the dynamometer test run from subparagraph (d). Up to three SC03 emission tests shall be attempted to satisfy the SOC criterion.

(ii) For hybrid electric vehicles that do not allow the auxiliary power unit to be manually activated and are charge-depleting over the SC03, turn off the vehicle two seconds after the end of the last deceleration.

(iii) For hybrid electric vehicles that allow the auxiliary power unit to be manually activated, turn off the vehicle two seconds after the end of the last deceleration.

8.4.5 Subparagraph (e). [No change.]

9.1 For hybrid electric vehicles that use a battery as an energy storage device, the following state-of-charge net change tolerance shall apply:

$$(\text{Amp-hr}_{\text{final}})_{\text{max}} = (\text{Amp-hr}_{\text{initial}}) + 0.01 \left(\frac{NHV_{\text{fuel}} \cdot m_{\text{fuel}}}{V_{\text{system}} \cdot K_{1}} \right)$$

$$(\text{Amp-hr}_{\text{final}})_{\text{min}} = (\text{Amp-hr}_{\text{initial}}) - 0.01 \left(\frac{NHV_{\text{fuel}} \cdot m_{\text{fuel}}}{V_{\text{system}} \cdot K_{1}} \right)$$
Where:

- \((\text{Amp-hr}_{\text{final}})_{\text{max}}\) = Maximum allowed Amp-hr stored in battery at the end of the test
- \((\text{Amp-hr}_{\text{final}})_{\text{min}}\) = Minimum allowed Amp-hr stored in battery at the end of the test
- \((\text{Amp-hr}_{\text{initial}})\) = Battery Amp-hr stored at the beginning of the test
- \(\text{NHV}_{\text{fuel}}\) = Net heating value of consumable fuel, in Joules/kg
- \(m_{\text{fuel}}\) = Total mass of fuel consumed during test, in kg
- \(K_1\) = Conversion factor, 3600 seconds/hour
- \(V_{\text{system}}\) = Open circuit voltage (OCV) that corresponds to the SOC of the target SOC during charge sustaining operation. This value shall be submitted for testing purposes, and it shall be subject to confirmation by the Air Resources Board.

9.2 For hybrid electric vehicles that use a capacitor as an energy storage device, the following state-of-charge net change tolerance shall apply:

\[
(\text{V}_{\text{final}})_{\text{max}} = \sqrt{V_{\text{initial}}^2 + 0.01 \times \frac{2 \times \text{NHV}_{\text{fuel}} \times m_{\text{fuel}}}{C}}
\]

\[
(\text{V}_{\text{final}})_{\text{min}} = \sqrt{V_{\text{initial}}^2 - 0.01 \times \frac{2 \times \text{NHV}_{\text{fuel}} \times m_{\text{fuel}}}{C}}
\]

Where:

- \((\text{V}_{\text{final}})_{\text{max}}\) = The stored capacitor voltage allowed at the end of the test
- \((\text{V}_{\text{final}})_{\text{min}}\) = The stored capacitor voltage allowed at the end of the test
- \(V_{\text{initial}}^2\) = The square of the capacitor voltage stored at the beginning of the test
- \(\text{NHV}_{\text{fuel}}\) = Net heating value of consumable fuel, in Joules/kg
- \(m_{\text{fuel}}\) = Total mass of fuel consumed during test, in kg
- \(C\) = Rated capacitance of the capacitor, in Farads

9.3 For hybrid electric vehicles that use an electro-mechanical flywheel as an energy storage device, the following state-of-charge net change tolerance shall apply:

\[
(rpm_{\text{final}})_{\text{max}} = \sqrt{rpm_{\text{initial}}^2 + 0.01 \times \frac{2 \times \text{NHV}_{\text{fuel}} \times m_{\text{fuel}}}{I \times K_3}}
\]

\[
(rpm_{\text{final}})_{\text{min}} = \sqrt{rpm_{\text{initial}}^2 - 0.01 \times \frac{2 \times \text{NHV}_{\text{fuel}} \times m_{\text{fuel}}}{I \times K_3}}
\]

Where:
\[(\text{rpm}_{\text{final}})_{\text{max}} = \text{The maximum flywheel rotational speed allowed at the end of the test}\]
\[(\text{rpm}_{\text{final}})_{\text{min}} = \text{The minimum flywheel rotational speed allowed at the end of the test}\]
\[\text{rpm}^2_{\text{initial}} = \text{The squared flywheel rotational speed at the beginning of the test}\]
\[\text{NHV}_{\text{fuel}} = \text{Net heating value of consumable fuel, in Joules/kg}\]
\[m_{\text{fuel}} = \text{Total mass of fuel consumed during test, in kg}\]
\[K_3 = \text{Conversion factor, } \frac{4\pi^2}{3600 \text{ sec}^2 - \text{rpm}^2}\]
\[I = \text{Rated moment of inertia of the flywheel, in kg-m}^2\]
G. Test Procedures for 2018 and Subsequent Model Off-Vehicle Charge Capable Hybrid Electric Vehicles.

The “as adopted or amended dates” of the 40 CFR Part 86 regulations referenced by this document are the dates identified in the “California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles,” unless otherwise noted.

1. Electric Dynamometer.

All off-vehicle charge capable HEVs must be tested using a 48-inch single roll electric dynamometer meeting the requirements of 40 CFR Subpart B, §86.108-00(b)(2) [October 22, 1996].

2. Vehicle and Battery Break-In Period.

A manufacturer shall use good engineering judgment in determining the proper stabilized emissions mileage test point and report same according to the requirements of section D.2.11 above.

3.1 Recording requirements.

For off-vehicle charge capable hybrid electric vehicles: The following data shall be recorded for all tests and for each individual test cycle therein, except for the 20°F and 50°F tests, conducted in accordance with section G.8:

(a) mileage accumulated during the All-Electric Range portion of the test, where applicable;
(b) Net DC energy from the battery that was expended during the test (may be reported as the total DC battery energy output and the total DC battery energy input);
(c) AC energy required to fully charge the battery after a charge depleting or charge sustaining test from the point where electricity is introduced from the electric outlet to the battery charger;
(d) DC energy required to fully charge the battery after a charge depleting or charge sustaining test from the point where electricity is introduced from the battery charger to the battery;
(e) Net DC amp-hrs from the battery that was expended during the test (may be reported as the total DC amp-hrs output and the total DC amp-hrs input); and
(f) Measured AC and DC watt hours and amp hours shall be reported to the nearest hundredths of a kilowatt hour and tenths of an amp hour.
3.2 **Regenerative braking.** Regenerative braking systems may be utilized during the range test. The braking level, if adjustable, shall be set according to the manufacturer’s specifications for normal driving conditions prior to the commencement of the test. The driving schedule speed and time tolerances specified in this section G shall not be exceeded due to the operation of the regenerative braking system.

3.3 **Measurement Accuracy.** The overall error in voltage and current recording instruments shall be NIST traceable and accurate to ±1% of the maximum value of the variable (AC/DC volts and amps) being measured. Suggested equipment: amp meter/power meter capable of sampling voltage and current. Voltage and current shall be sampled at a minimum rate of 20 hz.

3.4 **Watt Hour Calculation.**

DC energy (watt hours) shall be calculated as follows

\[\text{DC energy} = \int v(t) \cdot i(t) \, dt \]

Where \(v = \) vehicle DC main battery pack voltage
\(i = \) vehicle DC main battery pack current

AC energy (in watt-hours) shall be calculated as follows

\[\text{AC energy} = \int v(t) \cdot i(t) \, dt \, \text{in watt-hours} \]

Where \(v = \) AC instantaneous voltage
\(i = \) AC instantaneous current

3.5 **Charger Requirements**

The standard charging apparatus (or equivalent) normally furnished with or specified for the vehicle shall be used for charging during vehicle testing.

4. **Determination of the Emissions of the Fuel-fired Heater.**

The exhaust emissions result of the fuel-fired heater shall be determined by operating at a maximum heating capacity with a cold start between 68°F and 86°F for a period of 20 minutes and dividing the grams of emissions by 20. The resulting grams per minute shall be multiplied by 3.0 minutes per mile to obtain a grams per mile value.

5. **Urban Test Provisions for Off-Vehicle Charge Capable Hybrid Electric Vehicles.**

Alternative procedures may be used if shown to yield equivalent results and if approved in advance by the Executive Officer of the Air Resources Board.

The criteria certification emissions for the Urban test shall be the worst case emissions of NMOG, CO, NOx, and PM from either the charge depleting or charge
sustaining tests. The sum of NMOG + NOx emissions shall constitute the worst case for the urban charge sustaining or charge depleting modes of operation.

Vehicles with more than one mode of operation of the auxiliary power unit (e.g., economy mode, performance mode, etc.) for a given charge depleting or charge sustaining test cycle must be tested in the mode(s) which represents the worst case emissions of the auxiliary power unit. Confirmatory testing may also be performed in any mode of operation to ensure compliance with emission standards.

