Cargo Handling Equipment Technology Assessment

September 9, 2014 Diamond Bar, California

California Environmental Protection Agency

Overview

Background

Technologies Evaluated

- Applicable Equipment Type and Development Status
- Benefits:
 - Fuel Economy
 - Emissions Reduction (Tail-pipe)
 - Operational Benefits
- Costs
- Summary
- Contacts

Background - What are CHE?

- Cargo Handling Equipment (CHE) operate primarily at:
 - Ports
 - Rail yards
 - Goods distribution centers
- Includes diverse types of equipment:
 - Yard trucks, automated guided vehicles (AGV)
 - Container handling equipment (including cranes)
 - Bulk handling equipment

Yard Truck

RTG Crane

Forklift

Loader

Top Handler

Reach Stacker

Port/Rail CHE Primarily Diesel But Alternative Technologies In-Use

- Yard trucks
 - LNG
 - Propane
 - Gasoline
 - Electric (demonstration)
- RTG and RMG cranes
 - All–electric
 - Diesel-electric hybrid
- Forklifts
 - Propane
 - Electric
 - Gasoline

Distribution Center CHE Primarily Low Emission Technology

- Electric, propane, or H₂ fuel cell:
 - Forklifts
 - Pallet jacks, walkies
 - Other lifts (man, scissors, other)
 - Sweepers
- Diesel
 - Limited yard trucks

Background - Regulatory Environment: Port/Intermodal Rail

- CHE Regulation:
 - Requires PM emissions equivalent to on-road 2007 or later, Tier 4 off-road, or DPF-equipped
 - All in-use equipment, as of 1/1/2007, either retired, replaced, or retrofitted
 - New CHE must meet current emission standards and be DPFequipped if not Tier 4
- ~4,600 CHE engines at ports and intermodal rail yards
 - >75 percent of in-use CHE in compliance 100% by 2017
 - Equipment useful life:
 - Yard trucks: 7 years
 - Container handling equipment: 11-12 years
 - Bulk handling equipment and forklifts: 20 years

Background - Regulatory Environment: Non-intermodal Rail/Distribution Centers

- In-Use Off-Road Equipment Regulation:
 - Applicable to diesel-fueled off-road equipment
 - Fleet rule: requires reductions in PM and NOx fleet emissions
 - Requires equipment registration, labeling, reporting
 - Restricts addition of older equipment to fleets
- LSI Fleet Regulation:
 - Applicable to:
 - Gasoline-, propane-, and CNG-fueled engines (>1 liter and >25 hp)
 - Forklifts, industrial tow tractors, airport ground support equipment, and sweeper/scrubbers
 - Fleet rule: requires reductions in NOx + HC fleet emissions with stricter requirements for forklifts
 - Electric equipment included in fleet size determinations and fleet average calculations
 - Requires recordkeeping

Background – Technology Performance Requirements

- Demonstrate operational performance:
 - Durability and reliability comparable to diesel
 - Operate for full 8 to 10 hour shift without down time
 - Quick shift to shift turn around with short refueling/recharging/battery exchange time
 - Equipment operator acceptance

Technologies Evaluated

- Hybrid (electric and hydraulic)
- All-electric (battery and grid source)
- Alternative fuels (H₂, natural gas (LNG/CNG))
- Maglev
- Lower emissions diesel engine
- System efficiency improvements
- Maintenance/reduced deterioration

Hybrids: Equipment powered by two or more energy sources

- Diesel-electric hybrid:
 - Energy sources:
 - Diesel engine
 - Electric storage device (i.e. battery or capacitor)
- Diesel-hydraulic hybrid:
 - Energy sources:
 - Diesel engine
 - Pressure storage device (i.e. hydraulic fluid accumulator)
- Diesel-Electric Plug-in Hybrid
 - Energy sources:
 - Diesel engine
 - Electric storage device (i.e. battery or capacitor)
 - Electricity from grid
- Fuel Cell–Electric Hybrid
 - Energy sources:
 - Fuel cell
 - Electric storage device (i.e. battery or capacitor)

Hybrid Technologies – Development Status and Application

- Diesel-Electric Hybrid
 - Commercially available for:
 - Cranes: RTG, shuttle carrier, straddle carrier
 - Bulk handling: excavator, dozer, loader
 - Container handling: reach stacker
- Diesel-Hydraulic Hybrid
 - Commercially available for:
 - Bulk handling: excavator
- Diesel-Electric Plug-in Hybrid
 - Yard truck under development
- Fuel Cell–Electric Plug–in Hybrid
 - Yard truck under development

Hybrid Performance-Fuel Economy

- Duty-cycle dependent
- Favors high energy intensity activities
 - Lifting and lowering containers
 - Acceleration and braking
- Fuel economy improvement ranges
 - Yard trucks: 15 to 20%
 - Cranes: 40 to 60%
 - Container handling equipment: 30%
 - Bulk handling equipment: 15-40%

