Final Report - 2/23/07

# Toxic Air Contaminant Emissions Inventory and Dispersion Modeling Report for the Los Angeles Transportation Center, Los Angeles, California

prepared for:

# **Union Pacific Railroad Company**



January 2007

prepared by:

Sierra Research, Inc. 1801 J Street Sacramento, California 95814 (916) 444-6666

# Toxic Air Contaminant Emission Inventory and Dispersion Modeling Report for the Los Angeles Transportation Center, Los Angeles, California

prepared for:

Union Pacific Railroad Company

January 2007

prepared by:

Sierra Research, Inc. 1801 J Street Sacramento, CA 95814

and

Robert G. Ireson, Ph.D. Air Quality Management Consulting 161 Vista Grande Greenbrae, CA 94904

#### **SUMMARY**

In accordance with the 2005 California Air Resources Board (CARB)/Railroad Statewide Agreement (MOU), Union Pacific Railroad Company (UPRR) has prepared a facilitywide emission inventory for the Los Angeles Transportation Center (LATC or Yard) in Los Angeles, California. The inventory quantifies emissions of specified toxic air contaminants (TACs) (including Diesel particulate matter [DPM]) from stationary, mobile, area, and portable sources at LATC. The inventory has been prepared in accordance with CARB's *Rail Yard Emission Inventory Methodology* guidelines (July 2006) and UPRR's *Emission Inventory Protocol* (May 2006).

LATC is an intermodal container facility. Cargo containers are received, sorted, and distributed from the facility. Activities at LATC include receiving inbound trains, switching cars, loading and unloading intermodal trains, storing intermodal containers and chassis, building and departing outbound trains, and repairing freight cars and intermodal containers/chassis. Facilities within LATC include classification tracks, a gate complex for inbound and outbound intermodal truck traffic, intermodal loading and unloading tracks, and various buildings and facilities supporting railroad and contractor operations.

Emission sources include, but are not limited to, locomotives, light-heavy-duty Dieselfueled trucks, heavy-heavy-duty Diesel-fueled trucks, cargo handling equipment, transport refrigeration units and refrigerated rail cars, and fuel storage tanks. Emissions were calculated on a source-specific and facility-wide basis for the 2005 baseline year.

An air dispersion modeling analysis was also conducted for LATC. The purpose of the analysis was to estimate ground-level concentrations of DPM and other TACs, emitted from Yard operations, at receptor locations near the Yard. Emission sources included in the modeling analysis were locomotives, heavy-heavy duty (HHD) Diesel-fueled trucks, Diesel-fueled cargo handling equipment (CHE), Diesel-fueled heavy equipment, and a gasoline storage tank. The air dispersion modeling was conducted using the AERMOD Gaussian plume dispersion model and wind speed, wind direction and temperature data from the Downtown Los Angeles - North Main monitoring station operated by the South

Coast Air Quality Management District (SCAQMD), Missing data was replaced by data from Los Angeles International Airport (LAX), and cloud cover data was also obtained from the LAX station operated by the National Weather Service. The meteorological data was processed using the AERMET program. The modeling analysis was conducted in accordance with the *Health Risk Assessment Guidance for Rail Yard and Intermodal Facilities* (July 2006) and UPRR's *Modeling Protocol* (August 2006).

# Toxic Air Contaminant Emission Inventory and Dispersion Modeling Report for the Los Angeles Transportation Center Los Angeles, California

# TABLE OF CONTENTS

Page

| SUMMARY                                         | i  |
|-------------------------------------------------|----|
| PART I. INTRODUCTION                            | 1  |
| PART II. FACILITY DESCRIPTION                   | 2  |
| A. Facility Name and Address                    |    |
| B. Facility Contact Information                 |    |
| C. Main Purpose of the Facility                 |    |
| D. Type of Operations Performed at the Facility |    |
| E. Facility Operating Schedule                  |    |
| F. General Land Use Surrounding the Facility    |    |
|                                                 |    |
| PART III. MAP AND FACILITY PLOT PLAN            | 4  |
|                                                 |    |
| PART IV. COVERED SOURCES                        | 6  |
| PART V. SITE-SPECIFIC EQUIPMENT INVENTORY       | ?  |
| A. Locomotives                                  | ?  |
| B. LHD Diesel-Fueled Trucks                     |    |
| C. HHD Diesel-Fueled Trucks                     |    |
| D. Cargo Handling Equipment                     |    |
| E. Heavy Equipment                              |    |
| F. Tanks                                        |    |
| G. TRUs and Reefer Cars                         |    |
| H. Portable Equipment                           |    |
|                                                 |    |
| PART VI. ACTIVITY DATA                          |    |
| A. Locomotives                                  |    |
| B. LHD Diesel-Fueled Trucks                     |    |
| C. HHD Diesel-Fueled Trucks                     |    |
| D. Cargo Handling Equipment                     |    |
| E. Heavy Equipment                              |    |
| F. Tanks                                        |    |
| G. TRUs and Reefer Cars                         | 19 |

# TABLE OF CONTENTS (continued)

# <u>Page</u>

| PART VII. EMISSIONS                                                       | 20 |
|---------------------------------------------------------------------------|----|
| A. Calculation Methodology and Emission Factors                           | 20 |
| 1. Locomotives                                                            |    |
| 2. LHD Diesel-Fueled Truck                                                |    |
| 3. HHD Diesel-Fueled Trucks                                               |    |
| 4. Cargo Handling Equipment                                               |    |
| 5. Heavy Equipment                                                        |    |
| 6. Tanks                                                                  |    |
| 7. TRUs and Reefer Cars                                                   |    |
| B. TAC Emissions by Source Type                                           |    |
| C. Facility Total Emissions                                               |    |
| PART VII. RISK SCREENING CALCULATIONS<br>PART IX. AIR DISPERSION MODELING |    |
| A. Modeling Selection and Preparation                                     |    |
| 1. Modeled Sources and Source Treatment                                   |    |
| 2 Model Selection                                                         |    |
| 3. Modeling Inputs                                                        |    |
| 4. Meteorological Data Selection                                          |    |
| 5. Model Domain and Receptor Grids                                        |    |
| 6 Dispersion Coefficients                                                 |    |
| <ol> <li>7. Building Downwash</li> </ol>                                  |    |
| B. Modeling Results                                                       |    |
| C. Demographic Data                                                       |    |
|                                                                           |    |
| PART X. REFERENCES                                                        |    |

### LIST OF APPENDICES

- Appendix A Locomotive Data
- Appendix B Emission Factor Derivation and EMFAC-WD 2006 Output for On-Road Diesel-Fueled Trucks
- Appendix C Emission Factor Derivation, EMFAC-WD 2006 Output, and the CARB Technical Support Document for HHD Diesel-Fueled Trucks
- Appendix D Emission Factor Derivation and OFFROAD2006 Output for Cargo Handling Equipment
- Appendix E Emission Factor Derivation and OFFROAD2006 Output for Heavy Equipment
- Appendix F TANKS Output and SPECIATE Database Sections for the Gasoline Storage Tank
- Appendix G Emission Factor Derivation and OFFROAD2006 Output for TRUs and Reefer Cars
- Appendix H Detailed Emission Calculations
- Appendix I Detailed Risk Screening Calculations
- Appendix J Source Treatment and Assumptions for Air Dispersion Modeling for Non-Locomotive Sources
- Appendix K Seasonal and Diurnal Activity Profiles
- Appendix L Selection of Population for the Urban Option Input in AERMOD Air Dispersion Modeling Analysis

Appendix M -Demographic Data

### LIST OF FIGURES

#### Page

| 1. | Location Map          | 4  |
|----|-----------------------|----|
|    | LATC Rail Yard Layout |    |
|    | Source Locators       |    |
| 4. | Coarse Modeling Grid  | 4? |
| 5. | Fine Modeling Grid    | 48 |
|    | Sensitive Receptors   |    |

# LIST OF TABLES

| 1.  | Locomotive Models (Road Power) Identified at LATC     |    |
|-----|-------------------------------------------------------|----|
| 2.  | Equipment Specifications for Cargo Handling Equipment |    |
| 3.  | Equipment Specifications for Heavy Equipment          |    |
| 4.  | Storage Tank Specifications                           | 10 |
| 5.  | Portable Equipment Specifications                     |    |
| 6.  | Train Activity Summary                                |    |
| 7.  | Summary of LHD Diesel Truck Activity Data             |    |
| 8.  | Summary of Gate Count Data                            |    |
| 9.  | Summary of HHD Diesel Truck Activity Data             |    |
| 10. | Activity Data for Cargo Handling Equipment            | 18 |
| 11. |                                                       |    |
| 12. | Summary of Gasoline Storage Tank Activity Data        | 19 |
| 13. | Activity Data for TRUs and Reefer Cars                | 19 |
| 14. | Locomotive Diesel Particulate Matter Emission Factors | 24 |
| 15. | Locomotive Diesel Particulate Matter Emission Factors | 25 |
| 16. | Emission Factors for the LHD Diesel-Fueled Truck      | 26 |
| 17. | Emission Factors for HHD Diesel-Fueled Trucks         | 27 |
| 18. | Emission Factors for Cargo Handling Equipment         |    |
| 19. | Emission Factors for Heavy Equipment                  |    |
| 20. | TAC Emission Factors for Gasoline Storage Tank        | 29 |
|     | Emission Factors for TRUs and Reefer Cars             |    |
| 22. | Locomotive Duty Cycles                                | 30 |
| 23. | DPM Emissions from Locomotives                        |    |
| 24. | DPM Emissions from the LHD Diesel-Fueled Truck        | 32 |
| 25. | DPM Emissions from HHD Diesel-Fueled Trucks           | 32 |
| 26. | DPM Emissions from Cargo Handling Equipment           | 32 |
|     | DPM Emissions from Heavy Equipment                    |    |
|     | TAC Emissions from Gasoline Storage Tanks             |    |
| 29. | •                                                     |    |
| 30. | Facility-Wide Diesel Particulate Emissions            | 34 |
| 31. |                                                       |    |
| 32. |                                                       |    |
| 33. | •                                                     |    |
|     |                                                       |    |
|     | Non-locomotive Modeling Inputs                        |    |
|     | Sensitive Receptor Locations                          |    |
|     |                                                       |    |

### Page

# Toxic Air Contaminant Emission Inventory and Dispersion Modeling Report for the Los Angeles Transportation Center Los Angeles, California

### PART I. INTRODUCTION

In accordance with the 2005 California Air Resources Board (CARB)/Railroad Statewide Agreement (MOU), Union Pacific Railroad Company (UPRR) has prepared a facilitywide emission inventory for the Los Angeles Transportation Center (LATC or Yard) in Los Angeles, California. The inventory quantifies emissions of specified toxic air contaminants (TACs) (including Diesel particulate matter [DPM]) from stationary, mobile, and portable sources at LATC. The inventory has been prepared in accordance with CARB's *Rail Yard Emission Inventory Methodology* guidelines (July 2006) and UPRR's *Emission Inventory Protocol* (May 2006).

An air dispersion modeling analysis was also conducted for LATC. The purpose of the analysis was to estimate ground-level concentrations of DPM and other TACs, emitted from Yard operations, at receptor locations near the Yard. Emission sources included in the modeling analysis were locomotives, heavy-heavy duty (HHD) Diesel-fueled trucks, Diesel-fueled cargo handling equipment (CHE), Diesel-fueled heavy equipment, and a gasoline storage tank. The air dispersion modeling was conducted using the AERMOD Gaussian plume dispersion model and wind speed, wind direction, and temperature data from the Downtown Los Angeles - North Main monitoring station<sup>1</sup> operated by the South Coast Air Quality Management District. Missing data was replaced by data from Los Angeles International Airport (LAX), and cloud cover data was also obtained from the LAX station operated by the National Weather Service. The meteorological data was processed using the AERMET program. The modeling analysis was conducted in accordance with the *Health Risk Assessment Guidance for Rail Yard and Intermodal Facilities* (July 2006) and UPRR's *Modeling Protocol* (August 2006).

<sup>&</sup>lt;sup>1</sup>Located at 1630 North Main Street, Los Angeles, CA 90012

### PART II. FACILITY DESCRIPTION

### A Facility Name and Address

Union Pacific Railroad Company Los Angeles Transportation Center 750 Lamar St. Los Angeles, CA 90031

### B Facility Contact Information

Brock Nelson Director of Environmental Operations - West Union Pacific Railroad Company 10031 Foothills Boulevard Roseville, CA 95747 Phone: (916) 789-6370 Fax: (402) 233-3162 banelson@up.com

### C Main Purpose of the Facility

The LATC Yard is an intermodal container facility. Cargo containers are received, sorted, and distributed from the facility. Intermodal containers may arrive at the facility by truck to be loaded onto trains for transport to distant destinations, or arrive by train and unloaded onto chassis for transport by truck to local destinations. Cargo containers and chassis are also temporarily stored at LATC. Cranes and packers are washed at LATC. Wastewater generated during equipment washing is shipped, by tanker truck, to the Commerce Yard WWTP for treatment.

### D Type of Operations Performed at the Facility

Activities at LATC include receiving inbound trains, switching cars, loading and unloading intermodal trains, storing intermodal containers and chassis, building and departing outbound trains, and repairing freight cars and intermodal containers/chassis. Facilities within LATC include classification tracks, a gate complex for inbound and

outbound intermodal truck traffic, intermodal loading and unloading tracks, and various buildings and facilities supporting railroad and contractor operations.

### E Facility Operating Schedule

The facility operates 24 hours per day, 365 days per year.

### F. General Land Use Surrounding the Facility

The land use surrounding the facility within 1,000 feet is mostly industrial-commercial, with residential areas at the northwest and northeast corners of the facility. Additional residential areas are located approximately 1,500 feet to the south of the facility. There are 26 elementary schools, 19 day care centers, ? hospitals, and 1 nursing home within 1 mile of the facility. The location of specific receptors is further discussed in Part IX.

# PART III. MAP AND FACILITY PLOT PLAN

Figure 1 Location Map

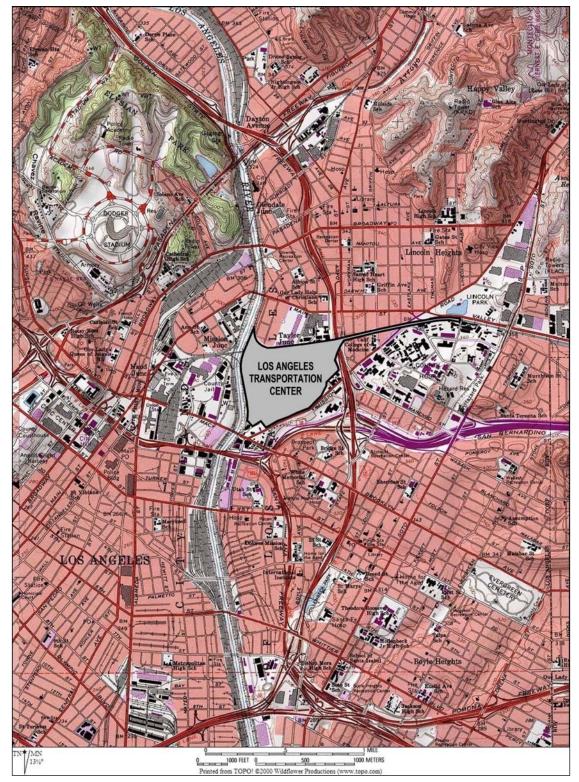



Figure 2 LATC Rail Yard Layout



-5-

### PART IV. COVERED SOURCES

This emission inventory quantifies toxic air contaminant (TAC) emissions from the stationary, mobile, and portable sources located or operating at LATC. Sources include, but are not limited to, locomotives, light-heavy-duty Diesel-fueled trucks, heavy-heavy-duty (HHD) Diesel-fueled trucks, cargo handling equipment (CHE), transport refrigeration units (TRUs) and refrigerated railcars (reefer cars), and fuel storage tanks. A site-specific equipment inventory is included in Section V below.

Stationary point and area sources that are exempt from local air district rules have been identified but not included in the detailed emission inventory. As agreed upon in the emission inventory protocol approved by the CARB, de minimis sources, based on weighted risk, have been identified in the inventory but were not further discussed or included in the modeling analysis. De minimis sources are the individual sources that represent less than 3 percent of the facility-total weighted-average site health risk (determined separately for cancer risk and non-cancer chronic health hazard). Total exclusions for all de minimis sources did not exceed 10 percent of the facility-total weighted-average site cancer risk or chronic health hazard. De minimis sources are further discussed in Part VIII of this report.

### PART V. SITE-SPECIFIC EQUIPMENT INVENTORY

As discussed in Part IV above, there are a number of mobile, stationary, and portable emissions sources operating at LATC. The mobile sources include locomotives, lightheavy duty (LHD) Diesel-fueled trucks, heavy-heavy duty (HHD) Diesel-fueled trucks, cargo handling equipment (CHE), and heavy equipment. The only stationary emission sources discussed in the report are storage tanks. Portable equipment operating at the Yard includes transport refrigeration units (TRUs) and refrigerated railcars (reefer cars), welders, air compressors, and light towers. Each source group is further discussed below.

### A Locomotives

Locomotive activities at the yard fall into several categories. "Road power" activities (locomotives used on inbound and outbound freight) include hauling through trains on the main line; pulling arriving trains through the yard and departing trains out of the yard; and movements of locomotives to and from maintenance facilities at other locations after arrival and prior to departure. Yard operations include the use of three sets of low horsepower locomotives to move sections of trains within the yard. During 2005, the working sets included two pairs of remote control locomotive (RCL) switchers and one pair of switchers operated by an on-board engineer.

Table 1 provides the number of locomotives in operation (arrivals, departures, and through traffic) at the yard during 2005 by locomotive model group and type of train. Through trains use the main line passing by the facility. Intermodal trains and occasionally other trains enter the yard on specified tracks. Power moves are trains with locomotives but no cars, whose objective is either to move locomotives to locations where they are needed or to take malfunctioning units to service facilities. In general, only one or two locomotives are in operation during power moves.

| ]                                 | Locomotive Mod | Table 1lels (Road Power) Identified at |             |  |  |  |
|-----------------------------------|----------------|----------------------------------------|-------------|--|--|--|
| Los Angeles Transportation Center |                |                                        |             |  |  |  |
|                                   |                | Train Type <sup>1</sup>                |             |  |  |  |
| Locomotive                        | Through        |                                        |             |  |  |  |
| Model Group                       | Trains         | Arriving/Departing Trains              | Power Moves |  |  |  |
| Switch <sup>2</sup>               | 7              | 12                                     | 11          |  |  |  |
| GP3x                              | 55             | 53                                     | 35          |  |  |  |
| GP4x                              | 1,264          | 960                                    | 373         |  |  |  |
| GP50                              | 65             | 55                                     | 34          |  |  |  |
| GP60                              | 2,771          | 942                                    | 375         |  |  |  |
| SD7x                              | 3,559          | 4,910                                  | 1,743       |  |  |  |
| SD90                              | 141            | 7                                      | 9           |  |  |  |
| Dash7                             | 4              | 2                                      | 2           |  |  |  |
| Dash8                             | 819            | 900                                    | 379         |  |  |  |
| Dash9                             | 2,904          | 1,561                                  | 641         |  |  |  |
| C60A                              | 96             | 18                                     | 4           |  |  |  |
| Unknown                           | 92             | 76                                     | 33          |  |  |  |
| Total                             | 11,777         | 9,496                                  | 3,639       |  |  |  |

working and non-working units.

2. Does not include switcher locomotives used for yard operations.

### B LHD Diesel-Fueled Trucks

There is one light-heavy duty (LHD) Diesel-fueled truck, a 2003 Dodge 2500 pickup, operating at LATC to support Yard activities.

# C HHD Diesel-Fueled Trucks

A variety of HHD Diesel-fueled trucks operate at LATC each day. The HHD trucks are used to pick up and deliver cargo containers. The trucks are owned and operated by many large trucking companies and independent operators (draymen). Therefore, a fleet distribution is not available. For emission calculations, the EMFAC-WD 2006 model default fleet distribution for HHD Diesel-fueled operating in Los Angeles County was used.

# D Cargo Handling Equipment

A variety of heavy equipment is used to load, unload, and move cargo containers in the Yard. Table 2 provides the equipment specifications for CHE operating at LATC.

| Table 2           Equipment Specifications for Cargo Handling Equipment                         |                   |                     |       |        |        |  |  |
|-------------------------------------------------------------------------------------------------|-------------------|---------------------|-------|--------|--------|--|--|
|                                                                                                 |                   | ransportation Cente |       |        |        |  |  |
| Equipment                                                                                       |                   | Engine              | Model | Rating | No. of |  |  |
| Туре                                                                                            | Make/Model        | Make/Model          | Year  | (hp)   | Units  |  |  |
| Forklift                                                                                        | Taylor THD200S    | Perkins 1006-6T     | 2000  | 154    | 1      |  |  |
| RTG <sup>1</sup>                                                                                | Mi Jack 1000RC    | Detroit DDEC        | 2004  | 300    | 2      |  |  |
| RTG <sup>1,2</sup> Mi Jack 1000R         Detroit 671TA         1984         300                 |                   |                     | 300   | 3      |        |  |  |
| Top Pick Mi Jack MJ9090 Cur                                                                     |                   | Cummins NA335       | 1990  | 335    | 1      |  |  |
| Top Pick                                                                                        | Taylor TEC 155H   | Cummins 6BT         | 1998  | 150    | 1      |  |  |
| Yard Hostler                                                                                    | Ottawa Commando30 | Cummins 5.9 BT      | 2003  | 150    | 3      |  |  |
| Yard Hostler Ottawa Commando30 Cummins 5.9 BT 2004                                              |                   | 2004                | 150   | 10     |        |  |  |
| Notes:     1.     Rubber Tire Gantry Crane.       2.     Two of these units are not being used. |                   |                     |       |        |        |  |  |

# E Heavy Equipment

In addition to the CHE discussed above, Diesel-fueled heavy equipment is used at LATC. The heavy equipment is used for non-cargo-related activities at the Yard, such as locomotive maintenance, handling of parts and Company material, derailments, etc. Table 3 provides detailed information for the heavy equipment used at the Yard.

| Table 3<br>Equipment Specifications for Heavy Equipment<br>Los Angeles Transportation Center |              |                |       |        |        |  |  |
|----------------------------------------------------------------------------------------------|--------------|----------------|-------|--------|--------|--|--|
| Equipment                                                                                    |              | Engine         | Model | Rating | No. of |  |  |
| Туре                                                                                         | Make/Model   | Make/Model     | Year  | (hp)   | Units  |  |  |
| Crane                                                                                        | Grove RT650E | Cummins 5.9 BT | 2003  | 275    | 1      |  |  |
| Forklift                                                                                     | Lull         | John Deere     | 2004  | 150    | 1      |  |  |
| Forklift                                                                                     | Toyota       | Unknown        | 1999  | 150    | 1      |  |  |

# F. <u>Tanks</u>

There are a number of tanks at the facility that are used to store liquid petroleum products such as Diesel fuel, gasoline, lubricating oils, and used oil. Table 4 provides detailed information for all storage tanks located at the facility.

| Table 4<br>Storage Tank Specifications<br>Los Angeles Transportation Center |                                           |                  |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------|------------------|--|--|--|--|
|                                                                             |                                           |                  |  |  |  |  |
| RIP Track <sup>1</sup>                                                      | Diesel                                    | 500              |  |  |  |  |
| RIP Track                                                                   | Gasoline                                  | 500              |  |  |  |  |
| Crane Maintenance <sup>1</sup>                                              | Diesel                                    | 1,000            |  |  |  |  |
| Crane Maintenance <sup>1</sup>                                              | Hydraulic Oil                             | 762              |  |  |  |  |
| Crane Maintenance <sup>1</sup>                                              | SAE 15w-40 Motor Oil                      | 136              |  |  |  |  |
| Crane Maintenance <sup>1</sup>                                              | Used Oil                                  | 394              |  |  |  |  |
| Crane Maintenance <sup>1</sup>                                              | SAE 15w-40 Motor Oil                      | 367              |  |  |  |  |
| Crane Maintenance <sup>1</sup>                                              | Automatic Transmission Fluid              | 314              |  |  |  |  |
| Notes:<br>1. These tanks are exem                                           | pt from permitting requirements per SCAQM | 1D Rule 219 (m). |  |  |  |  |

As shown in Table 4, all storage tanks at the facility, except the gasoline tank at the RIP (Repair in Place) track, are exempt from South Coast Air Quality Management District (SCAQMD) permitting requirements per Rule 219(m). Since these storage tanks are exempt from local air district rules, the emissions from these tanks were not included in the inventory or in the dispersion modeling analysis, consistent with the UPRR inventory protocol.

# G TRUs and Reefer Cars

Transport refrigeration units (TRUs) and refrigerated railcars (reefer cars) are used to transport perishable and frozen goods. TRUs and reefer cars are transferred in and out of the Yard and are temporarily stored at the Yard. The TRUs are owned by a variety of independent shipping companies and equipment-specific data are not available. Therefore, the default equipment rating and distribution contained in the OFFROAD2006

model were used for emission calculations. It was assumed that the number of TRUs and reefer cars in the Yard at any one time remained constant during the year, with individual units cycling in and out of the Yard.

### H Portable Equipment

A variety of welders and other portable equipment are used at the Yard. Table 5 provides the equipment specifications for the welders and miscellaneous portable equipment.

| Table 5<br>Portable Equipment Specifications<br>Los Angeles Transportation Center |                |          |           |                |  |  |
|-----------------------------------------------------------------------------------|----------------|----------|-----------|----------------|--|--|
|                                                                                   |                | Number   |           | Rated Capacity |  |  |
| Equipment Location                                                                | Equipment Type | of Units | Fuel Type | (hp)           |  |  |
| RIP Track                                                                         | Welder         | 1        | Gasoline  | 9              |  |  |
| RIP Track                                                                         | Welder         | 1        | Gasoline  | 9              |  |  |
| RIP Track                                                                         | Air Compressor | 1        | Gasoline  | 49             |  |  |
| RIP Track                                                                         | Air Compressor | 1        | Diesel    | 45             |  |  |
| Administrative Building                                                           | Light Tower    | 1        | Diesel    | 10.7           |  |  |
| Crane Maintenance                                                                 | Welder         | 1        | Gasoline  | 16             |  |  |

Internal combustion engines with a rated capacity of 50 brake horsepower or less are exempt from permitting requirements by SCAQMD Rule 219(b)(1). As shown in Table 5, all of the portable equipment operated at LATC has a rated capacity of less than 50 hp, and therefore is exempt from permitting requirements. Since these units are exempt from local air district rules, the emissions from these units were not included in the inventory or in the dispersion modeling analysis, consistent with the UPRR inventory protocol.

#### PART VI. ACTIVITY DATA

Emissions from mobile sources are based on the number and type of equipment, equipment size, load factor, and operation during the baseline year of 2005. Since fuel consumption data were not available, default load factors from the OFFROAD2006 model and operating data were used for emission calculations. For sources where operating data weren't available, an average operating mode (AOM) was developed based on employee interviews.

### A Locomotives

Locomotive emissions were based on the number, model distribution, and operating conditions (idling, throttle notch, and speeds of movements, etc). Table 6 summarizes the activity data for locomotives operating on trains at LATC, including the number of trains and number of working locomotives per consist, as well as their idle and working time, and speed on arrival or departure. In general, arriving trains enter the Yard and stop while the railcars are detached from the locomotive. After the railcars are detached, the locomotives are moved to other yards on "power moves" for refueling and service. Prior to departure, locomotive consists return to LATC on power moves (usually from Commerce) and move to the appropriate end of an outbound train. The train departs after completion of the Federal Railroad Administration (FRA) mandated safety inspections (e.g., air pressure and brakes) and the arrival of the train crew. In some cases, trains that are nominally "through" trains (arriving and departing under the same train symbol and date) add or drop cars or locomotives at the LATC Yard. These trains are counted separately, as the idling period is shorter prior to departure, and the consist is not disconnected.

There are three (rather than the typical two) entrance and exit routes for trains at LATC. The UP main line is on the north and west sides of the facility, and is typically considered "East" and "West." In addition, UP trains arrive and depart from the north at the northwest corner of the yard. Because of this configuration, actual paths followed by arriving and departing locomotives must be inferred from the trains' nominal directions,

-12-

and the points of origin or termination. In addition, power moves within the yard may follow multiple paths in order for the lead locomotive of the consist to be oriented in the proper direction. Appendix A-3 shows the various routes followed by trains in the yard. Because of the limited size of the main portion of the LATC yard, all inbound trains are brought in from the west side of the yard. For westbound trains, this involves bringing them across the north boundary of the yard, turning south, and entering the primary intermodal arrival area. The head of the trains proceeds out of the yard along Alhambra Avenue to Valley Boulevard, stopping just before San Pablo Street. The power move disconnects, and moves backward along the track along the south edge of the yard and north until it can move forward again on the main line heading south to Commerce. Arrivals from the north enter the yard at the same location as westbound trains, but arrivals from the south traverse the north edge of the yard onto the tracks leading to San Pablo. Power move routes into the yard depend on the direction of departure of the assigned train. Eastbound trains always depart from the east end of the tracks leading to San Pablo Street, while northbound trains always depart from the main intermodal track within the yard. Other than power moves to Commerce, there are no southbound departing trains from LATC.