5.1 Vehicle Preconditioning.

To be conducted pursuant to the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles” with the following supplemental requirements:

5.1.1 For vehicles that do not allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at a level that causes the vehicle to operate the auxiliary power unit for the maximum possible cumulative amount of time during the preconditioning drive.

5.1.2 For vehicles that allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at the lowest level allowed by the manufacturer.

5.1.3 After setting battery state-of-charge, the vehicle shall be pushed or towed to a work area for the initial fuel drain and fill according to section III.D.1.4 of the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles.”

5.1.4 Following the initial fuel drain and fill, the vehicle shall complete an initial soak period of a minimum of 6 hours.

5.1.5 After completing the soak period, the vehicle shall be pushed or towed into position on a dynamometer and preconditioned.

5.1.6 If the auxiliary power unit is capable of being manually activated, the auxiliary power unit shall be manually activated at the beginning of and operated throughout the preconditioning drive.

5.1.7 For the charge depleting range test and the charge sustaining emission test, the preconditioning cycle shall be the UDDS. The vehicle must be in charge sustaining operation during the preconditioning drive. To determine charge sustaining operation, the vehicle must meet the SOC criterion in section G.10 from the start to the end of the two consecutive UDDSs. As an option, charge sustaining operation can be achieved for a single UDDS if data is provided showing that charge sustaining operation can consistently be
maintained over one UDDS. The vehicle must meet the SOC criterion in section G.10 from the start to the end of a single UDDS. Alternative procedures may be used to determine charge sustain operation for the precondition drive if the alternate procedure demonstrates charge sustaining operation based on section G.10 and is approved in advance by the Executive Officer of the Air Resources Board.

5.1.8 A fuel drain and fill shall be performed pursuant to the provisions of the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles.”

5.1.9 The vehicle shall be soaked for 12-36 hours. During this soak period, canister preconditioning shall be performed pursuant to the provisions of the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles.”

5.1.10 For the urban charge depleting range test, the highway charge depleting range test, and the cold start US06 range test, charge the vehicle to full state-of-charge as specified by the vehicle manufacturer. The vehicle must be turned off during charging and charge time shall not exceed soak time.

5.2 Urban Dynamometer Procedure for Off-Vehicle Charge Capable Hybrid Electric Vehicles.

To be conducted pursuant to 40 CFR §86.135-00 [October 22, 1996] with the following revisions. References to §86.110-94 shall mean §86.110-94 as last amended June 30, 1995.

5.2.1 Amend subparagraph (a).

Overview. The charge depleting range test dynamometer run shall consist of a series of charge depleting UDDSs, each followed by a 10 minute key-off hot soak period until charge sustaining operation is achieved for two consecutive UDDSs. To determine charge sustaining operation, the vehicle must meet the SOC criterion in section G.10 from the start of the first UDDS until the end of the second UDDS. As an option, charge sustaining operation may be achieved for a single UDDS if data is provided showing that charge sustaining operation can consistently be maintained over one UDDS. To determine charge sustaining operation, in this case, the vehicle shall meet SOC criterion in section G.10 from the start to the end of a single UDDS. Emissions are measured for all UDDSs when the auxiliary power unit is operating.

The vehicle shall be turned off and stored at an ambient temperature not less than 68°F (20°C) and not more than 86°F (30°C) for 12 to 36 hours. At the end of this cold soak period, the vehicle shall be placed or pushed onto a dynamometer.
The charge sustaining emission test dynamometer run shall consist of two consecutive UDDSs with a 10 minute key-off hot soak in between. Vehicle emissions shall be measured over two UDDSs during charge sustaining operation, and the vehicle must meet the SOC criterion in section G.10 from the start of the first UDDS until the end of the second UDDS.

Vehicle charging shall be initiated within three hours after either the charge depleting range test or the charge sustaining emission test pursuant to section G.5.4.2 or G.5.4.3, as applicable. During charging, all requirements in section G.3 must be met, and energy consumption shall be calculated pursuant to the requirements in section G.11.7.

For all exhaust emission tests, the exhaust emissions are diluted with ambient air in the dilution tunnel as shown in Figure B94-5 and Figure B94-6 (§86.110-94). As an alternative, the bag mini-diluter may be used in-lieu of the constant volume sampling (CVS) method for exhaust emission measurement as described below. A dilution tunnel is not required for testing vehicles waived from the requirement to measure particulates. For UDDSs, particulate samples are collected on filters for weighing during each UDDS. Each sample plus backup is collected during each UDDS (including shutdown). Part 1065 of the CFR may be used as an optional particulate sampling method. Continuous proportional samples of gaseous emissions are collected for analysis during each UDDS. For vehicles with Otto-cycle auxiliary power units, the composite samples collected in bags are analyzed for THC, CO, CO$_2$, CH$_4$ and NO$_x$. For vehicles with petroleum-fueled diesel-cycle auxiliary power units (optional for natural gas-fueled, liquefied petroleum gas-fueled, and alcohol-fueled diesel-cycle vehicles), THC is sampled and analyzed continuously pursuant to the provisions of §86.110-94. Parallel samples of the dilution air are similarly analyzed for THC, CO, CO$_2$, CH$_4$ and NO$_x$. For vehicles with natural gas-fueled, liquefied petroleum gas-fueled, and alcohol-fueled auxiliary power units, bag samples are collected and analyzed for THC (if not sampled continuously), CO, CO$_2$, CH$_4$ and NO$_x$. For vehicles with alcohol-fueled auxiliary power units, alcohol and formaldehyde samples are taken for both exhaust emissions and dilution air (a single dilution air formaldehyde sample, covering the total test period may be collected). Parallel bag samples of dilution air are analyzed for THC, CO, CO$_2$, CH$_4$ and NO$_x$.

5.2.2 Subparagraphs (b) through (c). [No change.]

5.2.3 Subparagraph (d). [No change.]

5.2.4 Subparagraphs (e) through (g). [No change.]

5.2.5 Amend subparagraph (h): The driving distance, as measured by counting the number of dynamometer roll or shaft revolutions, shall be
determined for all charge depleting and exhaust emission tests. The revolutions shall be measured on the same roll or shaft used for measuring the vehicle’s speed.

5.2.6 Subparagraph (i). [No change.]

5.3 Urban Dynamometer Test Run, Gaseous and Particulate Emissions for Off-Vehicle Charge Capable Hybrid Electric Vehicles.

To be conducted pursuant to 40 CFR §86.137-96 [March 24, 1993] with the following revisions:

5.3.1 Amend subparagraph (a): General. The dynamometer run shall consist of a series of UDDSs, after a second fuel drain and fill and a 12 to 36 hour soak period performed pursuant to the provisions of the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles.” The vehicle shall be stored prior to the emission test in such a manner that precipitation (e.g., rain or dew) does not occur on the vehicle. The vehicle is allowed to stand on the dynamometer during the 10 minute time period between each UDDS.

5.3.2 Amend subparagraph (b) as follows.

5.3.2.1 Amend subparagraph (b)(9): Start the gas flow measuring device, direct the sample flow into the exhaust sample bag, the alcohol exhaust sample, the formaldehyde exhaust sample, the dilution air sample bag, the alcohol dilution air sample and the formaldehyde dilution air sample, and turn the key on. If the auxiliary power unit is capable of being manually activated, the auxiliary power unit shall be activated at the beginning of and operated throughout the UDDS.

5.3.2.2 Delete subparagraph (b)(13).

5.3.2.3 Subparagraph (b)(14). [No change.]

5.3.2.4 Amend subparagraph (b)(15): Five seconds after the vehicle is shutdown, simultaneously turn off the gas flow measuring device and particulate sample pump. Record the measured roll or shaft revolutions (both gas meter or flow measurement instrumentation readings), and reset the counter. As soon as possible, transfer the exhaust and dilution air samples to the analytical system and process the samples pursuant to §86.140, obtaining a stabilized reading of the exhaust bag sample on all analyzers within 20 minutes of the end of the sample collection phase of the UDDS. Obtain alcohol and formaldehyde sample analyses, if applicable, within 24 hours of the end of the sample period. (If it is not possible to perform analysis on the alcohol
and formaldehyde samples within 24 hours, the samples should be stored in a dark cold (4°C to 10°C) environment until analysis. The samples should be analyzed within fourteen days.) If applicable, carefully remove both pairs of particulate sample filters from their respective holders, and place each in a separate petri dish, and cover.

5.3.2.5 Amend subparagraph (b)(18): Repeat the steps in paragraphs (b)(2) through (b)(17) of this section for the hot start UDDS. The steps in paragraph (b)(9) of this section shall begin between 9 and 11 minutes after the end of the sample period for the cold start UDDS.

5.3.2.6 Delete subparagraph (b)(19).

5.3.2.7 Delete subparagraph (b)(20).

5.3.2.8 Amend subparagraph (b)(21): As soon as possible, transfer the particulate filters to the weighing chamber for post-test conditioning, if applicable. For vehicles undergoing a cold start charge sustaining test, a valid test shall satisfy the SOC criterion in section G.10.

5.3.2.9 Amend subparagraph (b)(24): Vehicles to be tested for evaporative emissions will proceed pursuant to the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles.”

