Heavy-Duty Hybrid Vehicles Technology Assessment

September 2, 2014 Sacramento, California

California Environmental Protection Agency

Overview

- Background
- Technologies Evaluated
- Key Performance Parameters/Performance Goals
- Costs/Economics
- Conclusions
- Contacts

Background

Heavy-duty Hybrids In California Today

Background

- Over 1,800 heavy duty hybrid vehicles in CA*
- Fuel Economy: Driver for hybrids
- Primarily Hybrid Electric Vehicles (HEV); More Recently Hydraulic Hybrid Vehicles (HHV) and Plug-in Hybrid Electric Vehicles (PHEV)
- Industry Manufacturers
 - Vehicle OEMs: Daimler, Freightliner, Hino, Kenworth, Mack, Volvo, Navistar, PACCAR, Peterbilt
 - Powertrain: Allison, Azure Dynamics, BAE, Eaton, Enova, Hino, Odyne, Parker Hannifin, Volvo
- Hybrid Technologies
 - Catalyst technology towards zero-emission HDVs
 - Improve technology/reduce costs
 - Market size/vehicle penetration
 - CO₂ and NOx emissions/Certification

Technologies Evaluated

Types of Hybrids, Common Elements

Hybrid Technologies Evaluated

- Mild Hybrid and Full Hybrid
- Series, Parallel & Series-Parallel Hybrids
- HEV
- HHV
- PHEV
- Micro-turbine Hybrids
- Catenary Hybrids

Mild Hybrid vs. Full Hybrid

Mild Hybrid

- Limited hybrid utilization
- Engine start/stop
- Regenerative braking

Full Hybrid

- More extensive integration
- Electric motor used as tractive power source (full or partial)
- Power vehicle electrical accessories
- Larger battery packs
- Engine start/stop
- Regenerative braking

Parallel Hybrid

- Both the internal combustion engine (ICE) and the electric motor have direct, independent connections to the transmission
- Either power source -or both together-can be used to turn the vehicle's wheels
- Smaller battery pack compares to series hybrid
- Often designed so that ICE provides power at high, constant speeds; the electric motor provides power during stops and at low speeds; and both power sources work together during accelerations
- Well-suited to improve the fuel economy of higher speed vocational vehicles

Parallel Hybrid

Series Hybrid

- Engine not directly linked to the transmission or wheels
- Energy produced from the engine converted to electric power by the generator which re-charges the energy storage device in order to provide power to one or more electric motors
- Electric motor system provides torque to turn the wheels of the vehicle and recharge batteries
- Engine can operate at a more optimum rate and can be switched off for temporary all-electric operation
- Well-suited for transit buses, refuse haulers
- Most promising technology to zero emission

Series Hybrid

Series-Parallel Hybrid

- Combines best aspects of series and parallel hybrids
- Either power source -or both together-can be used to turn the vehicle's wheels
- Utilize series advantage at low speed and parallel advantage at higher speed through power split and/or electronic controller
- From standing start or at low speed operation: ICE is turned off and electric motor propels the vehicle
- Normal operation: ICE power is split, providing tractive power and generate electricity – electric motor also assist with tractive power
- Full-throttle operation: battery provides extra energy
- Well suited for both city, stop-and-go driving and highway high constant speeds
- Efficient Drivetrains, Inc. (MDV application, demonstration bus project in China)

Series-Parallel Hybrid

Hybrid Electric Vehicles

Beverage Delivery (Parallel)

Class 7/8 day cab bulk transport, and day cab and straight-truck side-loader local delivery

Food Distribution (Parallel)

Class 7/8 day cab bulk transport, straight-truck and class 5 step van local delivery

Parcel Delivery (Parallel)

Class 5 step van local delivery

Hino Class 5 delivery/ local delivery food distribution hybrid box truck

Transit Bus (Series)

Hydraulic Hybrid Vehicles

- Could be designed as either series or parallel hybrid
- Energy storage via hydro-pneumatic accumulators
- Energy stored: hydraulic fluid is pumped into a high-pressure accumulator and compress an inert gas, typically N₂
- Energy released: Inert gas expands and pushes hydraulic fluid through the actuator into a low-pressure reservoir

