

#### COMMERCE-MECHANICAL FACILITY TAC EMISSIONS INVENTORY

Prepared for Burlington Northern and Santa Fe Railway Co Operation Office Building, 2nd Floor 2600 Lou Menk Drive Fort Worth, TX 76161-23830

Prepared by Dave Souten Christian Lindhjem ENVIRON International Corporation 773 San Marin Drive, Suite 2115 Novato, CA 94998

December 2006

# ENVIRON

# **TABLE OF CONTENTS**

# Page

| 1.0 INTR                        | ODUCTION 1-1                                      |  |  |  |
|---------------------------------|---------------------------------------------------|--|--|--|
| 2.0 LOC                         | OMOTIVE FACILITY OPERATIONS 2-1                   |  |  |  |
| 2.1<br>2.2                      | Basic Locomotive Service                          |  |  |  |
| 2.3                             | Full Engine Service/Inspection                    |  |  |  |
| 2.4                             | Movements of Cars to Car Repair Yard 2-5          |  |  |  |
| 2.5                             | Movements in Adjacent Classification Yard         |  |  |  |
| 2.6                             | Freight Movements on Adjacent Mainline            |  |  |  |
| 2.7                             | Commuter Rail Operations on Adjacent Mainline     |  |  |  |
|                                 | OMOTIVE EMISSION FACTORS FOR DIESEL               |  |  |  |
| PAR                             | FICULATE MATTER                                   |  |  |  |
| 4.0 LOC                         | OMOTIVE DIESEL PM EMISSION ESTIMATES              |  |  |  |
| 4.1                             | Basic Service                                     |  |  |  |
| 4.2                             | Basic Engine Inspection 4-1                       |  |  |  |
| 4.3                             | Full Engine Service/Inspection                    |  |  |  |
| 4.4                             | Movements of Cars to Car Repair Yard              |  |  |  |
|                                 | and in Adjacent Classification Yard 4-2           |  |  |  |
| 4.5                             | Freight Movements on Adjacent Mainline            |  |  |  |
| 4.6                             | Commuter Rail Operations on Adjacent Mainline 4-3 |  |  |  |
|                                 | -LOCOMOTIVE FACILITY OPERATIONS,                  |  |  |  |
| EMIS                            | SSION FACTORS AND EMISSION ESTIMATES              |  |  |  |
| 5.1                             | Cargo Handling Equipment Operations               |  |  |  |
| 5.2                             | On-road Container Truck Operations                |  |  |  |
| 5.3                             | On-road Fleet Vehicle Operations                  |  |  |  |
| 5.4                             | Other Off-Road Equipment                          |  |  |  |
| 5.5                             | Stationary Sources                                |  |  |  |
|                                 | AL TAC EMISSIONS FROM BNSF'S                      |  |  |  |
| COMMERCE-MECHANICAL FACILITY6-1 |                                                   |  |  |  |
| 7.0 REFI                        | CRENCES                                           |  |  |  |

# APPENDICES

Appendix A: Track Maintenance Equipment

# TABLES

| Table 2-1  | Activities for the Basic Services in the                             |   |
|------------|----------------------------------------------------------------------|---|
|            | Commerce-Mechanical facility 2-1                                     | 1 |
| Table 2-2  | Fleet characterization for locomotive mainline activity              |   |
|            | past the Commerce-Mechanical facility, as well as                    |   |
|            | for Basic Services in the Commerce-Mechanical facility 2-2           | 2 |
| Table 2-3  | Activities for the Basic Engine Inspection in the                    |   |
|            | Commerce-Mechanical facility 2-3                                     | 3 |
| Table 2-4  | Fleet characterization for the Basic Engine Inspection in the        |   |
|            | Commerce-Mechanical facility 2-4                                     | 4 |
| Table 2-5  | Activities for the Full Engine Service/Inspection in the             |   |
|            | Commerce-Mechanical facility 2-4                                     | 5 |
| Table 2-6  | Fleet characterization for the Full Engine Service/Inspection        |   |
|            | in the Commerce-Mechanical facility 2-3                              | 5 |
| Table 2-7  | Locomotive switching engine fleet characterization                   |   |
|            | for service to the Commerce-Mechanical facility 2-4                  | 5 |
| Table 2-8  | Switching engine (-2,500 hp) relative time in mode                   | 6 |
| Table 2-9  | Locomotive time in mode passing the Commerce-Mechanical facility 2-7 | 7 |
| Table 3-1a | PM emission factors for locomotives used in the study,               |   |
|            | assuming default fuel sulfur content (03%) 3-                        | 1 |
| Table 3-1b | Emission Factors for locomotives used in the study,                  |   |
|            | adjusted for reduced fuel sulfur content (0105%) 3-2                 | 2 |
| Table 3-2  | Fuel sulfur and total annual fueling at various locomotive           |   |
|            | fueling locations                                                    |   |
| Table 3-3  | Fuel sulfur emission reductions by notch and engine type 3-:         | 3 |
| Table 4-1  | Estimated annual PM emissions associated with                        |   |
|            | the Basic Services in the Commerce-Mechanical facility 4-1           | 1 |
| Table 4-2  | Estimated annual PM emissions associated with the                    |   |
|            | Basic Engine Inspection in the Commerce-Mechanical facility 4-1      | 1 |
| Table 4-3  | Estimated annual PM emissions associated with the Full Engine        |   |
|            | Service/Inspection in the Commerce facility 4-2                      | 2 |
| Table 4-4  | Estimated annual PM emissions associated with movements              |   |
|            | of cars to car repair yard and in the adjacent classification yard   |   |
|            | of the Commerce-Mechanical facility 4-2                              | 2 |
| Table 4-5  | Estimated annual PM emissions associated with BNSF freight           |   |
|            | movements along the mainline adjacent to the                         |   |
|            | Commerce-Mechanical facility 4-3                                     | 3 |
| Table 4-6  | Estimated annual PM missions associated with non-BNSF                |   |
|            | freight movements along the mainline adjacent to the                 |   |
|            | Commerce-Mechanical facility                                         | 3 |
|            |                                                                      |   |

# ENVIRON

| Table 4-7 | Estimated annual PM missions associated with commuter<br>movements along the mainline adjacent to the |     |
|-----------|-------------------------------------------------------------------------------------------------------|-----|
|           | Commerce-Mechanical facility                                                                          | 4-4 |
| Table 5-1 | On-road fleet vehicle activity at the Commerce-Mechanical facility                                    |     |
| Table 5-2 | On-road fleet vehicle emissions at the Commerce-Mechanical facility                                   | 5-2 |
| Table 5-3 | Track Maintenance Equipment Emissions Estimates                                                       | 5-3 |
| Table 5-4 | Portable Engine Equipment Characteristics and operation                                               | 5-3 |
| Table 5-5 | Portable Engine Equipment Emissions Estimates                                                         | 5-4 |
| Table 5-6 | TOG emissions for the gasoline dispensing and                                                         |     |
|           | storage facility at the Commerce-Mechanical facility                                                  | 5-5 |
| Table 5-7 | Parameters and PM emissions estimates for the diesel-fueled                                           |     |
|           | ICEs at the Commerce-Mechanical facility                                                              | 5-5 |
| Table 6-1 | Estimated total annual DPM emissions associated                                                       |     |
|           | with the operations in the Commerce-Mechanical facility                                               | 6-1 |
| Table 6-2 | Estimated total annual TOG emissions associated                                                       |     |
|           | with the operations in the Commerce-Mechanical facility                                               | 6-1 |

# **1.0 INTRODUCTION**

This document describes the data and methods used in estimating toxic air contaminant (TAC) emissions resulting from facility operations and other activities in and around the Commerce-Mechanical facility. The data describe activities grouped by like emission source and by spatial activity. The emission sources include:

- Locomotives
- Cargo Handling equipment
- On-road vehicles
- Off-road equipment
- Stationary sources

Emissions factors for diesel PM and organic gases (which are then speciated into other relevant toxic air contaminants) for each source are included, and emissions estimates provided.

# 2.0 LOCOMOTIVE FACILITY OPERATIONS

The operations at the Commerce-Mechanical facility include engine-on locomotive activity within the service facility (Sections 2.1 - 2 4), classification yard (Section 2.5), and operating tracks (Sections 2.6 and 2.7). Under each heading is a description of the operations.

Since different locomotive and engine models have different emissions characteristics, it is important to characterize the types and models of the locomotives that are being serviced in the Commerce-Mechanical facility. ENVIRON estimated the locomotive fleet fractions for different locomotive types and models using data provided by BNSF. The operation descriptions below each include a uniquely applicable fleet characterization.

## 2.1 Basic Locomotive Service

14,577 locomotives were serviced over the period from April 1, 2005 through March 31, 2006. All locomotives entering the facility have sand, fuel, and lubricant service regardless of other service provided at the facility.

Number Served: 14,577 over one year.

#### **Operations**

- (1) Movement into yard at about 5 mph in Notch 1 (single locomotive) or Notch 2 (with 4 locomotives) 100% on Notch 1 is assumed in the study.
- (2) Idle time while refueling is estimated to be 1 hour.
- (3) In-Consist (4 locomotives on average) is estimated to be 30 minutes at Idle.
- (4) Lead engine only is load tested at Notch 8 for 15 minutes.
- (5) Movement out of yard at about 5 mph in Notch 2 (4-locomotive consist).

Idle shutdown sometimes occurs after 30 minutes and two 30-minute idle periods are typical during service BNSF indicated that this operation occurs throughout a 24-hour period. The activities (duration and modes of operations) for the Basic Services are summarized in Table 2-1.

| Activities                 | Est. Speed<br>(mph) | Est. Distance<br>(mile) | Est. Time<br>(hour) | Operation<br>Mode |
|----------------------------|---------------------|-------------------------|---------------------|-------------------|
| A1: Movement into Yard     | 5                   | 0.17                    | 0.03                | Notch 1           |
| A2: Idling while Refueling | 0                   | 0                       | 1.0                 | ldle              |
| A3: In-consist             | 0                   | 0                       | 0.5                 | ldle              |
| A4: Lead Engine Load Test  | 0                   | 0                       | 0.25                | Notch 8           |
| A5: Movement out of Yard   | 5                   | 0.17                    | 0.03                | Notch 2           |

Table 2-1. Activities for the Basic Services in the Commerce-Mechanical facility.