5.4 Determination of Urban All-Electric Range and Urban Equivalent All-Electric Range for Off-Vehicle Charge Capable Hybrid Electric Vehicles.

5.4.1 The **Urban All-Electric Range** shall be defined as the distance that the vehicle is driven from the start of Urban Charge Depleting Range Test until the internal combustion engine first starts.

5.4.2 **Urban Charge Depleting Range Test.**

(i) **Vehicle preconditioning.** The vehicle shall be preconditioned according to G.5.1.

(ii) **Dynamometer run.** At the end of the cold soak period, the vehicle shall be placed or pushed, onto a dynamometer and operated through the Continuous Urban Test Schedule until the SOC Net Change Tolerances (specified in section G.10 of these test procedures) that indicate charge sustaining operation are met for two consecutive UDDSs, or a single UDDS if data is provided showing that charge sustaining operation can consistently be maintained in one UDDS. If there are no charge depleting hot start cycles, then use the next hot start cycle (after
the cold start cycle) in the test sequence for the purpose of determining hot start emissions. For this case (no charge depleting hot start cycle), the manufacturer may optionally add one additional hot start cycle.

The Alternative Continuous Urban Test Schedule may be substituted for the Continuous Urban Test Schedule if the test facility is unable to perform the Continuous Urban Test Schedule. Refer to sections G.5.5, G.5.6, and G.11, for calculations of urban exhaust emissions, urban particulate emissions, and equivalent all-electric range, respectively. Emissions are measured for all test cycles when the auxiliary power unit is operating. For each test cycle for which emissions were not measured, the manufacturer must validate that the auxiliary power unit did not turn on at any time during the test cycle.

(iii) **Vehicle charging after testing.** Vehicle charging shall begin within three hours after either the charge depleting range test or the charge sustaining emission test, and the vehicle shall be charged to the manufacturer specified full state-of-charge. During charging, all applicable requirements in G.3 must be met, and energy consumption shall be calculated pursuant to the requirements in section G.11.7.

5.4.3 *Urban Charge Sustaining Emission Test.* The Urban Charge Sustaining Emission Test is conducted cold, and after charge sustaining operation has been reached, or an optional charge sustaining test mode has been activated, and no subsequent charge has been performed.

(i) **Vehicle preconditioning.** If the Urban Charge Sustaining Emission Test is performed within 36 hours after the Urban Charge Depleting Range Test, the vehicle shall be preconditioned pursuant to section G.5.1.9. If the Urban Charge Sustaining Emission Test is performed more than 36 hours after the Urban Charge Depleting Range Test, the vehicle shall be preconditioned pursuant to section G.5.1, except for vehicle charging. Sections G.5.1.1 through G.5.1.4 may be omitted if previously performed.

(ii) **Dynamometer run.** At the end of the cold soak period, the vehicle shall be placed or pushed onto a dynamometer, and two UDDSSs shall be performed during charge sustaining operation, each separated by a 10 minute key-off hot soak period. The vehicle must meet the SOC criterion in section G.10 from the start of the first UDDS until the end of the second UDDS. If the SOC criterion is not satisfied, the test shall be stopped, the vehicle cold soak shall be conducted again, and the dynamometer test run shall be conducted again.
(iii) **Vehicle charging after testing.** If the vehicle was not charged after the Urban Charge Depleting Range Test, then vehicle charging shall begin within three hours after the Urban Charge Sustaining Emission Test and the vehicle shall be charged to the manufacturer specified full state-of-charge. During charging, all requirements in G.3 must be met, and energy consumption shall be calculated pursuant to the requirements in section G.11.7.

5.5 **Calculations - Urban Exhaust Emissions for Off-Vehicle Charge Capable Hybrid Electric Vehicles.**

To be conducted pursuant to 40 CFR §86.144-94 [July 13, 2005] with the following revisions:

5.5.1 Amend subparagraph (a):

Gaseous Emissions – Urban Charge Depleting Range Test.

For light-duty vehicles and light-duty trucks:

\[
Y_{wm} = 0.43 \left(\frac{Y_c}{D_c} \right) + 0.57 \left(\frac{\sum Y_n}{\sum D_n} \right)
\]

Where:

- \(Y_{wm}\) = Weighted mass emissions of each pollutant, i.e., THC, CO, THCE, NMOG, NMHCE, CH4, NOx, or CO2, in grams per vehicle mile.
- \(Y_c\) = Mass emissions as calculated from the cold start UDDS, in grams per test.
- \(D_c\) = The measured driving distance from the cold start UDDS, in miles.
- \(n\) = number of hot start UDDSs in Charge Depleting operation
 - If there are no charge depleting hot start cycles, then use the next hot start cycle (after the cold start cycle) in the test sequence for the purpose of determining hot start emissions. For this case (no charge depleting hot start cycle), the manufacturer may optionally add one additional hot start cycle for an n=2.

Gaseous Emissions – Urban Charge Sustaining Emission Test.

For light-duty vehicles and light-duty trucks:

\[
Y_{wm} = 0.43 \left(\frac{Y_c}{D_c} \right) + 0.57 \left(\frac{Y_h}{D_h} \right)
\]
Where:

\(Y_{wm} \) = Weighted mass emissions of each pollutant, i.e., THC, CO, THCE, NMOG, NMHCE, CH₄, NOₓ, or CO₂, in grams per vehicle mile.

\(Y_c \) = Mass emissions as calculated from the cold start UDDS, in grams per test.

\(Y_h \) = Mass emissions as calculated from the hot start UDDS, in grams per test.

\(D_c \) = The measured driving distance from the cold start UDDS, in miles.

\(D_h \) = The measured driving distance from the hot start UDDS, in miles.

5.5.2 Subparagraphs (b) through (e). [No change.]

5.6 Calculations - Urban Particulate Emissions for Off-Vehicle Charge Capable Hybrid Electric Vehicles.

To be conducted pursuant to 40 CFR §86.145-82 [November 2, 1982] with the following revisions. References to §86.110-94 shall mean §86.110-94 as last amended June 30, 1995.

5.6.1 Amend subparagraph (a):

Particulate Emissions – Urban Charge Depleting Range Test.

The final reported test results for the mass particulate \((M_p)\) in grams/mile shall be computed as follows:

\[
M_p = 0.43 \times \frac{M_{pc}}{D_c} + 0.57 \times \frac{\sum M_{pc}}{\sum D_n}
\]

Where:

\(M_{pc} \) = Mass of particulate determined from the cold start UDDS, in grams per vehicle mile. (See §86.110-94 for determination.)

\(D_c \) = The measured driving distance from the cold start UDDS, in miles.

\(n \) = number of hot start UDDSs in Charge Depleting operation

If there are no charge depleting hot start cycles, then use the next hot start cycle (after the cold start cycle) in the test sequence for the purpose of determining hot start emissions. For this case (no charge depleting hot start cycle), the manufacturer may optionally add one additional hot start cycle for an \(n=2 \).

Particulate Emissions – Urban Charge Sustaining Emission Test.
The final reported test results for the mass particulate (M_p) in grams/mile shall be computed as follows:

$$M_p = 0.43 \times \left(\frac{M_{pc}}{D_c} \right) + 0.57 \times \left(\frac{M_{ph}}{D_h} \right)$$

Where:

- M_{pc} = Mass of particulate determined from the cold start UDDS, in grams per vehicle mile. (See §86.110-94 for determination.)
- M_{ph} = Mass of particulate determined from the hot start UDDS, in grams per vehicle mile. (See §86.110-94 for determination.)
- D_c = The measured driving distance from the cold start UDDS, in miles.
- D_h = The measured driving distance from the hot start UDDS, in miles.

5.6.2 Subparagraph (b). [No change.]

5.6.3 **Equivalent All-Electric Range** shall be calculated in accordance with section G.11 of these test procedures.

6. **Highway Test Provisions for Off-Vehicle Charge Capable Hybrid Electric Vehicles.**

Vehicles with more than one mode of operation of the auxiliary power unit (e.g., economy mode, performance mode, etc.) for a given charge depleting or charge sustaining test cycle must be tested in the mode(s) which represents the worst case emissions of the auxiliary power unit. Confirmatory testing may also be performed in any mode of operation to ensure compliance with emission standards.

The third emission test HFEDS of the Highway Charge Sustaining Test shall be used to calculate highway NOx emissions and must be within the SOC criterion in section G.10. As an option, the manufacturer may perform the Highway Charge Sustaining Test with two emission test HFEDSs provided that the second HFEDS meets the SOC criterion in section G.10. In this case, the second HFEDS shall be used to calculate emissions.

Highway NOx emissions may be determined from the HFEDS in the Highway Charge Depleting Range Test that demonstrates charge sustaining operation.

6.1 **Vehicle Preconditioning.**
If the Highway Charge Depleting Range Test is performed within 36 hours after completion of either the Urban Charge Depleting Range Test or the Urban Charge Sustaining Emission Test, the vehicle shall be preconditioned pursuant to sections G.5.1.9 through G.5.1.10, without canister preconditioning. If the Highway Charge Depleting Range Test is performed more than 36 hours after completion of either the Urban Charge Depleting Range Test or the Urban Charge Sustaining Emission Test, the vehicle shall be preconditioned pursuant to section G.5.1, without canister preconditioning. Sections G.5.1.1 through G.5.1.4 may be omitted if previously performed.