Hydraulic Hybrid Vehicles

Hydraulic Hybrid Vehicles

Series Hybrids

Parallel Hybrid

Plug-in Hybrid Electric Vehicles

- Shares characteristics of conventional hybrids—draws motive power from a battery and ICE
- Differs from conventional hybrid in that the vehicle can be recharged from an external source of electricity for motive power
- Can operate in all electric mode

Plug-in Hybrid Electric Vehicles

- Operation modes
 - Charge depleting mode-operates exclusively on electric power
 - Charge sustaining mode- combines the operation of the vehicle's two power sources
- Examples of applications:
 - Bucket/Utility trucks
 - Dump trucks
 - Refrigeration trucks
- Some features of PHEV applications:
 - Partial all-electric operations
 - Accessories electrification, ePTO
 - Depot and/or sensitive (e.g., noise, exposure,) operating areas

Plug-in Hybrid Electric Vehicles

Microturbine Hybrids

- Utilizes microturbine generators to charge batteries for vehicle power
- Can operate on battery power alone or a combination of microturbine and battery power
- Turbines are fuel neutral, more fuel efficient compared to ICEs and are lighter in weight (extends the electric range)

Microturbine Hybrids

- Current heavy-duty examples:
 - Wrightspeed Route truck (MHD, refuse and recycling application)

WAVE truck
 (HHD application-concept only)

Catenary Hybrids

- Heavy-duty hybrid electric trucks with the ability to access overhead catenary power sources
- Operational flexibility-provides zero emission operations in targeted areas while still providing the range needed for long haul trucking
- Utilizes existing and proven technologies
 - Catenary systems: light rail, city buses, mining equipment
- Unlimited zero emission range when connected to a catenary system
- Space constraints for catenary infrastructure

Catenary Hybrids

Common Elements of Hybrids

- A drivetrain that can recover and reuse energy in addition to the main engine
- An energy storage system (e.g., batteries, hydraulic accumulators)
- Control electronics
- Regenerative braking (over 70% energy recovery)
- Best applications: heavy urban start-stop, highly transient duty cycles (e.g., refuse haulers, transit buses, package delivery)

Key Performance Parameters/Performance Goals

Fuel Economy, Emissions, Performance Goals

Hybrid Performance-Fuel Economy

- Fuel Economy
 - Duty-cycle dependent
 - High kinetic intensity duty cycles most beneficial
 - Transient, stop-and-go
 - Improvement range from 10% 70%
 - Mild Hybrids: 10% 20%
 - Full Hybrids:
 - Parallel Hybrids: 20% 50%
 - Series Hybrids: 30% 70%
- Motive Power Source Efficiency
 - On-road heavy-duty diesel engines: 40% –50%
 - Electric motors: >90%

Hybrid Performance-Emissions

- Emissions need to be carefully scrutinized
- ▶ GHG Emissions (e.g., CO₂)
 - Positive benefits reduced CO₂
 - Fuel economy improvement cycle dependent
- Criteria Pollutant Emissions (e.g., NO_x)
 - Emissions impacts cycle dependent
 - Potential to reduce NO_x emissions
 - Current hybrid technologies: in some cases NO_x increased
 - Engine operating at non-optimum torque map
 - Lower exhaust temperatures affect SCR performance
 - Series hybrids good potential for addressing NO_x issues
- System Integration Crucial for controlling both GHG and NO_x emissions

Hybrid Performance-Emissions

- ARB and NREL: Chassis Dynamometer Testing Heavy-Duty Hybrid and Conventional Trucks
 - Performed at CE-CERT on 3-4 Cycles Each Vehicle (3-4 repetitions)
- Test Vehicles
 - MY 2010 or newer engines
 - Beverage delivery vehicles, parcel delivery vehicles hybrid & conventional

ARB and NREL: Chassis Dynamometer Testing Heavy-Duty Hybrid and Conventional Trucks

Summary of Preliminary Test Results - Parcel Delivery Drive Cycle

Average Emissions and Fuel Consumption Over the Cycles (g/mi) - Conventional				
Cycle	NO_x	CO ₂	mpg	% FE
EPA GHG	0.52	712	13.25	
UDDS	0.84	819	11.46	
HTUF 4	1.63	1011	9.27	
NY Comp	3.40	1308	7.12	
Average Emissions and Fuel Consumption Over the Cycles (g/mi) - Hybrid				
EPA GHG	1.07	733	13.24	0.0 %
UDDS	2.88	723	13.55	18.2 %
HTUF 4	1.96	800	12.33	33.0 %
NY Comp	5.92	873	11.21	57.4 %