The UPRR Commerce Yard provides service and maintenance for the road power on trains arriving and departing from LATC. Consists from arriving trains at LATC continue to Commerce for refueling and service under a train symbol that designates the arrival at Commerce as a power move. Following service, consists are taken back to LATC by UPRR locomotive hostlers without using a train symbol. For this reason, the total locomotive count for arriving and departing locomotives on trains at LATC shows a net imbalance of approximately 3,400 locomotives for 2005. This number is approximately 30 percent higher than the number of identified departing power moves from LATC. For purposes of emission calculations, it is assumed this imbalance represents power moves by hostlers from Commerce to LATC, with the same average consist size as other identified power moves. In the emission calculations, the number of locomotives in arriving power moves from the south has been increased by this 3400

difference.<sup>2</sup> This results in a net balance in the number of arriving and departing locomotives. Although power moves may have as many as 10 or more locomotives, typically only one or two locomotives are actually working. For emission calculations, power moves were assumed to have 1.5 working locomotives (except for power moves involving just one locomotive).<sup>3</sup> In addition to road power, three sets of yard locomotives operate in the yard to move sections of inbound trains, spot them in the appropriate areas for handling, and subsequently reconnect these sections and move them to the appropriate outbound train areas. The two sets of RCL locomotives operate 24 hours per day, and the third set of switchers operates between 11 PM and 7 AM daily.

| Table 6<br>Train Activity Summary<br>Los Angeles Transportation Center |           |             |          |       |  |
|------------------------------------------------------------------------|-----------|-------------|----------|-------|--|
|                                                                        |           |             | Movement | Idle  |  |
|                                                                        | Number of | Locomotives | Speed    | Time  |  |
| Train Type                                                             | Trains    | per Consist | (mph)    | (hrs) |  |
| Through S to E                                                         | 676       | 3.69        | 10       | 0.167 |  |
| Through E to S                                                         | 1,433     | 2.72        | 10       | 0.167 |  |
| Through N to E                                                         | 97        | 3.23        | 10       | 0.0   |  |
| Through E to N                                                         | 669       | 2.14        | 10       | 0.167 |  |
| Through S to N                                                         | 360       | 2.96        | 10       | 0.0   |  |
| Through N to S                                                         | 646       | 3.14        | 10       | 0.0   |  |
| Arrivals from E                                                        | 621       | 3.27        | 10       | 1.0   |  |
| Arrivals from S                                                        | 16        | 2.13        | 10       | 1.0   |  |
| Arrivals from N                                                        | 344       | 2.52        | 10       | 1.0   |  |
| Departures to E                                                        | 438       | 3.58        | 10       | 2.0   |  |
| Departures to W                                                        | 636       | 3.56        | 10       | 2.0   |  |
| Departures to S                                                        | 48        | 2.06        | 10       | 2.0   |  |
| Arr & Dep S to E                                                       | 138       | 3.25        | 10       | 0.167 |  |
| Arr & Dep E to S                                                       | 446       | 2.54        | 10       | 0.167 |  |
| Arr & Dep N to E                                                       | 29        | 2.83        | 10       | 0.0   |  |
| Arr & Dep E to N                                                       | 101       | 2.54        | 10       | 0.167 |  |
| Arr & Dep S to N                                                       | 7         | 1.86        | 10       | 0.0   |  |

<sup>&</sup>lt;sup>2</sup> A similar imbalance was seen in the analysis of Commerce train activity, with a higher number of units arriving (due to power moves under train symbols from LATC) than departing (due to hostler power moves from Commerce to LATC). In that analysis, the number of locomotives in departing power moves was increased to achieve a net balance in locomotives arriving and departing.

<sup>&</sup>lt;sup>3</sup> UP personnel report that although the train data records for power moves may show all locomotives "working," in actuality all locomotives except for one at the front and rear end (and more commonly only one at the front end) are shut down as they are not needed to pull a train that consists only of locomotives. Assuming 1.5 working locomotives per power move may slightly overestimate the actual average number of working locomotives per power move.

| Table 6           Train Activity Summary           Los Angeles Transportation Center |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                           |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                      | <b>F</b>                                                                                                                                                                                                                     | Movement                                                                                                                                                                                                                                                                                                                                                                                                                  | Idle                                                                                                                                                                                                      |  |  |
| Number of                                                                            | Locomotives                                                                                                                                                                                                                  | Speed                                                                                                                                                                                                                                                                                                                                                                                                                     | Time                                                                                                                                                                                                      |  |  |
| Trains                                                                               | per Consist                                                                                                                                                                                                                  | (mph)                                                                                                                                                                                                                                                                                                                                                                                                                     | (hrs)                                                                                                                                                                                                     |  |  |
| 153                                                                                  | 2.14                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                       |  |  |
| 106                                                                                  | 4.42                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.167                                                                                                                                                                                                     |  |  |
| 52                                                                                   | 3.69                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                       |  |  |
| 23                                                                                   | 2.87                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.167                                                                                                                                                                                                     |  |  |
| 4                                                                                    | 2.25                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                       |  |  |
| 21                                                                                   | 3.81                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                       |  |  |
| 9                                                                                    | 3.78                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                       |  |  |
| 15                                                                                   | 3.53                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                       |  |  |
| 3                                                                                    | 5.00                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                       |  |  |
| 127                                                                                  | 3.32                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                       |  |  |
| 27                                                                                   | 3.74                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                       |  |  |
| 583                                                                                  | 3.30                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                       |  |  |
|                                                                                      | Train Activit           os Angeles Trans           Number of           Trains           153           106           52           23           4           21           9           15           3           127           27 | Train Activity Summary<br>os Angeles Transportation Center           Number of<br>Trains         Locomotives<br>per Consist           153         2.14           106         4.42           52         3.69           23         2.87           4         2.25           21         3.81           9         3.78           15         3.53           3         5.00           127         3.32           27         3.74 | Train Activity Summary<br>os Angeles Transportation CenterNumber of<br>TrainsLocomotives<br>per ConsistMovement<br>Speed<br>(mph)1532.14101064.4210523.6910232.8710213.811093.7810153.531035.0010273.7410 |  |  |

Notes:

1. Data reflect the number of operating locomotives; locomotives that are being transported, but are not under power, are not shown.

2. In addition to the activities described above, three sets of switcher locomotives are used in Yard operations. Two sets are RCL and operate 24 hours a day, the third set operates between 11AM and 7PM daily.

# B LHD Diesel-Fueled Trucks

Emissions from the LHD Diesel-fueled truck are based on the annual vehicle miles traveled (VMT) and the amount of time spent idling. Table 7 summarizes the activity data for the LHD Diesel-fueled truck operating at the Yard.

| Table 7<br>Summary of LHD Diesel Truck Activity Data<br>Los Angeles Transportation Center |                                 |            |         |           |         |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------|------------|---------|-----------|---------|--|--|
| Vehicle                                                                                   |                                 |            |         |           |         |  |  |
| Class                                                                                     | Make/Model                      | Model Year | $VMT^1$ | (min/day) | (hr/yr) |  |  |
| LHD                                                                                       | LHD Dodge 2500 2003 5,000 15 91 |            |         |           |         |  |  |
| Notes:<br>1. Annual ve                                                                    |                                 |            |         |           |         |  |  |

### C HHD Diesel-Fueled Trucks

Emissions from HHD Diesel-fueled trucks are based on the number of truck trips, the length of each trip, and the amount of time spent idling. Gate count data were used to determine the number of HHD trucks operating at LATC during the 2005 calendar year. UPRR personnel count the number of cargo containers processed through both the "in" and "out" gates of the Yard. Since each HHD truck holds only one cargo container, the gate counts were used to determine the number of HHD truck trips for 2005. Trucks that enter or exit the facility without a chassis and/or a cargo container are referred to as "bobtails." Based on personal communication with the Intermodal Operations Manger at LATC, the monthly gate counts were increased by 25% to account for bobtails. The monthly gate count data for 2005, including the estimated number of bobtails, are summarized in Table 8.

|                                   |                            | Table 8                                 |        |         |  |  |  |  |  |
|-----------------------------------|----------------------------|-----------------------------------------|--------|---------|--|--|--|--|--|
|                                   | Summary of Gate Count Data |                                         |        |         |  |  |  |  |  |
| Los Angeles Transportation Center |                            |                                         |        |         |  |  |  |  |  |
| Month                             | In-Gate Total <sup>1</sup> | Total                                   |        |         |  |  |  |  |  |
| January                           | 6,205                      | 4,967                                   | 2,793  | 13,965  |  |  |  |  |  |
| February                          | 6,448                      | 4,555                                   | 2,751  | 13,754  |  |  |  |  |  |
| March                             | 7,448                      | 5,700                                   | 3,287  | 16,435  |  |  |  |  |  |
| April                             | 6,291                      | 5,206                                   | 2,874  | 14,371  |  |  |  |  |  |
| May                               | 6,746                      | 5,691                                   | 3,109  | 15,546  |  |  |  |  |  |
| June                              | 7,815                      | 5,110                                   | 3,231  | 16,156  |  |  |  |  |  |
| July                              | 7,194                      | 4,764                                   | 2,990  | 14,948  |  |  |  |  |  |
| August                            | 7,584                      | 5,645                                   | 3,307  | 16,536  |  |  |  |  |  |
| September                         | 6,939                      | 5,200                                   | 3,035  | 15,174  |  |  |  |  |  |
| October                           | 7,926                      | 5,908                                   | 3,459  | 17,293  |  |  |  |  |  |
| November                          | 8,803                      | 5,856                                   | 3,665  | 18,324  |  |  |  |  |  |
| December                          | 6,297                      | 5,119                                   | 2,854  | 14,270  |  |  |  |  |  |
| Totals                            | 85,696                     | 63,721                                  | 37,354 | 186,771 |  |  |  |  |  |
| Notes:                            |                            | 1 · · · · · · · · · · · · · · · · · · · | ·      | ,       |  |  |  |  |  |

1. Provided by UPRR's Manager of Intermodal Operations for LATC

2 Bobtails are trucks without a chassis and/or container. It was assumed bobtail counts are equal to 25% of the container count.

Table 9 summarizes the remaining activity data, such as annual VMT and idling time, for HHD Diesel-fueled trucks. In addition to the traveling emissions, an average idling time

of 30 minutes per HHD truck trip was assumed to account for emissions during truck queuing, staging, loading and/or unloading. Based on interviews with UPRR personnel, the average queuing time at the gate at LATC is less than 10 minutes per truck. In addition to idling during queuing, it was assumed that each truck idles an average of 15 minutes per trip while the chassis is connected/disconnected from the truck cab. An additional 5 minutes of idle per trip was included to account for any other delays that may be encountered.

| Table 9<br>Summary of HHD Diesel Truck Activity Data |                                                                                                   |                    |                 |         |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|-----------------|---------|--|--|--|
|                                                      | Los Ange                                                                                          | eles Transportatio | on Center       |         |  |  |  |
| Number of                                            | VMT per HHD                                                                                       |                    | Idling          | Time    |  |  |  |
| HHD Truck                                            | Truck Trip                                                                                        | Annual VMT         | $(\min/trip)^2$ | (hr/yr) |  |  |  |
| Trips <sup>1</sup>                                   | $(mi/trip)^2$                                                                                     | (mi/yr)            | × 1/            | ,       |  |  |  |
| 186,771                                              | 1.5                                                                                               | 280,157            | 30              | 93,386  |  |  |  |
| Notes:                                               |                                                                                                   |                    |                 |         |  |  |  |
| 1. Provided by                                       | UPRR. See Table 8.                                                                                |                    |                 |         |  |  |  |
| 2. Engineering                                       | 2. Engineering estimate based on observation of truck activity and interviews with the Manager of |                    |                 |         |  |  |  |
| Intermodal                                           | Operations.                                                                                       |                    |                 | -       |  |  |  |

### D Cargo Handling Equipment

Emissions from CHE operating at the Yard are based on the number and type of equipment, equipment model year, equipment size, and the annual hours of operation. Activity data for CHE are summarized in Table 10.

| Table 10<br>Activity Data for Cargo Handling Equipment<br>Los Angeles Transportation Center |                                                                                            |      |      |       |                  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|------|-------|------------------|--|--|--|--|--|
| Equipment                                                                                   |                                                                                            |      |      |       |                  |  |  |  |  |  |
| Туре                                                                                        | Make/Model                                                                                 | Year | (hp) | Units | (hr/yr per unit) |  |  |  |  |  |
| Forklift                                                                                    | Taylor THD200S                                                                             | 2000 | 154  | 1     | 260              |  |  |  |  |  |
| RTG                                                                                         | Mi Jack 1000RC                                                                             | 2004 | 300  | 2     | 2,920            |  |  |  |  |  |
| RTG <sup>1</sup>                                                                            | Mi Jack 1000R                                                                              | 1984 | 300  | 1     | 2,920            |  |  |  |  |  |
| Top Pick                                                                                    | Mi Jack MJ9090                                                                             | 1990 | 335  | 1     | 60               |  |  |  |  |  |
| Top Pick                                                                                    | Taylor TEC 155H                                                                            | 1998 | 150  | 1     | 1,040            |  |  |  |  |  |
| Yard Hostler                                                                                | Ottawa Commando30                                                                          | 2003 | 150  | 3     | 8,000            |  |  |  |  |  |
| Yard Hostler                                                                                | Ottawa Commando30                                                                          | 2004 | 150  | 10    | 8,000            |  |  |  |  |  |
|                                                                                             | Notes:<br>1. There are a total of three units at the facility, but two are not being used. |      |      |       |                  |  |  |  |  |  |

# E Heavy Equipment

Emissions from heavy equipment operating at the Yard are based on the number and type of equipment, equipment model year, equipment size, and the annual hours of operation. Activity data for heavy equipment are summarized in Table 11.

| Table 11<br>Activity Data for Heavy Equipment<br>Los Angeles Transportation Center |              |      |      |       |                  |  |  |  |
|------------------------------------------------------------------------------------|--------------|------|------|-------|------------------|--|--|--|
| Equipment Model Rating No. of Hours of Operation                                   |              |      |      |       |                  |  |  |  |
| Туре                                                                               | Make/Model   | Year | (hp) | Units | (hr/yr per unit) |  |  |  |
| Crane                                                                              | Grove RT650E | 2003 | 275  | 1     | 2,190            |  |  |  |
| Forklift                                                                           | Lull         | 2004 | 150  | 1     | 8,000            |  |  |  |
| Forklift                                                                           | Toyota       | 1999 | 150  | 1     | 2,190            |  |  |  |
| Notes:<br>1. Data provided du                                                      |              |      |      |       |                  |  |  |  |

# F. <u>Tanks</u>

Emissions from the non-exempt storage tanks located at LATC are based on the size of the tank, material stored, and annual throughput. Activity data for the non-exempt tanks are shown in Table 12.

| Table 12<br>Summary of Gasoline Storage Tank Activity Data<br>Los Angeles Transportation Center |          |               |                 |                       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|----------|---------------|-----------------|-----------------------|--|--|--|--|--|
| Tank                                                                                            | Material | Tank Capacity | Tank Dimensions | Annual Throughput     |  |  |  |  |  |
| Location                                                                                        | Stored   | (gal)         | (ft)            | (gal/yr) <sup>1</sup> |  |  |  |  |  |
| RIP Track                                                                                       | Gasoline | 500           | 5 x 4           | 6,000                 |  |  |  |  |  |
| Notes:<br>1. Informat                                                                           |          |               |                 |                       |  |  |  |  |  |

# G TRUs and Reefer Cars

Emissions from TRUs and reefer cars are based on average size of the units, the average number of units in the Yard, and the hours of operation for each unit. Activity data for TRUs and reefer cars are summarized in Table 13.

|           | Table 13       A stivity Data for TDUs and Deafor Core                      |                                                   |                            |                                                 |                    |  |  |  |  |
|-----------|-----------------------------------------------------------------------------|---------------------------------------------------|----------------------------|-------------------------------------------------|--------------------|--|--|--|--|
|           | Activity Data for TRUs and Reefer Cars<br>Los Angeles Transportation Center |                                                   |                            |                                                 |                    |  |  |  |  |
| Equipm    | ent                                                                         | Average Rating                                    | Average No. of             | Hours of                                        | Operation          |  |  |  |  |
| Туре      |                                                                             | $(hp)^1$                                          | Units in Yard <sup>2</sup> | $(hr/day)^3$                                    | $(hr/yr)^4$        |  |  |  |  |
| Container |                                                                             | 28.56                                             | 20                         | 4                                               | 1,460              |  |  |  |  |
| Railcar   |                                                                             | 34                                                | 4                          | 4                                               | 1,460              |  |  |  |  |
| Notes:    |                                                                             |                                                   |                            |                                                 |                    |  |  |  |  |
| 1. 1      | Based on the                                                                | e average horsepower                              | distribution in the OF     | FROAD2006 model.                                |                    |  |  |  |  |
|           |                                                                             |                                                   |                            | here are 8-10 TRUs an<br>timates were increased |                    |  |  |  |  |
| ,         |                                                                             |                                                   |                            |                                                 |                    |  |  |  |  |
|           |                                                                             | ned that the number of<br>nits cycling in and out |                            | hours of operation rem                          | ain constant, with |  |  |  |  |

### PART VII. EMISSIONS

### A Calculation Methodology and Emission Factors

Emission calculations were based on the site-specific equipment inventory, equipment activity data, and the source-specific emission factors. The calculation methodology and emission factors for each specific source type are further discussed below. Emissions were calculated in accordance with CARB Guidelines (July 2006) and the UPRR *Emission Inventory Protocol* (May 2006).

### 1 Locomotives

Emissions were calculated for UPRR-owned and -operated locomotives, as well as "foreign" locomotives <sup>4</sup> operating in the rail yard and on through trains on the main line. Procedures for calculating emissions followed the methods described in Ireson et al. (2005).<sup>5</sup> A copy of Ireson et al is contained in Appendix A-6.

Emissions from locomotive activities were calculated based on the number of working locomotives, time spent in each notch setting, and locomotive model-group distributions, with model groups defined by manufacturer and engine type.<sup>6</sup> A separate calculation was performed for each type of locomotive activity, including line-haul or switcher locomotive operations, and consist movements. Speed, movement duration, and throttle notch values were obtained from UPRR personnel for the LATC Yard for different types of activities. Detailed counts of locomotive by model, tier, and train type are shown in Appendix A-1 and A-2. Maps detailing the principal locomotive routes at the Yard are contained in Appendix A-5.

<sup>&</sup>lt;sup>4</sup> Foreign locomotives are locomotives not owned by UPRR, including passenger trains and locomotives owned by other railroads that are brought onto the UPRR system via interchange.

<sup>&</sup>lt;sup>5</sup> Ireson, R.G., M.J. Germer, L.A. Schmid (2005). "Development of Detailed Railyard Emissions to Capture Activity, Technology, and Operational Changes." Proceedings of the USEPA 14<sup>th</sup> Annual Emission Inventory Conference, *http://www.epa.gov/ttn/chief/conference/eil4/session8/ireson.pdf*, Las Vegas NV, April 14, 2006.

<sup>&</sup>lt;sup>6</sup> Emission estimates are based on the total number of working locomotives. Therefore, the total number of locomotives used in the emission calculations, shown in Table 8, is slightly lower than the total number of locomotives counted as arriving, departing, or through trains (shown in Table 1). See Appendix A for detailed emission calculations.

Notch-specific emission factors were assembled from a number of sources. These included emission factors presented in CARB's *Roseville Rail Yard Study* (October, 2004), as well as EPA certification data and other testing by Southwest Research Institute of newer technology locomotives.

For line haul operations, yard-specific average consist composition (number of units, number of units working, model distribution, locomotive tier distribution, fraction equipped with auto start/stop technology<sup>7</sup>) was developed from UPRR data for different train types. Movement speed, duration, and notch estimates were developed for arriving, departing, through train, and in-yard movements. Idle duration was estimated based on UPRR operator estimates for units not equipped with auto start/stop. Units that were equipped with AESS/ZTR technology were assumed to idle for 30 minutes per extended idle event, with other locomotives idling for the remaining duration of the event. Numbers of arrivals and departures were developed from UPRR data. Emissions were calculated separately for through trains, for train arrivals and departures, and for power moves.

Three sets of "captive" locomotives (i.e., dedicated to moving sections of rail cars within the yard) operated within the facility boundaries. These sets were all pairs of low horsepower switcher locomotives. Based on information from UPRR personnel, these units were assumed to operate on the full EPA switcher duty cycle.

Data regarding the sulfur content of 2005 UPRR Diesel fuel deliveries within and outside of California were not available. To develop locomotive emission factors for different types of activities, estimates of fuel sulfur content were developed and base case emission factors from the primary information sources (e.g., EPA certification data, with an

<sup>&</sup>lt;sup>7</sup> There are two primary types of auto start/stop technology - "Auto Engine Start Stop" (AESS), which is factory-installed on recent model high horsepower units, and the ZTR "SmartStart" system (ZTR), which is a retrofit option for other locomotives. Both are programmed to turn off the Diesel engine after 15 to30 minutes of idling, provided that various criteria (air pressure, battery charge, and others) are met. The engine automatically restarts if required by one of the monitored parameters. We assume that an AESS/ZTR-equipped locomotive will shut down after 30 minutes of idling in an extended idle event.

assumed nominal fuel sulfur content of 3,000 ppm) were adjusted based on the estimated sulfur content of in-use fuels. Fuel sulfur content reportedly affects the emission rates for Diesel particulate matter from locomotives. The sulfur content in Diesel fuel varies with the type of fuel produced (e.g., California on-road fuel, 49-state off-road fuel, 49-state on-road fuel), the refinery configuration at which it is produced, the sulfur content of the crude oil being refined, and the extent to which it may be mixed with fuel from other sources during transport. As a result, it is extremely difficult to determine with precision the sulfur content of the fuel being used by any given locomotive at a specific time, and assumptions were made to estimate sulfur content for different types of activities.

To estimate the fuel sulfur content for UPRR locomotives in California during 2005, the following assumptions were made:

- "Captive" locomotives and consists in use on local trains (e.g., commuter rail) used only Diesel fuel produced in California.
- Trains arriving and terminating at California rail yards (with the exception of local trains) used fuel produced outside of California, and arrive with remaining fuel in their tanks at 10 percent of capacity.
- On arrival, consists were refueled with California Diesel fuel, resulting in a 90:10
  mixture of California and non-California fuel, and this mixture is representative of
  fuel on departing trains as well as trains undergoing load testing (if conducted at a
  specific yard).
- The average composition of fuel used in through trains by-passing a yard and in trains both arriving and departing from a yard on the same day is 50 percent California fuel and 50 percent non-California fuel.

In 2005, Chevron was Union Pacific Railroad's principal supplier of Diesel fuel in California. Chevron's California refineries produced only one grade ("low sulfur Diesel" or LSD) in 2005. Quarterly average sulfur content for these refineries ranged from 59 ppm to 400 ppm, with an average of 221 ppm (Hinckley, 2006). This value is assumed to be representative of California fuel used by UPRR. Non-California Diesel fuel for 2005 is assumed to have a sulfur content of 2,639 ppm. This is the estimated 49-state average

fuel sulfur content used by the U.S. Environmental Protection Agency in its 2004 regulatory impact analysis in support of regulation of nonroad Diesel engines (EPA, 2004).

To develop emission inventories for locomotive activity, an initial collection of locomotive model- and notch-specific emissions data was adjusted based on sulfur content. Although there is no official guidance available for calculating this effect, a draft CARB document provides equations to calculate the effect of sulfur content on PM emission rates at specific throttle settings, and for 2-stroke and 4-stroke engines (Wong, undated). These equations can be used to calculate adjustment factors for different fuels as described in Appendix A-7. The adjustment factors are linear in sulfur content, allowing emission rates for a specific mixture of California and non-California fuels to be calculated as a weighted average of the emission rates for each of the fuels. Adjustment factors were developed and used to prepare tables of emission factors for two different fuel sulfur levels: 221 ppm for locomotives operated on California fuel; and 2,639 ppm for locomotives operating on non-California fuel. These results are shown in Tables 14 and 15. Sample emission calculations are shown in Appendix A-7.

|             | Table 14<br>Locomotive Diesel Particulate Matter Emission Factors (g/hr)<br>Adjusted for Fuel Sulfur Content of 221 PPM |      |       |       |       |       |             |       |       |        |        |                                      |
|-------------|-------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|-------|-------------|-------|-------|--------|--------|--------------------------------------|
|             | Los Angeles Transportation Center                                                                                       |      |       |       |       |       |             |       |       |        |        |                                      |
| Model Group |                                                                                                                         |      |       |       |       |       | tle Setting |       |       |        |        |                                      |
|             | Tier                                                                                                                    | Idle | DB    | N1    | N2    | N3    | N4          | N5    | N6    | N7     | N8     | Source <sup>1</sup>                  |
| Switchers   | Ν                                                                                                                       | 31.0 | 56.0  | 23.0  | 76.0  | 129.2 | 140.6       | 173.3 | 272.7 | 315.6  | 409.1  | EPA RSD <sup>1</sup>                 |
| GP-3x       | N                                                                                                                       | 38.0 | 72.0  | 31.0  | 110.0 | 174.1 | 187.5       | 230.2 | 369.1 | 423.5  | 555.1  | EPA RSD <sup>1</sup>                 |
| GP-4x       | N                                                                                                                       | 47.9 | 80.0  | 35.7  | 134.3 | 211.9 | 228.6       | 289.7 | 488.5 | 584.2  | 749.9  | EPA RSD <sup>1</sup>                 |
| GP-50       | Ν                                                                                                                       | 26.0 | 64.1  | 51.3  | 142.5 | 282.3 | 275.2       | 339.6 | 587.7 | 663.5  | 847.2  | EPA RSD <sup>1</sup>                 |
| GP-60       | N                                                                                                                       | 48.6 | 98.5  | 48.7  | 131.7 | 266.3 | 264.8       | 323.5 | 571.6 | 680.2  | 859.8  | EPA RSD <sup>1</sup>                 |
| GP-60       | 0                                                                                                                       | 21.1 | 25.4  | 37.6  | 75.5  | 224.1 | 311.5       | 446.4 | 641.6 | 1029.9 | 1205.1 | SwRI <sup>2</sup> (KCS733)           |
| SD-7x       | N                                                                                                                       | 24.0 | 4.8   | 41.0  | 65.7  | 146.8 | 215.0       | 276.8 | 331.8 | 434.7  | 538.0  | SwRI <sup>3</sup>                    |
| SD-7x       | 0                                                                                                                       | 14.8 | 15.1  | 36.8  | 61.1  | 215.7 | 335.9       | 388.6 | 766.8 | 932.1  | 1009.6 | GM EMD <sup>4</sup>                  |
| SD-7x       | 1                                                                                                                       | 29.2 | 31.8  | 37.1  | 66.2  | 205.3 | 261.7       | 376.5 | 631.4 | 716.4  | 774.0  | SwRI <sup>5</sup> (NS2630)           |
| SD-7x       | 2                                                                                                                       | 55.4 | 59.5  | 38.3  | 134.2 | 254.4 | 265.7       | 289.0 | 488.2 | 614.7  | 643.0  | SwRI <sup>5</sup> (UP8353)           |
| SD-90       | 0                                                                                                                       | 61.1 | 108.5 | 50.1  | 99.1  | 239.5 | 374.7       | 484.1 | 291.5 | 236.1  | 852.4  | GM EMD <sup>4</sup>                  |
| Dash 7      | N                                                                                                                       | 65.0 | 180.5 | 108.2 | 121.2 | 306.9 | 292.4       | 297.5 | 255.3 | 249.0  | 307.7  | EPA RSD <sup>1</sup>                 |
| Dash 8      | 0                                                                                                                       | 37.0 | 147.5 | 86.0  | 133.1 | 248.7 | 261.6       | 294.1 | 318.5 | 347.1  | 450.7  | GE <sup>4</sup>                      |
| Dash 9      | N                                                                                                                       | 32.1 | 53.9  | 54.2  | 108.1 | 187.7 | 258.0       | 332.5 | 373.2 | 359.5  | 517.0  | SWRI 2000                            |
| Dash 9      | 0                                                                                                                       | 33.8 | 50.7  | 56.1  | 117.4 | 195.7 | 235.4       | 552.7 | 489.3 | 449.6  | 415.1  | Average of GE &<br>SwRI <sup>6</sup> |
| Dash 9      | 1                                                                                                                       | 16.9 | 88.4  | 62.1  | 140.2 | 259.5 | 342.2       | 380.4 | 443.5 | 402.7  | 570.0  | SwRI <sup>2</sup> (CSXT595)          |
| Dash 9      | 2                                                                                                                       | 7.7  | 42.0  | 69.3  | 145.8 | 259.8 | 325.7       | 363.6 | 356.7 | 379.7  | 445.1  | SwRI <sup>2</sup> (BNSF<br>7736)     |
| C60-A       | 0                                                                                                                       | 71.0 | 83.9  | 68.6  | 78.6  | 237.2 | 208.9       | 247.7 | 265.5 | 168.6  | 265.7  | GE <sup>4</sup> (UP7555)             |

Notes:

1.

EPA Regulatory Support Document, "Locomotive Emissions Regulation," Appendix B, 12/17/97, as tabulated by ARB and ENVIRON Base emission rates provided by ENVIRON as part of the BNSF analyses for the Railyard MOU (Personal communication from Chris Lindhjem to R. Ireson, 2.

2006) based on data produced in the AAR/SwRI Exhaust Plume Study (Personal communication from Steve Fritz to C. Lindhjem, 2006).

SwRI final report "Emissions Measurments - Locomotives" by Steve Fritz, August 1995. 3.

4. Manufacturers' emissions test data as tabulated by ARB.

Base SD-70 emission rates taken from data produced in the AAR/SwRI Exhaust Plume Study (Personal communication from Steve Fritz to R. Ireson, 2006). Average of manufacturer's emissions test data as tabulated by ARB and data from the AAR/SwRI Exhaust Plume Study, tabulated and calculated by ENVIRON. 5.

6.