If the Highway Charge Sustaining Emission Test is performed within 36 hours after completion of either the Urban Charge Depleting Range Test, the Urban Charge Sustaining Emission Test, or the Highway Charge Depleting Range Test, the vehicle shall be preconditioned pursuant to section G.5.1.9 without canister preconditioning. If the Highway Charge Sustaining Emissions Test is performed more than 36 hours after completion of either the Urban Charge Depleting Range Test, the Urban Charge Sustaining Emission Test, or the Highway Charge Depleting Range Test, the vehicle shall be preconditioned pursuant to section G.5.1 without canister precondition and vehicle charging. Sections G.5.1.1 through G.5.1.4 may be omitted if previously performed.

To be conducted pursuant to 40 CFR §600.111-08 [December 27, 2006] with the following revisions. This section G.6.2 shall apply during both charge sustaining and charge depleting operation.

6.2.1 Subparagraph (a). [n/a]

6.2.2 Amend subparagraph (b) as follows:

6.2.2.1 Amend subparagraph (b)(2): The highway fuel economy test is designated to simulate non-metropolitan driving with an average speed of 48.6 mph and a maximum speed of 60 mph. The cycle is 10.2 miles long with 0.2 stop per mile and consists of warmed-up vehicle operation on a chassis dynamometer through a specified driving cycle. A proportional part of the diluted exhaust emission is collected continuously for subsequent analysis of THC, CO, CO$_2$, and NO$_x$ using a constant volume (variable dilution) sampler. Diesel dilute exhaust is continuously analyzed for hydrocarbons using a heated sample line and analyzer. Alcohol and formaldehyde samples are collected and individually analyzed for alcohol-fueled vehicles.

6.2.2.2 Replace subparagraph (b)(6) with: Cold soak: The vehicle shall be stored at an ambient temperature not less than 68°F (20°C) and not
more than 86°F (30°C) for 12 to 36 hours. At the end of the cold soak period, the vehicle shall be placed or pushed onto a dynamometer.

6.2.2.3 Amend subparagraph (b)(7)(i): The Highway Charge Sustaining Emission Test is conducted cold, and after charge sustaining operation has been reached, or an optional charge sustaining test mode has been activated, and no subsequent charge has been performed.

At the end of the cold soak period, the vehicle shall be placed or pushed onto a dynamometer. A cold start HFEDS followed by three emission measurement HFEDSs, separated by a 15 second key-on hot soak period, shall be performed. The vehicle must meet the SOC criterion in section G.10 for the third emission measurement HFEDS. As an option the manufacturer may perform two emission measurement HFEDSs in lieu of three emission measurement HFEDSs, if the SOC criterion is satisfied for the second emission measurement HFEDS. If the SOC criterion is not satisfied, the test shall be stopped, and the procedure shall be repeated starting at section G.6.2.2.2.

6.2.2.4 Amend subparagraph (b)(7)(iii): One exhaust sample and one background sample per each HFEDS shall be collected and analyzed for THC (except diesel hydrocarbons which are analyzed continuously), CO, CO₂, and NOₓ. Alcohol and formaldehyde samples (exhaust and dilution air) are collected and analyzed for alcohol-fueled vehicles.

6.2.2.5 Add subparagraph (b)(7)(v): For vehicles that do not allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at a level that causes the vehicle to operate the auxiliary power unit for the maximum possible cumulative amount of time during the HFEDS preconditioning cycle. For vehicles that allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at the lowest level allowed by the manufacturer.

6.2.2.6 Amend subparagraph (b)(9)(v): Operate the vehicle over the continuous highway test schedule, consisting of repeated HFEDSs according to the dynamometer driving schedule specified in §600.109-08(b) [December 27, 2006]. If the auxiliary power unit is capable of being manually activated, the auxiliary power unit shall be manually activated at the beginning of and operated throughout the HFEDS preconditioning cycle.

6.2.2.7 Amend subparagraph (b)(9)(vi): When the vehicle reaches zero speed between each HFEDS, the driver has 17 seconds to prepare for the HFEDS emission measurement cycle of the test. During the idle period, one of the following conditions shall apply:
(a) For vehicles that do not allow the auxiliary power unit to be manually activated, the vehicle shall remain turned on during the idle period.

(b) For vehicles that allow the auxiliary power unit to be manually activated, the vehicle shall remain turned on with the auxiliary power unit operating during the idle period.

6.2.2.8 Add subparagraph (b)(9)(viii): At the conclusion of the HFEDS emission test, the following conditions shall apply: For vehicles that do not allow the auxiliary power unit to be manually activated and are charge-sustaining over the HFEDS, record the battery state-of-charge to determine if the SOC criterion in section F.10 is satisfied. If the SOC criterion is not satisfied, then repeat the dynamometer test run from subparagraph (b)(9)(vi) and (b)(9)(vii). Up to three highway emission tests shall be allowed to satisfy the SOC criterion.

6.2.2.9 Delete subparagraph (b)(10).

6.2.3 Delete subparagraphs (c) through (e).

6.3 Determination of Highway All-Electric Range and Highway Equivalent All-Electric Range for Off-Vehicle Charge Capable Hybrid Electric Vehicles.

6.3.1 The **Highway All-Electric Range** shall be defined as the distance that the vehicle is driven from the start of test until the internal combustion engine starts.

6.3.2 **Highway Charge Depleting Range Test.**

(i) **Vehicle preconditioning.** The vehicle shall be preconditioned pursuant to section G.6.1.

(ii) **Dynamometer run.** At the end of the cold soak period, the vehicle shall be placed or pushed, onto a dynamometer and operated through the Continuous Highway Test Schedule until the State–of-Charge Net Change Tolerances (specified in section G.10 of these test procedures) that indicate charge sustaining operation is met for one HFEDS. The Alternative Continuous Highway Test Schedule may be substituted for the Continuous Highway Test Schedule if the test facility is unable to perform the Continuous Highway Test Schedule. Refer to section G.11, for calculations of highway exhaust emissions and equivalent all-electric range, respectively. Emissions are measured for all test cycles when the auxiliary power unit is operating. For each test cycle for which emissions were not measured, the manufacturer must validate that the auxiliary power unit did not turn on at any time during the test cycle.
(iii) **Vehicle charging after testing.** Vehicle charging shall begin within three hours after the Highway Charge Depleting Range Test and the vehicle shall be charged to the manufacturer specified full state-of-charge. During charging, all applicable requirements in section G.3 must be met, and energy consumption shall be calculated according to the requirements in section G.11.7. If the manufacturer provides supplemental data demonstrating that the energy required to charge the vehicle from highway charge sustaining operation to full charge is equivalent (within ± 1% of the AC energy) to the energy required to charge the vehicle from urban charge sustaining operation to full charge, then the energy required to charge the vehicle from urban charge sustaining operation to full charge may be used to determine highway energy consumption pursuant to section G.11.7. Data shall be approved in advance by the Executive Officer of the Air Resources Board.

6.3.3 **Highway Charge Sustaining Emission Test.** The Highway Charge Sustaining Emission Test is conducted cold, and after charge sustaining operation has been reached, or an optional charge sustaining test mode has been activated, and no subsequent charge has been performed:

(i) **Vehicle preconditioning.** The vehicle shall be preconditioned pursuant to section G.6.1.

(ii) **Dynamometer run.** At the end of the cold soak period, the vehicle shall be placed or pushed onto a dynamometer. A cold start HFEDS followed by three emission measurement HFEDSs, separated by a 15 second key-on hot soak period, shall be performed. The vehicle must meet the SOC criterion in section G.10 for the third emission measurement HFEDS. As an option, the manufacturer may perform two emission measurement HFEDSs in lieu of three emission measurement HFEDSs, if the SOC criterion is satisfied for the second HFEDS. If the SOC criterion is not satisfied, the test shall be stopped, and the procedure shall be repeated starting at section G.6.3.3.

6.3.4 **Equivalent All-Electric Range** shall be calculated in accordance with section G.11 of these test procedures.

7. **SFTP Emission Test Provisions for Off-Vehicle Charge Capable Hybrid Electric Vehicles.**

Vehicles with more than one mode of operation of the auxiliary power unit (e.g., economy mode, performance mode, etc.) for a given charge depleting or charge sustaining test cycle must be tested in the mode(s) which represents the worst case emissions of the auxiliary power unit. Confirmatory testing may also be performed in any mode of operation to ensure compliance with emission standards.
7.1 **US06 Vehicle Preconditioning.**

To be conducted pursuant to 40 CFR §86.132-00 [October 22, 1996] with the following revisions. This section G.1 shall apply during charge sustaining operation or at an optional charge sustaining test mode that has been activated, if no subsequent charge has been performed.