Since Basic Services are performed on all locomotives passing through the facility, ENVIRON assumed the fleet characteristics for this activity group are equivalent to typical fleet characteristics of the mainline locomotive activity. Data provided by BNSF detailed the fleet of locomotives passing the Commerce-Mechanical facility between May 1, 2005 and April 30, 2006. ENVIRON classified the annual locomotive counts by unique engine model description for all BNSF owned and operated engines. Eleven percent of BNSF engine model types could

 $G \ BNSF BNSF Criteria Repts \ Commerce \ Mechanical \ Sec2 \ doc$ 

not be identified because some engines originally owned by other railroads (such as CSX or Norfolk Southern) were leased by BNSF. This fraction of unidentified engines was reallocated proportionally across the rest of the fleet. The final fleet characterization is shown in Table 2-2. Engine surrogates were assigned for use with emission factor data, though approximately 96% of the fleet had matching emission data for the same model type and certification tier.

| Locomotive | ocomotive Certification Fleet |      |          |                     |
|------------|-------------------------------|------|----------|---------------------|
| Model      | Tier                          | HP   | Fraction | Engine Surrogate    |
| C44-9W     | 0                             | 4400 | 39.6%    | Dash-9              |
| C44-9W     | 1                             | 4400 | 18.1%    | Dash-9              |
| C44-9W     | Precontrolled                 | 4400 | 7.7%     | Dash-9              |
| SD40-2     | Precontrolled                 | 2997 | 6.7%     | GP-4x               |
| ES44DC     | 2                             | 4400 | 6.0%     | ES44/Dash-9         |
| C40-8W     | 0                             | 4135 | 5.5%     | Dash-8              |
| GP35       | Precontrolled                 | 2500 | 2.2%     | GP-3x               |
| GP60M      | 0                             | 3800 | 1.9%     | GP-60               |
| B40-8W     | Precontrolled                 | 4000 | 1.7%     | Dash-8 Tier 0       |
| SD40-2     | 0                             | 3000 | 1.2%     | GP-4x Precontrolled |
| GP39-2     | Precontrolled                 | 2300 | 1.1%     | GP-3x               |
| GP30       | Precontrolled                 | 2500 | 1.1%     | GP-3x               |
| B40-8      | Precontrolled                 | 4000 | 0.9%     | Dash-8 Tier 0       |
| GP60       | 0                             | 3800 | 0.9%     | GP-60               |
| GP60B      | 0                             | 3800 | 0.8%     | GP-60               |
| B40-8W     | 0                             | 4000 | 0.8%     | Dash-8              |
| GP60       | Precontrolled                 | 3800 | 0.8%     | GP-60               |
| SD60M      | Precontrolled                 | 3800 | 0.5%     | GP-60               |
| SD60       | Precontrolled                 | 3800 | 0.3%     | GP-60               |
| SD45-2     | Precontrolled                 | 3345 | 0.3%     | GP-4x               |
| SD50       | Precontrolled                 | 3385 | 0.3%     | GP-50               |
| GP38-2     | Precontrolled                 | 2000 | 0.3%     | GP-3x               |
| SD39       | Precontrolled                 | 2300 | 0.2%     | GP-3x               |
| GP25       | Precontrolled                 | 2500 | 0.2%     | GP-3x               |
| GP38       | Precontrolled                 | 2000 | 0.1%     | GP-3x               |
| GP39M      | Precontrolled                 | 2300 | 0.1%     | GP-3x               |
| GP40M      | Precontrolled                 | 3000 | 0.1%     | GP-4x               |
| SD40       | Precontrolled                 | 2930 | 0.1%     | GP-4x               |
| SD45       | Precontrolled                 | 3480 | 0.1%     | GP-4x               |
| B23-7      | Precontrolled                 | 2250 | 0.1%     | Dash-7              |
| SD40-2T    | Precontrolled                 | 3000 | 0.1%     | GP-4x               |
| SD75M      | 0                             | 4300 | 0.04%    | SD-7x               |
| SW1500     | Precontrolled                 | 1500 | 0.04%    | Switcher            |
| SD60M      | 0                             | 3800 | 0.03%    | GP-60               |
| AC4400CW   | 1                             | 4400 | 0.03%    | Dash-9              |
| SD40-2B    | Precontrolled                 | 3000 | 0.03%    | GP-4x               |
| SD40-2S    | 0                             | 3000 | 0.02%    | GP-4x Precontrolled |
| SD70MAC    | Precontrolled                 | 4000 | 0.02%    | SD-7x               |
| SD70MAC    | 0                             | 4000 | 0.02%    | SD-7x               |
| GP39E      | Precontrolled                 | 2300 | 0.02%    | GP-3x               |
| GP50       | Precontrolled                 | 3300 | 0.02%    | GP-50               |
| GP9        | Precontrolled                 | 1750 | 0.02%    | Switcher            |
| SD45-2T    | Precontrolled                 | 3400 | 0.02%    | GP-4x               |
| SW1000N    | Precontrolled                 | 1000 | 0.02%    | Switcher            |
| SD45-2B    | Precontrolled                 | 3400 | 0.01%    | GP-4x               |
| ES44AC     | 2                             | 4400 | 0.01%    | ES44/Dash-9         |

| Table 2-2. | Fleet characterization for locomotive mainline activity past the Commerce-     |
|------------|--------------------------------------------------------------------------------|
| Mechanical | I facility, as well as for Basic Services in the Commerce-Mechanical facility. |

| Locomotive | Certification |      | Fleet    |                  |
|------------|---------------|------|----------|------------------|
| Model      | Tier          | HP   | Fraction | Engine Surrogate |
| SD40-3     | Precontrolled | 3000 | 0.01%    | GP-4x            |
| SD9        | Precontrolled | 1750 | 0.01%    | Switcher         |
| SD45-2BF   | Precontrolled | 3600 | 0.01%    | GP-4x            |
| GG-20B     | Precontrolled | 2000 | 0.003%   | GP-3x            |
| GP40E      | Precontrolled | 3000 | 0.003%   | GP-4x            |
| GP40X      | Precontrolled | 3600 | 0.003%   | GP-4x            |
| SD38-2     | Precontrolled | 2300 | 0.003%   | GP-3x            |
| SD60       | 0             | 3800 | 0.003%   | GP-60            |

## 2.2 Basic Engine Inspection

At 3 and 6 months or 122 and 184 days (M03, M06, M122, M184) locomotives undergo a basic engine inspection.

Number Inspected: 476 locomotives over one year.

**Operations** 

- (1) Movement to Engine Shop (2 minutes at Notch 1 for each locomotive). Notch 2 towing 4 locomotives could be used but not assumed here to simplify the modeling.
- (2) Preload tested 20 minutes at Notch 8 immediately southeast of engine shop.
- (3) After service, 35 to 45 minutes load tested at Notch 8 occurs immediately northeast of engine shop.
- (4) Movement back into service (2 minutes at Notch 1).

Opacity testing is only performed annually and is assumed not to take place during these basic service inspections. BNSF indicated that the basic inspection operation occurs throughout a 24-hour period. The activities (duration and modes of operations) for the Basic Engine Inspection are summarized in Table 2-3.

| Activities                    | Est. Speed<br>(mph) | Est. Distance<br>(mile) | Est. Time<br>(hour) | Operation<br>Mode |
|-------------------------------|---------------------|-------------------------|---------------------|-------------------|
| B1: Movement into Engine Shop | 5                   | 0.17                    | 0.03                | Notch 1           |
| B2: Preloaded Test            | 0                   | 0                       | 0.33                | Notch 8           |
| B3: After Service Load Test   | 0                   | 0                       | 0.67                | Notch 8           |
| B4: Movement out to Service   | 5                   | 0.17                    | 0.03                | Notch 1           |

BNSF provided service data from April 1, 2005 to March 31, 2006 to ENVIRON. Based on these service data, the locomotive fleet fractions for different locomotive types and models undergoing basic engine inspection in the Commerce-Mechanical facility are shown in Table 2-4

| Locomotive | Certification |      | Fleet    |                  |
|------------|---------------|------|----------|------------------|
| Model      | Tier          | HP   | Fraction | Engine Surrogate |
| C44-9W     | 0             | 4400 | 45.7%    | Dash-9           |
| C44-9W     | 1             | 4400 | 23.8%    | Dash-9           |
| C44-9W     | Precontrolled | 4400 | 8.0%     | Dash-9           |
| ES44DC     | 2             | 4400 | 6.5%     | ES44/Dash-9      |
| C40-8W     | 0             | 4135 | 6.3%     | Dash-8           |
| GP35       | Precontrolled | 2500 | 2.3%     | GP-3x            |
| SD40-2     | Precontrolled | 2900 | 1.5%     | GP-4x            |
| B40-8W     | Precontrolled | 4000 | 1.1%     | Dash-8 Tier 0    |
| GP30       | Precontrolled | 2500 | 1.1%     | GP-3x            |
| GP39-2     | Precontrolled | 2300 | 1.1%     | GP-3x            |
| B40-8      | Precontrolled | 4000 | 0.4%     | Dash-8 Tier 0    |
| B40-8W     | 0             | 4000 | 0.4%     | Dash-8           |
| GP25       | Precontrolled | 2500 | 0.4%     | GP-3x            |
| GP38-2     | Precontrolled | 2000 | 0.4%     | GP-3x            |
| SD39       | Precontrolled | 2300 | 0.4%     | GP-3x            |
| GG-20B     | Precontrolled | 2000 | 0.2%     | GP-3x            |
| GP38       | Precontrolled | 2000 | 0.2%     | GP-3x            |
| GP9        | Precontrolled | 1750 | 0.2%     | Switcher         |

**Table 2-4.** Fleet characterization for the Basic Engine Inspection in the Commerce-Mechanical facility.

## 2.3 Full Engine Service/Inspection

After engine repairs (unscheduled inspections for reported problems) or at scheduled inspections/service at 12 months, 244 days, or 368 days (M12, M244, M368), the engine is preloaded for diagnostic, and a loaded test of 35 to 45 minutes is typically performed concurrently with an opacity test at steady-state for at least 150 seconds at each notch setting and idle followed by a final loaded test of about 20 minutes before sent back into operation. The opacity testing is being phased-in. While it is not fully implemented at the present time, it will be assumed to be fully implemented for the purpose of this study BNSF indicated that this operation occurs throughout a 24-hour period.

Total with opacity testing - 231 locomotives over one year Total without opacity testing - 305 locomotives over one year <u>Total Number Served:</u> 536 locomotives over one year

**Operations** 

- (1) Movement to Engine Shop (2 minutes at Notch 1)
- (2) Preload test 20 minutes at Notch 8 prior to repair/service southeast of the engine shop
- (3) Opacity Test 150 seconds testing occurs at each setting/mode (8 Notches and idle) setting But overall time for testing estimated to be 35 to 45 minutes, which figures out to be 300 seconds at each mode including 8 notches and idle So, we assumed 117 seconds for stabilizing and 150 seconds for testing at each engine setting for this work for a total of 40 minutes
- (4) Final Load Test 40 minutes at Notch 8 (opacity and final load testing occur northwest of engine shop)
- (5) Returned to service (2 minutes at Notch 1)

The activities (duration and modes of operations) for the Full Engine Service/Inspection are summarized in Table 2-5. The fleet characterization based on the service data is provided in Table 2-6.

| Table 2-5. | Activities for the Full E | ngine Servi | ce/Inspection i | in the Comn | nerce-Mechanical |
|------------|---------------------------|-------------|-----------------|-------------|------------------|
| facility.  |                           |             |                 |             |                  |

| Activities                    | Est.<br>Speed<br>(mph) | Est.<br>Distance<br>(mile) | Est. Time<br>(hour) | Operation Mode          |
|-------------------------------|------------------------|----------------------------|---------------------|-------------------------|
| C1: Movement into Engine Shop | 5                      | 0.003                      | 0.03                | Notch 1                 |
| C2: Preloaded Test            | 0                      | 0                          | 0.33                | Notch 8                 |
| C3: Opacity Test              | 0                      | 0                          | 0.67                | Idle and Notches 1 to 8 |
| C4: Final Load Test           | 0                      | 0                          | 0.67                | Notch 8                 |
| C5: Movement out to Service   | 5                      | 0.003                      | 0.03                | Notch 1                 |

| Table 2-6. | Fleet characterization for the Full Engine Service/Inspection in the Commerce- |
|------------|--------------------------------------------------------------------------------|
| Mechanica  | al facility.                                                                   |

| Locomotive | Certification |      | Fleet    |                     |
|------------|---------------|------|----------|---------------------|
| Model      | Tier          | HP   | Fraction | Engine Surrogate    |
| C44-9W     | 0             | 4400 | 46.8%    | Dash-9              |
| C44-9W     | 1             | 4400 | 29.3%    | Dash-9              |
| C44-9W     | Precontrolled | 4400 | 10.3%    | Dash-9              |
| C40-8W     | 0             | 4135 | 6.2%     | Dash-8              |
| ES44DC     | 2             | 4400 | 4.5%     | ES44/Dash-9         |
| B40-8      | Precontrolled | 4000 | 0.7%     | Dash-8 Tier 0       |
| SD40-2     | Precontrolled | 3000 | 0.7%     | GP-4x               |
| B40-8W     | Precontrolled | 4000 | 0.6%     | Dash-8 Tier 0       |
| B40-8W     | 0             | 4000 | 0.4%     | Dash-8              |
| B23-7      | Precontrolled | 2250 | 0.2%     | Dash-7              |
| SD39       | Precontrolled | 2300 | 0.2%     | GP-3x               |
| SD40-2     | 0             | 3000 | 0.2%     | GP-4x Precontrolled |

## 2.4. Movements of Cars to Car Repair Yard

Switching engine fleet characteristics in the Commerce-Mechanical area were determined by a roster of engines made available by BNSF in early 2006. The data are shown in Table 2-7. Most engines are of similar power and type. This fleet was used to describe the switching engine activity assuming equivalent use of all 18 engines in the fleet.

