Heavy-Duty Hybrid Vehicles
Technology Assessment

April 22, 2015
Diamond Bar, California
Overview

- Background and Improving Fuel Economy
- Technologies Evaluated
- Costs/Economics
- Conclusions
- Contacts, Next Steps
Heavy-Duty Hybrids In California Today, Improving Fuel Economy
Background

- Over 1,800 heavy-duty hybrid vehicles in CA*
 - Many Funded Through HVIP
 - Primarily Hybrid Electric Vehicles (HEV);
 - More Recently Hydraulic Hybrid Vehicles (HHV) and Plug-in Hybrid Electric Vehicles (PHEV)

- Fuel Economy: Driver for hybrids

- Industry Manufacturers
 - Vehicle OEMs: Daimler, Freightliner, Hino, Kenworth, Mack, Volvo, Navistar, PACCAR, Peterbilt

*Data from HVIP and Transit Fleet Rule reporting database
Hybrid Performance—Improving Fuel Economy

- Fuel Economy
 - Duty-cycle dependent
 - High kinetic intensity duty cycles most beneficial
 - Transient, stop-and-go
 - Improvement range from 10% – 70%
 - Mild Hybrids: 10% – 20%
 - Full Hybrids:
 - Parallel Hybrids: 20% – 50%
 - Series Hybrids: 30% – 70%
Technologies Evaluated

Types of Hybrids, Common Elements, Emissions
Many Types of Hybrids

- Mild vs. Full Hybrid
- Parallel vs. Series Hybrid
- Hybrid Electric
- Plug-in Hybrid Electric
- Hydraulic Hybrid
- Catenary
Hybrids– Bridging Technology

- Bridging technologies to BEVs, Fuel Cell HDVs
- Components
 - Battery
 - Electric motor
 - Control System
- Manufacturing
 - Modular designs
 - Improve Efficiency
 - Lower Cost
 - Integration
Hybrid Performance–Emissions

- ARB and NREL: Chassis Dynamometer Testing Heavy–Duty Hybrid and Conventional Trucks
 - Performed at CE–CERT on 3–4 Cycles Each Vehicle (3–4 repetitions)

- Test Vehicles
 - MY 2010 or newer engines
 - Beverage delivery vehicles, parcel delivery vehicles, linen delivery vehicles – hybrid & conventional

- Hybrids showed CO₂ benefits, NOₓ increases
 - Results vary by duty cycle
 - Final report in progress now
Cost/Economics

Cost, Economics, Incentive Funding
Costs/Economics: Hybrids vs. Conventional

- Hybrids have higher capital costs:
 - Conventional: $40,000 – >$160,000
 - Hybrids: $50,000+
- Savings
 - Improved fuel efficiency, maintenance
- Role of incentives
 - Reduce capital costs, accelerate technology adoption
- Return on Investment
 - Payback period: sometimes <=5 years
 - Hybrid cost expected to come down as volume increases
 - 50 percent reduction by 2020 predicted
Heavy-Duty Hybrid Vehicle Key Technologies

<table>
<thead>
<tr>
<th>Degree of Hybridization</th>
<th>Key Technologies</th>
<th>Potential GHG/FE Reduction (per Vehicle) from Conventional Baseline</th>
<th>Incremental Cost from Conventional Baseline</th>
</tr>
</thead>
</table>
| Micro Hybrid | • Limited engine start/stop
 • Limited regenerative braking | <= 10% | <= $10,000 |
| Mild Hybrid | • Engine start/stop
 • Increased regenerative braking
 • Electric motor provides supplemental tractive power
 • Limited level of electric only operation
 • More sophisticated controllers | 10% - 20% | $8,000-$25,000 |
| Full Hybrid | • Extensive integration of hybrid components
 • Engine start/stop – More than Mild
 • Extensive regenerative braking
 • Electric motor provides more supplemental (parallel) or sole tractive power (series)
 • Increased level of electric only operation
 • Electrification of auxiliary components
 • Most sophisticated controllers | 20% - 70% | $20,000-$220,000 |
Heavy-Duty Hybrid Vehicle Class
Hybrid Technologies and Availability