7.1.1 Subparagraphs (a) through (m). [No change.]

7.1.2 Amend subparagraph (n) *Aggressive Driving Test (US06) Preconditioning*. as follows:

7.1.2.1 Amend subparagraph (1) as follows: If the US06 test follows the exhaust emission urban, highway, or evaporative testing, the refueling step may be deleted and the vehicle may be preconditioned using the fuel remaining in the tank (see paragraph (c)(2)(ii) of this section). The test vehicle may be pushed or driven onto the test dynamometer. For vehicles that allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at the lowest level allowed by the manufacturer, and the auxiliary power unit shall be manually activated at the beginning of and operated throughout the US06 preconditioning cycle.

7.1.2.1.1 Subparagraphs (i) through (iv). [No change.]

7.1.2.2 Subparagraph (2). [No change.]

7.1.3 Subparagraph (o). [No change.]

7.2 **US06 Emission Test.**

To be conducted pursuant to 40 CFR §86.159-08 [December 27, 2006] with the following revisions. This section 7.2 shall apply during charge sustaining operation or at an optional charge sustaining test mode that has been activated, if no subsequent charge has been performed.

7.2.1 Amend subparagraph (a): *Overview*. The dynamometer operation consists of a single, 600 second test on the US06 driving schedule, as described in appendix I, paragraph (g), of this part. The vehicle is preconditioned in accordance with §86.132-00, to bring it to a warmed-up stabilized condition. This preconditioning is followed by a 1 to 2 minute idle period that proceeds directly into the US06 driving schedule during which continuous proportional samples of gaseous emissions are collected for analysis. If engine stalling should occur during testing, follow the provisions of §86.136-90 (engine starting and restarting). For vehicles with Otto-cycle auxiliary power units, the composite
samples collected in bags are analyzed for THC, CO, CO₂, CH₄ and NOₓ. For vehicles with diesel-cycle auxiliary power units, THC is sampled and analyzed continuously according to the provisions of §86.110. Parallel bag samples of dilution air are analyzed for THC, CO, CO₂, CH₄ and NOₓ. The US06 cycle after the preconditioning cycle shall be used to calculate emissions and shall meet the state-of-charge net tolerances as calculated in section G.10.

7.2.2 Amend subparagraph (b) as follows.

7.2.2.1 Amend subparagraph (b)(2): Position the test vehicle on the dynamometer and restrain.

7.2.3 Subparagraph (c). [No change.]

7.2.4 Amend subparagraph (d): Practice runs over the prescribed driving schedule may be performed at test point to permit sampling system adjustment.

7.2.5 Subparagraph (e). [No change.]

7.2.6 Amend subparagraph (f) as follows.

7.2.6.1 Amend subparagraph (f)(2)(i): Immediately after completion of the preconditioning cycle, idle the vehicle. The idle period is not to be less than one minute or not greater than two minutes. During the idle period, one of the following conditions shall apply:

(i) For vehicles that do not allow the auxiliary power unit to be manually activated, the vehicle shall remain on during the idle period.

(ii) For vehicles that allow the auxiliary power unit to be manually activated, the vehicle shall remain turned on with the auxiliary power unit operating during the idle period.

7.2.6.2 Amend subparagraph (f)(2)(ix): At the completion of the test US06 cycle, determine if the SOC criterion in section G.10 is satisfied. If the SOC criterion is not satisfied, then repeat the dynamometer test run from subparagraph (f)(2)(i), without the preconditioning cycle. Up to three US06 emission tests shall be allowed to satisfy the SOC criterion. The idle period between multiple test cycles shall not to be less than one minute and not greater than two minutes. For the final test cycle, turn off the vehicle two seconds after the end of the last deceleration. During the idle period between multiple test cycles, one of the following conditions shall apply:
(i) For vehicles that do not allow the auxiliary power unit to be manually activated, the vehicle shall remain on during the idle period.

(ii) For vehicles that allow the auxiliary power unit to be manually activated, the vehicle shall remain turned on with the auxiliary power unit operating during the idle period.

7.3 SC03 Vehicle Preconditioning.

To be conducted pursuant to 40 CFR §86.132-00 [October 22, 1996] with the following revisions. This section 7.3 shall apply during charge sustaining operation or at an optional charge sustaining test mode that has been activated, if no subsequent charge has been performed.

7.3.1 Subparagraphs (a) through (n). [No change.]

7.3.2 Amend subparagraph (o): Air Conditioning Test (SC03) Preconditioning.

7.3.2.1 Amend subparagraph (1) as follows: If the SC03 test follows the exhaust emission urban, highway, or evaporative testing, the refueling step may be deleted and the vehicle may be preconditioned using the fuel remaining in the tank (see paragraph (c)(2)(ii) of this section). The test vehicle may be pushed or driven onto the test dynamometer. For vehicles that allow manual activation of the auxiliary power unit, battery state-of-charge shall be set at the lowest level allowed by the manufacturer, and the auxiliary power unit shall be manually activated at the beginning of and operated throughout the SC03 preconditioning cycle.

7.3.2.1.1 Subparagraphs (i) and (ii). [No change.]

7.3.2.2 Subparagraphs (2) through (3). [No change.]

7.4 SC03 Emission Test.

To be conducted pursuant to 40 CFR §86.160-00 [December 8, 2005] with the following revisions. This section 7.4 shall apply during charge sustaining operation or at an optional charge sustaining test mode that has been activated, if no subsequent charge has been performed. References to §86.162-03 shall mean §86.162-03 as adopted October 22, 1996.

7.4.1 Amend subparagraph (a): Overview. The dynamometer operation consists of a single, 594 second test on the SC03 driving schedule, as described in appendix I, paragraph (h), of this part. The vehicle is preconditioned
in accordance with §86.132-00 of this subpart, to bring the vehicle to a warmed-up stabilized condition. This preconditioning is followed by a 10 minute vehicle soak (vehicle turned off) that proceeds directly into the SC03 driving schedule, during which continuous proportional samples of gaseous emissions are collected for analysis. The entire test, including the SC03 preconditioning cycle, vehicle soak, and SC03 emission test, is either conducted in an environmental test facility or under test conditions that simulate testing in an environmental test cell (see §86.162-03 (a) for a discussion of simulation procedure approvals). The environmental test facility must be capable of providing the following nominal ambient test conditions of: 95°F air temperature, 100 grains of water/pound of dry air (approximately 40 percent relative humidity), a solar heat load intensity of 850 W/m², and vehicle cooling air flow proportional to vehicle speed. Section 86.161-00 discusses the minimum facility requirements and corresponding control tolerances for air conditioning ambient test conditions. The vehicle’s air conditioner is operated or appropriately simulated for the duration of the test procedure (except for the 10 minute vehicle soak), including the preconditioning. If engine stalling should occur during testing, follow the provisions of §86.136-90 (engine starting and restarting). For vehicles with Otto-cycle auxiliary power units, the composite samples collected in bags are analyzed for THC, CO, CO₂, CH₄ and NOₓ. For vehicles with diesel-cycle auxiliary power units, THC is sampled and analyzed continuously according to the provisions of §86.110. Parallel bag samples of dilution air are analyzed for THC, CO, CO₂, CH₄ and NOₓ. The SC03 cycle after the preconditioning cycle shall be used to calculate emissions and shall meet the state-of-charge net tolerances as calculated in section G.10.

7.4.2 Amend subparagraph (b) as follows.

7.4.2.1 Amend subparagraph (b)(2): Position the test vehicle on the dynamometer and restrain.

7.4.3 Amend subparagraph (c) as follows.

7.4.3.1 Amend subparagraph (c)(9): Start vehicle (with air conditioning system also running). If the auxiliary power unit of the vehicle is capable of being manually activated, the auxiliary power unit shall be manually activated at the beginning of and operated throughout the SC03 emission test. Fifteen seconds after the vehicle starts, begin the initial vehicle acceleration of the driving schedule.

7.4.4 Amend subparagraph (d) as follows.

7.4.4.1 Amend subparagraph (d)(10): At the conclusion of the SC03 emission test, one of the following conditions shall apply:
(i) For vehicles that do not allow the auxiliary power unit to be manually activated and are charge-sustaining over the SC03 test, record the battery state-of-charge to determine if the SOC criterion in section G.10 is satisfied. If the SOC criterion is not satisfied, then turn off the engine and the cooling fan(s), allow the vehicle to soak in the ambient conditions of paragraph (c)(5) of this section for 10 ± 1 minutes, and repeat the dynamometer test run from subparagraph (d). Up to three SC03 emission tests shall be attempted to satisfy the SOC criterion.

(ii) For vehicles that allow the auxiliary power unit to be manually activated, turn off the vehicle two seconds after the end of the last deceleration.

7.4.5 Subparagraph (e). [No change.]

7.5 Optional Cold Start US06 Range Test.

7.5.1 Cold soak and vehicle charging. The vehicle shall be stored at an ambient temperature not less than 68°F (20°C) and not more than 86°F (30°C) for 12 to 36 hours. During this time, the vehicle battery shall be charged to a full state-of-charge. The vehicle must be turned off during charging. Charge time shall not exceed soak time.