**Table 2-7.** Locomotive switching engine fleet characterization for service to the Commerce-Mechanical facility.

| Locomotive<br>Model | Certification<br>Tier | HP   | Number of<br>Engines | Engine Surrogate |
|---------------------|-----------------------|------|----------------------|------------------|
| GP-25               | Precontrolled         | 2500 | 1                    | GP-3x            |
| GP-30               | Precontrolled         | 2500 | 3                    | GP-3x            |
| GP-35               | Precontrolled         | 2500 | 4                    | GP-3x            |
| GP39-2              | Precontrolled         | 2300 | 6                    | GP-3x            |
| GP39E               | Precontrolled         | 2300 | 1                    | GP-3x            |
| SD39                | Precontrolled         | 2300 | 1                    | GP-3x            |
| MK1200G             | Precontrolled         | 1200 | 2                    | Switcher         |

The time in mode for switching engine activity in Table 2-8 was determined from event recorder downloads of a sample of three engines operating in this yard. The three engines chosen range from 2,300 - 2,500 hp, and are representative of the switching engines dedicated to the area. The time in mode from the event recorder downloads could not distinguish engine idling and engine off periods, so the idle mode was fixed at the EPA switching engine cycle estimate of 59.8% and the remaining notch settings renormalized so that the full cycle sums to 100% of the time. This adjustment has the effect of increasing the emissions estimate by placing more of the activity into the higher notch settings.

| Throttle Notch | Time in Mode |
|----------------|--------------|
| DB             | 0.03%        |
| Idle           | 59.80%       |
| 1              | 12.66%       |
| 2              | 14.92%       |
| 3              | 7.14%        |
| 4              | 3.86%        |
| 5              | 0.85%        |
| 6              | 0.31%        |
| 7              | 0.18%        |
| 8              | 0.25%        |

| Table 2-8. | Switching engine | (~2,500 hp) relative time in mode. |
|------------|------------------|------------------------------------|
|            | owneering ongine |                                    |

The total switching engine activity consists of engines performing two switches a day with one hour of engine on-site time per switch (i.e. two hours of switching engine use per day).

## 2.5. Movements in Adjacent Classification Yard

The activity in this area of the yard was lumped together with the activity in Area D because the activity description applies to both areas. Switching engines move cars in and out of the car repair yard lot and into and out of the classification yard. Cars repaired or waiting to be repaired is a large portion of the activity within this area, so the switching engine activity is indistinguishable from the Car Repair Yard.

## 2.6. Freight Movements on Adjacent Mainline

The adjacent main line along the (primarily) south-southwest edge of the facility runs approximately a half mile, which likely corresponds with the same distance from milepost 148 to the Commerce-Mechanical Station at milepost 148.459. The Commerce-Eastern Avenue site is listed as milepost 147.3, and the track distance from Eastern Avenue to the southwest edge of the Commerce-Eastern Facility is 0.7 miles. So it was concluded that the length from the southwest edge to the southeast edge of the facility represents the activity along milepost 148 to 148.459.

Two subcategories of freight movements occur on the mainline BNSF and non-BNSF (foreign). All operations for both subcategories are assumed to occur throughout a 24-hour period BNSF reads radio tags for most of the traffic along its mainline, cataloging every locomotive except most of the Metrolink engines operating commuter trains during weekdays.

G \BNSF\BNSF\_CriteriaRepts\Commerce Mechanical\Sec2 doc

# 2.6.1 BNSF Freight Movements

Data provided by BNSF showed a total of 56,920 locomotives passing the Commerce-Mechanical facility between May 1, 2005 and April 30, 2006. Since only the total number of locomotives was available, ENVIRON assumed one-half (28,460) were traveling Eastbound, and one-half (28460) were traveling Westbound. ENVIRON determined the time in mode distributions for Eastbound and Westbound mainline activity using computer simulation data provided by BNSF for a hypothetical locomotive traveling at approximately 30 mph past the Commerce-Mechanical facility (milepost 148-148.5). These data are summarized in Table 2-9. Note that the total time to pass the Commerce-Mechanical facility traveling eastbound amounts to 63 seconds, while the total time in the Westbound direction is only 57 seconds on average.

|           | Throttle | Est. Distance | Est. Time |
|-----------|----------|---------------|-----------|
| Direction | Notch    | (mile)        | (hour)    |
| Westbound | DB       | 0.50          | 0.0160    |
| Eastbound | DB       | 0.14          | 0.0021    |
| Eastbound | 1        | 0.08          | 0.0028    |
| Eastbound | 2        | 0.15          | 0.0056    |
| Eastbound | 3        | 0.13          | 0.0071    |

 Table 2-9.
 Locomotive time in mode passing the Commerce-Mechanical facility.

The fleet characterization for locomotives along the mainline was provided in Table 2-2, and derived from all engines passing the site on the adjacent mainlines.

#### 2.6.2 Foreign (non-BNSF) Freight Movements

Data provided by BNSF showed only 222 foreign (non-BNSF and non-Commuter) locomotives passing the Commerce-Mechanical facility between May 1, 2005 and April 30, 2006. As with the BNSF freight, ENVIRON assumed one-half (111) were traveling Eastbound, and one-half (111) were traveling Westbound. Without engine model descriptions for these locomotives, ENVIRON made the assumption that the fleet mix and time in mode for these engines would be the same as what Tables 2 and 9 show for the BNSF engines.

## 2.7. Commuter Rail Operations on Adjacent Mainline

BNSF data show that AMTRAK operates 10,391 trains per year in both directions throughout the week along this line BNSF also confirmed that Metrolink operates 7,280 trains per year along this line, with activity occurring only during weekdays. Although it does not occur throughout a 24-hour period, this operation is assumed to occur throughout a 24-hour period for modeling simplicity in this study.

Exact fleet characteristics are not known for the AMTRAK and Metrolink locomotives. However, both ARB and BNSF have indicated the predominance of F59PHI (EMD 710E3, 3000 hp) engines in the AMTRAK and Metrolink fleets, which for purposes of emissions estimates in this study are modeled using the average emission levels from the EPA (1997) study for the two 12 cylinder EMD 710G3 engines based on similarities in engine design, size, and power rating.

# 3.0 LOCOMOTIVE EMISSION FACTORS FOR DIESEL PARTICULATE MATTER

Emission factors used in this study were based primarily on the emission factors used in the California Air Resources Board (ARB)'s Risk Assessment Study for the Union Pacific Roseville facility, and the Southwest Research Institute (SwRI, 2000) study sponsored by ARB, entitled "Diesel Fuel Effects on Locomotive Exhaust Emissions" and supplemented with one model of engine from the EPA (1997) data summary to specifically address the commuter and passenger rail engines. Since the publication date of the Roseville report, ARB provided ENVIRON with additional emission factors for criteria pollutants, and made some adjustments to the original Roseville data (ARB, 2006a). ENVIRON also received permission from the engine owners to obtain additional emission factors relevant to all locomotives in the Commerce-Mechanical facility are summarized in Tables 10a and 10b for several different locomotive model groups and certification tiers. Specific locomotives and engines in each locomotive model group can be inferred from the fleet characterization tables provided above.

Based on conversation with the principal researcher on all the locomotive studies (SwRI, 2006), ENVIRON learned that a default fuel sulfur content of 0.3% was used on all test results and certification data produced with locomotives to date (the emission rates in SwRI, 2000 were those with 0.3% sulfur fuel). The emission rates using this fuel are reflected in Table 3-1a.

| Locomotive                | Cert              |      | Emission Factors (g/hr) by Throttle Notch |       |       |       |       |       |       |        |        |
|---------------------------|-------------------|------|-------------------------------------------|-------|-------|-------|-------|-------|-------|--------|--------|
| Model Group               | Tier <sup>a</sup> | Idle | DB⁵                                       | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8      |
| Switchers <sup>1</sup>    | Precntl           | 31.0 | 56.0                                      | 23.0  | 76.0  | 138.0 | 159.0 | 201.0 | 308.0 | 345.0  | 448.0  |
| GP-3x <sup>1</sup>        | Precntl           | 38.0 | 72.0                                      | 31.0  | 110.0 | 186.0 | 212.0 | 267.0 | 417.0 | 463.0  | 608.0  |
| GP-4x <sup>1</sup>        | Precntl           | 47.9 | 80.0                                      | 35.7  | 134.3 | 226.4 | 258.5 | 336.0 | 551.9 | 638.6  | 821.3  |
| GP-50 <sup>1</sup>        | Precntl           | 26.0 | 64.1                                      | 51.3  | 142.5 | 301.5 | 311.2 | 394.0 | 663.8 | 725.3  | 927.8  |
| GP-60 <sup>1</sup>        | Precntl           | 48.6 | 98.5                                      | 48.7  | 131.7 | 284.5 | 299.4 | 375.3 | 645.7 | 743.6  | 941.6  |
| SD-7x <sup>1</sup>        | Precntl           | 24.0 | 4.8                                       | 41.0  | 65.7  | 156.8 | 243.1 | 321.1 | 374.8 | 475.2  | 589.2  |
| Dash-7 <sup>1</sup>       | Precntl           | 65.0 | 180.5                                     | 108.2 | 121.2 | 359.5 | 327.7 | 331.5 | 299.4 | 336.7  | 420.0  |
| Dash-9 <sup>2</sup>       | Precntl           | 32.1 | 53.9                                      | 54.2  | 108.1 | 219.9 | 289.1 | 370.6 | 437.7 | 486.1  | 705.7  |
| EMD 12-710G3 <sup>3</sup> | Precntl           | 27.5 | 54.5                                      | 34.0  | 112.5 | 208.0 | 234.5 | 291.0 | 423.0 | 545.0  | 727.5  |
| GP-60 <sup>4</sup>        | 0                 | 21.1 | 25.4                                      | 37.6  | 75.5  | 239.4 | 352.2 | 517.8 | 724.8 | 1125.9 | 1319.8 |
| SD-7x <sup>1</sup>        | 0                 | 14.8 | 15.1                                      | 36.8  | 61.1  | 230.4 | 379.8 | 450.8 | 866.2 | 1019.1 | 1105.7 |
| Dash-8 <sup>1</sup>       | 0                 | 37.0 | 147.5                                     | 86.0  | 133.1 | 291.4 | 293.2 | 327.7 | 373.5 | 469.4  | 615.2  |
| Dash-9 ⁵                  | 0                 | 33.8 | 50.7                                      | 56.1  | 117.4 | 229.2 | 263.8 | 615.9 | 573.9 | 608.0  | 566.6  |
| Dash-9 <sup>4</sup>       | 1                 | 16.9 | 88.4                                      | 62.1  | 140.2 | 304.0 | 383.5 | 423.9 | 520.2 | 544.6  | 778.1  |
| ES44/Dash-9 <sup>4</sup>  | 2                 | 7.7  | 42.0                                      | 69.3  | 145.8 | 304.3 | 365.0 | 405.2 | 418.4 | 513.5  | 607.5  |

**Table 3-1a.** PM emission factors for locomotives used in the study, assuming default fuel sulfur content (0.3%).

<sup>1</sup> Final locomotive emission factors (an update to the Roseville study emission factors Table B-1) received via email from Dan Donohue of ARB, May 9, 2006.

<sup>2</sup> "Diesel Fuel Effects on Locomotive Exhaust Emissions," Southwest Research Institute, October 2000.

<sup>3</sup> EPA, 1997.

<sup>4</sup> Confidential data from SwRI, 2006.

<sup>5</sup> Average of ARB and SwRI, 2006.