-24-

|           |                                                                            |      |       |       |       |       | Table | 15    |       |            |        |                                   |
|-----------|----------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|-------|------------|--------|-----------------------------------|
|           |                                                                            |      |       |       |       |       |       |       |       | actors (g/ | hr)    |                                   |
|           | Adjusted for Fuel Sulfur Content of 2,639 PPM                              |      |       |       |       |       |       |       |       |            |        |                                   |
|           | Los Angeles Transportation Center           Model         Throttle Setting |      |       |       |       |       |       |       |       | T          |        |                                   |
| Model     |                                                                            | T 11 | DD    | 3.11  | 110   |       |       |       | N     | 17         | NIO    |                                   |
| Group     | Tier                                                                       | Idle | DB    | N1    | N2    | N3    | N4    | N5    | N6    | N7         | N8     | Source <sup>1</sup>               |
| Switchers | Ν                                                                          | 31.0 | 56.0  | 23.0  | 76.0  | 136.9 | 156.6 | 197.4 | 303.4 | 341.2      | 442.9  | EPA RSD <sup>1</sup>              |
| GP-3x     | N                                                                          | 38.0 | 72.0  | 31.0  | 110.0 | 184.5 | 208.8 | 262.2 | 410.8 | 457.9      | 601.1  | EPA RSD <sup>1</sup>              |
| GP-4x     | Ν                                                                          | 47.9 | 80.0  | 35.7  | 134.3 | 224.5 | 254.6 | 330.0 | 543.7 | 631.6      | 812.1  | EPA RSD <sup>1</sup>              |
| GP-50     | Ν                                                                          | 26.0 | 64.1  | 51.3  | 142.5 | 299.0 | 306.5 | 386.9 | 653.9 | 717.3      | 917.4  | EPA RSD <sup>1</sup>              |
| GP-60     | Ν                                                                          | 48.6 | 98.5  | 48.7  | 131.7 | 282.1 | 294.9 | 368.5 | 636.1 | 735.4      | 931.0  | EPA RSD <sup>1</sup>              |
| GP-60     | 0                                                                          | 21.1 | 25.4  | 37.6  | 75.5  | 237.4 | 346.9 | 508.5 | 714.0 | 1113.4     | 1304.9 | SwRI <sup>2</sup> (KCS733)        |
| SD-7x     | N                                                                          | 24.0 | 4.8   | 41.0  | 65.7  | 155.5 | 239.4 | 315.4 | 369.2 | 469.9      | 582.6  | SwRI <sup>3</sup>                 |
| SD-7x     | 0                                                                          | 14.8 | 15.1  | 36.8  | 61.1  | 228.5 | 374.1 | 442.7 | 853.3 | 1007.8     | 1093.2 | GM EMD <sup>4</sup>               |
| SD-7x     | 1                                                                          | 29.2 | 31.8  | 37.1  | 66.2  | 217.5 | 291.5 | 428.9 | 702.6 | 774.5      | 838.1  | SwRI <sup>5</sup> (NS2630)        |
| SD-7x     | 2                                                                          | 55.4 | 59.5  | 38.3  | 134.2 | 269.4 | 295.9 | 329.2 | 543.3 | 664.6      | 696.2  | SwRI <sup>5</sup> (UP8353)        |
| SD-90     | 0                                                                          | 61.1 | 108.5 | 50.1  | 99.1  | 253.7 | 417.3 | 551.5 | 324.4 | 255.3      | 923.1  | GM EMD <sup>4</sup>               |
| Dash 7    | Ν                                                                          | 65.0 | 180.5 | 108.2 | 121.2 | 352.7 | 323.1 | 327.1 | 293.7 | 325.3      | 405.4  | EPA RSD <sup>1</sup>              |
| Dash 8    | 0                                                                          | 37.0 | 147.5 | 86.0  | 133.1 | 285.9 | 289.1 | 323.3 | 366.4 | 453.5      | 593.8  | GE <sup>4</sup>                   |
| Dash 9    | Ν                                                                          | 32.1 | 53.9  | 54.2  | 108.1 | 215.7 | 285.1 | 365.6 | 429.3 | 469.7      | 681.2  | SWRI 2000                         |
| Dash 9    | 0                                                                          | 33.8 | 50.7  | 56.1  | 117.4 | 224.9 | 260.1 | 607.7 | 562.9 | 587.4      | 546.9  | Average of GE & SwRI <sup>6</sup> |
| Dash 9    | 1                                                                          | 16.9 | 88.4  | 62.1  | 140.2 | 298.2 | 378.1 | 418.3 | 510.2 | 526.2      | 751.1  | SwRI <sup>2</sup> (CSXT595)       |
| Dash 9    | 2                                                                          | 7.7  | 42.0  | 69.3  | 145.8 | 298.5 | 359.9 | 399.8 | 410.4 | 496.1      | 586.4  | SwRI <sup>2</sup> (BNSF 7736)     |
| C60-A     | 0                                                                          | 71.0 | 83.9  | 68.6  | 78.6  | 272.6 | 230.8 | 272.3 | 305.4 | 220.3      | 350.1  | GE <sup>4</sup> (UP7555)          |
| Notes:    |                                                                            |      |       |       |       |       |       |       |       |            |        |                                   |

EPA Regulatory Support Document, "Locomotive Emissions Regulation," Appendix B, 12/17/97, as tabulated by ARB and ENVIRON 1.

2. Base emission rates provided by ENVIRON as part of the BNSF analyses for the Railyard MOU (Personal communication from Chris Lindhjem to R. Ireson, 2006) based on data produced in the AAR/SwRI Exhaust Plume Study (Personal communication from Steve Fritz to C. Lindhjem, 2006).

SwRI final report "Emissions Measurments - Locomotives" by Steve Fritz, August 1995. 3.

Manufacturers' emissions test data as tabulated by ARB. 4.

Base SD-70 emission rates taken from data produced in the AAR/SwRI Exhaust Plume Study (Personal communication from Steve Fritz to R. Ireson, 2006). Average of manufacturer's emissions test data as tabulated by ARB and data from the AAR/SwRI Exhaust Plume Study, tabulated and calculated by ENVIRON. 5.

6.

-25-

# 2 LHD Diesel-Fueled Truck

Emission estimates for the LHD Diesel-fueled truck are based on the vehicle's model year, annual VMT within the Yard, and amount of time the vehicle spends idling. Vehicle-specific emission factors, calculated using the EMFAC-WD 2006 model, are shown in Table 16. Per CARB guidelines, the emissions from idling and traveling modes have been separated because different source treatments (point or volume sources) will be used in the air dispersion modeling analysis for these modes. Detailed emission factor derivation calculations and EMFAC-WD 2006 output are contained in Appendix B.

| Table 16<br>Emission Factors for the LHD Diesel-Fueled Truck<br>Los Angeles Transportation Center |                                               |       |                 |       |       |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------|-------|-----------------|-------|-------|--|--|--|--|
|                                                                                                   |                                               | Ē     | mission Factors | S     |       |  |  |  |  |
| Operating Mode                                                                                    | perating Mode ROG CO NOx DPM <sup>3</sup> SOx |       |                 |       |       |  |  |  |  |
| Traveling $(g/mi)^1$                                                                              | 0.32                                          | 1.65  | 6.69            | 0.08  | 0.05  |  |  |  |  |
| Idling $(g/hr)^2$                                                                                 | 3.173                                         | 26.30 | 75.051          | 0.753 | 0.357 |  |  |  |  |
|                                                                                                   |                                               |       |                 |       |       |  |  |  |  |

3. Diesel  $PM_{10}$  (DPM) is a TAC.

4. See Part V for vehicle specifications.

### 3 HHD Diesel-Fueled Trucks

Emission estimates for the HHD Diesel-fueled trucks are based on the number of truck trips, the annual VMT within the Yard, and the amount of idling time. Per CARB guidelines, the emissions from idling and traveling modes have been separated because different source treatments (point or volume sources) will be used in the air dispersion modeling analysis for these modes. A fleet average emission factor for traveling exhaust emissions was calculated using the EMFAC-WD 2006 model with the BURDEN output option. Since the fleet distribution is not known, the EMFAC-WD 2006 default distribution for Los Angeles County was used. Idling emission factors were calculated using the EMFAC-WD 2006 model with the EMFAC-WD 2006 model with the emission.

factors for the HHD Diesel-fueled trucks are shown in Table 17. Detailed emission factor derivation calculations and the EMFAC-WD 2006 output are contained in Appendix C.

| Table 17<br>Emission Factors for HHD Diesel-Fueled Trucks                                                                                                                     |                                       |               |               |                  |                  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|---------------|------------------|------------------|--|--|--|
|                                                                                                                                                                               | Los An                                | geles Transpo |               |                  |                  |  |  |  |
|                                                                                                                                                                               |                                       | Fleet Ave     | rage Emission | Factors          |                  |  |  |  |
| Operating Mode                                                                                                                                                                | ROG                                   | СО            | NOx           | DPM <sup>3</sup> | SOx <sup>4</sup> |  |  |  |
| Traveling $(g/mi)^1$                                                                                                                                                          | i) <sup>1</sup> 5.73 15.40 27.41 2.27 |               |               |                  |                  |  |  |  |
| Idling $(g/hr)^2$                                                                                                                                                             | 16.16                                 | 52.99         | 100.38        | 2.85             | 0.55             |  |  |  |
| Notes:<br>1. Emission factors were calculated using the EMFAC-WD 2006 model with the BURDEN output<br>option. The default fleet distribution for Los Angeles County was used. |                                       |               |               |                  |                  |  |  |  |
| 2. Emission fact<br>option. The do                                                                                                                                            | efault fleet distribu                 |               |               |                  | AC output        |  |  |  |

3. Diesel  $PM_{10}$  (DPM) is a TAC.

4. See Part V for vehicle specifications.

# 4 Cargo Handling Equipment

Emission estimates for the CHE are based on the number and type of equipment, the equipment model, and the hours of operation. Emission factors were calculated by CARB staff and are based on the OFFROAD2006 model. The emission factors for the CHE are shown in Table 18. Detailed emission factor derivation calculations and OFFROAD2006 output are contained in Appendix D.

|                    | Table 18           Emission Factors for Cargo Handling Equipment                                        |           |             |             |              |          |        |  |
|--------------------|---------------------------------------------------------------------------------------------------------|-----------|-------------|-------------|--------------|----------|--------|--|
| Equipment          | Los Angeles Transportation Center           Equipment         Model         Emission Factors (g/bhp-hr) |           |             |             |              |          |        |  |
| Туре               | Make/Model                                                                                              | Year      | VOC         | CO          | NOx          | DPM      | SOx    |  |
| Forklift           | Taylor THD200S                                                                                          | 2000      | 0.5307      | 2.8296      | 6.8159       | 0.3536   | 0.0597 |  |
| RTG                | Mi Jack 1000RC                                                                                          | 2004      | 0.0906      | 0.9456      | 4.1618       | 0.0972   | 0.0521 |  |
| RTG                | Mi Jack 1000R                                                                                           | 1984      | 0.9965      | 5.4833      | 12.8557      | 0.7230   | 0.0521 |  |
| Top Pick           | Mi Jack MJ9090                                                                                          | 1990      | 0.6811      | 3.3000      | 9.0164       | 0.4547   | 0.0597 |  |
| Top Pick           | Taylor TEC 155H                                                                                         | 1998      | 0.5505      | 2.8920      | 6.9482       | 0.3734   | 0.0597 |  |
| Yard               | Ottawa                                                                                                  | 2003      |             |             |              |          |        |  |
| Hostler            | Commando30                                                                                              |           | 0.2501      | 2.7810      | 5.1174       | 0.2136   | 0.0597 |  |
| Yard               | Ottawa                                                                                                  | 2004      |             |             |              |          |        |  |
| Hostler            | Hostler         Commando30         0.1639         2.7540         4.5529         0.1648         0.0597   |           |             |             |              |          |        |  |
| Notes:<br>1. Emiss | sion factors were calculat                                                                              | ed by CAR | B staff and | are based o | on the OFFRC | DAD2006. |        |  |

# 5 Heavy Equipment

Emission estimates for heavy equipment are based on the number and type of equipment, equipment model, and the hours of operation. Emission factors were calculated using OFFROAD2006 model. The emission factors for heavy equipment are shown in Table 19. Detailed emission factor derivation calculations and OFFROAD2006 output are contained in Appendix E.

| Table 19Emission Factors for Heavy EquipmentLos Angeles Transportation Center |              |       |                                          |        |        |        |        |
|-------------------------------------------------------------------------------|--------------|-------|------------------------------------------|--------|--------|--------|--------|
| Equipment                                                                     |              | Model | Emission Factors (g/bhp-hr) <sup>1</sup> |        |        |        |        |
| Туре                                                                          | Make/Model   | Year  | $\rm VOC^2$                              | СО     | NOx    | DPM    | SOx    |
| Crane                                                                         | Grove RT650E | 2003  | 0.2332                                   | 0.2332 | 0.2332 | 0.1053 | 0.0478 |
| Forklift                                                                      | Lull         | 2004  | 0.3500                                   | 0.3500 | 0.3500 | 0.1861 | 0.0548 |
| Forklift                                                                      | Toyota       | 1999  | 0.3500                                   | 0.3500 | 0.3500 | 0.5778 | 0.0548 |
| Notes:                                                                        |              |       |                                          |        |        |        |        |
| 1. Emission factors from the OFFROAD2006 model.                               |              |       |                                          |        |        |        |        |
| 2. Evaporative emissions for these sources are negligible.                    |              |       |                                          |        |        |        |        |

## 6 Tanks

VOC emissions from the non-exempt storage tanks were calculated using EPA's TANKS program. CARB's speciation database was used to determine the fraction of each TAC in the total VOC emissions from gasoline storage tank located at the RIP track. All TACs listed in the most recent version of the Emission Inventory Criteria and Guidelines Report for the Air Toxics "Hot Spots" Program have been included. The TAC emission factors for gasoline storage are shown in Table 20. The TANKS output and the relevant sections of CARB's speciation database are included in Appendix F.

| TAC Emission Factors for Gasoline Storage Tank<br>Los Angeles Transportation Center |                                                                                                                                                                    |                         |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
|                                                                                     |                                                                                                                                                                    | Organic Fraction of VOC |  |
| CAS                                                                                 | Chemical Name                                                                                                                                                      | (by weight)             |  |
| 540841                                                                              | 2,2,4-trimethylpentane                                                                                                                                             | 0.0129                  |  |
| 71432                                                                               | Benzene                                                                                                                                                            | 0.0036                  |  |
| 110827                                                                              | cyclohexane                                                                                                                                                        | 0.0103                  |  |
| 100414                                                                              | ethylbenzene                                                                                                                                                       | 0.0012                  |  |
| 78784                                                                               | isopentane                                                                                                                                                         | 0.3734                  |  |
| 98828                                                                               | isopropylbenzene (cumene)                                                                                                                                          | 0.0001                  |  |
| 108383                                                                              | m-xylene                                                                                                                                                           | 0.0034                  |  |
| 110543                                                                              | n-hexane                                                                                                                                                           | 0.0154                  |  |
| 95476                                                                               | o-xylene                                                                                                                                                           | 0.0013                  |  |
| 106423                                                                              | p-xylene                                                                                                                                                           | 0.0011                  |  |
| 108883                                                                              | toluene                                                                                                                                                            | 0.0170                  |  |
| Total                                                                               |                                                                                                                                                                    | 0.44                    |  |
| "Head<br>2. Emiss                                                                   | rganic fraction information is from CARB's SPEC<br>lspace vapors 1996 SSD etoh 2.0% (MTBE phased<br>sions were calculated only for chemicals that were<br>88 list. | out)" option.           |  |

## 7. TRUs and Reefer Cars

Emission estimates for the Diesel-fueled TRUs and reefer cars were based on the average number of units in the yard and the hours of operation. Emission factors are from the OFFROAD2006 model. The emission factors are shown in Table 21. Detailed emission

factor derivation calculations and the OFFROAD2006 output are contained in Appendix G.

| Table 21<br>Emission Factors for TRUs and Reefer Cars<br>Los Angeles Transportation Center                                                                                                              |                                                 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|
| Equipment                                                                                                                                                                                               | Equipment Emissions (g/hp-hr-unit) <sup>1</sup> |  |  |  |  |
| Туре                                                                                                                                                                                                    | HC <sup>2</sup> CO NOx DPM SOx <sup>3</sup>     |  |  |  |  |
| TRU                                                                                                                                                                                                     | 2.85 6.78 6.43 0.71 0.07                        |  |  |  |  |
| Reefer Car                                                                                                                                                                                              | 3.23 7.49 6.71 0.79 0.07                        |  |  |  |  |
| Notes:       1. Emission factors from OFFROAD2006 model.         2. Evaporative emissions from this source are negligible.         3. Emission factor based on a Diesel fuel sulfur content of 130 ppm. |                                                 |  |  |  |  |

# B TAC Emissions by Source Type

TAC emission calculations for each source type were based on the site-specific equipment inventory (shown in Part V of this report), equipment activity data (shown in Part VI of this report), and the source-specific emission factors shown in Part VII.A above.

Emissions from locomotive operations were based on the emission factors shown in Table 14 and 15, the number of events, the number of locomotives per consist, duration, and duty cycle of different types of activity. Table 22 shows the duty cycles assumed for different types of activities.

| Table 22<br>Locomotive Duty Cycles<br>Los Angeles Transportation Center |                   |  |  |
|-------------------------------------------------------------------------|-------------------|--|--|
| Activity Duty Cycle                                                     |                   |  |  |
| Through Train Movement N1 - 50%, N2- 50%                                |                   |  |  |
| Movements within the Yard                                               | N1 - 50%, N2- 50% |  |  |
| Yard Operations EPA Switch Duty Cycle <sup>1</sup>                      |                   |  |  |
| Notes:                                                                  |                   |  |  |
| 1. EPA (1998) Regulatory Support Document                               |                   |  |  |

For locomotive models and tiers for which specific emission factors were not available, the emissions for the next lower tier were used, or the next higher tier if no lower tier data were available. Emission factors for the "average locomotive" for different types of activity were developed from the emission factors and the actual locomotive model and technology distributions for that activity. Separate distributions were developed for four types of activity: through trains (including through power moves); arrivals and departures; arriving and departing power moves; and yard operations. Table 23 shows the DPM emission estimates for the different types of activities.

| Table 23                              |                                                                                             |                                                     |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| <b>DPM Emissions from Locomotives</b> |                                                                                             |                                                     |  |  |  |
|                                       | Los Angeles Transportation Center                                                           |                                                     |  |  |  |
|                                       | Activity DPM Emissions (tons/yr)                                                            |                                                     |  |  |  |
| Through                               | Trains and Power Moves                                                                      | 0.20                                                |  |  |  |
| Arriving                              | g and Departing Trains                                                                      | 0.47                                                |  |  |  |
| Arriving                              | g and Departing Power Moves                                                                 | 0.06                                                |  |  |  |
| Yard Op                               | Yard Operations 2.46                                                                        |                                                     |  |  |  |
| Total                                 | Total 3.19                                                                                  |                                                     |  |  |  |
| Notes:                                |                                                                                             |                                                     |  |  |  |
| 1. S                                  | See Table 1 for equipment specifications.                                                   |                                                     |  |  |  |
| 2. S                                  | See Table 6 for activity data.                                                              |                                                     |  |  |  |
| 3. S                                  | See Table 14 and 15 for emission factors.                                                   |                                                     |  |  |  |
| 4. E                                  | Emissions from yard operations are based on                                                 | two sets of switcher locomotives operating 24 hours |  |  |  |
| р                                     | per day and a third set of switchers operating between 7 AM and 11 PM daily, the EPA Switch |                                                     |  |  |  |
| Ē                                     | Duty Cycle, and the emission factors shown in Tables 14 and 15.                             |                                                     |  |  |  |
| 5. S                                  | • •                                                                                         |                                                     |  |  |  |
|                                       | idjustments are shown in Appendix A-7.                                                      |                                                     |  |  |  |

DPM emissions from the LHD Diesel-fueled truck are shown in Table 24. DPM emissions from HHD Diesel-fueled trucks and CHE are shown in Tables 25 and 26, respectively. DPM emissions from heavy equipment are shown in Table 27. Table 28 summarizes the TAC emissions from the gasoline storage tank. DPM emissions from the Diesel-fueled TRUs and reefer cars are shown in Table 29. Detailed emission calculations for each source group are contained in Appendix H.

| Table 24<br>DPM Emissions from the LHD Diesel-Fueled Truck<br>Los Angeles Transportation Center |                                  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|
|                                                                                                 | Emissions (tpy)                  |  |  |  |  |
| Pollutant                                                                                       | Traveling Mode Idling Mode Total |  |  |  |  |
| DPM                                                                                             | 0.0005 0.0001 0.001              |  |  |  |  |
| Notes:                                                                                          |                                  |  |  |  |  |
| 1. See Part V for equipment specifications.                                                     |                                  |  |  |  |  |
| 2. See Table 7 for activity data.                                                               |                                  |  |  |  |  |
| 3. See Table 16 for emission factors.                                                           |                                  |  |  |  |  |

| Table 25<br>DPM Emissions from HHD Diesel-Fueled Trucks<br>Los Angeles Transportation Center |                                       |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
|                                                                                              | Emissions (tpy)                       |  |  |  |  |
| Pollutant                                                                                    | Traveling Mode Idling Mode Total      |  |  |  |  |
| DPM                                                                                          | 0.70 0.29 0.99                        |  |  |  |  |
| Notes:                                                                                       |                                       |  |  |  |  |
| 1. See Part V for equipment specifications.                                                  |                                       |  |  |  |  |
| 2. See Table 9 for activity data.                                                            |                                       |  |  |  |  |
| 3. See Table 17 for                                                                          | 3. See Table 17 for emission factors. |  |  |  |  |

| Table 26<br>DPM Emissions from Cargo Handling Equipment<br>Los Angeles Transportation Center |                   |            |       |  |
|----------------------------------------------------------------------------------------------|-------------------|------------|-------|--|
|                                                                                              |                   |            |       |  |
| Туре                                                                                         | Make/Model        | Model Year | (tpy) |  |
| Forklift                                                                                     | Taylor THD200S    | 2000       | 0.005 |  |
| RTG                                                                                          | Mi Jack 1000RC    | 2004       | 0.081 |  |
| RTG                                                                                          | Mi Jack 1000R     | 1984       | 0.300 |  |
| Top Pick                                                                                     | Mi Jack MJ9090    | 1990       | 0.038 |  |
| Top Pick                                                                                     | Taylor TEC 155H   | 1998       | 0.006 |  |
| Yard Hostler                                                                                 | Ottawa Commando30 | 2003       | 0.466 |  |
| Yard Hostler                                                                                 | Ottawa Commando30 | 2004       | 1.199 |  |
| Total                                                                                        |                   |            | 2.10  |  |

See Table 10 for activity data.
 See Table 18 for emission factors.

| Table 27<br>DPM Emissions from Heavy Equipment<br>Los Angeles Transportation Center                                                                                  |                                  |       |                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|----------------------|--|--|
| Equipment                                                                                                                                                            |                                  |       | <b>DPM Emissions</b> |  |  |
| Type                                                                                                                                                                 | Type Make/Model Model Year (tpy) |       |                      |  |  |
| Crane                                                                                                                                                                | Crane Grove RT650E 2003 0.030    |       |                      |  |  |
| Forklift                                                                                                                                                             | Forklift Lull 2004 0.074         |       |                      |  |  |
| Forklift Toyota 1999 0.0                                                                                                                                             |                                  | 0.063 |                      |  |  |
| Total                                                                                                                                                                | Total 0.17                       |       |                      |  |  |
| Notes:       1.       See Table 3 for equipment specifications.         2.       See Table 11 for activity data.         3.       See Table 19 for emission factors. |                                  |       |                      |  |  |

| Table 28<br>TAC Emissions from Gasoline Storage Tanks |                                                                                                  |                 |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|--|--|--|
|                                                       | Los Angeles Transportation Center                                                                |                 |  |  |  |
| CAS                                                   | Chemical Name                                                                                    | Emissions (tpy) |  |  |  |
| 540841                                                | 2,2,4-trimethylpentane                                                                           | 0.0011          |  |  |  |
| 71432                                                 | Benzene                                                                                          | 0.0003          |  |  |  |
| 110827                                                | Cyclohexane                                                                                      | 0.0008          |  |  |  |
| 100414                                                | Ethylbenzene                                                                                     | 0.0001          |  |  |  |
| 78784                                                 | Isopentane                                                                                       | 0.0304          |  |  |  |
| 98828                                                 | Isopropylbenzene (cumene)                                                                        | 0.0000          |  |  |  |
| 108383                                                | m-Xylene                                                                                         | 0.0003          |  |  |  |
| 110543                                                | n-Hexane                                                                                         | 0.0013          |  |  |  |
| 95476                                                 | o-Xylene                                                                                         | 0.0001          |  |  |  |
| 106423                                                | p-Xylene                                                                                         | 0.0001          |  |  |  |
| 108883                                                | Toluene                                                                                          | 0.0014          |  |  |  |
| Total                                                 |                                                                                                  | 0.036           |  |  |  |
| 2. See Tal                                            | ble 4 for equipment specifications.<br>ble 12 for activity data.<br>ble 20 for emission factors. |                 |  |  |  |

| Table 29<br>DPM Emissions from TRUs and Reefer Cars<br>Los Angeles Transportation Center |                                    |  |  |  |
|------------------------------------------------------------------------------------------|------------------------------------|--|--|--|
| Equipment Type                                                                           | Equipment Type DPM Emissions (tpy) |  |  |  |
| TRU 0.37                                                                                 |                                    |  |  |  |
| Railcar                                                                                  | 0.09                               |  |  |  |
| Total                                                                                    | Total 0.46                         |  |  |  |
| Notes:                                                                                   |                                    |  |  |  |
| 1. See Part V for equipment specifications.                                              |                                    |  |  |  |
| 2. See Table 13 for activity data.                                                       |                                    |  |  |  |
| 3. See Table 21 for emission factors.                                                    |                                    |  |  |  |

# C Facility Total Emissions

Facility-wide DPM emissions are shown in Table 30. The gasoline storage tank is the only source of other TACs at LATC; therefore, Table 28 summarizes facility-wide emissions of other TACs.

| Table 30<br>Facility-Wide Diesel Particulate Emissions<br>Los Angeles Transportation Center                                                                                                    |       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Source Emissions (tpy)                                                                                                                                                                         |       |  |  |
| Locomotives <sup>1</sup>                                                                                                                                                                       | 3.19  |  |  |
| LHD Diesel-Fueled Trucks <sup>2</sup>                                                                                                                                                          | 0.001 |  |  |
| HHD Diesel-Fueled Trucks <sup>3</sup>                                                                                                                                                          | 0.99  |  |  |
| Cargo Handling Equipment <sup>4</sup>                                                                                                                                                          | 2.10  |  |  |
| Heavy Equipment <sup>5</sup>                                                                                                                                                                   | 0.17  |  |  |
| TRUs and Reefer Cars <sup>6</sup>                                                                                                                                                              | 0.46  |  |  |
| Total                                                                                                                                                                                          | 6.91  |  |  |
| Notes:       1.       See Table 23.         2.       See Table 24.         3.       See Table 25.         4.       See Table 26.         5.       See Table 27.         6.       See Table 29. |       |  |  |

#### PART VIII: RISK SCREENING CALCULATIONS

As discussed in Part IV of this report, de minimis sources, based on weighted health risk, were identified in the inventory but were not included in the modeling analysis. De minimis sources are the individual source categories that represent less than 3 percent of the facility-total weighted average site health impacts (determined separately for cancer risk and non-cancer chronic health hazard). Total exclusions for all de minimis sources did not exceed 10 percent of the facility-total weighted average site health impacts.

The OEHHA unit risk factor for each pollutant was multiplied by the annual emissions of that pollutant to generate a risk index value for each source. Each source-specific risk index was divided by the facility total risk index to get the fractional contribution to the total risk for each source. The cancer risk, the non-cancer health hazard index, and the fractional contribution to the cancer risk and non-cancer chronic health hazard for each source are summarized in Table 31. Detailed cancer risk and non-cancer health hazard index risk index calculations are in Appendix I.

| Table 31<br>Summary of Weighted Risk by Source Category<br>Los Angeles Transportation Center |                         |                            |                         |       |  |  |
|----------------------------------------------------------------------------------------------|-------------------------|----------------------------|-------------------------|-------|--|--|
| Cancer Risk Non-Cancer Chronic<br>Health Hazard                                              |                         |                            |                         |       |  |  |
| Source                                                                                       | Risk Index<br>Value     | Percent of<br>Total Hazard |                         |       |  |  |
| Locomotives                                                                                  | 9.57 x 10 <sup>-4</sup> | 46.21                      | $1.60 \ge 10^1$         | 36.04 |  |  |
| LHD Diesel-Fueled Trucks                                                                     | 1.61 x 10 <sup>-7</sup> | 0.01                       | 2.69 x 10 <sup>-3</sup> | 0.01  |  |  |
| HHD Diesel-Fueled Trucks                                                                     | 2.98 x 10 <sup>-4</sup> | 14.41                      | 4.97                    | 11.24 |  |  |
| Cargo Handling Equipment                                                                     | 6.28 x 10 <sup>-4</sup> | 30.34                      | $1.05 \ge 10^1$         | 23.66 |  |  |
| Heavy Equipment                                                                              | 5.00 x 10 <sup>-5</sup> | 2.41                       | 8.33 x 10 <sup>-1</sup> | 1.88  |  |  |
| Gasoline Storage Tank                                                                        | 8.50 x 10 <sup>-9</sup> | 0.00                       | 9.74                    | 22.00 |  |  |
| TRUs and Reefer Cars                                                                         | 1.37 x 10 <sup>-4</sup> | 6.62                       | 2.29                    | 5.17  |  |  |
| Total                                                                                        | 2.07 x 10 <sup>-3</sup> | 100                        | 4.43 x 10 <sup>1</sup>  | 100   |  |  |

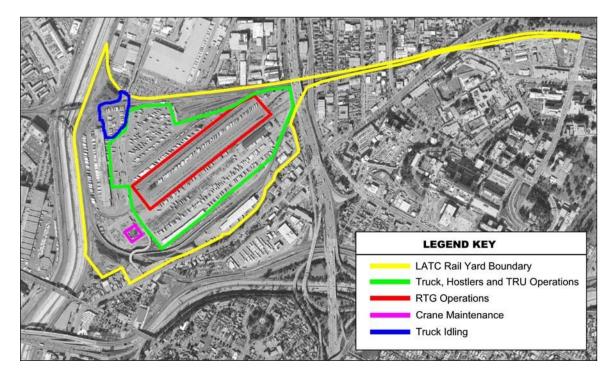
Sources that represent less than 3 percent each of the facility-total weighted average cancer risk and non-cancer chronic health hazard, as shown in Table 31, are de minimis. Table 32 lists the de minimis sources for LATC.

| Table 32<br>Summary of Do Minimis Sources                          |                                  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|--|
| Summary of De Minimis Sources<br>Los Angeles Transportation Center |                                  |  |  |  |  |  |  |  |  |
| De minimis Sources for                                             | De Minimis Sources for           |  |  |  |  |  |  |  |  |
| Cancer Risk                                                        | Non-Cancer Chronic Health Hazard |  |  |  |  |  |  |  |  |
| LHD Diesel-Fueled Trucks                                           | LHD Diesel-Fueled Trucks         |  |  |  |  |  |  |  |  |
| Heavy Equipment                                                    | Heavy Equipment                  |  |  |  |  |  |  |  |  |
| Gasoline Storage Tank                                              |                                  |  |  |  |  |  |  |  |  |

Sources that are de minimis for both cancer risk and non-cancer chronic health hazard (i.e. LHD Diesel-fueled truck) will not be included in the dispersion modeling analysis. At the request of CARB, heavy equipment will be included in the dispersion modeling analysis notwithstanding their de minimis risk contribution.