Hybrid – Benefits

- Emissions benefits dependent on engine duty cycle
 - GHG Emissions (e.g., CO₂)
 - CO₂ benefits consistent with fuel economy benefits
 - Criteria Pollutant Emissions (e.g., NO_x, PM)
 - NO_x variable
 - PM up to 60% reduction difficult to measure due to high DPF effectiveness
- Operational benefits
 - Reduced engine noise
 - Can operate for full shifts with quick shift to shift turn around
- Capital costs ~10 to 20 percent higher for most

All-Electric Technologies -Development Status and Application

- Rechargeable battery
 - Commercially available for:
 - Forklifts
 - Lift capacity up to 40k lbs
 - Larger capacities available as special or
 - Automated guided vehicles (AGV)
 - Under development for:
 - Yard trucks
- Grid–sourced
 - Commercially available for:
 - RTGs, RMGs, Automated Stacking Cran
 - Using bus bar and power reel technology

All-Electric Infrastructure Requirements

- Electrical supply infrastructure (i.e., substations, transformers, underground conduit, etc.)
 - Redundant pathways to substation
 - Emergency power source
- Rechargeable battery specific
 - Recharging stations
 - Battery exchange accommodations
- Grid-sourced specific
 - Busbar, or
 - Channel for power reel cable

All-Electric - Benefits

- Emissions
 - GHG Emissions (e.g., CO₂)
 - Zero tailpipe
 - Power generation emission increase associated with increase electrical power use
 - Criteria Pollutant Emissions (e.g., NO_x, PM)
 - Zero tailpipe
 - Power generation emission increase associated with increased electrical power use
- Operational benefits
 - Facilitates automation
 - Increased durability and reduced maintenance
 - Eliminates diesel exhaust exposure

Costs: All-Electric vs. Conventional

Incremental capital costs:

- Rechargeable battery:
 - Fork lift
 - Lower lift capacities comparable to propane
 - High lift capacities ~40% higher than diesel

Grid-sourced:

Crane ~ 10% higher than diesel

Alternative Fuels - Development Status and Application

- Natural gas (LNG/CNG)
 - Commercially available for:
 - Yard trucks
 - Currently equipped with larger ISL G engine
 - Release of ISB G engine anticipated in 2016
 - Fork lifts
- H₂ fuel cell
 - Commercially available for:
 - Fork lifts
 - Commercially deployed in US since 2007
 - Approximately 8,000 in use in US with approximately 800 deployed in CA

Alternative Fuel Infrastructure Requirements

Refueling station:

- Fuel supply
- Fuel dispensing
- Fuel storage
- Fire suppression

Costs vary depending on facility size

Alternative Fuel –Benefits

- Emissions
 - GHG Emissions (e.g., CO₂)
 - NG TBD
 - H₂ zero tailpipe
 - Criteria Pollutant Emissions (e.g., NO_x, PM)
 - NG
 - PM reduction
 - In-use NO_x may be lower
 - H₂ fuel cell
 - Zero tailpipe
- Operational benefits
 - Eliminates diesel PM exposure
 - H₂ fuel cell eliminates multiple battery storage, charging, and exchange

Costs: Alternative-fueled vs. Conventional

- Natural Gas
 - Yard trucks
 - CNG ~\$125K
 - LNG ~\$135K
 - Diesel ~\$95K (On-road or Tier 4f)
 - Introduction of smaller ISB G engine will result in improved fuel efficiency and possible fuel cost benefit
- H₂ fuel cell
 - Forklifts
 - Incremental cost of ownership varies with facility operation:
 - Cost savings for fairly intensive warehouse and distribution operation
 - Capital equipment costs and fuel costs significantly higher than battery electric
 - Quick refueling provides economic savings in labor and facility space compared to battery exchange and charging
 - Estimated 10% cost saving for 60 units deployed in facility with 2-3 shifts per day for 6-7 days per week

Maglev – Development Status and Application

- Shanghai maglev train in commercial passenger operation since 2004
 - 19 miles
 - \$1.2B capital cost
- Maglev traditionally uses electromagnets for operation
- Maglev using permanent magnets and diesel engine propulsion has completed small-scale demonstration
- Two US projects planned
 - South Carolina airport and inland port
 - Washington multi-modal transportation

Maglev Infrastructure Requirements

Fixed rails

- Permanent magnet
- Electromagnet requires electric power source
- Port Angeles, Washington permanent magnet demonstration infrastructure built for

~\$5M/linear lane-mile

Maglev – Fuel Economy

- Permanent magnet rails eliminate energy for electromagnetic rails
- Vehicles propelled using forces generated from rotating magnetic discs on vehicle
- Energy source for spinning discs discretionary:
 - Diesel
 - All electric with on board energy storage
 - Micro-turbine
 - Fuel cell
- Forces required for propulsion low because wheel/rail friction losses eliminated with rail/wheel air gap
- ~95% reduction in diesel fuel use
- <1kWh power required per container-mile</p>