<sup>a</sup> Precntl: Precontrolled

<sup>b</sup> DB: DynamicBraking

Table 3-1b provides emission factors adjusted for fuel sulfur content of 0.105%. This adjustment was performed according to documented ARB procedures from the OFFROAD Modeling

Change Technical Memo (Wong, 2005). All locomotive emissions presented in this document utilized the emission factors from Table 3-1b.

| Locomotive                | Cert              |      | Emission Factors (g/hr) by Throttle Notch |       |       |       |       |       |       |        |        |
|---------------------------|-------------------|------|-------------------------------------------|-------|-------|-------|-------|-------|-------|--------|--------|
| Model Group               | Tier <sup>a</sup> | Idle | DB⁵                                       | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8      |
| Switchers <sup>1</sup>    | Precntl           | 31.0 | 56.0                                      | 23.0  | 76.0  | 131.8 | 146.1 | 181.5 | 283.2 | 324.4  | 420.7  |
| GP-3x <sup>1</sup>        | Precntl           | 38.0 | 72.0                                      | 31.0  | 110.0 | 177.7 | 194.8 | 241.2 | 383.4 | 435.3  | 570.9  |
| GP-4x <sup>1</sup>        | Precntl           | 47.9 | 80.0                                      | 35.7  | 134.3 | 216.2 | 237.5 | 303.5 | 507.4 | 600.4  | 771.2  |
| GP-50 <sup>1</sup>        | Precntl           | 26.0 | 64.1                                      | 51.3  | 142.5 | 288.0 | 285.9 | 355.8 | 610.4 | 681.9  | 871.2  |
| GP-60 <sup>1</sup>        | Precntl           | 48.6 | 98.5                                      | 48.7  | 131.7 | 271.7 | 275.1 | 338.9 | 593.7 | 699.1  | 884.2  |
| SD-7x <sup>1</sup>        | Precntl           | 24.0 | 4.8                                       | 41.0  | 65.7  | 149.8 | 223.4 | 290.0 | 344.6 | 446.8  | 553.3  |
| Dash-7 <sup>1</sup>       | Precntl           | 65.0 | 180.5                                     | 108.2 | 121.2 | 322.6 | 302.9 | 307.7 | 268.4 | 275.2  | 341.2  |
| Dash-9 <sup>2</sup>       | Precntl           | 32.1 | 53.9                                      | 54.2  | 108.1 | 197.3 | 267.3 | 343.9 | 392.4 | 397.3  | 573.3  |
| EMD 12-710G3 <sup>3</sup> | Precntl           | 27.5 | 54.5                                      | 34.0  | 112.5 | 186.6 | 216.8 | 270.1 | 379.3 | 445.4  | 591.0  |
| GP-60 <sup>4</sup>        | 0                 | 21.1 | 25.4                                      | 37.6  | 75.5  | 228.7 | 323.6 | 467.7 | 666.4 | 1058.5 | 1239.3 |
| SD-7x <sup>1</sup>        | 0                 | 14.8 | 15.1                                      | 36.8  | 61.1  | 220.1 | 349.0 | 407.1 | 796.5 | 958.1  | 1038.3 |
| Dash-8 <sup>1</sup>       | 0                 | 37.0 | 147.5                                     | 86.0  | 133.1 | 261.5 | 271.0 | 304.1 | 334.9 | 383.6  | 499.7  |
| Dash-9 ⁵                  | 0                 | 33.8 | 50.7                                      | 56.1  | 117.4 | 205.7 | 243.9 | 571.5 | 514.6 | 496.9  | 460.3  |
| Dash-9 <sup>4</sup>       | 1                 | 16.9 | 88.4                                      | 62.1  | 140.2 | 272.8 | 354.5 | 393.4 | 466.4 | 445.1  | 632.1  |
| ES44/Dash-9 <sup>4</sup>  | 2                 | 7.7  | 42.0                                      | 69.3  | 145.8 | 273.0 | 337.4 | 376.0 | 375.1 | 419.6  | 493.5  |

**Table 3-1b.** Emission Factors for locomotives used in the study, adjusted for reduced fuel sulfur content (0.105%).

<sup>1</sup> Final locomotive emission factors (an update to the Roseville study emission factors Table B-1) received via email from Dan Donohue of ARB, May 9, 2006.

<sup>2</sup> "Diesel Fuel Effects on Locomotive Exhaust Emissions," Southwest Research Institute, October 2000.

<sup>3</sup> EPA, 1997.

<sup>4</sup> Confidential data from SwRI, 2006.

 ${}^{5}$  Average of ARB and SwRI, 2006.

<sup>a</sup> Precntl: Precontrolled

<sup>b</sup> DB: DynamicBraking

The sulfur content value of 0.105% used for the adjustment was obtained by averaging data provided by BNSF for diesel fuel dispensed and corresponding sulfur level at all California sites and those near California. For sites outside of California, ENVIRON assumed that half of the fuel dispensed would be used in California, because trains moving in either direction may be fueled there. In reality, it is likely that less than half of the out-of-state fuel dispense will be used in California, because are a significant distance from the state border.

| Table 3-2. Fuel sulfu | ur and to | otal annual fue | ling at vario | us locomotive fueling locations. |
|-----------------------|-----------|-----------------|---------------|----------------------------------|
| Location              | State     | Total Gallons   | % Sulfur      |                                  |

| Location    | State | <b>Total Gallons</b> | % Sulfur |
|-------------|-------|----------------------|----------|
| Holbrook    | AZ    | 21,935               | 0.192    |
| Phoenix     | AZ    | 3,542,292            | 0.034    |
| Flagstaff   | AZ    | 2,019                | 0.192    |
| Kingman     | AZ    | 334,309              | 0.034    |
| Vacaville   | CA    | 33,074               | 0.034    |
| Redding     | CA    | 1,004                | 0.192    |
| Summit      | CA    | 1,750                | 0.192    |
| San Diego   | CA    | 530                  | 0.192    |
| Bakersfield | CA    | 240,976              | 0.034    |
| Barstow     | CA    | 1,946,092            | 0.015    |
| Oakland     | CA    | 1,762,993            | 0.034    |
| Needles     | CA    | 770,667              | 0.192    |
| Bakersfield | CA    | 131,075              | 0.034    |
| Bakersfield | CA    | 11,070               | 0.034    |

. . . .

| Location        | State | <b>Total Gallons</b> | % Sulfur |
|-----------------|-------|----------------------|----------|
| Corona          | CA    | 103,982              | 0.034    |
| Fresno          | CA    | 2,669,884            | 0.034    |
| Kaiser          | CA    | 460,390              | 0.034    |
| Kings Park      | CA    | 61,900               | 0.034    |
| Pittsburg       | CA    | 12,695               | 0.034    |
| Riverbank       | CA    | 2,070,244            | 0.034    |
| San Bernardino  | CA    | 9,940,295            | 0.034    |
| San Diego       | CA    | 111,369              | 0.192    |
| Stockton        | CA    | 1,018,965            | 0.034    |
| Stuart Mesa     | CA    | 41,509               | 0.192    |
| Terminal Island | CA    | 14,816,643           | 0.192    |
| Victorville     | CA    | 66,042               | 0.034    |
| Watson          | CA    | 1,152,454            | 0.192    |
| Bakersfield     | CA    | 11,236               | 0.192    |
| Winslow         | AZ    | 3,496,072            | 0.170    |
| Belen           | NM    | 202,462,278          | 0.192    |
| Barstow         | CA    | 52,439,321           | 0.015    |
| Commerce        | CA    | 31,573,289           | 0.015    |
| Richmond        | CA    | 22,255,177           | 0.034    |
| Klamath Falls   | OR    | 3,070,865            | 0.381    |

The fuel sulfur correction methodology described by ARB (2005) was used to adjust PM emission rates from an average fuel sulfur level of 0.3% to 0.105% using the fuel sulfur - PM relationship equation, A + B \* (fuel sulfur, ppm). The emission reductions calculated for GE and EMD engines shown in Table 3-3 were applied to the base emission rates to calculate the emission rates at the in-use fuel sulfur levels.

|       |                    |        |                    | Fuel Sulfur 0.105% |           |  |  |  |  |  |
|-------|--------------------|--------|--------------------|--------------------|-----------|--|--|--|--|--|
| Notch | В                  | Α      | EF (g/hp-hr)       | EF (g/hp-hr)       | Reduction |  |  |  |  |  |
|       | GE 4-stroke Engine |        |                    |                    |           |  |  |  |  |  |
| 8     | 0.00001308         | 0.0967 | 0.13594            | 0.110434           | 18.76%    |  |  |  |  |  |
| 7     | 0.00001102         | 0.0845 | 0.11756            | 0.096071           | 18.28%    |  |  |  |  |  |
| 6     | 0.00000654         | 0.1037 | 0.12332            | 0.110567           | 10.34%    |  |  |  |  |  |
| 5     | 0.00000548         | 0.132  | 0.14844            | 0.137754           | 7.20%     |  |  |  |  |  |
| 4     | 0.00000663         | 0.1513 | 0.17119            | 0.1582615          | 7.55%     |  |  |  |  |  |
| 3     | 0.00000979         | 0.1565 | 0.18587            | 0.1667795          | 10.27%    |  |  |  |  |  |
|       |                    | EI     | MD 2-stroke engine | )                  |           |  |  |  |  |  |
| 8     | 0.0000123          | 0.3563 | 0.3932             | 0.369215           | 6.10%     |  |  |  |  |  |
| 7     | 0.000096           | 0.284  | 0.3128             | 0.29408            | 5.98%     |  |  |  |  |  |
| 6     | 0.0000134          | 0.2843 | 0.3245             | 0.29837            | 8.05%     |  |  |  |  |  |
| 5     | 0.000015           | 0.2572 | 0.3022             | 0.27295            | 9.68%     |  |  |  |  |  |
| 4     | 0.0000125          | 0.2629 | 0.3004             | 0.276025           | 8.11%     |  |  |  |  |  |
| 3     | 0.0000065          | 0.2635 | 0.283              | 0.270325           | 4.48%     |  |  |  |  |  |

Table 3-3. Fuel sulfur emission reductions by notch and engine type.

# 4.0 LOCOMOTIVE DIESEL PM EMISSION ESTIMATES

#### 4.1. Basic Service

The annual PM emissions for Basic Service by individual activities are presented in Table 4-1. Most of the PM emissions were estimated to originate from the idling activities (A2+A3, 60%) and load testing (A4, 35%) in this facility.

| Table 4-1. Estimated annual PM emissions associated with the Basic Services in the |
|------------------------------------------------------------------------------------|
| Commerce-Mechanical facility.                                                      |

|             |         |        | PM Emissions by Operation Activity |         |         |         |        |              |
|-------------|---------|--------|------------------------------------|---------|---------|---------|--------|--------------|
| Locomotive  | Cert    | # of   |                                    |         | (grams) |         | •      | Annual Total |
| Model Group | Tier    | Loco   | A1                                 | A2      | A3      | A4      | A5     | (grams)      |
| Switchers   | Precntl | 12     | 8                                  | 371     | 185     | 314     | 27     | 906          |
| GP-3x       | Precntl | 778    | 724                                | 29,579  | 14,790  | 27,775  | 2,569  | 75,437       |
| GP-4x       | Precntl | 1257   | 1,346                              | 60,249  | 30,124  | 60,578  | 5,063  | 157,361      |
| GP-50       | Precntl | 43     | 67                                 | 1,127   | 563     | 2,359   | 185    | 4,302        |
| GP-60       | Precntl | 225    | 329                                | 10,952  | 5,476   | 12,453  | 890    | 30,101       |
| SD-7x       | Precntl | 3      | 4                                  | 78      | 39      | 112     | 6      | 239          |
| Dash-7      | Precntl | 12     | 38                                 | 760     | 380     | 250     | 43     | 1,470        |
| Dash-9      | Precntl | 1128   | 1,834                              | 36,206  | 18,103  | 40,398  | 3,657  | 100,197      |
| GP-60       | 0       | 528    | 596                                | 11,144  | 5,572   | 40,908  | 1,196  | 59,416       |
| SD-7x       | 0       | 9      | 10                                 | 136     | 68      | 598     | 17     | 829          |
| Dash-8      | 0       | 1299   | 3,353                              | 48,004  | 24,002  | 40,574  | 5,188  | 121,121      |
| Dash-9      | 0       | 5766   | 9,702                              | 195,092 | 97,546  | 165,867 | 20,300 | 488,507      |
| Dash-9      | 1       | 2647   | 4,932                              | 44,738  | 22,369  | 104,583 | 11,134 | 187,756      |
| ES44/Dash-9 | 2       | 869    | 1,807                              | 6,694   | 3,347   | 26,813  | 3,802  | 42,463       |
| Total       |         | 14,577 | 24,750                             | 445,128 | 222,564 | 523,583 | 54,079 | 1,270,104    |

#### 4.2. Basic Engine Inspection

The PM emission estimates for Basic Engine Inspection by individual activities over the oneyear period for each activity in the Commerce-Mechanical facility are presented in Table 4-2. Most of the PM emissions were estimated to originate from the pre-service (B2, 33%) and postservice (B3, 67%) load tests in this facility.