#### PART IX: AIR DISPERSION MODELING

An air dispersion modeling analysis was conducted for LATC. The purpose of the analysis was to estimate ground-level concentrations of DPM and other TACs, emitted from Yard operations, at receptor locations near the Yard. Air dispersion modeling was conducted in accordance with the *Health Risk Assessment Guidance for Rail Yard and Intermodal Facilities* (July 2006) and UPRR's *Modeling Protocol* (August 2006). Each aspect of the modeling is further described below.


## A Model Selection and Preparation

## 1 Modeled Sources and Source Treatment

As discussed in Part VIII, only sources that represent more than 3 percent of the facilitytotal weighted average site health impacts (determined separately for cancer risk and noncancer chronic health hazard) were included in the dispersion modeling analysis. At the request of CARB, heavy equipment was included as well, notwithstanding their de minimis risk contribution. Emissions from mobile sources, low-level cargo handling equipment, heavy equipment, and moving locomotives were simulated as a series of volume sources along their corresponding travel routes and work areas. Idling locomotives and elevated cargo handling equipment (cranes) were simulated as a series of point sources within the areas where these events occur. The elevation for each source was interpolated from a 50 m grid of USGS terrain elevations. Table 33 shows the sources that were included in the modeling analysis and treatment used for each source. Assumptions used to spatially allocate emissions from locomotive operations within the Yard are included in Appendix A-4. Assumptions used to spatially allocate emissions from non-locomotive sources are contained in Appendix J.

| Table 33<br>Source Treatment for Air Dispersion Modeling<br>Los Angeles Transportation Center |                  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|--|--|--|
| Source                                                                                        | Source Treatment |  |  |  |  |  |  |  |  |  |
| Gasoline Storage Tank                                                                         | Point            |  |  |  |  |  |  |  |  |  |
| HHD Diesel-Fueled Trucks (idling)                                                             | Volume           |  |  |  |  |  |  |  |  |  |
| HHD Diesel-Fueled Trucks (traveling)                                                          | Volume           |  |  |  |  |  |  |  |  |  |
| Locomotives (idling)                                                                          | Point            |  |  |  |  |  |  |  |  |  |
| Locomotives (traveling)                                                                       | Volume           |  |  |  |  |  |  |  |  |  |
| Cargo Handling Equipment (low level )                                                         | Volume           |  |  |  |  |  |  |  |  |  |
| Cargo Handling Equipment (RTGs)                                                               | Point            |  |  |  |  |  |  |  |  |  |
| Heavy Equipment (idling)                                                                      | Volume           |  |  |  |  |  |  |  |  |  |
| Heavy Equipment (traveling)                                                                   | Volume           |  |  |  |  |  |  |  |  |  |
| TRUs and Reefer Cars                                                                          | Volume           |  |  |  |  |  |  |  |  |  |
| Notes:<br>1. See Figure 3 for source locations.                                               | ·                |  |  |  |  |  |  |  |  |  |

Figure 3 Source Locators



#### 2 Model Selection

Selection of air dispersion models depends on many factors, including the type of emissions source (point, line, or volume) and type of terrain surrounding the emission source. The USEPA-approved guideline air dispersion model, AERMOD, was selected for this project. AERMOD is recommended by EPA as the preferred air dispersion model, and is the recommended model in CARB's *Health Risk Assessment Guidance for Rail Yard and Intermodal Facilities* (July 2006).

AERMOD is a steady-state,<sup>8</sup> multiple-source, Gaussian dispersion model designed for use with stack emission sources situated in terrain where ground elevations can exceed the stack heights of the emission sources (i.e., complex terrain).<sup>9</sup> AERMOD was provided with hourly wind speed, wind direction, and temperature data from the Downtown Los Angeles - North Main station operated by the SCAQMD. Missing data were replaced by data from Los Angeles International Airport (LAX), and cloud cover data were also obtained from the LAX station operated by the National Weather Service. AERMOD used these parameters to select the appropriate dispersion coefficients.

Standard AERMOD control parameters were used, including stack-tip downwash, nonscreening mode, non-flat terrain, and sequential meteorological data check. Following USEPA guidance, stack-tip downwash adjusted the effective stack height downward following the methods of Briggs (1972) for stack exit velocity less than 1.5 times the wind speed at stack top.

<sup>&</sup>lt;sup>8</sup> The term "steady-state" means that the model assumes no variability in meteorological parameters over a one-hour time period.

<sup>&</sup>lt;sup>9</sup> Federal Register, November 9, 2005; Volume 70, Number 216, Pages 68218-68261.

Two AERMET preprocessors (Stages 1 and 2, and Stage 3) were used to prepare meteorological data for use in AERMOD. Albedo and Bowen Ratio<sup>10</sup> were estimated in multiple wind direction sectors surrounding the Yard, while surface roughness from similar sectors around the meteorological monitoring site was used in the model. This separation was based on the fact that atmospheric turbulence induced by surface roughness around the meteorological monitoring tower affects the resulting wind speed profile used by AERMOD to represent conditions at the Yard, while Albedo and Bowen Ratio around the Yard are more appropriate to characterize land use conditions surrounding the area being modeled.

As suggested by USEPA (2000), the surface characteristics were specified in sectors no smaller than a 30-degree arc. Specifying surface characteristics in narrower sectors becomes less meaningful because of expected wind direction variability during an hour, as well as the encroachment of characteristics from the adjacent sectors with a one-hour travel time. Use of weighted-average<sup>11</sup> characteristics by surface area within a 30-degree (or wider) sector made it possible to have a unique portion of the surface significantly influence the properties of the sector that it occupies. The length of the upwind fetch for defining the nature of the turbulent characteristics of the atmosphere in each sector surrounding the source location was 3 kilometers as recommended by Irwin (1978) and USEPA's *Guideline on Air Quality Models*.<sup>12</sup>

## 3 Modeling Inputs

Modeling was based on the annual average emissions for each source as discussed in Part VII B above. Temporal and seasonal activity scalars were applied to locomotive activities, cargo handling equipment activities, and HHD truck operations. The following profiles were used in the modeling. See Appendix K for additional details.

<sup>&</sup>lt;sup>10</sup> The albedo of a specified surface is the ratio of the radiative flux reflected from the surface to the radiative flux incident on the surface. Flux is the amount of energy per unit time incident upon or crossing a unit area of a defined flat plane. For example, snow and ice vary from 80% to 85% and bare ground from 10% to 20%. Bowen ratio is the ratio of heat energy used for sensible heating (conduction and convection) of the air above a specified surface to the heat energy used for latent heating (evaporation of water or sublimation of snow) at the surface. The Bowen ratio ranges from 0.1 for the ocean surface to more that 2.0 for deserts; negative values are also possible.

<sup>&</sup>lt;sup>11</sup>Weighting was based on wind direction frequency, such as determined from a wind rose.

<sup>&</sup>lt;sup>12</sup> USEPA (1986), and published as Appendix W to 40 CFR Part 51 (as revised).

- A seasonal/diurnal activity profile was calculated for locomotive idling based on the number of arrivals and departures in each hour of the day and the number of arriving and departing trains in each season. Each hourly factor was based on the number of arrivals and departures in that hour, the number of arrivals in the preceding two hours, and the number of departures in the following two hours. This approach captures the idling times for consists on arrival and departure. These factors were applied to consist idling for arriving and departing trains, and idling at the service track.
- A seasonal/diurnal activity profile was calculated for in-yard locomotive movements of road power using the same approach as for idling. In this case, however, only the number of arriving and departing trains in a single hour was used for that hour's factor.
- A diurnal profile was used for switching operations based on the operating shifts for the yard switchers. Seasonal adjustment factors were not used for yard switching.
- The seasonal distribution for arriving and departing trains was applied to both cargo handling equipment activity and HHD truck activity at the Yard.

The volume source release heights and vertical dispersion parameters ( $\mathfrak{G}$ ) were those used by CARB for the Truck Stop Scenario in Appendix VII of the Diesel Risk Reduction Plan for mobile vehicles and equipment other than locomotives. For locomotives, the release height and  $\mathfrak{G}$  values used were those developed by CARB for daytime and nighttime locomotive movements in the Roseville Risk Assessment modeling. Stack parameters used to create the AERMOD input file for locomotive operations are shown in Table 34. Table 35 summarizes the modeling inputs used to create the AERMOD input file for each non-locomotive source at the Yard.

## 4 Meteorological Data Selection

The Yard does not monitor meteorological variables on site. Data from the downtown Los Angeles - North Main station, operated by SCAQMD, and from the Los Angeles

-41-

International Airport, operated by the National Weather Service, were used for this project.

To the extent that airflow patterns are spatially variable due to elevated terrain and landsea effects near the coast, judgment was exercised to select the monitoring stations that are most representative of conditions at LATC. While the Los Angeles - North Main

| Table 34         Locomotive Modeling Inputs         Los Angeles Transportation Center                                                          |     |       |     |     |      |       |      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|-----|------|-------|------|--|--|--|--|
| Point/Idling Source ParametersVolume Source ParametersStackStackExit VelocityTemp $\sigma z$ $\sigma y^2$ ReleaseHtDia. (m)(m/s)(o K)(m)(m)(m) |     |       |     |     |      |       |      |  |  |  |  |
| Source<br>Locomotives (idling and load tests) <sup>1</sup>                                                                                     | (m) |       | ()  | ()  | ()   | ()    | ()   |  |  |  |  |
| Road power at all yards-SD7x <sup>2</sup>                                                                                                      | 4.6 | 0.625 | 3.1 | 364 | -    | -     | -    |  |  |  |  |
| Yard locomotives LC-SW                                                                                                                         | 4.6 | 0.305 | 5.6 | 341 | -    | -     | -    |  |  |  |  |
| Locomotives (traveling) <sup>3</sup>                                                                                                           |     |       |     |     | -    | -     | -    |  |  |  |  |
| Day <sup>4</sup>                                                                                                                               | -   | -     | -   | -   | 2.6  | 20-50 | 5.6  |  |  |  |  |
| Night <sup>4</sup>                                                                                                                             | -   | -     | -   | -   | 6.79 | 20-50 | 14.6 |  |  |  |  |

1

Stack parameters for stationary locomotives taken from the CARB Roseville modeling Idling road power stack parameters are those of the most prevalent locomotive model (SD-7x) 2

3 All locomotive movements for road power and yard locomotives while working are the day and night volume source parameters for moving locomotives

Fin the CARB Roseville modeling. Lateral dispersion coefficient ( $\sigma_y$ ) for moving locomotive volume sources was set to values between 20 and 50 m, depending on the spacing of sources in different areas of the yard and proximity to yard boundaries. 4

#### -43-

|                                                    |                                                 | -                                                                                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                    |                                                 |                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                    |                                                 |                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Point/Idling Source Parameters Volume Source Param |                                                 |                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Stack                                              | Stack                                           | Exit Velocity                                                                                                                                                                                  | Temp                                                                           | σz                                                                                                                                                                                                                                                                                                                       | σγ                                                                                                                                                                                                                                                                                                           | Release                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                    |                                                 |                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| (m)                                                | (m)                                             |                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              | (m)                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                    |                                                 |                                                                                                                                                                                                |                                                                                | 1.39                                                                                                                                                                                                                                                                                                                     | 20 50                                                                                                                                                                                                                                                                                                        | 4.15                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 12.5                                               | 0.13                                            | 20                                                                                                                                                                                             | 644.3                                                                          |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 12.5                                               | 0.13                                            | 20                                                                                                                                                                                             | 644.3                                                                          |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                    |                                                 |                                                                                                                                                                                                |                                                                                | 1.39                                                                                                                                                                                                                                                                                                                     | 20 50                                                                                                                                                                                                                                                                                                        | 4.15                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                    |                                                 |                                                                                                                                                                                                |                                                                                | 1.39                                                                                                                                                                                                                                                                                                                     | 20 50                                                                                                                                                                                                                                                                                                        | 4.15                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                    |                                                 |                                                                                                                                                                                                |                                                                                | 1.39                                                                                                                                                                                                                                                                                                                     | 20 50                                                                                                                                                                                                                                                                                                        | 4.15                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                    |                                                 |                                                                                                                                                                                                |                                                                                | 1.39                                                                                                                                                                                                                                                                                                                     | 20 50                                                                                                                                                                                                                                                                                                        | 4.15                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                    | Los Ang<br>Po<br>Stack<br>Height<br>(m)<br>12.5 | Non-Locomotive M           Los Angeles Transpo           Point/Idling So           Stack         Stack           Height         Diameter           (m)         (m)           12.5         0.13 | Stack<br>Height<br>(m)Stack<br>Diameter<br>(m)Exit Velocity<br>(m/s)12.50.1320 | Non-Locomotive Modeling Inputs<br>Los Angeles Transportation Center           Point/Idling Source Parameters           Stack         Stack         Exit Velocity         Temp           Height         Diameter         (m/s)         (° K)           (m)         (m)         12.5         0.13         20         644.3 | Non-Locomotive Modeling Inputs<br>Los Angeles Transportation CenterPoint/Idling Source ParametersVolurStackStackExit VelocityTemp<br>(°K) $\sigma^{z}$<br>(m)HeightDiameter(m/s)(°K)(m)(m)(m)1.3912.50.1320644.312.50.1320644.31.3912.50.1320644.31.3912.50.1320644.31.3912.50.1320644.31.3913.913.91.391.39 | Non-Locomotive Modeling Inputs<br>Los Angeles Transportation CenterPoint/Idling Source ParametersVolume Source ParametersStackStackExit VelocityTemp<br>(°K) $\sigma^{z}$ $\sigma^{y}$ HeightDiameter(m/s)(°K)(m)(m)(m)1.3920 5012.50.1320644.31.3912.50.1320644.31.3912.50.1320644.31.3913.920 501.3920 5013.91.3920 5013.91.3920 5013.91.3920 5013.91.3920 50 |  |  |  |  |

Stack parameters from equipment manufacturers.
 Low level sources treated as volume sources using the release height and vertical dispersion parameter (σ<sub>z</sub>) from the CARB Diesel Risk Reduction Plan (Sept 13, 2000), Appendix VII, Table 2 (Truck stop scenario).
 Low level source lateral dispersion parameter (σ<sub>y</sub>) set to a value between 20 and 50 meters based on spacing between sources and proximity to the yard between the source of the

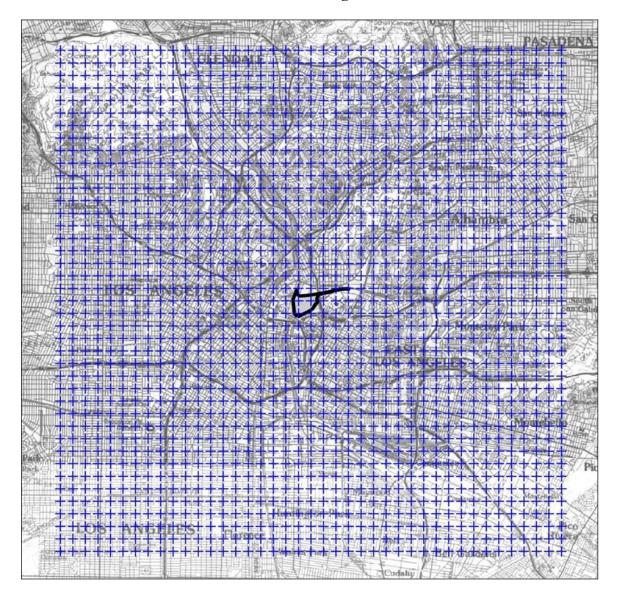
boundary.

station is relatively close to the yard, significant elevated terrain exists to the northwest of the yard through the northeast. As a result, surface wind patterns in the vicinity are unlikely to be uniform, particularly during periods of night time drainage flows as well as during periods of light winds from the southeast through southwest. In the absence of more detailed data and given the inability of steady-state Gaussian models such as AERMOD to treat non-uniform flow fields, some uncertainty will exist in the ability of the model to predict the locations of highest concentrations outside of the Yard. Because rail yards, especially emissions from locomotives, tend to be aligned linearly along the main track routes, the directions of prevailing surface winds were important to achieve representativeness of model predictions in the near field. For longer transport distances (e.g., 1 to 10 km), surface winds were still the primary consideration, with atmospheric stability also playing an important role. Due to the relatively low release heights and limited plume rise of rail yard sources, modeled concentrations are relatively insensitive to mixing heights, temperatures, and vertical temperature and wind profiles.

Based on the above requirements for representativeness, wind speed, wind direction, and temperature data from the Downtown Los Angeles - North Main monitoring station operated by the SCAQMD. Missing data was replaced by data from LAX, and cloud cover data was also obtained from the LAX station operated by the National Weather Service. These data were processed in AERMET, the meteorological preprocessor for AERMOD.

Four years, 2002 through 2005, of meteorological data from the Downtown Los Angeles - North Main monitoring station were processed with AERMET to assure that an adequate number of years of acceptable data completeness and quality would be available for AERMOD modeling. It is expected that year-to-year variability would not cause significant differences in the modeled health impacts, and hence, would justify needing only to subject the full set of receptors to one year of meteorological data. The meteorological data from 2002 was selected for rail yard dispersion modeling because it had higher completeness of wind speed and direction data compared to 2003-2005.

-45-


## 5 Model Domain and Receptor Grids

The modeling used both a coarse grid and fine grid in separate runs. The coarse grid had a domain size of 20 km by 20 km and 500 m x 500 m spacing between receptors in a square array. A fine grid of 50 m x 50 m surrounded the Yard within 300 m of the fence line, itself surrounded by a medium grid of 100 m x 100 m out to 600 m around the fence line, and surrounded further out by the coarse grid 500 m spacing.

All receptors were identified by UTM coordinates. United States Geological Survey (USGS) 7.5 Minute digital elevation model (DEMs) information was used to identify terrain heights at each receptor. Figures 4 and 5 show the outline of the Yard along with the coarse and fine receptor grids.

Sensitive receptors, consisting of hospitals, schools, day care centers, and elder care facilities, within a 1 mile radius of the Yard, were identified. Table 36 lists the address, elevations, and UTM coordinates for each sensitive receptor. Figure 6 shows the outline of the Yard and the location of each sensitive receptor identified in Table 36.

Figure 4 Coarse Modeling Grid



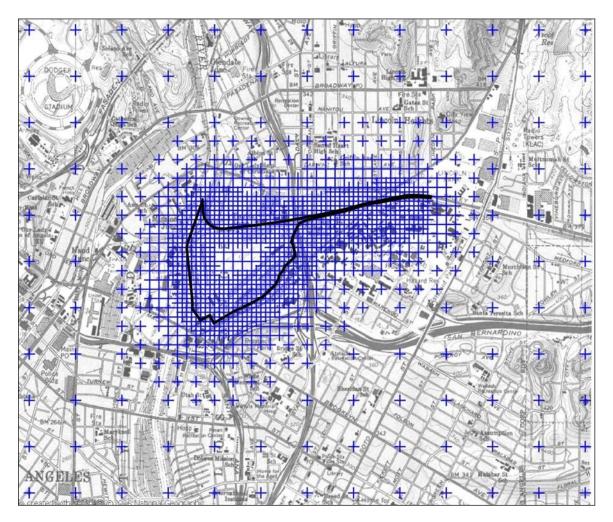



Figure 5 Fine Modeling Grid

|                                    | Table 36                                                          |           |        |         |
|------------------------------------|-------------------------------------------------------------------|-----------|--------|---------|
|                                    | Sensitive Receptor Locations<br>Los Angeles Transportation Center |           |        |         |
|                                    |                                                                   | Elevation | UTM-E  | UTM-N   |
| Receptor                           | Address                                                           | (m)       | (m)    | (m)     |
| Albion Street Elementary School    | 322 South Avenue 18, Los Angeles, CA 90031                        | 91        | 387405 | 3770407 |
| Ann Street Elementary School       | 126 Bloom St, Los Angeles, CA 90012                               | 89        | 386496 | 3769968 |
| Breed Street Elementary            | 2226 E 3rd St, Los Angeles, CA 90033                              | 90        | 387979 | 3767533 |
| Bridge Street Elementary School    | 605 N Boyle Ave, Los Angeles, CA 90033                            | 105       | 387666 | 3768712 |
| Castelar Street Elementary         | 840 Yale St, Los Angeles, CA 90012                                | 96        | 385672 | 3769986 |
| Cathedral High School              | 1253 Bishops Rd, Los Angeles, CA 90012                            | 103       | 386137 | 3770539 |
| Evergreen Ave Elementary Schl      | 2730 Ganahl St, Los Angeles, CA 90033                             | 121       | 389458 | 3768643 |
| Gates Street Elementary            | 3333 Manitou Ave, Los Angeles, CA 90031                           | 110       | 388717 | 3770809 |
| Griffin Ave Elementary School      | 2025 Griffin Ave, Los Angeles, CA 90031                           | 99        | 388138 | 3770325 |
| KIPP Los Angeles College Prep      | 1855 N Main St, Los Angeles, CA 90031                             | 91        | 387463 | 3770178 |
| Lincoln High School                | 3501 N Broadway, Los Angeles, CA 90031                            | 119       | 388922 | 3771012 |
| Multnomah Street Elementary        | 2101 N Indiana Ave, Los Angeles, CA 90032                         | 122       | 389800 | 3770285 |
| Murchison Street Elem School       | 1501 Murchison St, Los Angeles, CA 90033                          | 121       | 389558 | 3769436 |
| Our Lady Help of Christians School | 2024 Darwin Ave, Los Angeles, CA 90031                            | 96        | 387682 | 3770272 |
| Pueblo de Los Angeles High School  | 2506 Alta St, Los Angeles, CA 90031                               | 128       | 388871 | 3771151 |
| Sacred Heart Elementary School     | 2109 Sichel St, Los Angeles, CA 90031                             | 98        | 387985 | 3770539 |
| Sacred Heart High School           | 2111 Griffin Ave, Los Angeles, CA 90031                           | 100       | 388097 | 3770541 |
| San Antonio De Padua School        | 1500 Bridge St, Los Angeles, CA 90033                             | 108       | 387368 | 3768734 |
| Santa Teresita School              | 2646 Zonal Ave, Los Angeles, CA 90033                             | 113       | 389405 | 3769150 |
| Second St Elementary School        | 1942 E 2nd St, Los Angeles, CA 90033                              | 90        | 387632 | 3767843 |
| Sheridan St Elementary School      | 416 N Cornwell St, Los Angeles, CA 90033                          | 109       | 388492 | 3768351 |
| Solano Ave Elementary School       | 615 Solano Ave, Los Angeles, CA 90012                             | 132       | 386338 | 3771258 |
| St Mary Catholic Elementary        | 416 S St Louis St, Los Angeles, CA 90033                          | 88        | 387776 | 3767423 |
| Utah Street Elementary School      | 1605 New Jersey St, Los Angeles, CA 90033                         | 81        | 387001 | 3768371 |
| White Memorial Adventist Schl      | 4500 Multnomah St, Los Angeles, CA 90032                          | 103       | 387490 | 3768502 |

-49-

|                                         | Table 36                                                          |           |        |         |
|-----------------------------------------|-------------------------------------------------------------------|-----------|--------|---------|
|                                         | Sensitive Receptor Locations<br>Los Angeles Transportation Center |           |        |         |
|                                         |                                                                   | Elevation | UTM-E  | UTM-N   |
| Receptor                                | Address                                                           | (m)       | (m)    | (m)     |
| Wilson High School                      | 322 South Avenue 18, Los Angeles, CA 90031                        | 149       | 390431 | 3770385 |
| Albion Street Children's Center         | 348 South Avenue 18, Los Angeles, CA 90031                        | 94        | 387368 | 3770473 |
| Aliso Pico Preschool                    | 1505 E 1st St, Los Angeles, CA 90033                              | 80        | 387033 | 3768086 |
| Centro De Alegria                       | 420 N Soto St, Los Angeles, CA 90033                              | 108       | 388616 | 3768149 |
| Cesar Chavez Garden                     | 555 W Cesar E Chavez Ave, Los Angeles, CA 90012                   | 104       | 385378 | 3769471 |
| Child Development Center                | 521 W Cesar E Chavez Ave, Los Angeles, CA 90012                   | 100       | 385435 | 3769436 |
| Childcare Alliance-Los Angeles          | 205 S Broadway # 808, Los Angeles, CA 90012                       | 90        | 384917 | 3768664 |
| Early Learning Center                   | 233 N Breed St, Los Angeles, CA 90033                             | 100       | 388332 | 3767945 |
| Foundation For Early Childhood          | 716 N State St, Los Angeles, CA 90033                             | 105       | 388033 | 3768695 |
| Grace Tino Child Care Center            | 231 E 3rd St, Los Angeles, CA 90013                               | 81        | 385148 | 3768225 |
| H Pregerson Child Care Center           | 255 E Temple St, Los Angeles, CA 90012                            | 85        | 385597 | 3768669 |
| Joy Picus Child Development Center      | 111 E 1st St, Los Angeles, CA 90012                               | 87        | 385261 | 3768645 |
| LAC+USC Employees' Children's Center    | 1401 N Mission Rd, Los Angeles, CA 90033                          | 100       | 388231 | 3769821 |
| Los Angeles Child Care/Development      | 2701 N Main St, Los Angeles, CA 90031                             | 97        | 387969 | 3770154 |
| Los Angeles Universal Preschool         | 750 N Alameda St #200, Los Angeles, CA 90012                      | 85        | 385863 | 3769060 |
| Lumbini Child Development Center        | 505 E 3rd St, Los Angeles, CA 90013                               | 80        | 385542 | 3767996 |
| Nishi Hongwanji Child Development       | 815 E 1st St, Los Angeles, CA 90012                               | 81        | 386057 | 3768240 |
| Nuestro Futuro Tnc                      | 2615 E 1st St, Los Angeles, CA 90033                              | 93        | 388589 | 3767540 |
| Plaza De La Raza Head Start             | 2141 Workman St, Los Angeles, CA 90031                            | 98        | 387938 | 3770624 |
| Village Learning Center                 | 4001 N. Mission Road, Los Angeles, CA 90032                       | 127       | 389594 | 3771016 |
| LA County Hospital + USC Medical Center | 1200 N State St, Los Angeles, CA 90033                            | 103       | 388365 | 3769306 |
| LA County Women's Hospital              | 1240 N Mission Rd, Los Angeles, CA 90033                          | 100       | 388067 | 3769633 |
| Lincoln Hospital Medical Center         | 443 S Soto St, Los Angeles, CA 90033                              | 95        | 388093 | 3767251 |
| Pacific Alliance Medical Center         | 531 W College St, Los Angeles, CA 90012                           | 96        | 385653 | 3770024 |
| Sevanaad Health Care Center             | 1327 Pleasant Ave, Los Angeles, CA 90033                          | 98        | 387197 | 3768570 |

-50-

| Table 36<br>Sensitive Receptor Locations |                                                   |           |        |         |  |  |  |  |  |  |
|------------------------------------------|---------------------------------------------------|-----------|--------|---------|--|--|--|--|--|--|
| Los Angeles Transportation Center        |                                                   |           |        |         |  |  |  |  |  |  |
|                                          |                                                   | Elevation | UTM E  | UTM N   |  |  |  |  |  |  |
| Receptor                                 | Address                                           | (m)       | (m)    | (m)     |  |  |  |  |  |  |
| USC Doheny Eye Institute                 | 1450 San Pablo St, Los Angeles, CA 90033          | 110       | 388974 | 3769688 |  |  |  |  |  |  |
| USC University Hospital                  | 1500 San Pablo St, Los Angeles, CA 90033          | 108       | 388996 | 3769766 |  |  |  |  |  |  |
| USC/Norris Cancer Hospital               | 1441 Eastlake Ave # 7418, Los Angeles, CA 90033   | 105       | 388818 | 3769677 |  |  |  |  |  |  |
| White Memorial Medical Center            | 1720 E Cesar E Chavez Ave, Los Angeles, CA, 90033 | 107       | 387645 | 3768472 |  |  |  |  |  |  |
| Keiro Nursing Home                       | 2221 Lincoln Park Ave, Los Angeles, CA 90031      | 113       | 389041 | 3770662 |  |  |  |  |  |  |
| Notes:                                   |                                                   |           |        |         |  |  |  |  |  |  |
| 1. UTM Coordinates are in Zone 11, NA    | AD 83.                                            |           |        |         |  |  |  |  |  |  |



Figure 6 Sensitive Receptors

#### 6 Dispersion Coefficients

Dispersion coefficients are used in air dispersion models to reflect the land use over which the pollutants are transported. The area surrounding the Yard and the nearby BNSF rail yard was divided into sectors to characterize the surface roughness, albedo, and Bowen Ratio. These parameters were provided along with the meteorological data to the AERMET software. The resulting meteorological input file allows AERMOD to select appropriate dispersion coefficients during its simulation of air dispersion. AERMOD also provides an urban input option to use the overall size of the Standard Metropolitan Statistical Area that contains the emission source (i.e., the Yard) in accounting for the urban heat island effect on the nocturnal convective boundary layer height. Tf the option is not selected, AERMOD defaults to rural dispersion coefficients. Tf the urban option is selected, but no surface roughness is specified (i.e., not to be

confused with the surface roughness already specified for sectors around the meteorological monitoring station and input to AERMET), AERMOD assigns a default "urban" surface roughness of 1 meter. For LATC, AERMOD was run with the urban option. Based on CARB and USEPA guidance,<sup>13</sup> namely "*For urban areas adjacent to or near other urban areas, or part of urban corridors, the user should attempt to identify that part of the urban area that will contribute to the urban heat island plume affecting the source,*" the area encompassed by the surrounding Los Angeles Standard Metropolitan Statistical Area (SMSA) was considered to determine the urban heat island effect on the nocturnal convective boundary layer height. The population of this SMSA is approximately 13,000,000,<sup>14</sup> and the surface roughness that characterizes this metropolitan area was set to the URBANOPT default of 1 m. See Appendix L for additional discussion of this issue.