7.5.2 At the end of the cold soak period, the vehicle shall be placed or pushed onto a dynamometer, and shall be driven on a continuous US06 test cycle until either:

(a) the auxiliary power unit starts, or
(b) the vehicle can no longer meet the speed trace limits of the US06 driving schedule as specified in CFR 86 Appendix I to within 2 mph higher than the highest point on the trace within 1 second for the upper limit or within 2 mph lower than the lowest point on the trace within 1 second for the lower limit.

When either of these conditions is met, the test shall be ended. The range for this test, in miles, shall be the distant driven from the start of the test to when condition (a) or (b) is met. Emission sampling is not required for this test.

8. 50°F and 20°F Test Provision for Off-Vehicle Charge Capable Hybrid Electric Vehicles.

50°F testing shall be conducted pursuant to section G.5 with the modifications in Part II, Section C of the “California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model Year Passenger Cars, Light Duty Trucks, and Medium Duty Vehicles” and the additional following revisions.
20°F testing shall be conducted pursuant to section G.5 and shall include the
temperature provisions in 40 CFR Part 86 Subpart C - Emission Regulations for 1994
and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty
Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test
Procedures.

For 50°F and 20°F charge depleting testing, vehicle charging, prior to emissions testing,
shall be performed during the soak period at 50°F and 20°F, respectively.

8.1 To satisfy test requirements for the 50°F emission test, the vehicle shall be
tested in the worst case (NMOG + NOx) of the urban charge depleting range test or
urban charge sustaining emission test as defined in section G.5. To satisfy test
requirements for the 20°F emission test, the vehicle shall be tested in the worst case
(CO) of the urban charge depleting range test or urban charge sustaining emission test
as defined in section G.5. For the 20°F and 50°F emission tests, the vehicle is not
required to meet SOC net tolerances.

8.2 If the worst case for emissions is charge sustaining operation, the vehicle
shall be preconditioned, and one of the following two emission test options must be
performed.

(i) A three phase test that includes phase one as the first 505 seconds
of the UDDS, phase two as 506 seconds to the end of the UDDS, a 10 minute
key-off soak period, and phase three the first 505 seconds of the UDDS. The
first two phases test shall be counted as the first UDDS and the second and third
phases will constitute the second UDDS. Emission weighting is as follows:

\[
Y_{wm} = 0.43 \left(\frac{Y_1 + Y_2}{D_1 + D_2} \right) + 0.57 \left(\frac{Y_2 + Y_3}{D_2 + D_3} \right)
\]

Where:

\(Y_{wm} \) = Weighted mass emissions of each pollutant, i.e., THC, CO,
THCE, NMOG, NMHCE, CH₄, NOₓ, or CO₂, in grams per
vehicle mile.

\(Y_1 \) = Mass emissions as calculated from phase one of the three
phase test.

\(Y_2 \) = Mass emissions as calculated from phase two of the three
phase test.

\(Y_3 \) = Mass emissions as calculated from phase three of the three
phase test.

\(D_1 \) = The measured driving distance from phase one of the three
phase tests, in miles.

\(D_2 \) = The measured driving distance from phase two of the three
phase tests, in miles.

\(D_3 \) = The measured driving distance from phase three of the three
phase tests, in miles.
(ii) A two phase test that includes phase one as a UDDS, a 10 minute key-off soak period, and phase two as a UDDS. Emission weighting for the four phase test will follow the procedure outlined in section G.5.5.1.

8.3 If measurement of worst case emissions requires the urban charge depleting range test to be performed, the vehicle shall be preconditioned and fully charged. The continuous urban test schedule shall then be performed. The UDDS, in which the auxiliary power unit first starts, shall be the cold UDDS. Emissions shall be sampled according to one of the options in section G.8.2. For the three phase test option, if the auxiliary power unit starts in phase two of the UDDS, phase one emissions are considered zero for emission calculation purposes. Emissions are weighted according to section G.8.2.

9.1 Confirmatory testing may be performed on all tests to establish if higher emissions occur at different states-of-charge in charge depleting mode. This is to ensure that cold start and other emissions standards are not exceeded at other operating SOCs.

9.2 Confirmatory testing may be performed on the US06 test or the manufacturer may provide data to show that potential cold start off-cycle emissions are controlled to the extent that they are controlled for the UDDS.

9.3 Confirmatory testing may be performed on vehicles equipped with an optional charge sustaining operation mode selector with selector set to simulate charge sustaining operation or in actual charge sustaining operation in accordance with section F of these test procedures.

9.4 For an example of an off-vehicle charge capable hybrid electric vehicle with all-electric range and blended operation that has charge depleting actual range and charge depleting cycle range, please see section I, Figure 1.

9.5 For an example of charge depleting to charge sustaining range with and without transitional range and end of test conditions, please see section I, Figure 2.

9.6 When determining the SOC tolerance during testing, the current drive cycle may be aborted if the SOC tolerance is met for previous drive cycle.

9.7 If the manufacturer determines there is insufficient fuel to run the subsequent test, the manufacturer may perform a fuel drain and fill or add fuel pursuant to the provisions of the “California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles.”
10. State-of-Charge Net Change Tolerances.

10.1 For vehicles that use a battery as an energy storage device, the following state-of-charge net change tolerance shall apply:

\[
(Amp-hr_{\text{final}})_{\text{max}} = (Amp-hr_{\text{initial}}) + 0.01 \times \left(\frac{NHV_{\text{fuel}} \times m_{\text{fuel}}}{V_{\text{system}} \times K_1} \right) \\
(Amp-hr_{\text{final}})_{\text{min}} = (Amp-hr_{\text{initial}}) - 0.01 \times \left(\frac{NHV_{\text{fuel}} \times m_{\text{fuel}}}{V_{\text{system}} \times K_1} \right)
\]

Where:

\((Amp-hr_{\text{final}})_{\text{max}} \) = Maximum allowed Amp-hr stored in battery at the end of the test

\((Amp-hr_{\text{final}})_{\text{min}} \) = Minimum allowed Amp-hr stored in battery at the end of the test

\((Amp-hr_{\text{initial}}) \) = Battery Amp-hr stored at the beginning of the test

\(NHV_{\text{fuel}} \) = Net heating value of consumable fuel, in Joules/kg

\(m_{\text{fuel}} \) = Total mass of fuel consumed during test, in kg

\(K_1 \) = Conversion factor, 3600 seconds/hour

\(V_{\text{system}} \) = Open circuit voltage (OCV) that corresponds to the SOC of the target SOC during charge sustaining operation. This value shall be submitted for testing purposes, and it shall be subject to confirmation by the Air Resources Board.

An alternate state-of-charge net tolerance may be used if shown to be technically necessary and if approved in advance by the Executive Officer of the Air Resources Board.

10.2 For vehicles that use a capacitor as an energy storage device, the following state-of-charge net change tolerance shall apply:

\[
(V_{\text{final}})_{\text{max}} = \sqrt{V_{\text{initial}}^2 + 0.01 \times \left(\frac{2 \times NHV_{\text{fuel}} \times m_{\text{fuel}}}{C} \right)} \\
(V_{\text{final}})_{\text{min}} = \sqrt{V_{\text{initial}}^2 - 0.01 \times \left(\frac{2 \times NHV_{\text{fuel}} \times m_{\text{fuel}}}{C} \right)}
\]

Where:
(V_{final})_{max} = \text{The stored capacitor voltage allowed at the end of the test}

(V_{final})_{min} = \text{The stored capacitor voltage allowed at the end of the test}

V_{initial}^2 = \text{The square of the capacitor voltage stored at the beginning of the test}

NHV_{fuel} = \text{Net heating value of consumable fuel, in Joules/kg}

m_{fuel} = \text{Total mass of fuel consumed during test, in kg}

C = \text{Rated capacitance of the capacitor, in Farads}

\text{10.3 For vehicles that use an electro-mechanical flywheel as an energy storage device, the following state-of-charge net change tolerance shall apply:}

\begin{align*}
\text{(rpm}_{final}\text{)}_{min} & = \sqrt{\text{rpm}_{initial}^2 - 0.01 \times \frac{(2 \times NHV_{fuel} \times m_{fuel})}{I \times K_3}} \\
\text{(rpm}_{final}\text{)}_{max} & = \sqrt{\text{rpm}_{initial}^2 + 0.01 \times \frac{(2 \times NHV_{fuel} \times m_{fuel})}{I \times K_3}}
\end{align*}

Where:

\text{(rpm}_{final}\text{)}_{max} = \text{The maximum flywheel rotational speed allowed at the end of the test}

\text{(rpm}_{final}\text{)}_{min} = \text{The minimum flywheel rotational speed allowed at the end of the test}

\text{rpm}_{initial}^2 = \text{The squared flywheel rotational speed at the beginning of the test}

NHV_{fuel} = \text{Net heating value of consumable fuel, in Joules/kg}

m_{fuel} = \text{Total mass of fuel consumed during test, in kg}

K_3 = \text{Conversion factor, } \frac{4 \pi^2}{3600 \text{ sec}^2 - \text{rpm}^2}