**Table 4-2.** Estimated annual PM emissions associated with the Basic Engine Inspection in the Commerce-Mechanical facility.

| Locomotive  | Cert    | # of | PM Emissions by Operation<br>Activity (grams) |        |         |     | Annual Total |
|-------------|---------|------|-----------------------------------------------|--------|---------|-----|--------------|
| Model Group | Tier    | Loco | B1                                            | B2     | B3      | B4  | (grams)      |
| Switchers   | Precntl | 1    | 1                                             | 139    | 282     | 1   | 422          |
| GP-3x       | Precntl | 29   | 27                                            | 5,464  | 11,093  | 27  | 16,610       |
| GP-4x       | Precntl | 7    | 7                                             | 1,782  | 3,617   | 7   | 5,414        |
| Dash-9      | Precntl | 38   | 62                                            | 7,189  | 14,595  | 62  | 21,908       |
| Dash-8      | 0       | 39   | 101                                           | 6,432  | 13,058  | 101 | 19,691       |
| Dash-9      | 0       | 218  | 365                                           | 32,960 | 66,920  | 365 | 100,610      |
| Dash-9      | 1       | 113  | 211                                           | 23,571 | 47,857  | 211 | 71,849       |
| ES44/Dash-9 | 2       | 31   | 64                                            | 5,049  | 10,250  | 64  | 15,428       |
| Total       |         | 476  | 838                                           | 82,585 | 167,672 | 838 | 251,932      |

# 4.3. Full Engine Service/Inspection

The PM emission estimates for Full Engine Service/Inspection by individual activities over the one-year period are presented in Table 4-3. Similar to the Basic Engine Service, most of the PM emissions were estimated to originate from the pre service (C2, 28%), opacity test (C3, 14%) and post service (C4, 57%) load tests in this facility.

**Table 4-3.** Estimated annual PM emissions associated with the Full Engine Service/ Inspection in the Commerce facility.

|             |         |      | PM E |        |         |         |     |              |
|-------------|---------|------|------|--------|---------|---------|-----|--------------|
| Locomotive  | Cert    | # of |      |        | (grams) |         |     | Annual Total |
| Model Group | Tier    | Loco | C1   | C2     | C3      | C4      | C5  | (grams)      |
| GP-3x       | Precntl | 1    | 1    | 188    | 70      | 383     | 1   | 643          |
| GP-4x       | Precntl | 5    | 5    | 1,273  | 458     | 2,584   | 5   | 4,325        |
| Dash-7      | Precntl | 1    | 3    | 113    | 68      | 229     | 3   | 415          |
| Dash-9      | Precntl | 55   | 89   | 10,405 | 4,175   | 21,125  | 89  | 35,883       |
| Dash-8      | 0       | 42   | 108  | 6,926  | 3,114   | 14,062  | 108 | 24,320       |
| Dash-9      | 0       | 251  | 422  | 38,125 | 21,744  | 77,405  | 422 | 138,118      |
| Dash-9      | 1       | 157  | 292  | 32,749 | 14,021  | 66,491  | 292 | 113,846      |
| ES44/Dash-9 | 2       | 24   | 50   | 3,909  | 1,923   | 7,936   | 50  | 13,867       |
| Total       |         | 536  | 972  | 93,687 | 45,572  | 190,214 | 972 | 331,417      |

## 4.4. Movements of Cars to Car Repair Yard and in Adjacent Classification Yard

Estimated annual PM emissions for switching activities at the Commerce-Mechanical facility are presented in Table 4-4. ENVIRON calculated these emissions using the engine-specific emission factors by notch in Table 3-1b and the relative time in mode data from Table 2-8. Two hours per day of switching activity over 365 days per year were assumed to be divided equally between all 18 engines in the switching fleet.

**Table 4-4.** Estimated annual PM emissions associated with movements of cars to car repair yard and in the adjacent classification yard of the Commerce-Mechanical facility.

| Locomotive<br>Model Group | Cert<br>Tier | # of<br>Loco | PM Emissions<br>(grams) |
|---------------------------|--------------|--------------|-------------------------|
| Switchers                 | Precntl      | 2            | 4,211                   |
| GP-3x                     | Precntl      | 16           | 44,607                  |
| Total                     |              | 18           | 48,819                  |

## 4.5. Freight Movements on Adjacent Mainline

The PM emission estimates for BNSF and foreign freight movements during the one-year period are presented in Tables 4-5 and 4-6, respectively. Note that eastbound emissions are more than two times higher than westbound emissions.

|             |         |        | PM Emissions |           |         |
|-------------|---------|--------|--------------|-----------|---------|
| Locomotive  | Cert    | # of   | (gra         | ms)       |         |
| Model Group | Tier    | Loco   | Westbound    | Eastbound | Total   |
| Switchers   | Precntl | 47     | 21           | 36        | 57      |
| GP-3x       | Precntl | 3040   | 1,735        | 3,197     | 4,932   |
| GP-4x       | Precntl | 4907   | 3,114        | 6,236     | 9,350   |
| GP-50       | Precntl | 169    | 86           | 263       | 349     |
| GP-60       | Precntl | 880    | 687          | 1,317     | 2,004   |
| SD-7x       | Precntl | 13     | 0            | 10        | 10      |
| Dash-7      | Precntl | 46     | 65           | 83        | 148     |
| Dash-9      | Precntl | 4403   | 1,881        | 4,972     | 6,853   |
| GP-60       | 0       | 2062   | 415          | 2,262     | 2,677   |
| SD-7x       | 0       | 36     | 4            | 36        | 41      |
| Dash-8      | 0       | 5073   | 5,933        | 7,946     | 13,879  |
| Dash-9      | 0       | 22514  | 9,046        | 26,657    | 35,703  |
| Dash-9      | 1       | 10337  | 7,245        | 15,836    | 23,082  |
| ES44/Dash-9 | 2       | 3394   | 1,130        | 5,128     | 6,258   |
| Total       |         | 56,921 | 31,365       | 73,979    | 105,344 |

**Table 4-5.** Estimated annual PM emissions associated with BNSF freight movements along the mainline adjacent to the Commerce-Mechanical facility.

**Table 4-6.** Estimated annual PM missions associated with non-BNSF freight movements along the mainline adjacent to the Commerce-Mechanical facility.

|             |         | -    | PM Emissions |           |       |
|-------------|---------|------|--------------|-----------|-------|
| Locomotive  | Cert    | # of | (gra         | ms)       |       |
| Model Group | Tier    | Loco | Westbound    | Eastbound | Total |
| Switchers   | Precntl | 0    | 0.0          | 0         | 0.0   |
| GP-3x       | Precntl | 12   | 6.9          | 13        | 19.5  |
| GP-4x       | Precntl | 19   | 12.1         | 24        | 36.2  |
| GP-50       | Precntl | 1    | 0.5          | 2         | 2.1   |
| GP-60       | Precntl | 3    | 2.3          | 4         | 6.8   |
| SD-7x       | Precntl | 0    | 0.0          | 0         | 0.0   |
| Dash-7      | Precntl | 0    | 0.0          | 0         | 0.0   |
| Dash-9      | Precntl | 17   | 7.3          | 19        | 26.5  |
| GP-60       | 0       | 8    | 1.6          | 9         | 10.4  |
| SD-7x       | 0       | 0    | 0.0          | 0         | 0.0   |
| Dash-8      | 0       | 20   | 23.4         | 31        | 54.7  |
| Dash-9      | 0       | 89   | 35.8         | 105       | 141.1 |
| Dash-9      | 1       | 40   | 28.0         | 61        | 89.3  |
| ES44/Dash-9 | 2       | 13   | 4.3          | 20        | 24.0  |
| Total       |         | 222  | 122          | 288       | 411   |

## 4.6. Commuter Rail Operations on Adjacent Mainline

The annual PM emission estimates for commuter movements on the adjacent mainline are presented in Table 4-7. Time in notch for these locomotives was assumed to be the same as was modeled for the freight locomotives. AMTRAK and Metrolink estimates are kept separate, since Metrolink only operates on weekdays.

**Table 4-7.** Estimated annual PM missions associated with commuter movements along the mainline adjacent to the Commerce-Mechanical facility.

|           | Locomotive   | Cert    | # of  | PM Emissions by Direction<br>(grams) |           |        |
|-----------|--------------|---------|-------|--------------------------------------|-----------|--------|
| Agency    | Model Group  | Tier    | Loco  | Westbound                            | Eastbound | Total  |
| AMTRAK    | EMD 12 710G3 | Precntl | 10391 | 4,490                                | 11,187    | 15,677 |
| Metrolink | EMD 12 710G3 | Precntl | 7280  | 3,146                                | 7,838     | 10,984 |
| Total     |              |         |       | 7,636                                | 19,024    | 26,661 |

## 5.0 NON-LOCOMOTIVE FACILITY OPERATIONS, EMISSION FACTORS AND EMISSION ESTIMATES

The operations at the Commerce-Mechanical facility also include non-locomotive activity within the yard (Sections 5.1 through 5.5). Under each heading is a description of the operations.

## 5.1 Cargo Handling Equipment Operations

No such activity occurs within the Commerce-Mechanical facility.

## 5.2 On-road Container Truck Operations

No such activity occurs within the Commerce-Mechanical facility.

## 5.3. On-road Fleet Vehicle Operations

There are 29 fleet vehicles based at the Commerce-Mechanical facility according to records from BNSF Parameters including gross vehicle weight rating (GVWR), fuel type and annual mileage are known for each vehicle. The draft EMFAC2005 model (ARB, 2006c) provides an average trip distance for each vehicle type in 2005. With this estimate of miles per trip, total annual mileage for each vehicle can be converted to an estimated number of trips. A conservative assumption that all trips either start or end on site can be combined with an approximate distance of 750 feet from the facility parking lot to the gate in order to estimate the amount of on-site driving for each vehicle.

Using this procedure, the distance driven on site each year by the 29 fleet vehicles is estimated. Each vehicle's GVWR can be used to assign the appropriate vehicle type and emission factor to calculate the emissions associated with driving on site throughout the year. Table 5-1 provides a summary of relevant parameters for emissions modeling.

| EMFAC<br>Vehicle Type | Fuel     | # of<br>Vehicles | Average Annual<br>Mileage | Est. Annual<br>Mileage on Site |
|-----------------------|----------|------------------|---------------------------|--------------------------------|
| LDA                   | Gasoline | 1                | 20,161                    | 629                            |
| LDT2                  | Gasoline | 3                | 62,444                    | 1,706                          |
| LHDT1                 | Gasoline | 18               | 291,715                   | 33,006                         |
| MHDT                  | Diesel   | 5                | 44,087                    | 3,096                          |
| HHDT                  | Diesel   | 2                | 25,669                    | 114                            |
| Total                 |          | 29               | 444,076                   | 38,552                         |

Table 5-1. On-road fleet vehicle activity at the Commerce-Mechanical facility.

Annual PM and TOG emission factors from the draft version EMFAC provided by ARB and onsite emissions estimates for the fleet vehicles are presented in Table 5-2. Note that gasoline and diesel vehicle estimates were kept separate, so that gasoline TOG exhaust and evaporative emissions could be speciated into TACs differently. ARB Speciate Profile #2105 will be used for the gasoline TOG exhaust emissions, and Profile #422 will be used for the gasoline TOG

G \BNSF\BNSF\_CriteriaRepts\Commerce Mechanical\Sec5 doc

# ENVIRON

evaporative emissions. The gasoline PM speciation profile is #400, and ARB made a recommendation in August of 5% for the Cr+6 fraction.

|                | PM        | TOG Exhaust | TOG            |
|----------------|-----------|-------------|----------------|
| EMFAC          | Emissions | Emissions   | Evap Emissions |
| Vehicle Type   | (grams)   | (grams)     | (grams)        |
| Gasoline Total | 436       | 58,082      | 31,046         |
| Diesel Total   | 996       | 951         | 0              |

#### 5.4. Other Off-Road Equipment

#### 5.4.1. Transport Refrigeration Unit Operations

No containers are handled at Commerce-Mechanical, and so no TRU were handled at this site.