## 7. Building Downwash

Building downwash effects were considered for the Yard. Stack tip downwash adjusted the effective stack height downward following the methods of Briggs (1972) when the stack exit velocity was less than 1.5 times the wind speed at stack top. The locomotives are the only structures in the Yard of sufficiently large size and close enough proximity to the modeled emission sources (i.e., their own stacks) to be entered into the Building Profile Input Program (BPIP) with one set of dimensions for a "standard" locomotive (24.2 m. long x 4.0 m. wide x 4.6 m. high).

## B Modeling Results

The AERMOD input and output files have been provided to CARB in an electronic format.

<sup>&</sup>lt;sup>13</sup> AERMOD Implementation Guide, September 27, 2005, http://www.epa.gov/scram001/7thconf/aermod/aermod\_implmtn\_guide.pdf

<sup>&</sup>lt;sup>14</sup>U.S. Census Bureau, Statistical Abstract of the United States: 2006 (<u>http://www.census.gov/compendia/statab/population/pop.pdf</u>) Table 26 (p. 30) gives 2004 Los Angeles Long Beach Santa Ana MSA population of 12,925,000.

## C Demographic Data

Demographic data files have been provided to CARB in an electronic format. See Appendix M for a description of the data.

## PART X: REFERENCES

Briggs, G.A. (1972). *Discussion on Chimney Plumes in Neutral and Stable Surroundings*. Atmos. Environ. 6:507 510.

CARB (2000). Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. (Available at www.arb.ca.gov/diesel/documents/rrpapp.htm)

CARB (2003). Staff Report: Initial Statement of Reasons for Proposed Rule Making for the Airborne Toxic Control Measure for In-use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets, and Facilities Where TRUs Operate. (Available at <u>www.arb.ca.gov/regact/trude03/isor.pdf</u>)

CARB (2004). *Roseville Rail Yard Study*. (Available at *www.arb.ca.gov/diesel/documents/rrstudy/rrstudyl0l404.pdf*)

CARB (2006). *Rail Yard Emission Inventory Methodology*. (Available at *www.arb.ca.gov/railyard/hra/071806hra\_eim.pdf*)

CARB (2006). *Health Risk Assessment Guidance for Rail Yards and Intermodal Facilities*. (Available at www.arb.ca.gov/railyard/hra/07l806hra\_guideline.pdf)

CARB (2006). *EMFAC-WD2006 Model*. (Available at *www.arb.ca.gov/msei/onroad/latest version.htm*)

CARB (2006). *OFFROAD2006 Model*. (Available at <u>www.arb.ca.gov/msei/offroad/offroad.htm</u>)

Ireson, R.G., M.J. Germer, L.A. Schmid (2005). *Development of Detailed Rail yard Emissions to Capture Activity, Technology, and Operational Changes*. Proceedings of the USEPA 14<sup>th</sup> Annual Emission Inventory Conference, Las Vegas NV, April 14, 2006. (Available at *www.epa.gov/ttn/chief/conference/eil4/session8/ireson.pdf*)

Irwin, J.S. (1978). *Proposed Criteria for Selection of Urban Versus Rural Dispersion Coefficients*. Staff Report. Meteorology and Assessment Division, U.S. Environmental Protection Agency, Research Triangle Park, NC. (Air Docket Reference No. II B 8 for the Fourth Conference on Air Quality Modeling).

Nappo, C. J. et al. (1982). *The Workshop on the Representativeness of Meteorological Observations*, June 1981, Boulder, CO. Bulletin Amer. Meteor. Soc., Vol. 63, No. 7, pp. 761 764. American Meteorological Society, Boston, MA.

USEPA (1986). *Guideline on Air Quality Models (Revised)*. U.S. EPA 45/2 78 027R, Office of Air Quality Planning and Standards, Research Triangle Park, NC.

USEPA (1987a). *Supplement A to the Guideline on Air Quality Models (Revised)*. Office of Air Quality Planning and Standards, Research Triangle Park, NC.

USEPA (1987b). *Ambient Monitoring Guidelines for Prevention of Significant Deterioration (PSD)*. Office of Air Quality Planning and Standards, and Office of Research and Development, Research Triangle Park, NC.

USEPA (1995). Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources. (Available at <u>www.epa.gov/ttn/chief/ap42/</u>)

USEPA (1998). Locomotive Emission Standards -- Regulatory Support Document. (Available at www.epa.gov/otaq/regs/nonroad/locomotv/frm/locorsd.pdf).

USEPA (2000). *Meteorological Monitoring Guidance for Regulatory Modeling Applications*. Publication No. EPA-454/R-99-005. Office of Air Quality Planning & Standards, Research Triangle Park, NC. (PB 2001-103606) (Available at *www.epa.gov/scram00l/*)

USEPA (2004). *Final Regulatory Impact Analysis: Control of Emissions from Non-Road Diesel Engines.* U.S. EPA 420-R-04-007. Office of Air Quality Planning and Standards, Assessment and Standards Division, Research Triangle Park, NC.

USEPA (2005). AERMOD Implementation Guide. (Available at www.epa.gov/scram00l/7thconf/aermod/aermod\_implmtn\_guide.pdf).

Wong, W (undated). *Changes to the Locomotive Inventory*. Draft OFFROAD Modeling Change Technical Memo.

# APPENDIX A

# LOCOMOTIVE DATA

# APPENDIX A-1

# LOCOMOTIVE MODEL, TIER, AND AUTO-START/STOP TECHNOLOGY FREQUENCY BY TRAIN TYPE

|      | Thru<br>EB | Trains<br>arr | N&W<br>676 | Side |      |      |      |       |       |       |      |         |
|------|------------|---------------|------------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch     | GP3x          | GP4x       | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| N    | 3          | 12            | 361        | 10   | 1106 | 3    | 5    | 0     | 54    | 53    | 0    | 22      |
| Ν    | 3          | 9             | 1          | 0    | 1    | 0    | 0    | 0     | 0     | 5     | 0    | 0       |
| 0    | 0          | 0             | 12         | 0    | 250  | 143  | 3    | 0     | 8     | 56    | 7    | 0       |
| 0    | 0          | 2             | 0          | 0    | 6    | 1    | 0    | 0     | 0     | 49    | 0    | 0       |
| 1    | 0          | 0             | 0          | 0    | 0    | 18   | 0    | 0     | 0     | 3     | 0    | 0       |
| 1    | 0          | 0             | 0          | 0    | 0    | 96   | 0    | 0     | 0     | 144   | 0    | 0       |
| 2    | 0          | 0             | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0          | 0             | 0          | 0    | 0    | 9    | 0    | 0     | 0     | 41    | 0    | 0       |
|      |            |               |            |      |      |      |      |       |       |       |      |         |
|      | EB         | dep           | 676        |      |      |      |      |       |       |       |      |         |
| Tier | Switch     | GP3x          | GP4x       | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 3          | 12            | 361        | 10   | 1113 | 3    | 5    | 0     | 55    | 53    | 0    | 22      |
| Ν    | 3          | 10            | 1          | 0    | 1    | 0    | 0    | 0     | 0     | 5     | 0    | 0       |
| 0    | 0          | 0             | 12         | 0    | 250  | 144  | 3    | 0     | 8     | 57    | 7    | 0       |
| 0    | 0          | 2             | 0          | 0    | 6    | 1    | 0    | 0     | 0     | 49    | 0    | 0       |
| 1    | 0          | 0             | 0          | 0    | 0    | 18   | 0    | 0     | 0     | 2     | 0    | 0       |
| 1    | 0          | 0             | 0          | 0    | 0    | 98   | 0    | 0     | 0     | 145   | 0    | 0       |
| 2    | 0          | 0             | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0          | 0             | 0          | 0    | 0    | 9    | 0    | 0     | 0     | 41    | 0    | 0       |

| T.   | WB     | arr  | 1433 | CD50 | CD(0 | 6 <b>D</b> 7 | CDOO | D 17  | D 10  | D 10  | <b>C</b> (0.) | TT 1    |
|------|--------|------|------|------|------|--------------|------|-------|-------|-------|---------------|---------|
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x         | SD90 | Dash7 | Dash8 | Dash9 | C60A          | Unknown |
| Ν    | 0      | 4    | 481  | 22   | 794  | 12           | 6    | 3     | 265   | 213   | 2             | 45      |
| Ν    | 0      | 3    | 0    | 0    | 0    | 0            | 0    | 0     | 0     | 19    | 0             | 0       |
| 0    | 0      | 0    | 12   | 0    | 199  | 664          | 0    | 0     | 48    | 65    | 1             | 0       |
| 0    | 1      | 0    | 0    | 0    | 5    | 3            | 0    | 0     | 0     | 9     | 0             | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 131          | 0    | 0     | 0     | 0     | 0             | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 553          | 0    | 0     | 0     | 18    | 0             | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0            | 0    | 0     | 0     | 0     | 0             | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 99           | 0    | 0     | 0     | 216   | 0             | 0       |
|      | WB     | dep  | 1433 |      |      |              |      |       |       |       |               |         |
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x         | SD90 | Dash7 | Dash8 | Dash9 | C60A          | Unknown |
| Ν    | 0      | 4    | 481  | 22   | 794  | 12           | 6    | 3     | 265   | 213   | 2             | 45      |
| Ν    | 0      | 3    | 0    | 0    | 0    | 0            | 0    | 0     | 0     | 19    | 0             | 0       |
| 0    | 0      | 0    | 12   | 0    | 199  | 664          | 0    | 0     | 48    | 65    | 1             | 0       |
| 0    | 1      | 0    | 0    | 0    | 5    | 3            | 0    | 0     | 0     | 9     | 0             | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 131          | 0    | 0     | 0     | 0     | 0             | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 553          | 0    | 0     | 0     | 18    | 0             | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0            | 0    | 0     | 0     | 0     | 0             | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 99           | 0    | 0     | 0     | 216   | 0             | 0       |

|      | Thru<br>EB | Trains<br>arr | w<br>97 | Side | Only |      |      |       |       |       |      |         |
|------|------------|---------------|---------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch     | GP3x          | GP4x    | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| N    | 0          | 2             | 20      | 0    | 34   | 0    | 43   | 0     | 6     | 58    | 0    | 0       |
| Ν    | 0          | 0             |         | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |
| 0    | 0          |               | 0       | 0    | 7    | 8    |      | 0     |       | 50    | 32   | 0       |
| 0    | 0          |               | 0       | 0    |      | 0    | 0    | 0     | 0     | 4     | 0    | 0       |
|      | 0          | 0             | 0       | 0    | 0    | 2    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0          | 0             | 0       | 0    | 0    | 6    | 0    | 0     | 0     | 33    | 0    | 0       |
| 2    | 0          | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0          | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |
|      |            |               |         |      |      |      |      |       |       |       |      |         |
|      | EB         | dep           | 97      |      |      |      |      |       |       |       |      |         |
| Tier | Switch     | GP3x          | GP4x    | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0          | 2             | 20      | 0    | 34   | 0    | 43   | 0     | 6     | 58    | 0    | 0       |
| Ν    | 0          | 0             |         | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |
| 0    | 0          |               | 0       | 0    | 7    | 8    |      | 0     |       | 50    | 32   | 0       |
| 0    | 0          |               | 0       | 0    |      | 0    | 0    | 0     | 0     | 4     | 0    | 0       |
|      | 0          | 0             | 0       | 0    | 0    | 2    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0          | 0             | 0       | 0    | 0    | 6    | 0    | 0     | 0     | 33    | 0    | 0       |
| 2    | 0          | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0          | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

|      | WB     | arr  | 669  |      |      |      |      |       |       |       |      |         |
|------|--------|------|------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0      | 1    | 77   | 7    | 55   | 6    | 45   | 0     | 99    | 115   | 1    | 11      |
| Ν    | 0      | 3    | 0    | 0    | 1    | 0    | 0    | 0     | 0     | 7     | 0    | 0       |
| 0    | 0      | 0    | 6    | 0    | 12   | 296  | 1    | 0     | 15    | 101   | 47   | 0       |
| 0    | 0      | 0    | 0    | 0    | 1    | 0    | 0    | 0     | 0     | 37    | 0    | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 51   | 0    | 0     | 0     | 1     | 0    | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 248  | 0    | 0     | 0     | 125   | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 18   | 0    | 0     | 0     | 45    | 0    | 0       |
|      | WB     | dep  | 669  |      |      |      |      |       |       |       |      |         |
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0      | 1    | 77   | 7    | 55   | 6    | 45   | 0     | 99    | 115   | 1    | 11      |
| Ν    | 0      | 3    | 0    | 0    | 1    | 0    | 0    | 0     | 0     | 7     | 0    | 0       |
| 0    | 0      | 0    | 6    | 0    | 12   | 296  | 1    | 0     | 15    | 101   | 47   | 0       |
| 0    | 0      | 0    | 0    | 0    | 1    | 0    | 0    | 0     | 0     | 37    | 0    | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 51   | 0    | 0     | 0     | 1     | 0    | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 248  | 0    | 0     | 0     | 125   | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 18   | 0    | 0     | 0     | 45    | 0    | 0       |

|      | Thru<br>EB | Trains<br>arr | N<br>360 | Side | Only |      |      |       |       |         |      |          |
|------|------------|---------------|----------|------|------|------|------|-------|-------|---------|------|----------|
| Tier | Switch     | GP3x          | GP4x     | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9   | C60A | Unknown  |
| N    | 0          | 2             | 62       | 3    | 44   | 2    | 5    | Dasil | 90    | 59      | 0    | Chkhown  |
| N    | 0          | 0             | 0        | 0    |      | 0    | 0    | 0     | 0     | 9       | 0    | 0        |
| 0    | 0          | 0             | 3        | 0    | 7    | 88   | 0    | 0     | 9     | 88      | 0    | 0        |
| 0    | 0          | 0             | 0        | 0    | 0    | 3    | 0    | 0     | 0     | 53      | 0    | 0        |
| 0    | 0          | 0             | 0        | 0    | 0    | 38   | 0    | 0     | 0     | 6       | 0    | 0        |
|      | 0          | 0             | 0        | 0    | 0    | 68   | 0    | 0     | 0     | 68      | 0    | 0        |
| 2    | 0          | 0             | 0        | 0    | 0    | 0    | 0    | 0     | 0     | 0       | 0    | 0        |
| 2    | 0          | 0             | 0        | 0    | 0    | 20   | 0    | 0     | 0     | 32      | 0    | 0        |
| 2    | 0          | Ū             | Ū        | Ū    | Ū    | 20   | Ū    | 0     | 0     | 52      | v    | 0        |
|      | EB         | dep           | 360      |      |      |      |      |       |       |         |      |          |
| Tier | Switch     | GP3x          | GP4x     | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9   | C60A | Unknown  |
| N    | 0          | 2             | 62       | 3    | 44   | 2    | 5    | Dushi | 90    | 59      | 0    | Children |
| N    | 0<br>0     | 0             | 0        | 0    |      | 0    | 0    | 0     | 0     | 9       | 0    | 0        |
| 0    | 0          | 0             | 3        | 0    | 7    | 88   | 0    | 0     | 9     | 88      | 0    | 0        |
| 0    | 0          | 0             | 0        | 0    | 0    | 3    | 0    | 0     | 0     | 53      | 0    | 0        |
| U    | 0          | 0             | 0        | 0    | 0    | 38   | 0    | 0     | 0     | 6       | 0    | 0        |
|      | 0          | 0             | 0        | 0    | 0    | 68   | 0    | 0     | 0     | 68      | 0    | 0        |
| 2    | 0          | 0             | 0        | 0    | 0    | 0    | 0    | 0     | 0     | 0       | 0    | 0        |
| 2    | 0          | 0             | 0        | 0    | 0    | 20   | 0    | 0     | 0     | 0<br>32 | 0    | 0        |
| 2    | U          | U             | 0        | 0    | 0    | 20   | U    | U     | 0     | 52      | U    | 0        |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

| Tier | WB<br>Switch | arr<br>GP3x | 646<br>GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
|------|--------------|-------------|-------------|------|------|------|------|-------|-------|-------|------|---------|
|      |              | -           |             |      |      |      |      |       |       |       |      |         |
| Ν    | 0            | 2           | 113         | 13   | 121  | 3    | 23   | 0     | 134   | 135   | 0    | 6       |
| Ν    | 0            | 3           | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 14    | 0    | 0       |
| 0    | 0            | 0           | 4           | 0    | 35   | 302  | 1    | 0     | 20    | 182   | 3    | 0       |
| 0    | 0            | 0           | 0           | 0    | 2    | 3    | 0    | 0     | 0     | 122   | 0    | 0       |
| 1    | 0            | 0           | 0           | 0    | 0    | 46   | 0    | 0     | 0     | 8     | 0    | 0       |
| 1    | 0            | 0           | 0           | 0    | 0    | 257  | 0    | 0     | 0     | 371   | 0    | 0       |
| 2    | 0            | 0           | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0            | 0           | 0           | 0    | 0    | 30   | 0    | 0     | 0     | 73    | 0    | 0       |
| Tier | WB<br>Switch | dep<br>GP3x | 646<br>GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| N    | 0            | 2           | 113         | 13   | 121  | 3    | 23   | 0     | 134   | 135   | 0    | 6       |
|      |              |             |             | -    |      | -    |      |       |       |       |      | •       |
| Ν    | 0            | 3           | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 14    | 0    | 0       |
| 0    | 0            | 0           | 4           | 0    | 35   | 302  | 1    | 0     | 20    | 182   | 3    | 0       |
| 0    | 0            | 0           | 0           | 0    | 2    | 3    | 0    | 0     | 0     | 122   | 0    | 0       |
| 1    | 0            | 0           | 0           | 0    | 0    | 46   | 0    | 0     | 0     | 8     | 0    | 0       |
| 1    | 0            | 0           | 0           | 0    | 0    | 257  | 0    | 0     | 0     | 371   | 0    | 0       |
| 2    | 0            | 0           | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0            | 0           | 0           | 0    | 0    | 30   | 0    | 0     | 0     | 73    | 0    | 0       |

|      | Arriving<br>WB | Trains<br>arr | from<br>621 | Е    |      |      |      |       |       |       |      |         |
|------|----------------|---------------|-------------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch         | GP3x          | GP4x        | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0              | 3             | 82          | 10   | 84   | 24   | 1    | 0     | 213   | 264   | 0    | 13      |
| Ν    | 0              | 0             | 0           | 0    | 1    | 0    | 0    | 0     | 0     | 16    | 0    | 0       |
| 0    | 0              | 0             | 2           | 0    | 13   | 542  | 0    | 0     | 31    | 37    | 3    | 0       |
| 0    | 0              | 0             | 0           | 0    | 2    | 1    | 0    | 0     | 0     | 0     | 0    | 0       |
| 1    | 0              | 0             | 0           | 0    | 0    | 108  | 0    | 0     | 0     | 0     | 0    | 0       |
| 1    | 0              | 0             | 0           | 0    | 0    | 471  | 0    | 0     | 0     | 8     | 0    | 0       |
| 2    | 0              | 0             | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0              | 0             | 0           | 0    | 0    | 35   | 0    | 0     | 0     | 68    | 0    | 0       |
|      | Arriving<br>EB | Trains<br>arr | from<br>16  | S    |      |      |      |       |       |       |      |         |
| Tier | Switch         | GP3x          | GP4x        | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0              | 0             | 21          | 1    | 4    | 0    | 0    | 0     | 1     | 0     | 0    | 3       |
| Ν    | 0              | 0             | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0              | 0             | 0           | 0    | 1    | 3    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0              | 0             | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 1    | 0              | 0             | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 1    | 0              | 0             | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0              | 0             | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0              | 0             | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

|      | Arriving<br>EB | Trains<br>arr | from<br>344 | Ν       |        |      |              |       |             |       |      |             |
|------|----------------|---------------|-------------|---------|--------|------|--------------|-------|-------------|-------|------|-------------|
| Tier | Switch         | GP3x          | GP4x        | GP50    | GP60   | SD7x | SD90         | Dash7 | Dash8       | Dash9 | C60A | Unknown     |
| Ν    | 0              | 0             | 21          | 1       | 23     | 1    | 1            | 0     | 41          | 39    | 0    | 1           |
| Ν    | 0              | 0             | 0           | 0       | 1      | 0    | 0            | 0     | 0           | 6     | 0    | 0           |
| 0    | 0              | 0             | 0           | 0       | 7      | 261  | 0            | 0     | 9           | 25    | 4    | 0           |
| 0    | 0              | 0             | 0           | 0       | 0      | 1    | 0            | 0     | 0           | 4     | 0    | 0           |
| 1    | 0              | 0             | 0           | 0       | 0      | 55   | 0            | 0     | 0           | 0     | 0    | 0           |
| 1    | 0              | 0             | 0           | 0       | 0      | 235  | 0            | 0     | 0           | 12    | 0    | 0           |
| 2    | 0              | 0             | 0           | 0       | 0      | 0    | 0            | 0     | 0           | 0     | 0    | 0           |
| 2    | 0              | 0             | 0           | 0       | 0      | 49   | 0            | 0     | 0           | 70    | 0    | 0           |
|      |                |               |             |         |        |      |              |       |             |       |      |             |
|      | Departing      | Trains        | to          | Е       |        |      |              |       |             |       |      |             |
| т.   | EB             | dep           | 438         | C D C O | C D (A |      | <b>GD</b> 00 | D 17  | <b>D</b> 10 | D 10  | G(0) | <b>TT 1</b> |
| Tier | Switch         | GP3x          | GP4x        | GP50    | GP60   | SD7x | SD90         | Dash7 | Dash8       | Dash9 | C60A | Unknown     |
| Ν    | 0              | 3             | 76          | 9       | 68     | 19   | 0            | 0     | 164         | 193   | 0    | 13          |
| Ν    | 1              | 2             | 0           | 0       | 1      | 0    | 0            | 0     | 0           | 17    | 0    | 0           |
| 0    | 0              | 0             | 4           | 0       | 11     | 455  | 0            | 0     | 17          | 40    | 3    | 0           |
| 0    | 0              | 0             | 0           | 0       | 0      | 3    | 0            | 0     | 0           | 0     | 0    | 0           |
| 1    | 0              | 0             | 0           | 0       | 0      | 73   | 0            | 0     | 0           | 0     | 0    | 0           |
| 1    | 0              | 0             | 0           | 0       | 0      | 362  | 0            | 0     | 0           | 0     | 0    | 0           |
| 2    | 0              | 0             | 0           | 0       | 0      | 0    | 0            | 0     | 0           | 0     | 0    | 0           |
| 2    | 0              | 0             | 0           | 0       | 0      | 14   | 0            | 0     | 0           | 20    | 0    | 0           |

|      | Departing<br>WB | Trains<br>dep | to<br>636 | Ν    |      |      |      |       |       |       |      |         |
|------|-----------------|---------------|-----------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch          | GP3x          | GP4x      | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0               | 3             | 53        | 0    | 30   | 2    | 0    | 0     | 58    | 4     | 0    | 6       |
| Ν    | 0               | 0             | 2         | 0    | 3    | 0    | 0    | 0     | 0     | 3     | 0    | 0       |
| 0    | 0               | 0             | 3         | 0    | 2    | 65   |      | 0     | 33    | 6     | 5    | 0       |
| 0    | 0               | 0             | 0         | 0    |      | 2    | 0    | 0     | 0     | 2     | 0    | 0       |
|      | 0               | 0             | 0         | 0    | 0    | 9    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0               | 0             | 0         | 0    | 0    | 528  | 0    | 0     | 0     | 7     | 0    | 0       |
| 2    | 0               | 0             | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0               | 0             | 0         | 0    | 0    | 96   | 0    | 0     | 0     | 75    | 0    | 0       |
|      |                 |               |           |      |      |      |      |       |       |       |      |         |
|      | Departing       | Trains        | to        | S    |      |      |      |       |       |       |      |         |
|      | WB              | dep           | 48        |      |      |      |      |       |       |       |      |         |
| Tier | Switch          | GP3x          | GP4x      | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    |                 |               | 35        |      | 22   | 0    | 0    | 0     | 5     | 4     | 0    | 3       |
| Ν    | 0               |               | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0               | 0             | 0         | 0    |      | 0    | 0    | 0     | 2     |       | 0    | 0       |
| 0    | 0               |               | 0         | 0    |      | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
|      | 0               | 0             | 0         | 0    | 0    | 3    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0               | 0             | 0         | 0    | 0    | 2    | 0    | 0     | 0     | 2     | 0    | 0       |
| 2    | 0               | 0             | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0               | 0             | 0         | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

|      | Arr-Dep<br>EB | Trains<br>arr | E<br>38 | to   | S    |      |      |       |       |       |      |                     |
|------|---------------|---------------|---------|------|------|------|------|-------|-------|-------|------|---------------------|
| Tier | Switch        | GP3x          | GP4x    | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown             |
| Ν    | 0             | 3             | 8       | 0    | 265  | 0    | 0    | 0     |       | 0     | 0    | 2                   |
| Ν    | 0             | 4             | 0       | 0    |      | 0    | 0    | 0     | 0     |       | 0    | 0                   |
| 0    | 0             | 0             | 0       | 0    | 74   | 2    | 0    | 0     |       | 2     | 0    | 0                   |
| 0    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0                   |
|      | 0             | 0             | 0       | 0    | 0    |      | 0    | 0     | 0     | 0     | 0    | 0                   |
|      | 0             | 0             | 0       | 0    | 0    | 2    | 0    | 0     | 0     | 4     | 0    | 0                   |
| 2    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0                   |
| 2    | 0             | 0             | 0       | 0    | 0    |      | 0    | 0     | 0     | 2     | 0    | 0                   |
|      | FD            |               | 20      |      |      |      |      |       |       |       |      |                     |
| т:   | EB            | dep           | 38      | CDCO | CDCO | CD7  | CD00 | D 17  | D 10  | D 10  | 000  | <b>T</b> T <b>1</b> |
| Tier | Switch        | GP3x          | GP4x    | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown             |
| N    | 0             | 3             | 90      | 0    | 264  | 0    | 0    | 0     | 0     | 0     | 0    | 2                   |
| N    | 0             | 4             | 0       | 0    | -    | 0    | 0    | 0     | 0     |       | 0    | 0                   |
| 0    | 0             | 0             | 0       | 0    | 76   | 4    | 0    | 0     |       | 3     | 0    | 0                   |
| 0    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0                   |
|      | 0             | 0             | 0       | 0    | 0    | 2    | 0    | 0     | 0     | 0     | 0    | 0                   |
|      | 0             | 0             | 0       | 0    | 0    | 2    | 0    | 0     | 0     | 4     | 0    | 0                   |
| 2    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0                   |
| 2    | 0             | 0             | 0       | 0    | 0    |      | 0    | 0     | 0     | 2     | 0    | 0                   |

| Tim  | WB     | arr  | 446<br>CD4 | CD50 | CD(0 | 6D7  | 6000 | D. 17 | D. 19 | D. 10 | C(0.) | T.T. 1  |
|------|--------|------|------------|------|------|------|------|-------|-------|-------|-------|---------|
| Tier | Switch | GP3x | GP4x       | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A  | Unknown |
| Ν    | 0      | 1    | 140        | 9    | 77   | 6    | 0    | 2     | 118   | 106   | 0     | 22      |
| Ν    | 0      | 0    | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 4     | 0     | 0       |
| 0    | 0      | 0    | 5          | 1    | 17   | 262  | 0    | 0     | 22    | 27    | 0     | 0       |
| 0    | 0      | 0    | 0          | 0    | 2    | 1    | 0    | 0     | 0     | 1     | 0     | 0       |
| 1    | 0      | 0    | 0          | 0    | 0    | 41   | 0    | 0     | 0     | 0     | 0     | 0       |
| 1    | 0      | 0    | 0          | 0    | 0    | 180  | 0    | 0     | 0     | 1     | 0     | 0       |
| 2    | 0      | 0    | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0       |
| 2    | 0      | 0    | 0          | 0    | 0    | 26   | 0    | 0     | 0     | 62    | 0     | 0       |
|      | WB     | dep  | 446        |      |      |      |      |       |       |       |       |         |
| Tier | Switch | GP3x | GP4x       | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A  | Unknown |
| Ν    | 0      | 1    | 140        | 9    | 77   | 6    | 0    | 2     | 118   | 105   | 0     | 21      |
| Ν    | 0      | 0    | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 4     | 0     | 0       |
| 0    | 0      | 0    | 5          | 1    | 17   | 262  | 0    | 0     | 22    | 27    | 0     | 0       |
| 0    | 0      | 0    | 0          | 0    | 2    | 1    | 0    | 0     | 0     | 1     | 0     | 0       |
| 1    | 0      | 0    | 0          | 0    | 0    | 41   | 0    | 0     | 0     | 0     | 0     | 0       |
| 1    | 0      | 0    | 0          | 0    | 0    | 177  | 0    | 0     | 0     | 1     | 0     | 0       |
| 2    | 0      | 0    | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0     | 0       |
| 2    | 0      | 0    | 0          | 0    | 0    | 26   | 0    | 0     | 0     | 61    | 0     | 0       |

|      | Arr-Dep<br>EB | Trains<br>arr | S<br>29 | to   | Ν    |      |      |       |       |       |      |         |
|------|---------------|---------------|---------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch        | GP3x          | GP4x    | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0             | 0             | 0       |      | 3    | 0    | 0    | 0     | 8     | 2     | 0    |         |
| Ν    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0             | 0             | 0       | 0    | 3    | 7    | 0    | 0     | 2     | 5     | 0    | 0       |
| 0    | 0             | 0             | 0       | 0    |      | 0    | 0    | 0     | 0     | 3     | 0    | 0       |
|      | 0             | 0             | 0       | 0    | 0    | 7    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0             | 0             | 0       | 0    | 0    | 6    | 0    | 0     | 0     | 2     | 0    | 0       |
| 2    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |
|      |               |               |         |      |      |      |      |       |       |       |      |         |
|      | EB            | dep           | 29      |      |      |      |      |       |       |       |      |         |
| Tier | Switch        | GP3x          | GP4x    | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0             | 0             | 2       |      | 5    | 0    | 0    | 0     | 8     | 2     | 0    |         |
| Ν    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0             | 0             | 0       | 0    | 4    | 7    | 0    | 0     | 2     | 8     | 0    | 0       |
| 0    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 3     | 0    | 0       |
|      | 0             | 0             | 0       | 0    | 0    | 7    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0             | 0             | 0       | 0    | 0    | 6    | 0    | 0     | 0     | 6     | 0    | 0       |
| 2    | 0             | 0             | 0       | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0             | 0             | 0       | 0    | 0    |      | 0    | 0     | 0     |       | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