Maglev – Benefits

- Emissions dependent on energy source selected
 - Diesel GHG Emissions (e.g., CO₂)
 - ~95% reduction compared to diesel
 - Diesel Criteria Pollutant Emissions (e.g., NO_x, PM)
 - ~95% reduction in PM and NOx compared to conventional diesel

Lower Emissions Diesel Engine – Development Status

- ARB working with SouthWest Institute to test diesel engine efficiency strategies for on-road applications.
- Anticipate transfer to off-road diesel engines to follow on-road adoption by 3 to 5 years

Lower Emissions Diesel Engines – Emissions

- Benefits dependent on equipment duty cycle
- ▶ GHG Emissions (e.g., CO₂)
 - Reduced CO₂ consistent with fuel economy benefit realized
- Criteria Pollutant Emissions (e.g., NO_x, PM)
 - NO_x emission level targets: 0.02 g/bhp-hr

Automation - Development Status and Application

- Five automated container terminals in Asia and Australia, and five in Europe
- Two semi-automated ports in US (Virginia and New York)
- Two CA container terminals in process of automating

- LBCT's Middle Harbor to include all electric automated container handling from ship to drayage truck
- TraPac to include diesel-hybrid and electric equipment with semi-automated container handling

Automation Infrastructure Requirements

- Varies with automation system chosen
 - Automation software
 - Sensing device matrix embedded in yard
 - Electrical power infrastructure (i.e., substations, transformers, underground conduit, etc.)
 - Busbar or channel for power reel cable
 - Fiber optic cable
- Infrastructure costs on order of \$0.5B to \$1B depending on facility size and degree of automation

Automation – Benefits

Facilitates equipment electrification

- Zero tailpipe emissions
- Reduced equipment maintenance costs
- Increased safety
 - Separates workers from moving equipment
 - Reduces opportunity for human error
- Expedited container loading and unloading
 - Shorter dock times for mega-container ships
 - Incentive for increased ship visits

~ 30 to 40% operational cost savings (\$/TEU)

Maintenance/Reduced Deterioration - Development Status

Effective engine maintenance programs

- Emissions deterioration factors assume engines receive OEM specified maintenance
- SAE and mining industry studies demonstrate emissions degradation due to inadequate maintenance
- CHE Regulation requires annual CHE opacity monitoring at California ports and intermodal rail yards
 - Similar to on-road truck Periodic Smoke Inspection Program
 - Requires engines be serviced or repaired if fail opacity limits
 - Monitoring technology is proven and available

Maintenance/Reduced Deterioration-Fuel Economy

- Good vehicle maintenance practices provide performance benefits
 - Engine maintenance and repair
 - Maintaining recommended tire pressure, etc.
- DoE estimates up to 20% fuel efficiency benefit with a regular engine maintenance
 - Minimizes degradation of original vehicle performance

Maintenance/Reduced Deterioration -Emissions

- Emissions impacts dependent on engine technology and extent of engine maintenance program changes
- ► GHG Emissions (e.g., CO₂)
 - Improved engine performance/efficiency reduces:
 - CO₂
 - Black carbon
- Criteria Pollutant Emissions (e.g., NO_x, PM)
 - Reduced PM

Costs: Implementing Opacity monitoring Program

- Facility one-time costs for self-testing
 - Opacity monitoring equipment: \$5,500 \$9,000
 - Training: ~\$1,800/employee (class fee and labor)
- On-going costs
 - Testing: ~\$50/engine

Summary

- CHE new technology deployment dependent on:
 - Technology providing economic/competitive advantage
 - Successful technology demonstrations require:
 - Reliability/durability comparable to diesel
 - Operate for entire shift without down time
 - Quick shift to shift recharge/refuel/battery exchange
 - Incentive funding
 - Infrastructure availability
- Container terminals support implementation of automated systems using all-electric CHE
- Bulk terminals support development and use of hybrid and electric bulk-handling equipment

Team Contacts

Cargo Handling Equipment Technology Assessment Team:

- Kirk Rosenkranz
 - CHE Technology Assessment Lead
 - krosenkr@arb.ca.gov
 - (916) 327–7843
- Zhenlei Wang
 - Alternative fuels
 - zwang@arb.ca.gov
- Dimitri Stanich
 - Hybrid and Electric
 - dstanich@arb.ca.gov

- Cherie Rainforth
 - Manager of CHE Technology Assessment
 - crainfor@arb.ca.gov
 - (916) 327–7213
- Renee Littaua
 - Technology Assessment Lead
 - rlittaua@arb.ca.gov
 - (916) 324–6429