Hybrid Fuel Economy: Function of Duty Cycles

UDDS

HTUF 4

NY Comp

Advanced Tech MD/HD Applications Potential Pilot Deployments

Performance Goals for Advanced Heavy-Duty Hybrid Propulsion Systems

- Hybrid Electric Vehicles
 - Drive unit optimization, cost and integration
 - Engine downsizing
 - Engine and transmission integration
 - Emission control and SCR dosing optimization
 - Engine controls optimization
 - Energy storage system reliability, weight and cost
 - Electrified Power Accessories
- Hydraulic Hybrid Vehicles
 - High-pressure energy conversion/storage devices
 - Hydraulic controls

Cost/Economics

Cost, Economics, Incentive Funding

Costs: Hybrids vs. Conventional

- Incremental costs:
 - Hybrids: \$20,000 \$80,000
 - Hino: \$18,000 (\$60,000 conventional, \$78,000 hybrid)
 - Electric: \$40,000 >\$120,000
- Actual costs:
 - Conventional: \$40,000 >\$160,000
 - Hybrids: \$60,000 ???

Economics

- Costs
 - Higher capital costs
- Savings
 - Improved fuel efficiency 10 to 20% FE
 - Maintenance
- Role of incentives
 - Reduce capital costs
 - Accelerate technology adoption
- Return on Investment
 - Payback period >5 years

Hybrid Trucks - Break-Even Cost Analysis (Future 2015-2020 Technology)

- 2012 NAS study estimated break-even periods
- ▶ 47% cost reduction assumed by 2020
- ~5 year or less payback for
 - Refuse haulers,
 - Mild hybrid in Class 8 tractor trailer
 - Class 3–6 straight box truck
- Other applications had longer payback
 - Incentives and/or requirements would be needed

Hybrid Trucks - Break-Even Cost Analysis (Future 2015-2020 Technology)

Category	Description	Fuel Consumption Benefit (%)	Forecasted Capital Cost (\$)	Annual Mileage	Typical MPG	Payback Period (yrs)
Class 2b Pickups and Vans	Parallel electric hybrid	18	\$9,000	27,500	12.5	7.6
Class 3 to 6 Straight Box Truck	Parallel electric hybrid	30	\$20,000	41,250	9.4	5.1
Class 3 to 8 Bucket Truck	Parallel electric hybrid w/ electric power take off	40	\$30,000	13,300	9.4	17.7
Class 8 Tractor Trailer Truck	Mild parallel hybrid with idle reduction	10	\$25,000	137,500	5.75	3.5
Urban Transit Bus w/ fed subsidy of incremental cost	Series electric hybrid	35	\$220,000 (\$22,000)		6.0	9.1
Class 8 Refuse Hauler	Parallel electric hybrid	30	\$39,000	50,000	4.25	3.7
Class 8 Refuse Hauler	Parallel hydraulic hybrid	25	\$30,000	50,000	4.25	3.4
Class 8 Refuse Hauler	Series hydraulic hybrid	50	N/A	50,000	4.25	N/A

Source: National Academy of Sciences, "Review of the 21st Century Truck Partnership, Second Report, p74, 2012. "Forecasted cost" assumes 47% cost reduction by 2020 from current costs

Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP)

- Vouchers to help California fleets purchase or lease qualified hybrid or zero-emission trucks and buses
 - Provides about ½ incremental cost
- Base Vehicle Incentive
 - The first three HVIP vouchers received by a fleet, inclusive of previous funding years, are eligible for up to \$10,000/vehicle

Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP)

- Vehicle Voucher Enhancements
 - A hybrid vehicle above 14,000 lbs. which has been ARB-certified is eligible for an additional \$15,000 to \$20,000 voucher amount
 - An additional \$5,000 to \$10,000 is provided for hybrid school buses purchased by public school districts
 - Plug-in electric hybrid vehicles and hydraulic hybrid vehicles that demonstrate at least a 40 percent fuel economy benefit relative to their baseline vehicle (non-hybrid) counterparts may receive an additional \$5,000 to \$10,000 voucher

Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP)

Voucher Enhancements for Hybrid Vehicles with ARB-Certified OBD

Vehicle GVWR	Total Number of Deficiencies				
	2013/2014 MY		2015 MY		
	10+	<10	9-14	5-8	<u><</u> 4
14,001 - 26,000 lbs	\$12,000	\$16,000	\$8,000	\$12,000	\$16,000
26,001 + lbs	\$16,000	\$20,000	\$12,000	\$16,000	\$20,000

HVIP Vouchers Issued by Hybrid Vehicle Type

Fiscal years covered Year 1(2009-10) to Year 4 (2013-14)

Vehicle Type	Vouchers	Vehicle Type	Vouchers
Parcel delivery	503	Tow truck	68
Beverage delivery	408	School bus/other bus	33
Other truck	263	LP pick-up & delivery	27
Food distribution	55	Refuse hauler	23
Uniform & linen delivery	112	TOTAL	1,492*

^{*75%} of total vouchers issued Data as of July 2014

Hybrids and Freight Applications

PROJECT	DESCRIPTION	PROJECT TIME FRAME
Medium-Duty Electric and Hybrid Electric Trucks	Currently operating MD delivery trucks. UPS (100 hybrid electric trucks Sac/San Bern.), Staples (53 all electric, 30 in LA), Pepsico Frito-Lay (275 all electric, 105 in CA), PG&E (4 utility), Coca Cola (15 all electric refrigerated delivery trucks)	2014-15
Volvo Plug-In Hybrid-Electric Drayage Truck	Build a Class 8 heavy-duty plug-in hybrid drayage truck	2015–16

Hybrids and Freight Applications

PROJECT	DESCRIPTION	PROJECT TIME FRAME
International Rectifier Plug-In Hybrid Electric Vehicle (PHEV) Conversion	Convert 2007 Class 8 Semi- Trailer Tractor for Drayage Duty into PHEV	Q2 2016
Siemens Catenary Truck Project	Integrate pantograph into various trucks: Volvo Class 8, TransPower natural gas-electric hybrid and battery-electric truck; 1-mile demo catenary	Q4 2016

Conclusions

Conclusions and Contacts

Role of HD Hybrid Technology

- HD hybrid systems are integral to technology roadmap
- Advancements in both HEV and battery technologies have cobenefits for zero and near-zero heavy-duty trucks
 - Fuel cell and battery EVs
- Series HEV technology highest potential
 - All-electric operation
 - Address NO_x issues

Conclusions

- Many types of hybrids
 - Mild to full
 - Parallel more widely used now, especially for higher speed delivery routes
 - Series promising longer-term applications for stop-and-go
- Ideal vocations for hybrids are highly transient, highpower demand, high idling time
 - Package delivery, refuse haulers, urban transit bus
- Hybrids improve fuel economy
 - 10–20% for mild, up to 70% for full
 - Payback currently > 5 years for most vocations
- Hybrids reduce CO₂ but can increase NO_x
 - Need to improve system integration, certification requirements to prevent NO_x increases
 - Series hybrid able to mitigate the NO_x impact

Conclusions (continued)

- Goals to improve
 - Electric motors/generators, inverter/power electronics, energy storage systems, hybrid systems optimization, electrified power accessories
 - Hydraulic energy conversion devices, hydraulic energy storage, hydraulic controls
- Hydraulic hybrid technology has great potential
 - Lower cost compared to some other hybrids
 - Fuel savings + reduced maintenance = shorter payback
- Hybrid technologies have cobenefits for zeroemission technologies
 - Series hybrid technology
 - PHEV
 - Batteries

Contacts

- Truck Sector Lead:
 - Kim Heroy-Rogalski kheroyro@arb.ca.gov
 - (916) 327–2200
- Hybrid Truck Lead:
 - Robert Nguyen rnguyen@arb.ca.gov
 - (916) 327–2939
- Team Members:
 - Mitzi Magtoto <u>mmagtoto@arb.ca.gov</u>
 - Lynsay Carmichael <u>lcarmich@arb.ca.gov</u>
- Submit comments by Oct. 1 to: http://www.arb.ca.gov/msprog/tech/comments. httm