| -    | WB     | arr  | 101  |      |      |      |      |       | <b>D</b> 10 | 5 10  |      |         |
|------|--------|------|------|------|------|------|------|-------|-------------|-------|------|---------|
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8       | Dash9 | C60A | Unknown |
| Ν    | 0      | 0    | 22   | 3    | 7    | 0    | 0    | 0     | 26          | 11    | 0    | 0       |
| Ν    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 2     | 0    | 0       |
| 0    | 0      | 0    | 2    | 0    | 0    | 65   | 0    | 0     | 5           | 5     | 1    | 0       |
| 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 3     | 0    | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 12   | 0    | 0     | 0           | 2     | 0    | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 57   | 0    | 0     | 0           | 9     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 0     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 2    | 0    | 0     | 0           | 22    | 0    | 0       |
|      | WB     | dep  | 101  |      |      |      |      |       |             |       |      |         |
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8       | Dash9 | C60A | Unknown |
| Ν    | 0      | 0    | 24   | 3    | 9    | 0    | 0    | 0     | 25          | 10    | 0    | 0       |
| Ν    | 0      | 1    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 2     | 0    | 0       |
| 0    | 0      | 0    | 1    | 0    | 0    | 63   | 0    | 0     | 4           | 5     | 1    | 0       |
| 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 3     | 0    | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 11   | 0    | 0     | 0           | 2     | 0    | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 52   | 0    | 0     | 0           | 7     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 0     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 2    | 0    | 0     | 0           | 22    | 0    | 0       |

|      | Arr-Dep<br>EB | Trains<br>arr | N<br>7 | to   | Е    |      |      |       |       |       |      |         |
|------|---------------|---------------|--------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch        | GP3x          | GP4x   | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0             | 0             | 2      | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |
| Ν    | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0             | 0             | 0      | 0    | 0    | 2    | 0    | 0     | 0     |       | 0    | 0       |
| 0    | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
|      | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0             | 0             | 0      | 0    | 0    | 2    | 0    | 0     | 0     |       | 0    | 0       |
| 2    | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
|      |               |               |        |      |      |      |      |       |       |       |      |         |
|      | EB            | dep           | 7      |      |      |      |      |       |       |       |      |         |
| Tier | Switch        | GP3x          | GP4x   | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0             | 0             | 3      | 0    |      | 0    | 0    | 0     | 0     |       | 0    | 0       |
| Ν    | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0             | 0             | 0      | 0    |      | 3    | 0    | 0     | 0     |       | 0    | 0       |
| 0    | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |
|      | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0             | 0             | 0      | 0    | 0    | 2    | 0    | 0     | 0     | 3     | 0    | 0       |
| 2    | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0             | 0             | 0      | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

| T.   | WB     | arr  | 53   |      |      |      |      | D 17  | <b>D</b> 10 | D 10  |      | ** 1    |
|------|--------|------|------|------|------|------|------|-------|-------------|-------|------|---------|
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8       | Dash9 | C60A | Unknown |
| Ν    | 6      | 5    | 228  | 0    | 23   | 0    | 0    | 0     | 2           | 2     | 0    | 7       |
| Ν    | 0      | 6    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 0     | 0    | 0       |
| 0    | 2      | 0    | 3    | 0    | 8    | 3    | 0    | 0     | 0           | 2     | 2    | 0       |
| 0    |        | 0    | 0    | 0    |      | 0    | 0    | 0     | 0           | 0     | 0    | 0       |
|      | 0      | 0    | 0    | 0    | 0    | 2    | 0    | 0     | 0           | 0     | 0    | 0       |
|      | 0      | 0    | 0    | 0    | 0    | 2    | 0    | 0     | 0           |       | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 0     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    |      | 0    | 0     | 0           | 0     | 0    | 0       |
|      |        |      | 50   |      |      |      |      |       |             |       |      |         |
|      | WB     | dep  | 53   |      |      |      |      |       |             |       |      |         |
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8       | Dash9 | C60A | Unknown |
| Ν    | 6      | 6    | 229  | 0    | 22   | 0    | 0    | 0     |             | 2     | 0    | 8       |
| Ν    | 0      | 6    | 2    | 0    | 0    | 0    | 0    | 0     | 0           | 0     | 0    | 0       |
| 0    | 2      | 0    | 3    | 0    | 7    | 3    | 0    | 0     | 0           | 2     | 2    | 0       |
| 0    |        | 0    | 0    | 0    |      | 0    | 0    | 0     | 0           | 0     | 0    | 0       |
|      | 0      | 0    | 0    | 0    | 0    | 2    | 0    | 0     | 0           | 0     | 0    | 0       |
|      | 0      | 0    | 0    | 0    | 0    | 2    | 0    | 0     | 0           |       | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0           | 0     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    |      | 0    | 0     | 0           | 0     | 0    | 0       |

|      | Pwr<br>WB | Move<br>arr | Thru<br>106 | N&W  | Side |      |      |       |       |       |      |         |
|------|-----------|-------------|-------------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch    | GP3x        | GP4x        | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| N    | 0         | 1           | 69          | 5    | 27   | 2    | 3    | 1     | 48    | 35    | 0    | 5       |
| Ν    | 0         | 0           | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 3     | 0    | 0       |
| 0    | 0         | 0           | 4           | 0    | 4    | 91   | 1    | 0     | 11    | 15    | 0    | 0       |
| 0    | 0         | 0           | 0           | 0    | 1    | 2    | 0    | 0     | 0     | 3     | 0    | 0       |
| 1    | 0         | 0           | 0           | 0    | 0    | 15   | 0    | 0     | 0     | 0     | 0    | 0       |
| 1    | 0         | 0           | 0           | 0    | 0    | 78   | 0    | 0     | 0     | 5     | 0    | 0       |
| 2    | 0         | 0           | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0         | 0           | 0           | 0    | 0    | 14   | 0    | 0     | 0     | 25    | 0    | 0       |
|      |           |             |             |      |      |      |      |       |       |       |      |         |
|      | WB        | dep         | 106         |      |      |      |      |       |       |       |      |         |
| Tier | Switch    | GP3x        | GP4x        | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0         | 1           | 69          | 5    | 27   | 2    | 3    | 1     | 48    | 35    | 0    | 5       |
| Ν    | 0         | 0           | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 3     | 0    | 0       |
| 0    | 0         | 0           | 4           | 0    | 4    | 91   | 1    | 0     | 11    | 15    | 0    | 0       |
| 0    | 0         | 0           | 0           | 0    | 1    | 2    | 0    | 0     | 0     | 3     | 0    | 0       |
| 1    | 0         | 0           | 0           | 0    | 0    | 15   | 0    | 0     | 0     | 0     | 0    | 0       |
| 1    | 0         | 0           | 0           | 0    | 0    | 78   | 0    | 0     | 0     | 5     | 0    | 0       |
| 2    | 0         | 0           | 0           | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0         | 0           | 0           | 0    | 0    | 14   | 0    | 0     | 0     | 25    | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

|      | Pwr<br>EB | Move<br>arr | Thru<br>52 | W      | Side    |                |        |       |            |            |        |         |
|------|-----------|-------------|------------|--------|---------|----------------|--------|-------|------------|------------|--------|---------|
| Tier | Switch    | GP3x        | GP4x       | GP50   | GP60    | SD7x           | SD90   | Dash7 | Dash8      | Dash9      | C60A   | Unknown |
| N    |           | 5           | 44         | 2      | 45      | 0              | 2      | 0     | 7          | 2          | 0      | 6       |
| Ν    |           | 3           | 0          | 0      | 0       | 0              | 0      | 0     | 0          |            | 0      | 0       |
| 0    | 0         |             |            | 0      | 2       | 20             | 0      | 0     | 0          | 3          | 0      | 0       |
| 0    |           | 0           | 0          | 0      | 0       | 0              | 0      | 0     | 0          | 3          | 0      | 0       |
|      | 0         | 0           | 0          | 0      | 0       | 5              | 0      | 0     | 0          | 0          | 0      | 0       |
|      | 0         | 0           | 0          | 0      | 0       |                | 0      | 0     | 0          | 5          | 0      | 0       |
| 2    | 0         | 0           | 0          | 0      | 0       | 0              | 0      | 0     | 0          | 0          | 0      | 0       |
| 2    | 0         | 0           | 0          | 0      | 0       | 0              | 0      | 0     | 0          |            | 0      | 0       |
|      | EB        | dan         | 52         |        |         |                |        |       |            |            |        |         |
| Tier | Switch    | dep<br>GP3x | GP4x       | GP50   | GP60    | SD7x           | SD90   | Dash7 | Dash8      | Dash9      | C60A   | Unknown |
| N    | Switch    | 5           | 44         | 2<br>2 | 45      | $\frac{SD}{x}$ | 2 SD90 | 0     | Dasna<br>7 | Dash9<br>2 | 0 COUA |         |
| N    |           | 3           | 44         | 2      | 43<br>0 | 0              | 2      | 0     | 0          | Z          | 0      | 6<br>0  |
| 0    | 0         | 3           | 0          | 0      | 2       | 20             | 0      | 0     | 0          | 3          | 0      | 0       |
| 0    | 0         | 0           | 0          | 0      | 0       | 20             | 0      | 0     | 0          | 2          | 0      | 0       |
| 0    | 0         | Ū           |            | 0      | 0       |                | 0      | 0     | 0          | 3          | 0      | 0       |
|      | 0         | 0           | 0          | 0      | 0       | 5              | 0      | 0     | 0          | 0          | 0      | 0       |
|      | 0         | 0           | 0          | 0      | 0       | 0              | 0      | 0     | 0          | 5          | 0      | 0       |
| 2    | 0         | 0           | 0          | 0      | 0       | 0              | 0      | 0     | 0          | 0          | 0      | 0       |
| 2    | 0         | 0           | 0          | 0      | 0       | 0              | 0      | 0     | 0          |            | 0      | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

| T.   | WB     | arr  | 23   | CDSO | CD(0 | 6 <b>D</b> 7 | <b>GD</b> 00 | D 17  | D 10  | D 10  | <b>C</b> (0) | ¥ 7 1   |
|------|--------|------|------|------|------|--------------|--------------|-------|-------|-------|--------------|---------|
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x         | SD90         | Dash7 | Dash8 | Dash9 | C60A         | Unknown |
| Ν    | 0      | 0    | 12   | 2    | 6    | 0            | 0            | 0     | 2     | 5     | 0            | 1       |
| Ν    | 0      | 1    | 0    | 0    | 0    | 0            | 0            | 0     | 0     | 0     | 0            | 0       |
| 0    | 0      | 0    | 0    | 0    | 0    | 16           | 0            | 0     | 1     | 3     | 0            | 0       |
| 0    | 0      | 0    | 0    | 0    | 0    | 0            | 0            | 0     | 0     | 0     | 0            | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 1            | 0            | 0     | 0     | 1     | 0            | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 8            | 0            | 0     | 0     | 5     | 0            | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0            | 0            | 0     | 0     | 0     | 0            | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0            | 0            | 0     | 0     | 2     | 0            | 0       |
|      | WB     | dep  | 23   |      |      |              |              |       |       |       |              |         |
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x         | SD90         | Dash7 | Dash8 | Dash9 | C60A         | Unknown |
| Ν    | 0      | 0    | 12   | 2    | 4    | 0            | 0            | 0     | 2     | 5     | 0            | 1       |
| Ν    | 0      | 1    | 0    | 0    | 0    | 0            | 0            | 0     | 0     | 0     | 0            | 0       |
| 0    | 0      | 0    | 0    | 0    | 0    | 16           | 0            | 0     | 1     | 3     | 0            | 0       |
| 0    | 0      | 0    | 0    | 0    | 0    | 0            | 0            | 0     | 0     | 0     | 0            | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 1            | 0            | 0     | 0     | 1     | 0            | 0       |
| 1    | 0      | 0    | 0    | 0    | 0    | 8            | 0            | 0     | 0     | 5     | 0            | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0            | 0            | 0     | 0     | 0     | 0            | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0            | 0            | 0     | 0     | 2     | 0            | 0       |

|      | Pwr<br>EB | Move<br>arr | Thru<br>4 | Ν    | Side |      |      |       |       |       |      |         |
|------|-----------|-------------|-----------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch    | GP3x        | GP4x      | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| N    | 0         | 0           | Of IA     | 0    | 3    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| Ν    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
|      | 0         | 0           | 0         | 0    | 0    |      | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0         | 0           | 0         | 0    | 0    | 2    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | EB        | dep         | 4         |      |      |      |      |       |       |       |      |         |
| Tier | Switch    | GP3x        | GP4x      | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| N    | 0         | 0           | 01        | 0    | 3    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| N    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
|      | 0         | 0           | 0         | 0    | 0    |      | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0         | 0           | 0         | 0    | 0    | 2    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0         | 0           | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

|      | WB     | arr  | 2    |      |      |      |      |       |       |       |      |         |
|------|--------|------|------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    |        |      | 24   |      | 24   | 0    | 0    | 0     | 5     | 0     | 0    | 0       |
| Ν    | 0      |      | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
| 0    | 0      | 0    | 0    | 0    | 3    | 2    | 0    | 0     | 0     | 2     | 0    | 0       |
| 0    | 0      |      | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0      | 0    | 0    | 0    | 0    |      | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0      | 0    | 0    | 0    | 0    | 6    | 0    | 0     | 0     | 4     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
|      | WB     | dep  | 2    |      |      |      |      |       |       |       |      |         |
| Tier | Switch | GP3x | GP4x | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    |        | 0    | 24   |      | 24   | 0    | 0    | 0     | 5     | 0     | 0    | 0       |
| Ν    | 0      |      | 0    | 0    | 0    | 0    | 0    | 0     | 0     |       | 0    | 0       |
| 0    | 0      | 0    | 0    | 0    | 3    | 2    | 0    | 0     | 0     | 2     | 0    | 0       |
| 0    | 0      |      | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0      | 0    | 0    | 0    | 0    |      | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0      | 0    | 0    | 0    | 0    | 5    | 0    | 0     | 0     | 4     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |

|      | Power<br>WB | Moves<br>arr | Arr<br>9 | from | Е    |      |      |       |       |       |      |         |
|------|-------------|--------------|----------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch      | GP3x         | GP4x     | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0           | 0            | 7        | 0    | 8    | 0    | 0    | 0     | 3     |       | 0    |         |
| Ν    | 0           | 0            | 0        | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0           | 0            | 0        | 0    | 4    | 3    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0           | 0            | 0        | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0        | 0    | 0    |      | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0        | 0    | 0    | 3    | 0    | 0     | 0     |       | 0    | 0       |
| 2    | 0           | 0            | 0        | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0           | 0            | 0        | 0    | 0    |      | 0    | 0     | 0     |       | 0    | 0       |
|      | Power<br>EB | Moves<br>arr | Arr<br>5 | from | S    |      |      |       |       |       |      |         |
| Tier | Switch      | GP3x         | GP4x     | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0           |              | 6        | 0    | 2    | 0    | 0    | 0     | 3     | 2     | 0    | 0       |
| Ν    | 0           | 0            | 3        | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0           |              | 0        | 0    | 3    | 3    | 0    | 0     |       | 0     | 0    | 0       |
| 0    | 0           | 2            | 0        | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0        | 0    | 0    |      | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0        | 0    | 0    | 3    | 0    | 0     | 0     | 2     | 0    | 0       |
| 2    | 0           | 0            | 0        | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0           | 0            | 0        | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

|      | Power<br>EB | Moves<br>arr | Arr<br>3  | from | Ν    |      |      |       |       |       |      |         |
|------|-------------|--------------|-----------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch      | GP3x         | GP4x      | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0           | 0            |           |      | 0    | 0    | 0    | 0     | 7     | 0     | 0    | 0       |
| Ν    | 0           | 0            | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0           | 0            |           | 0    | 0    | 2    | 0    | 0     |       |       | 0    | 0       |
| 0    | 0           | 0            | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0         | 0    | 0    |      | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0           | 0            | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0           | 0            | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | Power<br>EB | Moves<br>dep | Dep<br>27 | to   | E    |      |      |       |       |       |      |         |
| Tier | Switch      | GP3x         | GP4x      | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    |             | 4            | 39        |      | 36   | 3    | 0    | 0     | 35    | 42    | 0    |         |
| Ν    |             | 4            | 0         | 0    | 2    | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
| 0    | 0           | 0            | 3         | 0    | 7    | 98   | 0    | 0     | 7     | 6     | 0    | 0       |
| 0    | 0           | 0            | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0         | 0    | 0    | 6    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0         | 0    | 0    | 73   | 0    | 0     | 0     | 3     | 0    | 0       |
| 2    | 0           | 0            | 0         | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0           | 0            | 0         | 0    | 0    | 4    | 0    | 0     | 0     | 23    | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

|      | Power<br>WB | Moves<br>dep | Dep<br>27  | to   | Ν    |      |      |       |       |       |      |         |
|------|-------------|--------------|------------|------|------|------|------|-------|-------|-------|------|---------|
| Tier | Switch      | GP3x         | GP4x       | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0           |              | 25         | 0    | 47   | 0    | 0    | 0     | 2     | 3     | 0    |         |
| Ν    | 0           | 0            | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 0    | 0           | 0            | 0          | 0    | 0    | 0    | 0    | 0     |       | 2     | 0    | 0       |
| 0    | 0           | 0            | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0          | 0    | 0    | 3    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0          | 0    | 0    | 3    | 0    | 0     | 0     | 3     | 0    | 0       |
| 2    | 0           | 0            | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0           | 0            | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
|      | Power<br>WB | Moves<br>dep | Dep<br>583 | to   | S    |      |      |       |       |       |      |         |
| Tier | Switch      | GP3x         | GP4x       | GP50 | GP60 | SD7x | SD90 | Dash7 | Dash8 | Dash9 | C60A | Unknown |
| Ν    | 0           | 4            | 83         | 3    | 69   | 20   | 2    | 0     | 79    | 223   | 0    | 4       |
| Ν    | 3           | 0            | 0          | 0    |      | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
| 0    |             | 0            | 2          | 0    |      | 52   | 0    | 0     | 30    | 36    | 4    | 0       |
| 0    | 0           |              | 0          | 0    |      | 0    | 0    | 0     | 0     | 2     | 0    | 0       |
|      | 0           | 0            | 0          | 0    | 0    | 00   | 0    | 0     | 0     | 0     | 0    | 0       |
|      | 0           | 0            | 0          | 0    | 0    | 454  | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0           | 0            | 0          | 0    | 0    | 0    | 0    | 0     | 0     | 0     | 0    | 0       |
| 2    | 0           | 0            | 0          | 0    | 0    | 50   | 0    | 0     | 0     | 79    | 0    | 0       |

Appendix A-1 Locomotive Model and Tier Frequency by Train Type

# APPENDIX A-2

# LOCOMOTIVE MODEL DISTRIBUTION BY TRAIN TYPE GROUPS

| Appendix A-2                                       |  |
|----------------------------------------------------|--|
| Locomotive Model Distribution by Train Type Groups |  |

| Through  | Trains and Th | rough Pou | ver Moves |       |       |       |       |       |       |       |       |       |
|----------|---------------|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Tier     | AESS/ZTR      |           | GP3x      | GP4x  | GP50  | GP60  | SD7x  | SD90  | Dash7 | Dash8 | Dash9 | C60A  |
| N        | N             | 0.000     | 0.002     | 0.106 | 0.005 | 0.189 | 0.002 | 0.011 | 0.000 | 0.059 | 0.057 | 0.000 |
| N        |               | 0.000     | 0.002     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 |
|          | У             |           |           |       |       |       |       |       |       |       |       |       |
| 0        | Ν             | 0.000     | 0.000     | 0.004 | 0.000 | 0.044 | 0.145 | 0.001 | 0.000 | 0.009 | 0.047 | 0.008 |
| 0        | У             | 0.000     | 0.000     | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.024 | 0.000 |
| 1        | Ν             | 0.000     | 0.000     | 0.000 | 0.000 | 0.000 | 0.026 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 |
| 1        | У             | 0.000     | 0.000     | 0.000 | 0.000 | 0.000 | 0.120 | 0.000 | 0.000 | 0.000 | 0.074 | 0.000 |
| 2        | N             | 0.000     | 0.000     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2        | У             | 0.000     | 0.000     | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.037 | 0.000 |
| Total    | 2             | 0.001     | 0.005     | 0.110 | 0.006 | 0.235 | 0.310 | 0.012 | 0.000 | 0.069 | 0.245 | 0.008 |
|          |               |           |           |       |       |       |       |       |       |       |       |       |
| Arriving | and Departing | g Trains  |           |       |       |       |       |       |       |       |       |       |
| Tier     | AESS/ZTR      | Switch    | GP3x      | GP4x  | GP50  | GP60  | SD7x  | SD90  | Dash7 | Dash8 | Dash9 | C60A  |
| Ν        | Ν             | 0.001     | 0.004     | 0.121 | 0.005 | 0.096 | 0.005 | 0.000 | 0.000 | 0.079 | 0.076 | 0.000 |
| Ν        | У             | 0.000     | 0.002     | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 |
| 0        | Ν             | 0.000     | 0.000     | 0.002 | 0.000 | 0.025 | 0.229 | 0.000 | 0.000 | 0.013 | 0.022 | 0.002 |
| 0        | У             | 0.000     | 0.000     | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 |
| 1        | Ν             | 0.000     | 0.000     | 0.000 | 0.000 | 0.000 | 0.043 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1        | У             | 0.000     | 0.000     | 0.000 | 0.000 | 0.000 | 0.187 | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 |
| 2        | Ν             | 0.000     | 0.000     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2        | У             | 0.000     | 0.000     | 0.000 | 0.000 | 0.000 | 0.023 | 0.000 | 0.000 | 0.000 | 0.045 | 0.000 |
| Total    | 5             | 0.002     | 0.007     | 0.124 | 0.005 | 0.123 | 0.487 | 0.000 | 0.000 | 0.092 | 0.158 | 0.002 |
|          |               |           |           |       |       |       |       |       |       |       |       |       |

| Appendix A-2                                       |
|----------------------------------------------------|
| Locomotive Model Distribution by Train Type Groups |

| Power M | oves     |        |       |       |       |       |       |       |       |       |       |       |
|---------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Tier    | AESS/ZTR | Switch | GP3x  | GP4x  | GP50  | GP60  | SD7x  | SD90  | Dash7 | Dash8 | Dash9 | C60A  |
| Ν       | Ν        | 0.000  | 0.004 | 0.068 | 0.006 | 0.068 | 0.009 | 0.001 | 0.000 | 0.090 | 0.107 | 0.000 |
| Ν       | У        | 0.002  | 0.002 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 |
| 0       | Ν        | 0.000  | 0.000 | 0.002 | 0.000 | 0.014 | 0.248 | 0.000 | 0.000 | 0.016 | 0.018 | 0.002 |
| 0       | У        | 0.000  | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
| 1       | Ν        | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1       | У        | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.212 | 0.000 | 0.000 | 0.000 | 0.008 | 0.000 |
| 2       | Ν        | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2       | У        | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.026 | 0.000 | 0.000 | 0.000 | 0.041 | 0.000 |
| Total   |          | 0.002  | 0.007 | 0.071 | 0.006 | 0.083 | 0.542 | 0.001 | 0.000 | 0.106 | 0.179 | 0.002 |

Notes:

 There are two primary types of auto start/stop technology - "Auto Engine Start Stop" (AESS), which is factory-installed on recent model high horsepower units; and the ZTR "SmartStart" system (ZTR), which is a retrofit option for other locomotives. Both are programmed to turn off the Diesel engine after 15 to30 minutes of idling, provided that various criteria (air pressure, battery charge, and others) are met. The engine automatically restarts if required by one of the monitored parameters. We assume that an AESS/ZTR-equipped locomotive will shut down after 30 minutes of idling in an extended idle event.

# APPENDIX A-3

# SAMPLE CALCULATIONS

| Activity Types                  | Activity<br>Code | Number of<br>Events/Year | Locomotives per<br>Consist | Emission<br>Factor Group | Locomotives per<br>Consist Working | Fraction of<br>Calif Fuel |
|---------------------------------|------------------|--------------------------|----------------------------|--------------------------|------------------------------------|---------------------------|
| Thru from S to E Arriving       | 1                | 676                      | 3.692                      | 1                        | 3.692                              | 0.500                     |
| Thru from S to E Departing      | 2                | 676                      | 3.712                      | 1                        | 3.712                              | 0.500                     |
| Thru from E to S Arriving       | 3                | 1433                     | 2.717                      | 1                        | 2.717                              | 0.500                     |
| Thru from E to S Departing      | 4                | 1433                     | 2.717                      | 1                        | 2.717                              | 0.500                     |
| Thru from N to E Arriving       | 5                | 97                       | 3.227                      | 1                        | 3.227                              | 0.500                     |
| Thru from N to E Departing      | 6                | 97                       | 3.227                      | 1                        | 3.227                              | 0.500                     |
| Thru from E to N Arriving       | 7                | 669                      | 2.141                      | 1                        | 2.141                              | 0.500                     |
| Thru from E to N Departing      | 8                | 669                      | 2.141                      | 1                        | 2.141                              | 0.500                     |
| Thru from S to N Arriving       | 9                | 360                      | 2.956                      | 1                        | 2.956                              | 0.500                     |
| Thru from S to N Departing      | 10               | 360                      | 2.956                      | 1                        | 2.956                              | 0.500                     |
| Thru from N to S Arriving       | 11               | 646                      | 3.136                      | 1                        | 3.136                              | 0.500                     |
| Thru from N to S Departing      | 12               | 646                      | 3.136                      | 1                        | 3.136                              | 0.500                     |
| Arrivals from E                 | 13               | 621                      | 3.272                      | 2                        | 3.272                              | 0.000                     |
| Arrivals from S                 | 14               | 16                       | 2.125                      | 2                        | 2.125                              | 0.000                     |
| Arrivals from N                 | 15               | 344                      | 2.520                      | 2                        | 2.520                              | 0.000                     |
| Departures to E                 | 16               | 438                      | 3.580                      | 2                        | 3.580                              | 0.900                     |
| Departures to W                 | 17               | 636                      | 3.558                      | 2                        | 3.558                              | 0.900                     |
| Departures to S                 | 18               | 48                       | 2.062                      | 2                        | 2.062                              | 0.900                     |
| Arr & Dep from S to E Arriving  | 19               | 138                      | 3.246                      | 2                        | 3.246                              | 0.500                     |
| Arr & Dep from S to E Departing | 20               | 138                      | 3.355                      | 2                        | 3.355                              | 0.500                     |
| Arr & Dep from E to S Arriving  | 21               | 446                      | 2.540                      | 2                        | 2.540                              | 0.500                     |
| Arr & Dep from E to S Departing | 22               | 446                      | 2.527                      | 2                        | 2.527                              | 0.500                     |
| Arr & Dep from N to E Arriving  | 23               | 29                       | 2.828                      | 2                        | 2.828                              | 0.500                     |
| Arr & Dep from N to E Departing | 24               | 29                       | 3.241                      | 2                        | 3.241                              | 0.500                     |
| Arr & Dep from E to N Arriving  | 25               | 101                      | 2.535                      | 2                        | 2.535                              | 0.500                     |
| Arr & Dep from E to N Departing | 26               | 101                      | 2.446                      | 2                        | 2.446                              | 0.500                     |
| Arr & Dep from S to N Arriving  | 27               | 7                        | 1.857                      | 2                        | 1.857                              | 0.500                     |
| Arr & Dep from S to N Departing | 28               | 7                        | 2.571                      | 2                        | 2.571                              | 0.500                     |
| Arr & Dep from N to S Arriving  | 29               | 153                      | 2.137                      | 2                        | 2.137                              | 0.500                     |

| Activity Types                      | Activity<br>Code | Number of<br>Events/Year | Locomotives per<br>Consist | Emission<br>Factor Group | Locomotives per<br>Consist Working | Fraction of<br>Calif Fuel |
|-------------------------------------|------------------|--------------------------|----------------------------|--------------------------|------------------------------------|---------------------------|
| Arr & Dep from N to S Departing     | 30               | 153                      | 2.150                      | 2                        | 2.150                              | 0.500                     |
| Power thru from E to S Arriving     | 31               | 106                      | 4.415                      | 1                        | 1.500                              | 0.500                     |
| Power thru from E to S Departing    | 32               | 106                      | 4.415                      | 1                        | 1.500                              | 0.500                     |
| Power thru from N to E Arriving     | 33               | 52                       | 3.692                      | 1                        | 1.500                              | 0.500                     |
| Power thru from N to E Departing    | 34               | 52                       | 3.692                      | 1                        | 1.500                              | 0.500                     |
| Power thru from E to N Arriving     | 35               | 23                       | 2.870                      | 1                        | 1.500                              | 0.500                     |
| Power thru from E to N Departing    | 36               | 23                       | 2.783                      | 1                        | 1.500                              | 0.500                     |
| Power thru from S to N Arriving     | 37               | 4                        | 2.250                      | 1                        | 1.500                              | 0.500                     |
| Power thru from S to N Departing    | 38               | 4                        | 2.250                      | 1                        | 1.500                              | 0.500                     |
| Power thru from N to S Arriving     | 39               | 21                       | 3.810                      | 1                        | 1.500                              | 0.500                     |
| Power thru from N to S Departing    | 40               | 21                       | 3.667                      | 1                        | 1.500                              | 0.500                     |
| Power from E                        | 41               | 9                        | 3.778                      | 3                        | 1.500                              | 0.900                     |
| Power from S                        | 42               | 967                      | 3.533                      | 3                        | 1.500                              | 0.900                     |
| Power from N                        | 43               | 3                        | 5.000                      | 3                        | 1.500                              | 0.900                     |
| Power to E                          | 44               | 127                      | 3.315                      | 3                        | 1.500                              | 0.000                     |
| Power to N                          | 45               | 27                       | 3.741                      | 3                        | 1.500                              | 0.000                     |
| Power to S                          | 46               | 583                      | 3.302                      | 3                        | 1.500                              | 0.000                     |
| Yard operations - 4 switcher shifts | 47               | 365                      | 4.000                      | 4                        | 4.000                              | 1.000                     |
| Yard operations - 6 switcher shift  | 48               | 365                      | 6.000                      | 4                        | 6.000                              | 1.000                     |