#### 5.4.1.1. Boxcars

No such activity occurs within the Commerce-Mechanical facility.

#### 5.4.1.2. Containers/Trailer TRU

No such activity occurs within the Commerce-Mechanical facility.

#### 5.4.2. Track Maintenance Equipment Operations

Track maintenance equipment includes equipment used to service tracks anywhere in California though it may be housed at any given facility. This equipment category includes large and small engines and equipment.

#### Activity

BNSF California track maintenance equipment can be used on any or all tracks within California to maintain the network. Therefore, the approach used to determine the activity and emissions for a given facility was to estimate emissions from all track maintenance equipment and apportion those emissions by site using the relative track mileage (including all tracks, main line and other tracks) at the site to the California total track mileage.

The Commerce-Mechanical site has 12 miles of track within its boundaries compared with the California regional total of 3,779 miles. This represents 0.3% of the total California track mileage that is maintained.

Appendix I shows a list of all BNSF track maintenance equipment located in California with horsepower and operational parameters. Based on BNSF staff knowledge of equipment characteristics, it was assumed that all track maintenance equipment was diesel powered.

If the equipment model year was not available, the ARB default (ARB, 2006c) useful life was assumed as the equipment age. If rated horsepower was not available, horsepower was assumed to be ARB default (ARB, 2006c) for the most populous horsepower range for the assigned ARB equipment category and type.

#### Emissions

Exhaust emissions from track maintenance equipment were estimated using the draft version of the OFFROAD model (ARB, 2006c) Emissions from track maintenance equipment at the Commerce-Mechanical facility along with California totals are shown in Table 5-3. The diesel TOG from this equipment will be speciated using ARB Speciate Profile #818.

|                     |                    | Gasoline       | Diesel |            |           |
|---------------------|--------------------|----------------|--------|------------|-----------|
| Site                | Evaporative<br>TOG | Exhaust<br>TOG | РМ     | TOG        | РМ        |
| Commerce-Mechanical | 68                 | 387            | 11     | 39,072     | 14,304    |
| California Totals   | 21,469             | 121,981        | 3,525  | 12,305,162 | 4,504,844 |

#### Table 5-3. Track Maintenance Equipment Emissions Estimates (grams per year).

#### 5.4.3. Other Off-road Equipment (including Portable Engine) Operations

There are other types of off-road equipment dedicated to the Commerce-Mechanical site including forklifts and other equipment.

#### Activity

Surveys were returned by equipment operators with relevant equipment characteristics and operational information Table 5-4 shows Commerce-Mechanical site portable engine characteristics and activity.

| ARB                           | Model | Fuel | Rated            | Activity |
|-------------------------------|-------|------|------------------|----------|
| Equipment Type                | Year  | Туре | Horsepower       | (hrs/yr) |
| Forklifts                     | 1998  | D    | 57               | 2080     |
| Forklifts                     | 2000  | D    | 83 <sup>b</sup>  | 2080     |
| Forklifts                     | 1998  | D    | 83 <sup>b</sup>  | 2080     |
| Forklifts                     | 1998  | D    | 83 <sup>b</sup>  | 2080     |
| Cranes                        | 1997  | D    | 149 <sup>b</sup> | 2080     |
| Forklifts                     | 1976  | LPG  | 70 <sup>b</sup>  | 2080     |
| Pressure Washers              | 1993ª | NG   | 7.5              | 1248     |
| Forklifts                     | 1997  | LPG  | 70 <sup>b</sup>  | 2080°    |
| Forklifts                     | 1997  | LPG  | 70 <sup>b</sup>  | 2080 °   |
| Leaf Blowers/Vacuums          | 1999  | G    | 5                | 208      |
| Welders                       | 2000  | G    | 70 <sup>b</sup>  | 104      |
| Other General Industrial      | 2002  | G    | 7                | 312      |
| Other General Industrial      | 2002  | G    | 7                | 312      |
| Forklifts                     | 1993ª | D    | 83 <sup>b</sup>  | 1560     |
| Other Lawn & Garden Equipment | 1999  | G    | 42               | 104      |

**Table 5-4.** Portable Engine Equipment Characteristics and operation.

<sup>a</sup>Model year assumed to be equivalent to ARB default (ARB, 2006c) useful life.

<sup>b</sup> Rated horsepower assumed to be ARB default (ARB, 2006c) average horsepower for the most populous horsepower group in the assigned ARB Equipment Type category.

<sup>c</sup> Assumed equivalent activity to the activity of other comparable Forklifts at the site.

# ENVIRON

## Emissions

Emissions were calculated using the draft OFFROAD model provided by ARB (2006c). Emissions from portable engine offroad equipment at the Commerce-Mechanical facility are shown in Table 5-5.

| Fuel<br>Type | ARB equipment type           | Evaporative<br>TOG<br>(grams) | Exhaust<br>TOG<br>(grams) | PM<br>(grams) |
|--------------|------------------------------|-------------------------------|---------------------------|---------------|
| D            | Cranes                       | 0                             | 795,778                   | 366,025       |
|              | Forklifts                    | 0                             | 195,110                   | 300,023       |
| LPG          | Forklifts                    |                               | 664,635                   | 7,862         |
| NG           | Pressure Washers             | 0                             | 004,033                   | 7,002         |
| G            | Other Gen. Industrial Equip. |                               |                           |               |
|              | Welders                      | 27.050                        | 101 757                   | 2 5 4 4       |
|              | Leaf Blowers/Vacuums         | 37,850                        | 191,757                   | 3,544         |
|              | Other Lawn/Garden Equip.     |                               |                           |               |

Table 5-5. Portable Engine Equipment Emissions Estimates (grams per year).

## 5.5. Stationary Sources

Air quality permits for the Commerce-Mechanical facility show several types of stationary sources for potential evaluation.

#### Source types:

- (1) Diesel fuel storage tanks [3 on site]
- (2) Wastewater treatment plant [1 on site]
- (3) Gasoline storage and dispensing unit [1 on site]
- (4) Diesel-fueled internal combustion engines (ICEs) [2 on site]

The three diesel fuel storage tanks and wastewater treatment plant are assumed to have negligible emissions.

The gasoline storage and dispensing unit is comprised of a 2000 gallon tank and 10 foot hose with nozzle Phase I and II vapor recovery systems are in place. The estimated TAC emissions associated with gasoline storage and dispensing operations are mainly from 1) filling/working loss, 2) dispensing and spillage loss, and 3) breathing loss. The emissions were estimated using the South Coast Air Quality Management District (SCAQMD) methodology, which contained emission factors and followed guidance from the Gasoline Service Station Industry-Wide Risk Assessment Guidelines (CAPCOA, 1997) prepared by the Toxics Committee of the California Air Pollution Control Officers Association (CAPCOA). The estimated annual TOG emissions are shown in Table 5-6.

**Table 5-6.** TOG emissions for the gasoline dispensing and storage facility at the Commerce-Mechanical facility.

| Specifications                                                                                                | Filling/<br>Working<br>Emissions<br>(grams) | Dispensing<br>and Spillage<br>Emissions<br>(grams) |        | Total TOG<br>Emissions<br>(grams) |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|--------|-----------------------------------|
| Gasoline Dispensing and<br>Storage Facility with<br>Aboveground Storage Tank<br>(Phase and Vapor<br>Recovery) | 12,763                                      | 13,193                                             | 49,761 | 75,718                            |

The relevant parameters for the two diesel ICEs, as well as their estimated annual PM emissions are presented in Table 5-7. Emissions were calculated based on the actual hours of operations and emission factors contained in the permit applications (# 400454) for the Generac internal combustion engine and (# 327431) for the Detroit Diesel emergency fire pump driver.

**Table 5-7.** Parameters and PM emissions estimates for the diesel-fueled ICEs at the Commerce-Mechanical facility.

| Specifications              | Brake<br>horsepower<br>(hp) | Actual<br>Operation<br>Time (hr/yr) | PM<br>Emissions<br>(grams) |
|-----------------------------|-----------------------------|-------------------------------------|----------------------------|
| Generac 12 cyl. turbo       | 1135                        | 29                                  | 1,275                      |
| Detroit Diesel 6 cyl. turbo | 412                         | 29                                  | 1,950                      |
| Total                       |                             |                                     | 3,225                      |

## 6.0 TOTAL TAC EMISSIONS FROM THE COMMERCE - MECHANICAL FACILITY

The estimated total annual diesel PM (DPM) emissions associated with the operations in the Commerce-Mechanical facility are summarized in Table 6-1.

| Table 6-1. Estimated total annual OPM emissions associated with the operations in the | е |
|---------------------------------------------------------------------------------------|---|
| Commerce-Mechanical facility.                                                         |   |

|                                    | PM Emi    | ssions      |            |
|------------------------------------|-----------|-------------|------------|
| Facility Operations                | Grams     | Metric Tons | Percentage |
| Basic Services                     | 1,270,104 | 1.27        | 51%        |
| Basic Engine Inspection            | 251,932   | 0.25        | 10%        |
| Full Engine Service/Inspection     | 331,417   | 0.33        | 13%        |
| Switching                          | 48,819    | 0.05        | 2%         |
| Adjacent Freight Movements         | 105,755   | 0.11        | 4%         |
| Adjacent Commuter Rail Operations) | 26,661    | 0.03        | 1%         |
| Cargo Handling Equipment           | 0         | 0           | 0%         |
| On-Road Container Trucks           | 0         | 0           | 0%         |
| On-Road Fleet Vehicle              | 996       | 0.00        | 0%         |
| Other Off-Road TRU                 | 0         | 0           | 0%         |
| Other Off-Road Track Maintenance   | 14,304    | 0.01        | 1%         |
| Other Off-Road Portable Engines    | 366,025   | 0.37        | 15%        |
| Stationary Sources                 | 3,225     | 0.00        | 0%         |
| Total                              | 2,419,238 | 2.42        |            |

The estimated total annual emissions of total organic gases (TOG) (for speciation into the other TACs) associated with gasoline, LPG, and CNG operations in the Commerce-Mechanical facility are summarized in Table 6-2. Diesel TOG is not included in the tabulation.