<table>
<thead>
<tr>
<th>VEHICLE CLASS</th>
<th>KEY HYBRID TECHNOLOGIES</th>
<th>AVAILABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2B/3 Pick Ups and Vans</td>
<td>• Parallel electric</td>
<td>NOW</td>
</tr>
<tr>
<td>Class 3 to 6 Straight Box Truck</td>
<td>• Parallel</td>
<td>NOW</td>
</tr>
<tr>
<td></td>
<td>• Series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Electric and hydraulic</td>
<td></td>
</tr>
<tr>
<td>Class 3 to 6 Bucket Truck</td>
<td>• Parallel Electric</td>
<td>NOW DEMONSTRATION</td>
</tr>
<tr>
<td></td>
<td>• Series Electric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PHEV</td>
<td></td>
</tr>
<tr>
<td>Class 8 Tractor Trailer</td>
<td>• Mild parallel with idle reduction</td>
<td>UNDER DEVELOPMENT</td>
</tr>
<tr>
<td>Class 8 Refuse Hauler and Urban Transit Bus</td>
<td>• Parallel</td>
<td>NOW</td>
</tr>
<tr>
<td></td>
<td>• Series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Electric and hydraulic</td>
<td></td>
</tr>
</tbody>
</table>
Hybrid Vocational Payback Chart
Class 8 Beverage Delivery Truck – Case Study *
(Based on Today’s Costs)

“F” = Fuel savings, “M” = Maintenance Savings “I” = Incentives
Conclusions

Hybrid Conclusions and Contacts
Heavy-Duty Hybrids: Next Steps for ARB

- Continue to work with manufacturers to address certification, OBD issues
- Continue to provide incentives to cover some or all of incremental cost, reduce payback period
- Outreach/training to inform fleet operators of the current hybrid benefits and limitations
 - Operational and maintenance savings, best duty cycles
- Innovative Technology Regulation
 - Near-term ARB certification and aftermarket part approval flexibility
Heavy-Duty Hybrid Conclusions

- Many types of hybrids
 - Mild to full
 - Parallel more widely used now, especially for higher speed delivery routes
 - Series promising longer-term applications for stop-and-go delivery routes
- Ideal vocations for hybrids are highly transient, high-power demand, high idling time
 - Package delivery, refuse haulers, urban transit bus
- Hybrids improve fuel economy
 - 10–20% for mild, up to 70% for full
 - Payback currently > 5 years for most vocations
- Hybrids reduce CO$_2$ but can increase NO$_x$
 - Need to improve system integration, certification requirements to prevent NO$_x$ increases
 - ARB’s interim certification procedures for HDVs
Heavy-Duty Hybrid Conclusions (continued)

- Goals to improve
 - Electric motors/generators, inverter/power electronics, energy storage systems, hybrid systems optimization, electrified power accessories
 - Hydraulic energy conversion devices, hydraulic energy storage, hydraulic controls

- Hydraulic hybrid technology has great potential
 - Lower cost compared to some other hybrids
 - Fuel savings + reduced maintenance = shorter payback

- Hybrid technologies have co-benefits for zero-emission technologies
 - Series hybrid technology
 - PHEV
 - Batteries
 - Electric motors
Next Steps and Contacts

Next Steps

- Technology assessment reports to be released for review
- Final NREL report on vocational hybrid truck testing to be released

Contacts

- Truck Sector Lead:
 - Kim Heroy-Rogalski kheroyro@arb.ca.gov
 - (916) 327–2200

- Hybrid Truck Lead:
 - Robert Nguyen rnguyen@arb.ca.gov
 - (916) 327–2939
Conclusions

Phase 2 Overall Conclusions
Phase 2 Conclusions

- Phase 1/Phase 2 together can provide 30% – 40%+ reduction in fuel consumption
- Phase 2 technologies will reduce fuel costs and provide economic benefits
- Many Phase 2 technologies pay back quickly – within 2 years – especially for high VMT applications
- Hybrid technologies take longer to payback
- Hybrids provide a pathway to zero-emission technology
Phase 2 Conclusions (continued)

- NO\textsubscript{x}/CO\textsubscript{2} tradeoff can be overcome: Phase 2 technologies consistent with effective, lower NO\textsubscript{x} standard

- Stringent, national Phase 2 program will benefit the environment and fleets

- ARB expects to work cooperatively with U.S. EPA to develop lower NO\textsubscript{x} standard post-Phase 2

- If federal program doesn’t meet our needs, ARB will develop California–specific requirements for GHG/NO\textsubscript{x} reductions

- Action needed ASAP
Questions?