### Appendix A-3 Sample Calculations

# Emission Factors Weighted by Model/Tier/ZTR Fractions - DPM g/hr per Locomotive Idle-

|          | Idle-                           |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group ID | NonZTR                          | Idle-All                                                                                                                                                                                                                                                                                                              | DB                                                                                                                                                                                                                                                                                                                                                                        | N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                 |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1        | 25.90                           | 32.94                                                                                                                                                                                                                                                                                                                 | 64.45                                                                                                                                                                                                                                                                                                                                                                     | 48.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 228.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 278.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 363.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 540.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 623.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 743.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2        | 23.00                           | 30.60                                                                                                                                                                                                                                                                                                                 | 55.13                                                                                                                                                                                                                                                                                                                                                                     | 46.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 221.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 277.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 353.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 563.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 659.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 761.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3        | 20.69                           | 29.22                                                                                                                                                                                                                                                                                                                 | 52.73                                                                                                                                                                                                                                                                                                                                                                     | 46.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 218.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 279.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 354.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 563.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 652.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 749.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4        | 31.00                           | 31.00                                                                                                                                                                                                                                                                                                                 | 56.00                                                                                                                                                                                                                                                                                                                                                                     | 23.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 272.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 315.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 409.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                 |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1        | 25.90                           | 32.94                                                                                                                                                                                                                                                                                                                 | 64.45                                                                                                                                                                                                                                                                                                                                                                     | 48.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 248.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 309.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 408.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 606.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 702.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 841.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2        | 23.00                           | 30.60                                                                                                                                                                                                                                                                                                                 | 55.13                                                                                                                                                                                                                                                                                                                                                                     | 46.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 239.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 308.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 399.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 630.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 733.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 852.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3        | 20.69                           | 29.22                                                                                                                                                                                                                                                                                                                 | 52.73                                                                                                                                                                                                                                                                                                                                                                     | 46.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 237.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 311.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 630.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 728.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 843.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4        | 31.00                           | 31.00                                                                                                                                                                                                                                                                                                                 | 56.00                                                                                                                                                                                                                                                                                                                                                                     | 23.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 136.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 156.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 197.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 303.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 341.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 442.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | 1<br>2<br>3<br>4<br>1<br>2<br>3 | Group ID         NonZTR           1         25.90           2         23.00           3         20.69           4         31.00           1         25.90           2         23.00           3         20.69           4         31.00           1         25.90           2         23.00           3         20.69 | Group ID         NonZTR         Idle-All           1         25.90         32.94           2         23.00         30.60           3         20.69         29.22           4         31.00         31.00           1         25.90         32.94           2         2.30.0         30.60           3         20.69         29.22           4         31.00         31.00 | Group ID         NonZTR         Idle-All         DB           1         25.90         32.94         64.45           2         23.00         30.60         55.13           3         20.69         29.22         52.73           4         31.00         31.00         56.00           1         25.90         32.94         64.45           2         23.00         31.00         56.00           1         25.90         32.94         64.45           2         23.00         30.60         55.13           3         20.69         29.22         52.73 | Group ID         NonZTR         Idle-All         DB         N1           1         25.90         32.94         64.45         48.47           2         23.00         30.60         55.13         46.13           3         20.69         29.22         52.73         46.85           4         31.00         31.00         56.00         23.00           1         25.90         32.94         64.45         48.47           2         23.00         30.60         55.13         46.13           3         20.69         29.22         52.73         46.85           4         31.00         31.00         56.00         23.00           7         23.00         30.60         55.13         46.13           3         20.69         29.22         52.73         46.85 | Group ID         NonZTR         Idle-All         DB         N1         N2           1         25.90         32.94         64.45         48.47         107.32           2         23.00         30.60         55.13         46.13         97.27           3         20.69         29.22         52.73         46.85         93.58           4         31.00         31.00         56.00         23.00         76.00           1         25.90         32.94         64.45         48.47         107.32           2         23.00         30.60         55.13         46.13         97.27           3         20.69         29.22         52.73         46.85         93.58           4         31.00         31.00         56.00         23.00         76.00           7         3         20.69         29.22         52.73         46.13         97.27           3         20.69         29.22         52.73         46.85         93.58 | Group ID         NonZTR         Idle-All         DB         N1         N2         N3           1         25.90         32.94         64.45         48.47         107.32         228.78           2         23.00         30.60         55.13         46.13         97.27         221.02           3         20.69         29.22         52.73         46.85         93.58         218.76           4         31.00         31.00         56.00         23.00         76.00         129.19           1         25.90         32.94         64.45         48.47         107.32         248.99           2         23.00         30.60         55.13         46.13         97.27         239.26           3         20.69         29.22         52.73         46.85         93.58         248.99           2         23.00         30.60         55.13         46.13         97.27         239.26           3         20.69         29.22         52.73         46.85         93.58         237.50 | Group ID         NonZTR         Idle-All         DB         N1         N2         N3         N4           1         25.90         32.94         64.45         48.47         107.32         228.78         278.51           2         23.00         30.60         55.13         46.13         97.27         221.02         277.87           3         20.69         29.22         52.73         46.85         93.58         218.76         279.88           4         31.00         31.00         56.00         23.00         76.00         129.19         140.61           1         25.90         32.94         64.45         48.47         107.32         248.99         309.40           2         23.00         30.60         55.13         46.13         97.27         239.26         308.88           3         20.69         29.22         52.73         46.85         93.58         237.50         311.04 | Group ID         NonZTR         Idle-All         DB         N1         N2         N3         N4         N5           1         25.90         32.94         64.45         48.47         107.32         228.78         278.51         363.26           2         23.00         30.60         55.13         46.13         97.27         221.02         277.87         353.56           3         20.69         29.22         52.73         46.85         93.58         218.76         279.88         354.69           4         31.00         56.00         23.00         76.00         129.19         140.61         173.27           1         25.90         32.94         64.45         48.47         107.32         248.99         309.40         408.89           2         23.00         30.60         55.13         46.13         97.27         239.26         308.88         399.31           3         20.69         29.22         52.73         46.85         93.58         237.50         311.04         400.21 | Group ID         NonZTR         Idle-All         DB         N1         N2         N3         N4         N5         N6           1         25.90         32.94         64.45         48.47         107.32         228.78         278.51         363.26         540.85           2         23.00         30.60         55.13         46.13         97.27         221.02         277.87         353.56         563.95           3         20.69         29.22         52.73         46.85         93.58         218.76         279.88         354.69         563.01           4         31.00         31.00         56.00         23.00         76.00         129.19         140.61         173.27         272.65           1         25.90         32.94         64.45         48.47         107.32         248.99         309.40         408.89         606.69           2         23.00         30.60         55.13         46.13         97.27         239.26         308.88         399.31         630.99           3         20.69         29.22         52.73         46.85         93.58         237.50         311.04         400.21         630.40 | Group ID         NonZTR         Idle-All         DB         N1         N2         N3         N4         N5         N6         N7           1         25.90         32.94         64.45         48.47         107.32         228.78         278.51         363.26         540.85         623.79           2         23.00         30.60         55.13         46.13         97.27         221.02         277.87         353.56         563.95         659.20           3         20.69         29.22         52.73         46.85         93.58         218.76         279.88         354.69         563.01         652.19           4         31.00         31.00         56.00         23.00         76.00         129.19         140.61         173.27         272.65         315.58           7         7         23.00         30.60         55.13         46.13         97.27         239.26         308.40         408.89         606.69         702.31           2         23.00         30.60         55.13         46.13         97.27         239.26         308.88         399.31         630.99         733.55           3         20.69         29.22         52.73         46.85 <td< td=""></td<> |

Note: Idle-NonZTR is the average per-locomotive idle emission rate for the fraction of locomotives not equipped with ZTR/Auto start-stop technology

| Locomotive Model Distributions<br>Thru Trains and Power Moves Thru             |                                                      |
|--------------------------------------------------------------------------------|------------------------------------------------------|
| Technology ZTR/AESS Switcher GP-3x GP-4x SD                                    | -50 GP-60 SD-7x SD-90 Dash 7 Dash 8 Dash 9 C-60      |
| Pre Tier 0 No 0.0004 0.0025 0.1058 0.00                                        | 054 0.1893 0.0023 0.0111 0.0004 0.0595 0.0573 0.0003 |
| Pre Tier 0 Yes 0.0003 0.0020 0.002 0.00                                        | 000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0051 0.0000 |
| Tier 0 No 0.0000 0.0002 0.0035 0.00                                            | 001 0.0443 0.1449 0.0006 0.0000 0.0095 0.0473 0.0076 |
| Tier 0 Yes 0.0002 0.0003 0.0000 0.00                                           | 000 0.0013 0.0010 0.0000 0.0000 0.0000 0.0236 0.0000 |
| Tier 1 No 0.0000 0.0000 0.0000 0.00                                            | 000 0.0000 0.0259 0.0000 0.0000 0.0000 0.0016 0.0000 |
| Tier 1 Yes 0.0000 0.0000 0.0000 0.00                                           | 000 0.0000 0.1200 0.0000 0.0000 0.0000 0.0735 0.0000 |
| Tier 2 No 0.0000 0.0000 0.000 0.000                                            | 000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| Tier 2         Yes         0.0000         0.0000         0.0000         0.0000 | 000 0.0000 0.0159 0.0000 0.0000 0.0000 0.0367 0.0000 |

### Appendix A-3 Sample Calculations

### Emission Factors Weighted by Model/Tier/ZTR Fractions - DPM g/hr per Locomotive

|                               |                | Emission F       | actors Wei | ghted by M | lodel/Tier/Z | CIR Fractio | ons - DPM | g/hr per Lo      | comotive |                  |                  |        |
|-------------------------------|----------------|------------------|------------|------------|--------------|-------------|-----------|------------------|----------|------------------|------------------|--------|
| Arriving and Departing Trains |                |                  |            |            |              |             |           |                  |          |                  |                  |        |
| Technology                    | ZTR/AESS       | Switcher         | GP-3x      | GP-4x      | SD-50        | GP-60       | SD-7x     | SD-90            | Dash 7   | Dash 8           | Dash 9           | C-60   |
| Pre Tier 0                    | No             | 0.0012           | 0.0043     | 0.1212     | 0.0051       | 0.0960      | 0.0051    | 0.0003           | 0.0004   | 0.0788           | 0.0758           | 0.0000 |
| Pre Tier 0                    | Yes            | 0.0001           | 0.0021     | 0.0004     | 0.0000       | 0.0007      | 0.0000    | 0.0000           | 0.0000   | 0.0000           | 0.0058           | 0.0000 |
| Tier 0                        | No             | 0.0004           | 0.0000     | 0.0025     | 0.0002       | 0.0249      | 0.2292    | 0.0001           | 0.0000   | 0.0134           | 0.0223           | 0.0019 |
| Tier 0                        | Yes            | 0.0002           | 0.0001     | 0.0000     | 0.0000       | 0.0010      | 0.0008    | 0.0000           | 0.0000   | 0.0000           | 0.0024           | 0.0000 |
| Tier 1                        | No             | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0428    | 0.0000           | 0.0000   | 0.0000           | 0.0004           | 0.0000 |
| Tier 1                        | Yes            | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.1866    | 0.0000           | 0.0000   | 0.0000           | 0.0061           | 0.0000 |
| Tier 2                        | No             | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0000    | 0.0000           | 0.0000   | 0.0000           | 0.0000           | 0.0000 |
| Tier 2                        | Yes            | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0226    | 0.0000           | 0.0000   | 0.0000           | 0.0452           | 0.0000 |
|                               |                |                  |            |            |              |             |           |                  |          |                  |                  |        |
| Arriving and Departing Power  |                |                  |            |            |              |             |           |                  |          |                  |                  |        |
| Technology                    | ZTR/AESS       | Switcher         | GP-3x      | GP-4x      | SD-50        | GP-60       | SD-7x     | SD-90            | Dash 7   | Dash 8           | Dash 9           | C-60   |
| Pre Tier 0                    | No             | 0.0004           | 0.0040     | 0.0675     | 0.0059       | 0.0679      | 0.0091    | 0.0008           | 0.0000   | 0.0904           | 0.1070           | 0.0000 |
| Pre Tier 0                    | Yes            | 0.0016           | 0.0016     | 0.0012     | 0.0000       | 0.0012      | 0.0000    | 0.0000           | 0.0000   | 0.0000           | 0.0055           | 0.0000 |
| Tier 0                        | No             | 0.0004           | 0.0004     | 0.0024     | 0.0000       | 0.0138      | 0.2476    | 0.0000           | 0.0000   | 0.0158           | 0.0178           | 0.0016 |
| Tier 0                        | Yes            | 0.0000           | 0.0012     | 0.0000     | 0.0000       | 0.0004      | 0.0000    | 0.0000           | 0.0000   | 0.0000           | 0.0008           | 0.0000 |
| Tier 1                        | No             | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0478    | 0.0000           | 0.0000   | 0.0000           | 0.0000           | 0.0000 |
| Tier 1                        | Yes            | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.2121    | 0.0000           | 0.0000   | 0.0000           | 0.0075           | 0.0000 |
| Tier 2                        | No             | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0000    | 0.0000           | 0.0000   | 0.0000           | 0.0000           | 0.0000 |
| Tier 2                        | Yes            | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0257    | 0.0000           | 0.0000   | 0.0000           | 0.0407           | 0.0000 |
| Varial Carita have            |                |                  |            |            |              |             |           |                  |          |                  |                  |        |
| Yard Switchers                | ZTR/AESS       | Switchen         | GP-3x      | GP-4x      | SD-50        | GP-60       | SD-7x     | SD-90            | Dash 7   | Dash 8           | Dash 9           | C-60   |
| Technology<br>Pre Tier 0      | ZIK/AESS<br>No | 1.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0000    | 0.0000           | 0.0000   | 0.0000           | 0.0000           | 0.0000 |
| Pre Tier 0                    | Yes            | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0000    |                  | 0.0000   | 0.0000           | 0.0000           | 0.0000 |
| Tier 0                        | r es<br>No     | 0.0000           | 0.0000     | 0.0000     |              | 0.0000      | 0.0000    | 0.0000<br>0.0000 | 0.0000   | 0.0000           | 0.0000           | 0.0000 |
|                               |                |                  |            | 0.0000     | 0.0000       |             |           | 0.0000           |          |                  |                  |        |
| Tier 0<br>Tier 1              | Yes            | 0.0000<br>0.0000 | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0000    | 0.0000           | 0.0000   | 0.0000<br>0.0000 | 0.0000<br>0.0000 | 0.0000 |
| Tier 1                        | No             |                  | 0.0000     |            | 0.0000       | 0.0000      | 0.0000    |                  | 0.0000   |                  |                  | 0.0000 |
| Tier 1                        | Yes            | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0000    | 0.0000           | 0.0000   | 0.0000           | 0.0000           | 0.0000 |
| Tier 2                        | No             | 0.0000           | 0.0000     | 0.0000     | 0.0000       | 0.0000      | 0.0000    | 0.0000           | 0.0000   | 0.0000           | 0.0000           | 0.0000 |

#### Appendix A-3 Sample Calculations

Emission Factors Weighted by Model/Tier/ZTR Fractions - DPM g/hr per Locomotive

Tier 2

Yes

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

| Track Segment                                 | Segment<br>Number | Length<br>(mi) |
|-----------------------------------------------|-------------------|----------------|
| West side main line                           | 1                 | 0.3735         |
| NW corner main line                           | 2                 | 0.1551         |
| W end of northside main line                  | 3                 | 0.2498         |
| E end track at San Pablo                      | 4                 | 0.2294         |
| NW corner to W side yard entrance             | 5                 | 0.4680         |
| W side yard entrance to W end of IM track     | 6                 | 0.1863         |
| W end of IM track                             | 7                 | 0.1529         |
| NW corner to N limit of yard                  | 8                 | 0.2557         |
| Track from N limit to northside main line     | 9                 | 0.1680         |
| W side yard entrance to balloon track         | 10                | 0.0832         |
| Balloon track section 1                       | 11                | 0.1000         |
| Balloon track section 2                       | 12                | 0.1212         |
| Balloon track section 3                       | 13                | 0.3139         |
| Balloon track section 4 to E end of main yard | 14                | 0.2895         |
| Yard operations area - main yard              | 15                | 0.7123         |
| Yard operations area - E end to San Pablo     | 16                | 0.7645         |
| E end of northside mainline                   | 17                | 0.2498         |
| W and center of track to San Pablo            | 18                | 0.5352         |
| E end of IM track                             | 19                | 0.3567         |

| Movement Type    | Activity Code | Segment<br>Number | Speed<br>(mph) | Duty Cycle<br>Number | Non-ZTR Idle Time<br>(hrs) | ZTR Idle Time<br>(hrs) | Fraction of Segment<br>Moving |
|------------------|---------------|-------------------|----------------|----------------------|----------------------------|------------------------|-------------------------------|
| Thru from S to E | 1 and 2       | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 1 and 2       | 2                 | 10             | 1                    | 0                          | 0.1666666667           | 1                             |
|                  | 1 and 2       | 3                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                  | 1 and 2       | 17                | 10             | 1                    | 0                          | 0                      | 1                             |
|                  | 1 and 2       | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
|                  | 1 and 2       | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Thru from E to S | 3 and 4       | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 3 and 4       | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
|                  | 3 and 4       | 17                | 10             | 1                    | 0                          | 0                      | 1                             |
|                  | 3 and 4       | 3                 | 10             | 1                    | 0                          | 0.166666667            | 1                             |
|                  | 3 and 4       | 2                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 3 and 4       | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Thru from N to E | 5 and 6       | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                  | 5 and 6       | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Thru from E to N | 7 and 8       | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 7 and 8       | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Thru from S to N | 9 and 10      | 9                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                  | 9 and 10      | 3                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 9 and 10      | 17                | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 9 and 10      | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 9 and 10      | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Thru from N to S | 11 and 12     | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 11 and 12     | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 11 and 12     | 17                | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 11 and 12     | 3                 | 10             | 1                    | 0                          | 0.166666667            | 1                             |
| "                | 11 and 12     | 9                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Arrivals from E  | 13            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 13            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 13            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |
| "                | 13            | 3                 | 10             | 1                    | 0                          | 0                      | 1                             |

| Movement Type   | Activity Code | Segment<br>Number | Speed<br>(mph) | Duty Cycle<br>Number | Non-ZTR Idle Time<br>(hrs) | ZTR Idle Time<br>(hrs) | Fraction of Segment<br>Moving |  |
|-----------------|---------------|-------------------|----------------|----------------------|----------------------------|------------------------|-------------------------------|--|
| "               | 13            | 2                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 13            | 5                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 13            | 6                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 13            | 7                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 13            | 19                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 13            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 13            | 4                 | 10             | 1                    | 0.5                        | 0.5                    | 1                             |  |
| Arrivals from S | 14            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 14            | 2                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 14            | 3                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 14            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 14            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 14            | 4                 | 10             | 1                    | 0.5                        | 0.5                    | 1                             |  |
| Arrivals from N | 15            | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 15            | 5                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 15            | 6                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 15            | 7                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 15            | 19                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 15            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 15            | 4                 | 10             | 1                    | 0.5                        | 0.5                    | 1                             |  |
| Departures to E | 16            | 4                 | 10             | 1                    | 1.5                        | 0.5                    | 0                             |  |
| Departures to W | 17            | 7                 | 10             | 1                    | 1.5                        | 0.5                    | 0                             |  |
| "               | 17            | 6                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 17            | 5                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 17            | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| Departures to S | 18            | 4                 | 10             | 1                    | 1.5                        | 0.5                    | 0                             |  |
| "               | 18            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 18            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 18            | 3                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "               | 18            | 2                 | 10             | 1                    | 0                          | 0                      | 1                             |  |

| Movement Type         | Activity Code | Segment<br>Number | Speed<br>(mph) | Duty Cycle<br>Number | Non-ZTR Idle Time<br>(hrs) | ZTR Idle Time<br>(hrs) | Fraction of Segment<br>Moving |
|-----------------------|---------------|-------------------|----------------|----------------------|----------------------------|------------------------|-------------------------------|
| "                     | 18            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Arr & Dep from S to E | 19            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                     | 19            | 2                 | 10             | 1                    | 0                          | 0.166666667            | 1                             |
|                       | 19            | 3                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                     | 19            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 19            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
| "                     | 19            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 19            | 15                | 10             | 1                    | 0                          | 0.5                    | 0                             |
| Arr & Dep from E to S | 21            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                     | 21            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 21            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 21            | 3                 | 10             | 1                    | 0                          | 0.166666667            | 1                             |
|                       | 21            | 2                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 21            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                     | 21            | 15                | 10             | 1                    | 0                          | 0.5                    | 0                             |
| Arr & Dep from N to E | 23            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 23            | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 23            | 15                | 10             | 1                    | 0                          | 0.5                    | 0                             |
| Arr & Dep from E to N | 25            | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 25            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 25            | 15                | 10             | 1                    | 0                          | 0.5                    | 0                             |
| Arr & Dep from S to N | 27            | 9                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                     | 27            | 3                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 27            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 27            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 27            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
|                       | 27            | 15                | 10             | 1                    | 0                          | 0.5                    | 0                             |
| Arr & Dep from N to S | 29            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "                     | 29            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
| "                     | 29            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |

| Movement Type          | Activity Code | Segment<br>Number | Speed<br>(mph) | Duty Cycle<br>Number | Non-ZTR Idle Time<br>(hrs) | ZTR Idle Time<br>(hrs) | Fraction of Segment<br>Moving |  |
|------------------------|---------------|-------------------|----------------|----------------------|----------------------------|------------------------|-------------------------------|--|
| "                      | 29            | 3                 | 10             | 1                    | 0                          | 0.166666667            | 1                             |  |
| "                      | 29            | 9                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 29            | 15                | 10             | 1                    | 0                          | 0.5                    | 0                             |  |
| Power thru from E to S | 31            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 31            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 31            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 31            | 3                 | 10             | 1                    | 0                          | 0.166666667            | 1                             |  |
| "                      | 31            | 2                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 31            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| Power thru from N to E | 33            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 33            | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| Power thru from E to N | 35            | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 35            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| Power thru from S to N | 37            | 9                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 37            | 3                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 37            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 37            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 37            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| Power thru from N to S | 39            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 39            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 39            | 17                | 10             | 1                    | 0                          | 0                      | 1                             |  |
| "                      | 39            | 3                 | 10             | 1                    | 0                          | 0.166666667            | 1                             |  |
| "                      | 39            | 9                 | 10             | 1                    | 0                          | 0                      | 1                             |  |
| Power from E           | 41            | 4                 | 10             | 1                    | 0                          | 0                      | 0.399002113                   |  |
| "                      | 41            | 18                | 10             | 1                    | 0                          | 0                      | 0.399002113                   |  |
| "                      | 41            | 17                | 10             | 1                    | 0                          | 0                      | 0.399002113                   |  |
| "                      | 41            | 3                 | 10             | 1                    | 0                          | 0                      | 0.399002113                   |  |
| "                      | 41            | 2                 | 10             | 1                    | 0                          | 0                      | 0.399002113                   |  |
| "                      | 41            | 5                 | 10             | 1                    | 0                          | 0                      | 0.399002113                   |  |
| "                      | 41            | 10                | 10             | 1                    | 0                          | 0                      | 0.399002113                   |  |

|               |               | Segment | Speed | Duty Cycle | Non-ZTR Idle Time | ZTR Idle Time | Fraction of Segment |
|---------------|---------------|---------|-------|------------|-------------------|---------------|---------------------|
| Movement Type | Activity Code | Number  | (mph) | Number     | (hrs)             | (hrs)         | Moving              |
| "             | 41            | 11      | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 41            | 12      | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 41            | 13      | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 41            | 14      | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 41            | 18      | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 41            | 4       | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 41            | 4       | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 41            | 18      | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 41            | 14      | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 41            | 13      | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 41            | 12      | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 41            | 11      | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 41            | 10      | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 41            | 5       | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 41            | 6       | 10    | 1          | 0                 | 0             | 0.600997887         |
| Power from S  | 42            | 1       | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 42            | 2       | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 42            | 3       | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 42            | 17      | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 42            | 18      | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 42            | 4       | 10    | 1          | 0                 | 0             | 0.399002113         |
| "             | 42            | 1       | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 42            | 5       | 10    | 1          | 0                 | 0             | 0.600997887         |
| "             | 42            | 6       | 10    | 1          | 0                 | 0             | 0.600997887         |
| Power from N  | 43            | 8       | 10    | 1          | 0                 | 0             | 1                   |
| "             | 43            | 5       | 10    | 1          | 0                 | 0             | 1                   |
| "             | 43            | 10      | 10    | 1          | 0                 | 0             | 1                   |
| "             | 43            | 11      | 10    | 1          | 0                 | 0             | 1                   |
| "             | 43            | 12      | 10    | 1          | 0                 | 0             | 1                   |
| "             | 43            | 13      | 10    | 1          | 0                 | 0             | 1                   |

#### Appendix A-3 Sample Calculations

| Movement Type | Activity Code | Segment<br>Number | Speed<br>(mph) | Duty Cycle<br>Number | Non-ZTR Idle Time<br>(hrs) | ZTR Idle Time<br>(hrs) | Fraction of Segment<br>Moving |
|---------------|---------------|-------------------|----------------|----------------------|----------------------------|------------------------|-------------------------------|
| "             | 43            | 14                | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 43            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 43            | 4                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Power to E    | 44            | 4                 | 10             | 1                    | 0.5                        | 0.5                    | 0                             |
| Power to N    | 45            | 7                 | 10             | 1                    | 0.5                        | 0.5                    | 0                             |
| "             | 45            | 6                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 45            | 5                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 45            | 8                 | 10             | 1                    | 0                          | 0                      | 1                             |
| Power to S    | 46            | 4                 | 10             | 1                    | 0.5                        | 0.5                    | 1                             |
| "             | 46            | 18                | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 46            | 14                | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 46            | 13                | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 46            | 12                | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 46            | 11                | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 46            | 10                | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 46            | 5                 | 10             | 1                    | 0                          | 0                      | 1                             |
| "             | 46            | 1                 | 10             | 1                    | 0                          | 0                      | 1                             |

Notes

(1) Segment numbers listed as negative values are in-yard power moves from arriving trains to service or from service to departing trains

(2) Non-ZTR Idling is the duration of an idle event when units without ZTR continue to idle after +ZTR-equipped units have shut down

(3) Idling All is the duration of idling during which all locomotives continue to idle

(4) Fraction of Segment Moving is the fraction of the length of the segment over which the movement occurs. (On departure, power moves from service are assumed to connect to trains 20% of the way into a track segment)

### Appendix A-3 Sample Calculations

### Duty Non-ZTR ZTR Idle Working

| Yard Operations                          | Activity<br>Code | Segment<br>Number | Cycle<br>Number | Idle Time<br>(hrs) | Time<br>(hrs) | Time<br>(hrs) |      |      |      |      |      |
|------------------------------------------|------------------|-------------------|-----------------|--------------------|---------------|---------------|------|------|------|------|------|
| Day and Night Shift - Main Yard          | 47               | 15                | 2               | 0                  | 0             | 11.2          |      |      |      |      |      |
| Day and Night Shift - E end to San Pablo | 47               | 16                | 2               | 0                  | 0             | 4             |      |      |      |      |      |
| Graveyard Shift - Main Yard              | 48               | 15                | 2               | 0                  | 0             | 5.6           |      |      |      |      |      |
| Graveyard Shift - E end to San Pablo     | 48               | 16                | 2               | 0                  | 0             | 2             |      |      |      |      |      |
|                                          | Duty<br>Cycle    |                   |                 |                    |               |               |      |      |      |      |      |
| Duty Cycles (Percent of Time by Notch)   | Number           | Idle              | DB              | N1                 | N2            | N3            | N4   | N5   | N6   | N7   | N8   |
| Train and Consist Movements              | 1                | 0.0%              | 0.0%            | 50.0%              | 50.0%         | 0.0%          | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
| Yard Operations                          | 2                | 59.8%             | 0.0%            | 12.4%              | 12.3%         | 5.8%          | 3.6% | 3.6% | 1.5% | 0.2% | 0.8% |

#### Appendix A-3 Sample Calculations

### Example 1 -- WB Arriving Intermodal Train

| Parameter                        | Value |
|----------------------------------|-------|
| Activity Code                    | 13    |
| Number of Events                 | 621   |
| Locomotives per Consist on Train | 3.272 |
| Emission Factor Group            | 2     |
| Fraction of California Fuel      | 0.00  |

| Route Followed                            | Segment<br>Number | Length<br>(miles) | Speed<br>(mph) | Power<br>Move | Non-ZTR<br>Idle (hrs) | ZTR Idle<br>(hrs) | Locomotive<br>Hours<br>Moving | Locomotive<br>Hours<br>NonZTR<br>Idle | Locomotive<br>Hours ZTR<br>Idle |
|-------------------------------------------|-------------------|-------------------|----------------|---------------|-----------------------|-------------------|-------------------------------|---------------------------------------|---------------------------------|
| E end track at San Pablo                  | 4                 | 0.229             | 10             | Ν             | 0                     | 0                 | 46.61                         | 0.00                                  | 0.00                            |
| W and center of track to San Pablo        | 18                | 0.535             | 10             | Ν             | 0                     | 0                 | 108.75                        | 0.00                                  | 0.00                            |
| E end of northside mainline               | 17                | 0.250             | 10             | Ν             | 0                     | 0                 | 50.76                         | 0.00                                  | 0.00                            |
| W end of northside main line              | 3                 | 0.250             | 10             | Ν             | 0                     | 0                 | 50.76                         | 0.00                                  | 0.00                            |
| NW corner main line                       | 2                 | 0.155             | 10             | Ν             | 0                     | 0                 | 31.51                         | 0.00                                  | 0.00                            |
| NW corner to W side yard entrance         | 5                 | 0.468             | 10             | Ν             | 0                     | 0                 | 95.09                         | 0.00                                  | 0.00                            |
| W side yard entrance to W end of IM track | 6                 | 0.186             | 10             | Ν             | 0                     | 0                 | 37.85                         | 0.00                                  | 0.00                            |
| W end of IM track                         | 7                 | 0.153             | 10             | Ν             | 0                     | 0                 | 31.07                         | 0.00                                  | 0.00                            |
| E end of IM track                         | 19                | 0.357             | 10             | Ν             | 0                     | 0                 | 72.48                         | 0.00                                  | 0.00                            |
| W and center of track to San Pablo        | 18                | 0.535             | 10             | Ν             | 0                     | 0                 | 108.75                        | 0.00                                  | 0.00                            |
| E end track at San Pablo                  | 4                 | 0.229             | 10             | Ν             | 0.5                   | 0.5               | 46.61                         | 1015.96                               | 1015.96                         |
| Total                                     |                   |                   |                |               |                       |                   | 680.24                        | 1015.96                               | 1015.96                         |

APP-43

| <b>Emission Factors -</b>    | Arriving |          | Idle-  |          |       |       |       |        |        |        |        |        |        |
|------------------------------|----------|----------|--------|----------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| and Departing Trains         |          | Group ID | NonZTR | Idle-All | DB    | N1    | N2    | N3     | N4     | N5     | N6     | N7     | N8     |
| California Fuel (221 ppm S)  |          | 2        | 23.00  | 30.60    | 55.13 | 46.13 | 97.27 | 221.02 | 277.87 | 353.56 | 563.95 | 659.20 | 761.85 |
| 47-State Fuel (2639 ppm S)   |          | 2        | 23.00  | 30.60    | 55.13 | 46.13 | 97.27 | 239.26 | 308.88 | 399.31 | 630.99 | 733.55 | 852.75 |
| Fuel Fraction Adjusted Rates |          |          | 23.00  | 30.60    | 55.13 | 46.13 | 97.27 | 239.26 | 308.88 | 399.31 | 630.99 | 733.55 | 852.75 |
| Duty Cycle Moving            |          | 1        | 0.0%   | 0.0%     | 0.0%  | 50.0% | 50.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |
| Weighted g/hr emissions      |          | 1        | 0.00   | 0.00     | 0.00  | 23.07 | 48.64 | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   |

| Moving       | NonZTR  | Idle-All       |
|--------------|---------|----------------|
| <b>51 50</b> |         |                |
| 71.70        | 23.00   | 30.60          |
| 680.24       | 1015.96 | 1015.96        |
| 48773        | 23367   | 31088          |
|              | 680.24  | 680.24 1015.96 |

## APPENDIX A-4

## METHODOLOGY FOR ESTIMATING LOCOMOTIVE EMISSIONS AND GENERATING AERMOD EMISSION INPUTS

## Appendix A-4

### Methodology for Estimating Locomotive Emissions and Generating AERMOD Emission Inputs

#### Overview

This appendix describes the general procedures followed for developing locomotive emission inventories for the Union Pacific Railroad (UPRR) rail yards under the Memorandum of Understanding with the California Air Resources Board. It also describes the procedure by which the emission inputs for both locomotive and nonlocomotive sources used in AERMOD dispersion modeling.