**Table 6-2.** Estimated total annual TOG emissions associated with the operations in the Commerce-Mechanical facility.

|                                             | TOG EI    | missions    |            |
|---------------------------------------------|-----------|-------------|------------|
| Facility Operations                         | Grams     | Metric Tons | Percentage |
| Basic Services                              | 0         | 0           | 0%         |
| Basic Engine Inspection                     | 0         | 0           | 0%         |
| Full Engine Service/Inspection              | 0         | 0           | 0%         |
| Switching                                   | 0         | 0           | 0%         |
| Adjacent Freight Movements                  | 0         | 0           | 0%         |
| Adjacent Commuter Rail Operations)          | 0         | 0           | 0%         |
| Cargo Handling Equipment                    | 0         | 0           | 0%         |
| On-Road Container Trucks                    | 0         | 0           | 0%         |
| On-Road Fleet Vehicle Exhaust               | 58,082    | 0 06        | 5%         |
| On-Road Fleet Vehicle Evaporative           | 31,046    | 0.03        | 3%         |
| Other Off-Road TRU                          | 0         | 0           | 0%         |
| Other Off-Road Track Maintenance Exhaust    | 387       | 0 00        | 0%         |
| Other Off-Road Track Maintenance Evap       | 68        | 0 00        | 0%         |
| Other Off-Road Portable Engines Exhuast     | 856,392   | 0 86        | 81%        |
| Other Off-Road Portable Engines Evaporative | 37,850    | 0 04        | 4%         |
| Stationary Sources Evaporative              | 75,718    | 0 07        | 7%         |
| Total                                       | 1,059,543 | 1.06        |            |

 $G \ BNSF BNSF CriteriaRepts Commerce \ Mechanical Sec6 \ doc$ 

## 7.0 REFERENCES

- ARB. 2006a. Email from Dan Donohue of ARB to Chris Lindhjem of ENVIRON, May 9, 2006.
- ARB. 2006b. E-mail communication from Sandee Kidd with Draft OFFROAD Model Emission Factors, ARB. April, 2006.
- ARB. 2006c. Draft OFFROAD, and Draft EMFAC2005 models on disk August, 2006. Cargo handling equipment emissions provided September 26, 2006.
- ARB. 2000a. "MSC #99-32 Public Meeting to Consider Approval of California's Emissions Inventory of Off-Road Large Compression-Ignited Engines (≥ 25hp) Using the New OFFROAD Emissions Model", Staff Report, California Air Resources Board, <u>http //www arb ca gov/msei/off-road/pubs htm</u>, January, 2000.
- ARB. 2000b. "EMFAC Technical Support Document HC Conversions" California Air Resources Board, <u>http://www.arb.ca.gov/msei/on-road/doctable\_test.htm</u>, February, 2000.
- ARB. 1998. "MSC #98-27 Public Meeting to Consider Approval of the California Off-Road Large Spark-Ignited Engine Emissions Inventory", Staff Report, California Air Resources Board, http://www.arb.ca.gov/msei/off-road/pubs.htm, October, 1998.
- ARB. 1998a. "MSC #98-04 Public Meeting to Consider Approval of the California Small Off-Road Engine Emission Inventory", Staff Report, California Air Resources Board, http://www.arb.ca.gov/msei/off-road/pubs.htm, March, 1998.
- CAPCOA. 1997. Gasoline Service Station Industry-wide Risk Assessment Guidelines. November, 1997.
- EMFAC. 2003. EMFAC model version EMFAC2002 V2.2 Apr. 23 2003. California Air Resources Board.
- EPA. 2005. "Conversion Factors for Hydrocarbon Emission Components", U.S. Environmental Protection Agency, EPA420-R-05-015, December, 2005.
- EPA. 1997. "Locomotive Emission Standards", Regulatory Support Document, United States Environmental Protection Agency, Office of Mobile Sources, April 1997.
- SwRI. 2006. Personal communication between S. Fritz of SwRI and C. Lindhjem of ENVIRON, May 2006.
- Wong, ARB, March 2005, http://www.arb.ca.gov/ei/areasrc/arbomobilsrctrains.htm

# **APPENDIX A**

# TRACK MAINTENANCE EQUIPMENT

| Equipment<br>ID | Equipment Type     | ARB Category | ARB Equipment type       | Engine<br>Model<br>Year | Engine<br>Horsepower | Dual<br>Engine<br>(Y/N) | Operating<br>Hours<br>Per week | Average<br>Operating<br>Hours<br>Per Year |
|-----------------|--------------------|--------------|--------------------------|-------------------------|----------------------|-------------------------|--------------------------------|-------------------------------------------|
| TM1             | FORKLIFT           | Industrial   | Forklifts                | 1998                    | 17                   | N                       | 30                             | 1440                                      |
| TM2             | FORKLIFT           | Industrial   | Forklifts                | 1985                    | 17                   | N                       | 30                             | 1440                                      |
| TM3             | ANCHOR APPLICATOR  | Industrial   | Other General Industrial | 1988                    | 50                   | N                       | 25                             | 1200                                      |
| TM4             | ANCH REMVR         | Industrial   | Other General Industrial | 1994                    | 90                   | N                       | 15                             | 720                                       |
| TM5             | ANCHOR BOXER       | Industrial   | Other General Industrial | 1987                    | 76                   | N                       | 25                             | 1200                                      |
| TM6             | ANCHOR BOXER       | Industrial   | Other General Industrial | 1987                    | 76                   | N                       | 25                             | 1200                                      |
| TM7             | ANCHOR REMOVER     | Industrial   | Other General Industrial | 1995                    | 50                   | N                       | 20                             | 960                                       |
| TM8             | ANCHOR APP/REM     | Industrial   | Other General Industrial | 2004                    | 50                   | N                       | 25                             | 1200                                      |
| TM9             | ANCHOR APP/REM     | Industrial   | Other General Industrial | 2004                    | 50                   | N                       | 25                             | 1200                                      |
| TM10            | ANCHOR APP/REM     | Industrial   | Other General Industrial | 2004                    | 50                   | N                       | 25                             | 1200                                      |
| TM11            | AIR COMPRESSOR     | Commercial   | Air Compressors          | 1989                    | 35                   | N                       | 12                             | 576                                       |
| TM12            | AIR COMPRESSOR     | Commercial   | Air Compressors          | 1989ª                   | 35                   | N                       | 15                             | 720                                       |
| TM13            | AIR COMPRESSOR     | Commercial   | Air Compressors          | 1989ª                   | 35                   | N                       | 10                             | 480                                       |
| TM14            | AIR COMPRESSOR     | Commercial   | Air Compressors          | 1989ª                   | 35                   | N                       | 10                             | 480                                       |
| TM15            | ADZ/CR B-DCF       | Industrial   | Other General Industrial | 2002                    | 90                   | N                       | 15                             | 720                                       |
| TM16            | DBL BRM            | Industrial   | Other General Industrial | 1983                    | 100                  | N                       | 0                              | 0                                         |
| TM17            | DBL BRM            | Industrial   | Other General Industrial | 1985                    | 100                  | N                       | 0                              | 0                                         |
| TM18            | DBL BRM TRLR       | Industrial   | Other General Industrial | 2000                    | 100                  | N                       | 25                             | 1200                                      |
| TM19            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1981                    | 64                   | N                       | 17.29                          | 829.92                                    |
| TM20            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1991                    | 64                   | N                       | 0                              | 0                                         |
| TM21            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1986                    | 64                   | N                       | 0                              | 0                                         |
| TM22            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1979                    | 64                   | N                       | 45                             | 2160                                      |
| TM23            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1984                    | 175                  | N                       | 45                             | 2160                                      |
| TM24            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1983                    | 175                  | N                       | 0                              | 0                                         |
| TM25            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1985                    | 175                  | N                       | 0                              | 0                                         |
| TM26            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1996                    | 175                  | N                       | 10.2                           | 489.6                                     |
| TM27            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1996                    | 175                  | N                       | 31.33                          | 1503.84                                   |
| TM28            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 1996                    | 175                  | N                       | 0                              | 0                                         |
| TM29            | BALLAST REGULATOR  | Industrial   | Other General Industrial | 2003                    | 175                  | N                       | 15                             | 720                                       |
| TM30            | LOCOMOTIVE CRANE   | Construction | Cranes                   | 1979                    | 250                  | N                       | 0                              | 0                                         |
| TM31            | TRUCK CRANE        | Construction | Cranes                   | 1986                    | 175                  | Y                       | 0                              | 0                                         |
| TM32            | RUBBER TIRED CRANE | Construction | Cranes                   | 1982                    | 175                  | N                       | 0                              | 0                                         |
| TM33            | RUBBER TIRED CRANE | Construction | Cranes                   | 1999                    | 175                  | N                       | 0                              | 0                                         |
| TM34            | RUBBER TIRED CRANE | Construction | Cranes                   | 2001                    | 175                  | N                       | 0                              | 0                                         |
| TM35            | WHL LDR            | Construction | Rubber Tired Loaders     | 1974                    | 300                  | N                       | 3.06                           | 146.88                                    |
| TM36            | CRN/LDR HR         | Construction | Cranes                   | 1974                    | 100                  | N                       | 0                              | 0                                         |

| Equipment<br>ID | Equipment Type             | ARB Category | ARB Equipment type        | Engine<br>Model<br>Year | Engine<br>Horsepower | Dual<br>Engine<br>(Y/N) | Operating<br>Hours<br>Per week | Average<br>Operating<br>Hours<br>Per Year |
|-----------------|----------------------------|--------------|---------------------------|-------------------------|----------------------|-------------------------|--------------------------------|-------------------------------------------|
| TM37            | CRN/LDR HR                 | Construction | Cranes                    | 1984                    | 100                  | N                       | 0                              | 0                                         |
| TM38            | CRN/LDR HR                 | Construction | Cranes                    | 1984                    | 100                  | N                       | 3.36                           | 161.28                                    |
| TM39            | CRN/LDR HR                 | Construction | Cranes                    | 1984                    | 100                  | N                       | 28.8                           | 1382.4                                    |
| TM40            | WHL LDR*GP                 | Construction | Rubber Tired Loaders      | 1995                    | 120                  | N                       | 0                              | 0                                         |
| TM41            | SKID-LDR FBHTAH            | Construction | Skid Steer Loaders        | 2003                    | 74                   | N                       | 0                              | 0                                         |
| TM42            | CRN/LDR HR                 | Construction | Cranes                    | 2004                    | 100                  | N                       | 26.56                          | 1274.88                                   |
| TM43            | BK-HO/LDR                  | Construction | Tractors/Loaders/Backhoes | 1992                    | 75.5                 | N                       | 2                              | 96                                        |
| TM44            | BK-HO/LDR                  | Construction | Tractors/Loaders/Backhoes | 1992                    | 75.5                 | N                       | 0                              | 0                                         |
| TM45            | BK-HO/LDR EH               | Construction | Tractors/Loaders/Backhoes | 1995                    | 69                   | N                       | 12.37                          | 593.76                                    |
| TM46            | BK-HO/LDR EH               | Construction | Tractors/Loaders/Backhoes | 1995                    | 69                   | N                       | 46.38                          | 2226.24                                   |
| TM47            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 1998                    | 78                   | N                       | 0                              | 0                                         |
| TM48            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 1999                    | 78                   | N                       | 0                              | 0                                         |
| TM49            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 1999                    | 78                   | N                       | 12.88                          | 618.24                                    |
| TM50            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 1999                    | 78                   | N                       | 7.31                           | 350.88                                    |
| TM51            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 1999                    | 78                   | N                       | 8.91                           | 427.68                                    |
| TM52            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 2000                    | 78                   | N                       | 0                              | 0                                         |
| TM53            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 2003                    | 88                   | N                       | 0                              | 0                                         |
| TM54            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 2004                    | 88                   | N                       | 1.65                           | 79.2                                      |
| TM55            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 2004                    | 88                   | N                       | 9.93                           | 476.64                                    |
| TM56            | BK-HO/LDR EF               | Construction | Tractors/Loaders/Backhoes | 2004                    | 88                   | N                       | 6.13                           | 294.24                                    |
| TM57            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989ª                   | 119                  | N                       | 15                             | 720                                       |
| TM58            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 85                   | N                       | 15                             | 720                                       |
| TM59            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 74                   | N                       | 15                             | 720                                       |
| TM60            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989ª                   | 74                   | N                       | 15                             | 720                                       |
| TM61            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 74                   | N                       | 15                             | 720                                       |
| TM62            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 74                   | N                       | 15                             | 720                                       |
| TM63            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 74                   | N                       | 15                             | 720                                       |
| TM64            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 74                   | N                       | 15                             | 720                                       |
| TM65            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 74                   | N                       | 15                             | 720                                       |
| TM66            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 85                   | N                       | 15                             | 720                                       |
| TM67            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989 <sup>a</sup>       | 99                   | N                       | 15                             | 720                                       |
| TM68            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989ª                   | 74                   | N                       | 15                             | 720                                       |
| TM69            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989ª                   | 74                   | N                       | 15                             | 720                                       |
| TM70            | BK-HO/LFR EF               | Construction | Tractors/Loaders/Backhoes | 1989ª                   | 85                   | N                       | 15                             | 720                                       |
| TM71            | Directional Boring Machine | Construction | Bore/Drill Rigs           | 2002ª                   | 82 <sup>b</sup>      | N                       | 15                             | 720                                       |
| TM72            | Manlift                    | Industrial   | Aerial Lifts              | 1989ª                   | 34 <sup>b</sup>      | N                       | 15                             | 720                                       |