I = \text{Rated moment of inertia of the flywheel, in kg-m}^2

11.1 Charge Depleting CO₂ Produced means the cumulative tailpipe CO₂ emissions produced, \(M_{cd} \), in grams per mile during the charge depleting cycle range.

\[
M_{cd} = \sum Y_i
\]

where:

\(Y_i \) = The sum of the CO₂ grams per mile in the charge depleting mode from each test cycle (UDDS or HFEDS)

\(i \) = Number (UDDS or HFEDS) of the test over the charge depleting cycle range, \(R_{cdc} \)

11.2 Charge Sustaining CO₂ Produced - urban means the cumulative tailpipe CO₂ emissions produced, \(M_{cs} \), in grams per mile, during the cold start charge sustaining urban test.

\[
M_{cs} = Y_c + Y_h \left(\frac{R_{cdcu} - D_c}{D_c} \right)
\]

where:

\(R_{cdcu} \) = Urban Charge Depleting Cycle Range, in miles

\(D_c \) = The measured driving distance from the cold start UDDS, in miles

\(Y_c \) = Grams per mile CO₂ emissions as calculated from the cold start UDDS

\(Y_h \) = Grams per mile CO₂ emissions as calculated from the hot start UDDS

11.3 Charge Sustaining CO₂ Produced - highway means the grams per mile tailpipe CO₂ emissions produced, \(M_{cs} \), during the cold start charge sustaining highway test.

\[
M_{cs} = \left(\frac{R_{cdch}}{D_h} \right) Y_h
\]

where:

\(R_{cdch} \) = Highway Charge Depleting Cycle Range, in miles

\(D_h \) = The measured driving distance from the hot start HFEDS, in miles

\(Y_h \) = Grams per mile emissions as calculated from the hot start HFEDS
11.4 Urban Equivalent All-Electric Range (EAER_u) shall be calculated as follows:

\[
EAER_u = \left(\frac{M_{cs} - M_{cd}}{M_{cs}} \right) \times R_{cdcu}
\]

where:
- \(M_{cs}\) is as defined in G.11.2.
- \(M_{cd}\) is as defined in G.11.1, using the UDDS test cycle.

11.5 Highway Equivalent All-Electric Range (EAER_h) shall be calculated as follows:

\[
EAER_h = \left[\frac{M_{cs} - M_{cd}}{M_{cs}} \right] \times R_{cdch}
\]

where:
- \(M_{cs}\) is as defined in G.11.3.
- \(M_{cd}\) is as defined in G.11.1, using the HFEDS test cycle.
- \(R_{cdch}\) is as defined in G.11.3

11.6 Electric Range Fraction (%).

The Electric Range Fraction means fraction of the total miles driven electrically (with the engine off) for blended operation hybrid electric vehicles.

The Urban Electric Range Fraction (ERF_u) is calculated as follows:

\[
ERF_u \ (\%) = \left(\frac{EAER_u}{R_{cda}} \right) \times 100
\]

The Highway Electric Range Fraction (ERF_h) is calculated as follows:

\[
ERF_h \ (\%) = \left(\frac{EAER_h}{R_{cda h}} \right) \times 100
\]
11.7 Equivalent All-Electric Range Energy Consumption.

The Urban Equivalent All-Electric Range Energy Consumption (EAERECu) shall be calculated as follows:

\[\text{EAEREC}_u \ (\text{wh/mi}) = \frac{E_{cd}}{EAER_u} \]

where:

\(E_{cd} \) = Total electrical energy used to fully charge the vehicle battery from an external power source after the charge depleting test has been completed. This shall be calculated for both AC and DC energy.

The Highway Equivalent All-Electric Range Energy Consumption (EAEREC_h) shall be calculated as follows:

\[\text{EAEREC}_h \ (\text{wh/mi}) = \frac{E_{cd}}{EAER_h} \]

where:

\(E_{cd} \) = Total electrical energy used to fully charge the vehicle battery from an external power source after the charge depleting test has been completed. This shall be calculated for both AC and DC energy.

11.8 The Urban Charge Depleting Cycle Range, \(R_{cdcu} \), (see section H for an illustration of \(R_{cdcu} \)) shall be defined as the distance traveled on the Urban Charge Depleting Procedure up to the UDDS prior to where the state-of-charge is above the lower bound state-of-charge tolerance for one test cycle given by:

\[\left(\text{Amp-hr}_{\text{final}} \right)_{\text{min}} = \left(\text{Amp-hr}_{\text{initial}} \right) - 0.01 \times \left(\frac{NHV_{\text{fuel}} \cdot m_{\text{fuel}}}{V_{\text{system}} \cdot K_1} \right) \]

Where:

\(\left(\text{Amp-hr}_{\text{final}} \right)_{\text{min}} \) = Minimum allowed Amp-hr stored in battery at the end of the test
\(\left(\text{Amp-hr}_{\text{initial}} \right) \) = Battery Amp-hr stored at the beginning of the test
\(NHV_{\text{fuel}} \) = Net heating value of consumable fuel, in Joules/kg
\(m_{\text{fuel}} \) = Total mass of fuel consumed during test, in kg
\(K_1 \) = Conversion factor, 3600 seconds/hour
\(V_{\text{system}} \) = Open circuit voltage (OCV) that corresponds to the SOC of the target SOC during charge sustaining operation. This value shall be submitted for testing purposes, and it shall be subject to confirmation by the Air Resources Board.
11.9 The Charge Depleting Actual Range, R_{cda}, shall be defined as the range at which the state-of-charge is first equal to the average state-of-charge of the one or two UDDSs used to end the Urban Charge Depleting Test. This range must be reported to the nearest 0.1 miles. For an illustration of R_{cda} see section I.

11.10 The Charge Depleting to Charge Sustaining Urban Range shall be defined as the distance driven in miles from the start of the Urban Charge Depleting Test through the UDDS preceding the one or two UDDSs used to end the Urban Charge Depleting Test.

11.11 The Highway Charge Depleting Cycle Range, R_{cdch}, shall be defined as the sum of the distance traveled on the Highway Charge Depleting Test up to the HFEDS prior to where the state-of-charge is above the lower bound state-of-charge tolerance for one test cycle given by:

$$
(Amp\text{-hr}_{\text{final}})_{\text{min}} = (Amp\text{-hr}_{\text{initial}}) - 0.01 \times \left(\frac{NHV_{\text{fuel}} \times m_{\text{fuel}}}{V_{\text{system}} \times K_1} \right)
$$

Where:

- $(Amp\text{-hr}_{\text{final}})_{\text{min}}$ = Minimum allowed Amp-hr stored in battery at the end of the test
- $(Amp\text{-hr}_{\text{initial}})$ = Battery Amp-hr stored at the beginning of the test
- NHV_{fuel} = Net heating value of consumable fuel, in Joules/kg
- m_{fuel} = Total mass of fuel consumed during test, in kg
- K_1 = Conversion factor, 3600 seconds/hour
- V_{system} = Open circuit voltage (OCV) that corresponds to the SOC of the target SOC during charge sustaining operation. This value shall be submitted for testing purposes, and it shall be subject to confirmation by the Air Resources Board.

11.12 The Charge Depleting to Charge Sustaining Highway Range shall be defined as the distance driven in miles from the start of the Highway Charge Depleting Test through the HFEDS preceding the final HFEDS.

11.13 The Urban Equivalent All Electric Range for vehicles with an urban charge depleting actual range greater than 40 miles, $EAER_{u40}$, is determined through the following equation:

$$
EAER_{u40} \text{ (miles) } = \left(\frac{ERF_u \times 40 \text{ mi}}{100} \right)
$$
12. The Calculations of the Combined Green House Gas Regulatory Rating of Off-vehicle Charge Capable Hybrid Electric Vehicles

12.1 The combined Greenhouse Gas (GHG) emissions value is determined by the following equation.

\[\text{GHG}_{\text{PHEV, combined}} = 0.55 \times (\text{GHG}_{\text{urban}}) + 0.45 \times (\text{GHG}_{\text{highway}}) \]
(Eq. 1)

12.2 The urban GHG emissions value for off-vehicle charge capable hybrid electric vehicles is calculated using the following equations.

12.2.1 The urban GHG emissions value is determined by the following equation.

\[
\text{GHG}_{\text{urban}} = \sum_{i=1}^{N_{\text{urban}}} (\text{UF}_i) \times \left(\frac{Y_{\text{CD},i}}{D_i} + \text{GHG}_{\text{cd,AC},i} \right) - \sum_{i=1}^{N_{\text{urban}}} (\text{UF}_i) \times \text{G}_{\text{upstream}} + \left(1 - \sum_{i=1}^{N_{\text{urban}}} (\text{UF}_i) \right) \times \left(\text{Y}_{\text{cs,urban}} \right)
\]
(Eq. 2)

Where,

- \(\text{GHG}_{\text{urban}} \) = Rated urban GHG emissions for PHEV, in gCO₂e/mile
- \(i \) = Number of charge-depleting urban test cycle
- \(N_{\text{urban}} \) = Total number of urban test cycles in charge depleting to charge sustaining range \((R_{\text{cdtcs}}) \)
- \(\text{UF}_i \) = Utility factor for urban test cycle \(i \)
- \(Y_{\text{CD},i} \) = Mass emissions of CO₂ in grams per vehicle mile, for the “\(i \)”th test in the charge depleting test
- \(D_i \) = Distance of the “\(i \)”th urban test cycle, in miles.
- \(\text{GHG}_{\text{cd,AC},i} \) = Rated GHG emissions for test cycle \(i \), in gCO₂e/mile
- \(\text{Y}_{\text{cs,urban}} \) = Weighted mass emissions of CO₂ in grams/mi of the charge sustaining test.
- \(\text{G}_{\text{upstream}} \) = Gasoline upstream factor = 0.25 * \(\text{GHG}_{\text{target}} \).