| Equipment<br>ID | Equipment Type   | ARB Category | ARB Equipment type       | Engine<br>Model<br>Year | Engine<br>Horsepower | Dual<br>Engine<br>(Y/N) | Operating<br>Hours<br>Per week | Average<br>Operating<br>Hours<br>Per Year |
|-----------------|------------------|--------------|--------------------------|-------------------------|----------------------|-------------------------|--------------------------------|-------------------------------------------|
| TM73            | Trencher         | Construction | Trenchers                | 1998ª                   | 39                   | N                       | 15                             | 720                                       |
| TM74            | Trencher         | Construction | Trenchers                | 1998ª                   | 39                   | N                       | 15                             | 720                                       |
| TM75            | Trencher         | Construction | Trenchers                | 1998 <sup>a</sup>       | 39                   | N                       | 15                             | 720                                       |
| TM76            | Trencher Rider   | Construction | Trenchers                | 1998ª                   | 79                   | N                       | 15                             | 720                                       |
| TM77            | RAIL LIFTER      | Industrial   | Other General Industrial | 1997                    | 19                   | N                       | 20                             | 960                                       |
| TM78            | TIE SPIKER       | Industrial   | Other General Industrial | 1986                    | 19                   | N                       | 0                              | 0                                         |
| TM79            | TIE SPIKER       | Industrial   | Other General Industrial | 1986                    | 19                   | N                       | 0                              | 0                                         |
| TM80            | TIE SPIKER       | Industrial   | Other General Industrial | 1991                    | 19                   | N                       | 3.1                            | 148.8                                     |
| TM81            | TIE SPIKER       | Industrial   | Other General Industrial | 2002                    | 90                   | N                       | 10                             | 480                                       |
| TM82            | TIE SPIKER       | Industrial   | Other General Industrial | 2002                    | 90                   | N                       | 10                             | 480                                       |
| TM83            | TIE SPIKER       | Industrial   | Other General Industrial | 2002                    | 90                   | N                       | 10                             | 480                                       |
| TM84            | SPIKE PULLER     | Industrial   | Other General Industrial | 1984                    | 35                   | N                       | 10                             | 480                                       |
| TM85            | SPIKE PULLER     | Industrial   | Other General Industrial | 1995                    | 35                   | N                       | 10                             | 480                                       |
| TM86            | SPIKE PULLER     | Industrial   | Other General Industrial | 1995                    | 35                   | N                       | 10                             | 480                                       |
| TM87            | SPIKE PULLER     | Industrial   | Other General Industrial | 1986                    | 35                   | N                       | 0                              | 0                                         |
| TM88            | DITCHER/SPREADER | Industrial   | Other General Industrial | 1980                    | 97 <sup>b</sup>      | N                       | 15                             | 720                                       |
| TM89            | TIE TAMPER       | Industrial   | Other General Industrial | 1985                    | 175                  | N                       | 20                             | 960                                       |
| TM90            | TIE TAMPER       | Industrial   | Other General Industrial | 1985                    | 175                  | N                       | 3.74                           | 179.52                                    |
| TM91            | TIE TAMPER       | Industrial   | Other General Industrial | 1989                    | 250                  | N                       | 22.4                           | 1075.2                                    |
| TM92            | TIE TAMPER       | Industrial   | Other General Industrial | 1995                    | 250                  | N                       | 40                             | 1920                                      |
| TM93            | TIE TAMPER       | Industrial   | Other General Industrial | 1996                    | 250                  | N                       | 40                             | 1920                                      |
| TM94            | TIE TAMPER       | Industrial   | Other General Industrial | 1996                    | 250                  | N                       | 90                             | 4320                                      |
| TM95            | TIE TAMPER       | Industrial   | Other General Industrial | 1996                    | 250                  | N                       | 40                             | 1920                                      |
| TM96            | TIE TAMPER       | Industrial   | Other General Industrial | 1997                    | 250                  | N                       | 0.92                           | 44.16                                     |
| TM97            | TIE TAMPER       | Industrial   | Other General Industrial | 2000                    | 250                  | N                       | 35                             | 1680                                      |
| TM98            | TIE TAMPER       | Industrial   | Other General Industrial | 2000                    | 300                  | N                       | 40                             | 1920                                      |
| TM99            | TIE TAMPER       | Industrial   | Other General Industrial | 2001                    | 250                  | N                       | 31                             | 1488                                      |
| TM100           | TIE TAMPER       | Industrial   | Other General Industrial | 2002                    | 300                  | N                       | 35                             | 1680                                      |
| TM101           | TIE TAMPER       | Industrial   | Other General Industrial | 2003                    | 250                  | N                       | 0                              | 0                                         |
| TM102           | TIE TAMPER       | Industrial   | Other General Industrial | 1995                    | 175                  | N                       | 0                              | 0                                         |
| TM103           | TIE TAMPER       | Industrial   | Other General Industrial | 1987                    | 175                  | N                       | 0                              | 0                                         |
| TM104           | TIE TAMPER       | Industrial   | Other General Industrial | 1985                    | 150                  | N                       | 15                             | 720                                       |
| TM105           | TIE CRANE        | Construction | Cranes                   | 1982                    | 64                   | N                       | 15                             | 720                                       |
| TM106           | TIE CRANE        | Construction | Cranes                   | 1982                    | 64                   | N                       | 0                              | 0                                         |
| TM107           | TIE CRANE        | Construction | Cranes                   | 1985                    | 64                   | N                       | 0                              | 0                                         |
| TM108           | TIE CRANE        | Construction | Cranes                   | 1986                    | 64                   | N                       | 0                              | 0                                         |

| Equipment<br>ID | Equipment Type     | ARB Category | ARB Equipment type       | Engine<br>Model<br>Year | Engine<br>Horsepower | Dual<br>Engine<br>(Y/N) | Operating<br>Hours<br>Per week | Average<br>Operating<br>Hours<br>Per Year |
|-----------------|--------------------|--------------|--------------------------|-------------------------|----------------------|-------------------------|--------------------------------|-------------------------------------------|
| TM109           | TIE PLUGGER        | Industrial   | Other General Industrial | 2000                    | 90                   | N                       | 20                             | 960                                       |
| TM110           | TIE PLUGGER        | Industrial   | Other General Industrial | 2002                    | 90                   | N                       | 20                             | 960                                       |
| TM111           | TIE PLUGGER        | Industrial   | Other General Industrial | 2003                    | 90                   | N                       | 20                             | 960                                       |
| TM112           | TIE INSERT/EXTRACT | Industrial   | Other General Industrial | 1985                    | 175                  | N                       | 0                              | 0                                         |
| TM113           | TIE INSERT/EXTRACT | Industrial   | Other General Industrial | 1985                    | 175                  | N                       | 0                              | 0                                         |
| TM114           | TIE INSERT/EXTRACT | Industrial   | Other General Industrial | 1987                    | 175                  | N                       | 41.58                          | 1995.84                                   |
| TM115           | DOZER              | Construction | Crawler Tractors         | 1985                    | 145                  | N                       | 0                              | 0                                         |
| TM116           | WELDER             | Commercial   | Welders                  | 1984                    | 64                   | N                       | 25                             | 1200                                      |
| TM117           | WELDER             | Commercial   | Welders                  | 1984                    | 64                   | N                       | 25                             | 1200                                      |
| TM118           | WELDER             | Commercial   | Welders                  | 1986                    | 64                   | N                       | 25                             | 1200                                      |
| TM119           | WELDER             | Commercial   | Welders                  | 1987                    | 64                   | N                       | 25                             | 1200                                      |
| TM120           | WELDER             | Commercial   | Welders                  | 1988                    | 40                   | N                       | 25                             | 1200                                      |
| TM121           | WELDER             | Commercial   | Welders                  | 1988                    | 64                   | N                       | 25                             | 1200                                      |
| TM122           | WELDER             | Commercial   | Welders                  | 1988                    | 64                   | N                       | 25                             | 1200                                      |
| TM123           | WELDER             | Commercial   | Welders                  | 1998                    | 64                   | N                       | 25                             | 1200                                      |
| TM124           | WELDER             | Commercial   | Welders                  | 1999                    | 64                   | N                       | 25                             | 1200                                      |
| TM125           | WELDER             | Commercial   | Welders                  | 1999                    | 64                   | N                       | 25                             | 1200                                      |
| TM126           | WELDER             | Commercial   | Welders                  | 1999                    | 64                   | N                       | 25                             | 1200                                      |
| TM127           | WELDER             | Commercial   | Welders                  | 2000                    | 64                   | N                       | 25                             | 1200                                      |
| TM128           | WELDER             | Commercial   | Welders                  | 2000                    | 64                   | N                       | 25                             | 1200                                      |
| TM129           | WELDER             | Commercial   | Welders                  | 2000                    | 40                   | N                       | 25                             | 1200                                      |
| TM130           | WELDER             | Commercial   | Welders                  | 2000                    | 40                   | N                       | 25                             | 1200                                      |
| TM131           | WELDER             | Commercial   | Welders                  | 2001                    | 64                   | N                       | 25                             | 1200                                      |
| TM132           | WELDER             | Commercial   | Welders                  | 2003                    | 40                   | N                       | 25                             | 1200                                      |
| TM133           | WELDER             | Commercial   | Welders                  | 2003                    | 64                   | N                       | 25                             | 1200                                      |
| TM134           | WELDER             | Commercial   | Welders                  | 2003                    | 40                   | N                       | 25                             | 1200                                      |
| TM135           | WELDER             | Commercial   | Welders                  | 2004                    | 64                   | N                       | 25                             | 1200                                      |
| TM136           | WELDER             | Commercial   | Welders                  | 2004                    | 64                   | N                       | 25                             | 1200                                      |
| TM137           | WELDER             | Commercial   | Welders                  | 2004                    | 64                   | N                       | 25                             | 1200                                      |
| TM138           | WELDER             | Commercial   | Welders                  | 2004                    | 40                   | N                       | 25                             | 1200                                      |
| TM139           | WELDER             | Commercial   | Welders                  | 2005                    | 40                   | N                       | 25                             | 1200                                      |
| TM140           | WELDER             | Commercial   | Welders                  | 2005                    | 40                   | N                       | 25                             | 1200                                      |
| TM141           | WELDER             | Commercial   | Welders                  | 2005                    | 40                   | N                       | 25                             | 1200                                      |
| TM142           | WELDER             | Commercial   | Welders                  | 2005                    | 40                   | N                       | 25                             | 1200                                      |
| TM143           | RAIL HEATER        | Industrial   | Other General Industrial | 1982                    | 90                   | N                       | 25                             | 1200                                      |
| TM144           | RAIL HEATER        | Industrial   | Other General Industrial | 1995                    | 90                   | N                       | 25                             | 1200                                      |

| Equipment<br>ID | Equipment Type      | ARB Category | ARB Equipment type       | Engine<br>Model<br>Year | Engine<br>Horsepower | Dual<br>Engine<br>(Y/N) | Operating<br>Hours<br>Per week | Average<br>Operating<br>Hours<br>Per Year |
|-----------------|---------------------|--------------|--------------------------|-------------------------|----------------------|-------------------------|--------------------------------|-------------------------------------------|
| TM145           | SPIKE RECLAIMER     | Industrial   | Other General Industrial | 1992                    | 90                   | N                       | 25                             | 1200                                      |
| TM146           | TIE PLATE RETRIEVER | Industrial   | Other General Industrial | 2003                    | 25                   | N                       | 25                             | 1200                                      |
| TM147           | TRACK STABILIZER    | Industrial   | Other General Industrial | 1989                    | 300                  | N                       | 9.26                           | 444.48                                    |
| TM148           | TRACK STABILIZER    | Industrial   | Other General Industrial | 2000                    | 300                  | N                       | 45                             | 2160                                      |
| TM149           | TRACK STABILIZER    | Industrial   | Other General Industrial | 2001                    | 300                  | N                       | 45                             | 2160                                      |

<sup>a</sup> Model year estimated as 2005 minus ARB default useful life. <sup>b</sup> Horsepower estimated as ARB default for the most populous horsepower range for the associated equipment type<sup>a</sup>