12.2.2 The Charge Depleting to Charge Sustaining Range \((R_{\text{cdtcs}}) \) is the total number of cycles driven at least partially in charge depleting mode times the cycle distance. Cycles meets charge sustaining criterion are not included in the \(R_{\text{cdtcs}} \). The \(R_{\text{cdtcs}} \) includes the transitional cycle, where the vehicle may have operated in both depleting and sustaining modes.

12.2.3 The utility factors for urban and highway cycles are provided in the following table.
Utility factors for each PHEV drive cycle test with charge-depletion operation

<table>
<thead>
<tr>
<th>Test cycle number</th>
<th>Test cycle utility factor</th>
<th>Urban, U_{Fi}</th>
<th>Highway, U_{Fj}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.176</td>
<td>0.233</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.141</td>
<td>0.172</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.112</td>
<td>0.127</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.091</td>
<td>0.095</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.074</td>
<td>0.071</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.059</td>
<td>0.054</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.049</td>
<td>0.041</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.039</td>
<td>0.032</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.033</td>
<td>0.025</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.027</td>
<td>0.020</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.023</td>
<td>0.017</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.019</td>
<td>0.013</td>
</tr>
</tbody>
</table>

12.2.4 This charge-depleting GHG rate from electricity use in each test cycle is defined by the following equation:

$$GHG_{cd,AC,i} = GHG_{grid} \times E_{cd,AC,i}$$

(Eq. 3)

Where,

$GHG_{cd,AC,i}$ = Rated GHG emissions for charge-depleting PHEV, in gCO$_2$e/mile

$E_{cd,AC,i}$ = Urban or highway charge depleting electricity use, in kWh/mile

GHG_{grid} = Lifecycle California electricity GHG intensity, 270 gCO$_2$e/kWh

12.2.5 The urban or highway charge depleting electricity use is defined by the following formula:

$$E_{cd,AC,i} = \frac{E_{cd,DC,i}}{\sum_{i=1}^{N} E_{cd,DC,i}} \times E_{cd,AC,total}$$

(Eq. 4)

Where,

N = Total number of test cycles in the charge depleting to charge sustaining range (R_{cdtcs}) of the urban or highway charge depleting test.

$E_{cd,AC,i}$ = AC kWh consumed in the “i”th cycle of the charge depleting test.

$E_{cd,DC,i}$ = Depleted DC energy for the “i”th cycle in the charge depleting test. It is defined in section F.3.4 of these test procedures.

$E_{cd,AC,total}$ = Charge-depleting net AC energy consumption is determined according to section F.3.4 of these test procedures.
12.2.6 The $Y_{cs.urban}$, which is the weighted CO2 mass emissions of the charge-sustaining test, is determined by the following equation, which can be found in section F.5.5 of these test procedures.

\[
Y_{CS.Urban} = 0.43 \frac{Y_C}{D_C} + 0.57 \frac{Y_H}{D_H}
\]
(Eq. 5)

Where,

$Y_{CS.Urban}$ = Weighted mass emissions of CO2 in grams/mi of the charge sustaining test.

Y_C = Mass emissions as calculated from the cold start UDDS, in grams per cycle.

Y_H = Mass emissions as calculated from the hot start UDDS, in grams per cycle.

D_C = The measured driving distance from the cold start UDDS, in miles.

D_H = The measured driving distance from the hot start UDDS, in miles.

12.3 The highway GHG emissions value for off-vehicle charge capable hybrid electric vehicles is calculated using the following equation.

\[
GHG_{highway} = \sum_{j=1}^{N_{highway}} \left(U_{F_j} \right) \left(\frac{Y_{CD,j}}{D_j} + GHG_{cd,AC,j} \right) - \sum_{j=1}^{N_{highway}} \left(U_{F_j} \right) \cdot G_{upstream} + \left(1 - \sum_{j=1}^{N_{highway}} \left(U_{F_j} \right) \right) \cdot \left(Y_{cs.highway} \right)
\]
(Eq. 7)

Where,

$GHG_{highway}$ = Rated highway GHG emissions for PHEV, in gCO2e/mile

j = Number of charge-depleting highway test cycle

$N_{highway}$ = Total number of highway test cycles in charge depleting to charge sustaining range (R_{cdtcs})

U_{F_j} = Utility factor for highway test cycle j (see Table 1)

$Y_{CD,j}$ = Mass emissions of CO2 in grams per vehicle mile, for the “j”th test in the charge depleting test

D_j = Distance of the HFEDS cycle, in miles.

$GHG_{cd,AC,j}$ = Rated GHG emissions for test cycle j, in gCO2e/mile (see Eq. 3)

$Y_{cs.highway}$ = Mass emissions of CO2 in grams/mi of the highway charge sustaining emission test, which can be found in section F.6.3.3 of these test procedures.

$G_{upstream}$ = Gasoline upstream factor 0.25 * GHG_{target}
H. Off-Vehicle Charge Capable Hybrid Electric Vehicle Exhaust Emission Test Sequence.

[This page left intentionally blank for formatting purposes.]
Off-Vehicle Charge Capable HEV Exhaust Emissions Test Sequence

* Equivalent to within ± 1% of AC energy used to charge battery to full state of charge

Start

Drain & Fuel

Cold Soak 6 hours

Vehicle Preconditioning: 1 CS UDDS minimum

Drain & Fuel

12 – 36 hour cold soak, charge, canister preconditioning

Urban Charge Depleting Range Test

12 – 36 hour cold soak, canister preconditioning

Urban Charge Sustaining Emission Test

12 – 36 hour cold soak, charge and record energy

Highway Charge Depleting Range Test

Is CS \(E_{cd} \) Equivalent* to Urban CD range test?

Y

Charge and record energy

Discharge

12 – 36 hour cold soak

Highway Cold Start Charge Sustaining Emission Test

US06 Charge Sustaining Emission Test

SC03 Charge Sustaining Emission Test

N

[This page left intentionally blank for formatting purposes.]
Example of an Off-Vehicle Charge Capable HEV with AER and Blended Operation Undergoing the Urban Charge Depleting Range Test

Charge Depleting Cycle Range, \(R_{cdc} = 22.5 \text{ mi} \)

Charge Depleting Actual Range, \(R_{cda} = 18 \text{ mi} \)

Charge Sustaining Operation

End of Test

+1% Fuel Energy Used for Upper Boundary (Cycles 4-5)

Avg SOC for CS Operation (Cycles 4-5)

-1% Fuel Energy Used for Lower Boundary (Cycles 4-5)

AER = 10 mi

EAER = 13.7 mi

Engine Start

Figure 1
Example of Urban End of Test Conditions for Off-Vehicle Charge Capable HEV

![Graph showing cycle ranges and fuel energy usage](Image)

Example of Urban End of Test Conditions for Off-Vehicle Charge Capable HEV with Transitional Range

![Graph showing cycle ranges, transitional range, and fuel energy usage](Image)
J. Advanced Technology Demonstration Program data requirements.

A vehicle placed in a California advanced technology demonstration program may earn ZEV credits even if it is not “delivered for sale” in accordance with the ZEV regulation section C.7.4. Approval by the ARB’s Executive Officer is required for Advanced Technology Demonstration Program credits. The following data shall be provided in order to evaluate applications for an Executive Order:

1. Project Description
 (a) General description
 (b) Goal
 (c) Specific objectives (e.g. durability tests, customer marketability)
 (d) Location (include state, city, and agency/organization)

2. Vehicle data
 (a) Model
 (b) Model year
 (c) Date placed in program
 (d) Vehicle Identification Number (VIN)

3. Vehicle specifications
 (a) Passenger car (PC) or light duty truck (LDT)
 (b) Curb weight – pounds (lbs)
 (c) Payload (lbs)
 (d) City/highway range – miles (mi)
 (e) Estimated fuel economy or EPA fuel economy city/highway – miles per gallon (mpg)
 (f) Fuel type
 (g) Refueling time
 (h) Electric motor output – kilowatts (kW)
 (i) Hybrid energy storage; type, capacity and peak power
 (j) For Battery Electric Vehicles and hybrids – fuel fired heater (yes/no)
 (k) For Fuel Cell Vehicles (FCVs), fuel cell stack: type, peak output, manufacturer and estimated design life.