### EMISSION CALCULATIONS

This section describes the details of the development of activity inputs, emission factors, and emission estimates for locomotive operations. Separate procedures are followed for estimating activity associated with locomotives on trains, locomotive consist movements within a yard, service and shop activity (if occurring at a specific yard), and yard switching operations within a yard. Emission factors are developed for each of the types of locomotive activity based on the model and technology distribution of locomotives involved in each activity. Emission estimates are then developed for the activities and specific areas of a yard in which each activity occurs. The data used to calculate these emissions are included in the Appendix A-3 Excel workbook, which includes a "Sample Calculations" worksheet showing the linkages between the various activities, emission factors, and operating characteristics data.

#### Train Activity

Train activity data for emissions calculations includes a number of separate components:

- The number of trains arriving, departing, or passing through a yard, broken down by type of train
- The average composition of working locomotives in each consist<sup>1</sup>, including the fraction of locomotives of different models, emissions technology tier, and automatic idling control equipment<sup>2</sup>
- The identification of routes followed for different types of train activities

<sup>&</sup>lt;sup>1</sup> The term "consist" refers to the group of locomotives (typically between one and four) that provide power for a specific train.

<sup>&</sup>lt;sup>2</sup> Two types of automatic idling control equipment are in use, known as ZTR SmartStart (typically retrofit equipment on low horsepower units) and AESS (typically factory installed on newer high horsepower units). Both are programmed to automatically shut of the engines of parked idling locomotives after a specified period of time, and to restart the unit if any of a number of operating parameters (battery state, air pressure, coolant temperature, etc.) reach specified thresholds.

• Identification of the speeds and throttle settings for different types of train activities in different locations.

The primary source of information for estimating train activity is a database identifying the arrival and departure of locomotives at a specific yard. This database identifies locomotives by their ID numbers and models, the status on the train (working or not working), and the specific train to which they are connected. From these data, the total numbers of trains of different types are identified based on train symbols, train dates, train origination and termination indicators, and dates and times of arrival and departure. For each type of train and activity, the average number of locomotives per consist is calculated along with the distribution of locomotive models, emission technology tiers, and automatic idling control equipment. A separate database of UPRR locomotives is consulted based on locomotive ID to determine the tier and date of any retrofits of automatic idling controls to complete the development of these model distributions. The activity data so derived are shown on the "Activities" worksheet in the Appendix A-3 Excel workbook, and the model and technology distributions are shown on the "Consist Emissions" worksheet.

The types of trains to be identified can vary from yard to yard. For all yards, through trains (which bypass the yard itself on mainline tracks adjacent to the yard) are identified. Depending on the yard, trains entering or departing from the yard can be of several types, including:

- Intermodal trains
- Automobile trains
- "Manifest" or freight trains
- Local trains
- Power moves

Power moves are trains consisting only of locomotives which are either arriving at the yard to be serviced or used for departing trains, or departing from the yard to be serviced at another location or used for trains departing from another location. The routes followed by each type of train on arrival and departure are identified in consultation with UPRR yard personnel, along with estimates of average speeds and duty cycles (fraction of time spent at different throttle settings) for different areas.

Specific track subsections are identified by UTM coordinates digitized from georeferenced aerial photographs. The segments identified and their lengths are shown on the "Track Segments" worksheet of Appendix A-3. For each train type, direction, and route, a listing of track segments, segment lengths, and duty cycles is developed. Duty cycles are shown on the "Consist Emissions" worksheet of Appendix A-3, and the segment speeds, duty cycles, idling durations are shown on the "Movements and Yard Operations" worksheet. This listing, along with the number of locomotives per consist and number of trains of each type, allows calculation of the number of locomotive hours in each duty cycle to be calculated for each section of track. For arriving and departing trains, estimates of the duration of idling were developed in consultation with UPRR personnel. These idling periods were divided into two parts - the assumed amount of

time that all locomotives in a consist would idle on arrival or departure, and the amount of time that only locomotives not equipped with automatic idle controls would idle. Idling periods were assigned to a segment of the arrival or departure track one fifth of the length of the track at the appropriate end.

## Service and Shop Activity

If there is a service track and/or shop at a yard, locomotives (including both road power from trains as well as yard switchers) undergo a variety of activities at these locations. If present at a yard, details of the service and shop activity, model distributions, and emission factors are shown on the "Service and Shop" worksheet of Appendix A-3. Specific locomotive activities involve idling while awaiting or undergoing routine service (cleaning, refueling, oiling, sanding, and other minor maintenance), movement and idling between service and maintenance areas, and stationary load testing associated with specific types of maintenance events. A database of service events at individual yards identifies the number of service events during the year, the locomotive ID and model, and the nature of servicing performed. Routine servicing involves periods of idling prior to and during service, and additional idling prior to movement of consists to departing trains in the yard. Estimates of the duration of idling associated with servicing are developed in consultation with UPRR personnel. As was done for trains, these idling periods were separated into two parts, the average total duration of idling by all locomotives, and the average duration of additional idling by locomotives not equipped with automatic idling controls.

The database also specifically identifies load test events and the type of maintenance with which the load testing is associated. These types include planned maintenance at different intervals (e.g., quarterly, semiannual) as well as unscheduled maintenance which may involve both diagnostic load testing prior to maintenance and postmaintenance load testing. The duration of load test events in each throttle setting depend on the equipment available and types of maintenance performed at the yard. Estimates of these durations, as well as the identification of load testing activity by type of load test and the time and duration of any additional idling and movements are developed in consultation with UPRR personnel.

A total number of events (servicing and load testing by location and type) are developed from these data, as are locomotive model and technology distributions for all locomotives serviced and for those specific locomotives undergoing load testing (if applicable). From these event counts and durations, the total number of hours of locomotive idling and higher throttle setting operation in different portions of the service areas are calculated for each of the two model distributions.

### Yard Switcher Activity

In each yard, there are routine jobs assigned to individual switchers or sets of switchers. These activities are generally not tracked from hour to hour, but they occur routinely within yard boundaries during specified work shifts. Similarly, the specific yard switcher locomotive IDs assigned to these jobs are not routinely tracked, but these yard jobs are

generally assigned to a specific model of low horsepower locomotive. From the assigned yard switcher jobs and shifts, and in consultation with UPRR personnel, an estimate of the hours per day of switcher operation in a yard are developed, along with the specific times of day when these activities occur (time of day assignments were made only if operation was less than 24 hour per day). Duty cycles for switching operation are also developed in consultation with local UPRR personnel. Depending on the type of activity and type of trains being handled in a yard, duty cycle estimates may vary. In the absence of more detailed information, the USEPA switcher duty cycle is assumed to be representative of each switcher's operation<sup>3</sup>. The total number of locomotive hours of operation for each model are calculated and assigned to the areas in which the units work. In some cases, yard jobs are assigned to specific areas within the yard and specific models of locomotives. In these cases, the switcher activities are assigned specifically to these areas of the yard.

#### **Emission Factor Development**

The locomotive model and technology group distributions derived in the development of activity data are grouped by type or types of activity with consideration for the level and nature of the activity. For example, a single distribution is used for through trains of all types, including power moves, while consist model distributions for different types of trains within a yard may be treated as separate distributions if they are handled in different areas of a yard. As shown in Part VII of this report model-group-specific emission factors by throttle setting were developed based on emission test data and sulfur content adjustment factors. From these emission factors and the locomotive model and technology distributions for different types of trains and activities, weighted average emission factors are calculated for the "average" locomotive for that train type or activity on a gram per hour basis. For each train type or activity, two separate idle emission rates are calculated. The first is the straight weighted average emission rate for all locomotives, while the second is the weighted average only for the fraction of locomotives without automatic idle controls. Mathematically,

$$\bar{Q}(l) = \sum_{i=1}^{114} \sum_{i=1}^{2} F(i, j, k) \quad Q(i, j, l)$$

for *l* corresponding to idle through N8, and

$$\overline{Q}(l^*) = \sum_{i=1}^{114} \sum_{j=1}^{114} F(i,j,1) \quad Q(i,j,l^*)$$

for idling emission rate during periods when only locomotives without automatic idle controls are idling

where

<sup>&</sup>lt;sup>3</sup> USEPA (1998). Locomotive Emission Standards -- Regulatory Support Document. (Available at *www.epa.gov/otaq/regs/nonroad/locomotv/frm/locorsd.pdf*).

 $\overline{Q}(l)$  = weighted average emission factor for throttle setting l

Q(i,j,l) = the base g/hr emission factor of a particular model group/technology class and throttle setting

F(i,j,k) = the fraction of locomotives of a particular model group/technology class

i =model group index (Switcher, GP-3x, etc.)

j = technology tier index (pre-Tier 0, Tier 0, Tier 1, Tier 2)

k = automatic idle control status index (with or without)

l = throttle setting (idle, N1, . . ., N8)

 $l^*$  = index for idle throttle of locomotives without automatic idle controls.

Thus, for each defined locomotive model distribution, gram per hour emission factors are generated for each throttle setting.

### Emission Calculations - Locomotive Movements

From the train activity analysis, the following data are available for each segment of track: track length of segment L(i); speed V(i); movement duty cycle D(i) (a vector of fractions of time spent in each throttle setting); number of trains of each type N(j); and number of working locomotives per consist for each train type C(j). For each type of train *j*, there is a set of throttle-specific emission factors  $Q_j(l)$  for the "average" locomotive used on that train type. If a particular type of train or consist movement can follow multiple paths within the yard, the activity is allocated to sequences of track segments representing each such path. Total annual emissions  $q_{tot}(i)$  for each segment are then calculated as

$$q_{tot}(i) = \frac{L(i)}{V(i)} \cdot \sum_{j} N(j) \cdot C(j) \sum_{l} D(i,l) \cdot Q_{j}(l) .$$

Emission Calculations - Locomotive Idling

Locomotive idling is calculated in a similar manner for road power and locomotives in service. For each train type and for service events, activity data provide a number of annual events N(i), duration of idling by locomotives with  $(T_{all}(i))$  and without  $(T_{nZTR}(i))$  automatic idle control, and gram per hour emission rates for the "average" locomotive  $Q_{all}(i)$ , and the "average" locomotive excluding those with automatic idle controls  $Q_{nZTR}(i)$ . Total annual emissions are calculated as

$$q_{idle} = \sum_{i} N(i) \cdot C(i) \cdot (T_{all}(i) \cdot Q_{all}(i) + T_{nZTR}(i) \cdot Q_{nZTR}(i)) .$$

If a particular type of activity occurs at multiple locations within the yard (e.g., on multiple arrival or departure tracks), then the idling time is allocated to different segments of track as appropriate so that segment-specific emissions are obtained.

## Emission Calculations - Load Testing

Load testing emissions are calculated separately for each throttle setting (idle, N1 and N8) using the weighted average emission factors for the load-tested units, the number of load tests of different types, and the duration of testing in each throttle setting for each type of test.

## Emission Calculations - Yard Switcher Operations

Activity data provide the number and model group information for yard switchers, and the number of operating hours per day. Model-group specific emission factors are multiplied by the duty cycle to generate weighted average gram per hour emissions for idling and for combined emissions from operation in notch 1 through notch 8. Emissions are calculated directly from the number of units, hours per day working, and duty cycle weighted emission factors for both idle and non-idle throttle settings during work shifts.

## AERMOD EMISSION INPUT PREPARATION

Emissions from both locomotives and from other emission sources in a yard are allocated to multiple individual point or volume sources in AERMOD inputs. In addition to each type of activity's emission rates, the locations of emissions, the release parameters, and other inputs (e.g., building downwash parameters, temporal variation in emissions, etc.) are required by AERMOD. Emission inputs are prepared sequentially for different types of activities and the areas within which they occur. The source elevation for each point or volume source is interpolated from a high resolution terrain file.

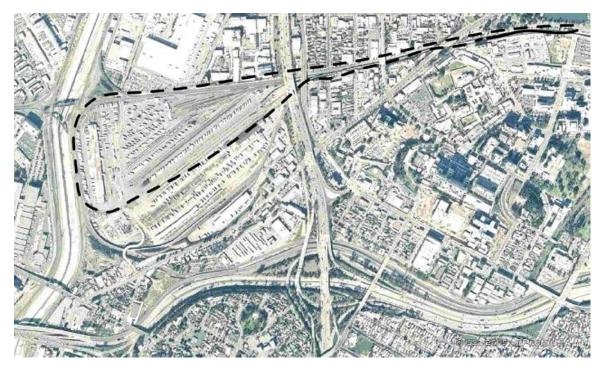
### Locomotive Movements

For each type of locomotive movement, emissions calculated for each track segment are uniformly allocated to a series of evenly spaced volume sources along that track segment. The maximum spacing between sources is specified and the number of sources to be used for each segment is calculated from the segment length. The raw emission rate value in the AERMOD inputs (g/sec) is based directly on the annual emission total for the segment divided by the number of sources on that segment. For locomotive movements, separate day and night release parameters are needed. Therefore, each source is duplicated (but with a different source ID and parameters) in the AERMOD inputs, with temporal profile inputs (EMISFACT HROFDY) that use day time parameters from 0600-1800 and night time parameters for 1800-0600.

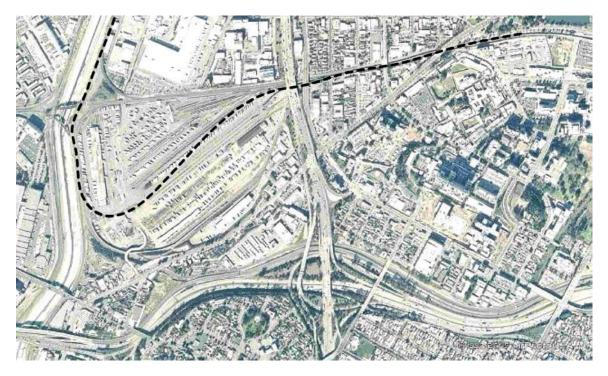
### Locomotive Idling and Load Testing

Locomotive idling and load testing emissions are allocated to track segments in the same manner as locomotive movements, but as point, rather than volume sources. Each source location may have up to three separate sources identified, with different stack parameters used for idle, notch 1 and notch 8. Building downwash inputs are assigned from a pre-

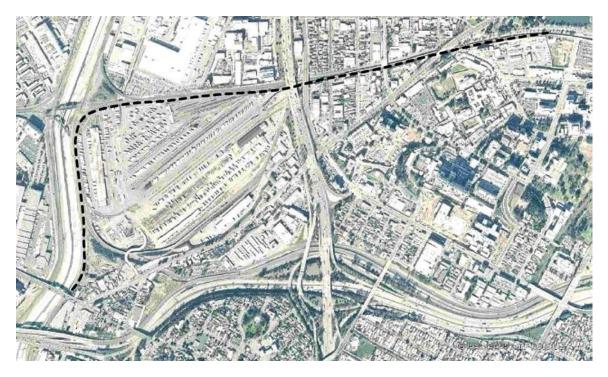
prepared set of records for a typical locomotives dimensions and the orientation of the track segment on which the emissions occur.


### Yard Switcher Operations

Yard switcher operations are allocated to areas within the yard based on the estimated time spent working in each area. As for locomotive movements, yard switcher emissions for a specific area are allocated uniformly to a number of volume sources on defined segments. Day and night operations are handled similarly to train and consist movements, with EMISFACT HROFDY records used to switch day and night volume source release parameters. Depending on their magnitude and distance from yard boundaries, the "working idling" emissions for yard switching may be added to the non-idle emissions from volume sources, or treated as a series of point sources, using stack parameters for the specific model group being used. If treated as point sources, building downwash inputs are prepared as for other locomotive idling and load testing.

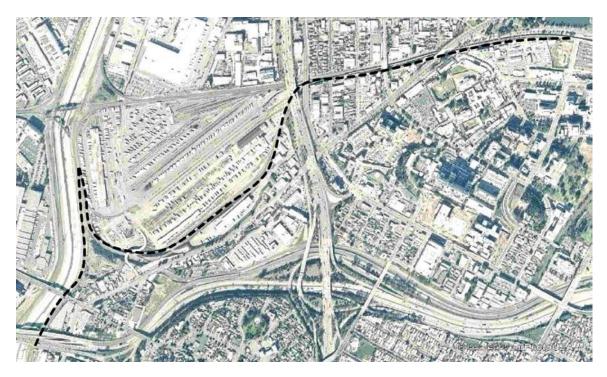

# APPENDIX A-5

# PRINCIPLE LOCOMOTIVE ROUTES

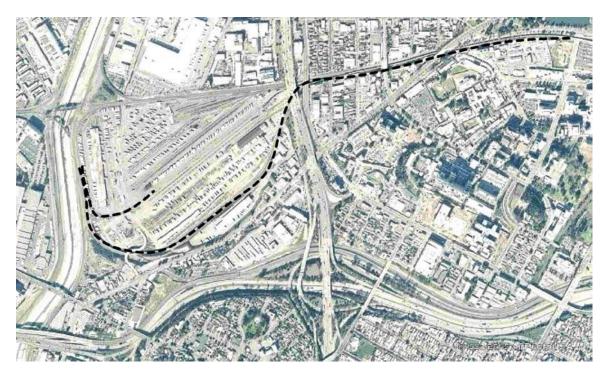

Appendix A-3 Principal Locomotive Routes at LATC



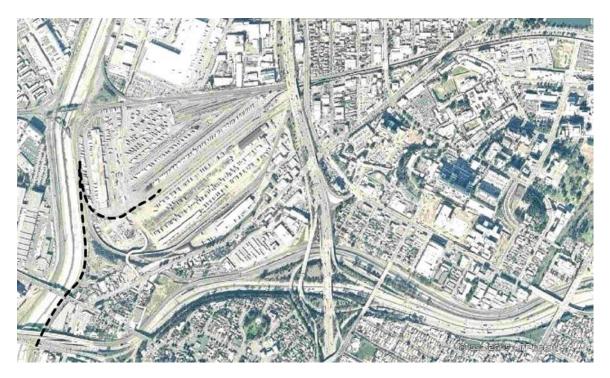
WB Arrivals (dashed) EB Departures - Trains and Power Moves (solid)



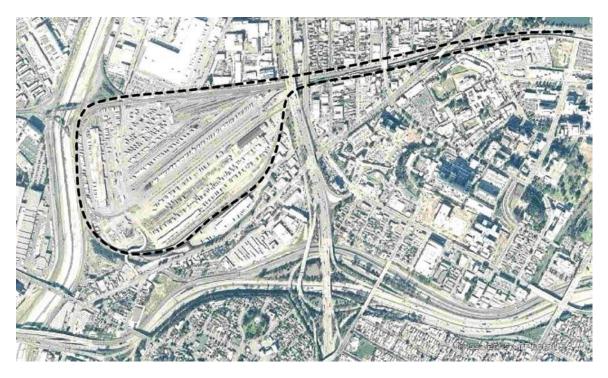

SB Arrivals



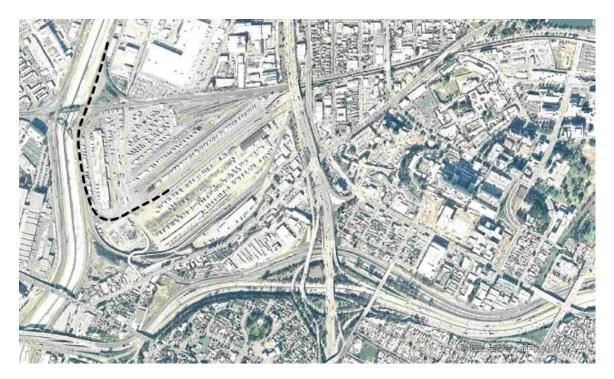

NB Arrivals


Through Trains from South to East and from East to South Power Moves Arriving from South for EB Departure




Power Moves to South




Power Moves Arriving from East for NB Departure



Power Moves Arriving from South for NB Departure



Power Moves Arriving from East for EB Departure



NB Departures

APPENDIX A-6

IRESON ET AL

## Development of Detailed Railyard Emissions to Capture Activity, Technology and Operational Changes

Robert G. Ireson Air Quality Management Consulting, 161 Vista Grande, Greenbrae, CA 94904 <u>rob@AQMconsulting.com</u>

M. J. (Jon) Germer and Lanny A. Schmid Union Pacific Railroad Company, 1416 Dodge St., Omaha NE 68179 <u>mjgermer@up.com</u>

#### ABSTRACT

Railyard operations involve a variety of complex activities, including inbound and outbound train movements, classification (i.e., separating cars from inbound trains for redirection to multiple destinations, and building new trains), and servicing locomotives. Standard locomotive duty cycles provide long-term average activity patterns for locomotive operations, but they are not appropriate for the specialized activities that occur within railyards or at locations such as ports, and emission densities in such areas can be high relative to those of line haul activities. There are significant emission rate differences between locomotive models, and differences in the types of service for which specific models are used. Data for throttle-specific emissions, activity levels, and locomotive models and operating practices can be used to provide more accurate emissions estimates for such operations. Such data are needed to quantify actual emissions changes in these high activity areas. A calculation scheme has been developed to generate detailed emission inventories based on the types of data that are collected for managing rail operations. This scheme allows improved accuracy in emissions estimation, and also provides a more reliable basis for bottom-up tracking of emissions changes over time. Factors that can be addressed include: changes in the distribution of locomotive models and control technology levels (e.g., increasing fractions of Tier 0, 1, and 2 locomotives) for both line haul and local operations; actual in-yard idling duration and reductions associated with auto-start-stop technologies; fuel quality effects; and detailed operating practices for switching and train-building operations. By providing detailed disaggregation of activity and emissions data, the method also makes it possible to quantify and evaluate the effects of specific emission reduction alternatives.

#### **INTRODUCTION**

Freight movement by rail is a key component of the U.S. transportation infrastructure. The combination of rail's low rolling resistance and the fuel-efficient turbocharged diesel engines used in modern locomotives make rail the most efficient mode of transport from both an emissions and economic perspective. Railyards located strategically through the nation's rail network are used to assemble and direct goods movement to their destinations. Railyards may handle dozens of trains per day, each powered by a "consist" of several locomotives. While in railyards, these locomotives are serviced and regrouped into new consists as needed for specific departing trains. In addition to train arrivals and departures and locomotive servicing, so-called "classification" yards separate rail cars in inbound trains into segments with different destinations, and build new trains with a common destination. This work is accomplished by switcher locomotives (typically of lower horsepower than the locomotives used for "line-haul" operations). Some railyards also have major locomotive repair facilities whose activities include load testing of locomotives prior to or after maintenance. Collectively, the locomotive operations associated with these activities can result in relatively high localized emission densities.

The Union Pacific Railroad (UPRR) is the largest railroad in North America, operating throughout the western two-thirds of the United States. It operates a number of railyards throughout its system, including the J. R. Davis Yard in Roseville, California. The Davis Yard is UPRR's largest classification yard in the western U.S. It is approximately one-quarter mile wide and four miles long, and is visited by over 40,000 locomotives per year. The California Air Resources Board (CARB) recently completed a detailed dispersion modeling study to estimate concentrations of diesel particulate matter in the vicinity of the railyard.<sup>1</sup> UPRR cooperated closely with CARB in this study, including the identification, retrieval and analysis of data needed to assemble a detailed emission inventory for railyard operations to-date, including empirically developed train counts, locomotive model distributions, locomotive service and maintenance activities, and dedicated on-site switching operations. The results of this effort have been further adapted to allow UPRR to track the effect of locomotive fleet modernization, freight volume, and operational changes on emissions, and to identify opportunities for further emission reductions at the Davis Yard.

### **RAILYARD ACTIVITY ESTIMATION**

At state and national levels, locomotive emissions have been estimated using locomotive fleet population data and average locomotive emission factors, expressed in g/bhp-hr, in conjunction with fuel efficiency estimates and fuel consumption. For freight locomotives, the emission factors are typically derived using both a switching duty cycle and a line haul duty cycle, each of which gives the fraction of operating time locomotives spend at different throttle settings, referred to as notch positions.<sup>2</sup> These throttle settings (see Table 1) include idle, notches 1 through 8, and dynamic braking (in which the locomotive traction motors are used to generate power which is dissipated through resistor grids). While this approach can provide reasonable estimates for larger regions, neither the overall locomotive fleet composition nor the standard duty cycles accurately reflect the specific activities that occur within an individual railyard. The g/bhp-hr emission factors vary substantially between throttle settings and between locomotive models. Other confounding factors include: speed limits within yards (which preclude the high throttle settings used for line-haul activity outside of yards); locomotive load (consists commonly move within yards with only one locomotive pulling and no trailing cars); and time spent either shut down or idling. Classification activities are carried out with duty cycles that are unique to yard operations and may vary from yard to yard. To develop more accurate emissions estimates, it is necessary to explicitly identify railyard activities at the level of individual locomotives.

|                  | y .  | Throttle Position (Percent Time in Notch) |      |      |     |      |     |     |     |      |  |  |
|------------------|------|-------------------------------------------|------|------|-----|------|-----|-----|-----|------|--|--|
| Duty Cycle       | D.B. | Idle                                      | N1   | N2   | N3  | N4   | N5  | N6  | N7  | N8   |  |  |
| EPA Line-Haul    | 12.5 | 38.0                                      | 6.5  | 6.5  | 5.2 | 4.4  | 3.8 | 3.9 | 3.0 | 16.2 |  |  |
| EPA Switch       | 0.0  | 59.8                                      | 12.4 | 12.3 | 5.8 | 3.6  | 3.6 | 1.5 | 0.2 | 0.8  |  |  |
| Trim Operations  | 0.0  | 44.2                                      | 5.0  | 25.0 | 2.3 | 21.5 | 1.5 | 0.6 | 0.0 | 0.0  |  |  |
| Hump Pull-Back   | 0.0  | 60.4                                      | 12.5 | 12.4 | 5.9 | 3.6  | 3.6 | 1.5 | 0.0 | 0.0  |  |  |
| Hump Push        | 0.0  | 0.0                                       | 0.0  | 100  | 0.0 | 0.0  | 0.0 | 0.0 | 0.0 | 0.0  |  |  |
| Consist Movement | 0.0  | 0.0                                       | 50.0 | 50.0 | 0.0 | 0.0  | 0.0 | 0.0 | 0.0 | 0.0  |  |  |
| Load Tests:      |      |                                           |      |      |     |      |     |     |     |      |  |  |
| 10-Minute        | 0.0  | 20.0                                      | 0.0  | 0.0  | 0.0 | 0.0  | 0.0 | 0.0 | 0.0 | 80.0 |  |  |
| 15-Minute        | 0.0  | 33.3                                      | 0.0  | 0.0  | 0.0 | 0.0  | 0.0 | 0.0 | 0.0 | 66.7 |  |  |
| 30-Minute        | 0.0  | 33.3                                      | 33.3 | 0.0  | 0.0 | 0.0  | 0.0 | 0.0 | 0.0 | 33.3 |  |  |

Table 1. Locomotive Duty Cycles.

To accomplish this, UPRR reviewed the types of databases available for its operations to identify where explicit emission-related activity information could be generated for the Davis Yard. UPRR

operates approximately 7000 locomotives over a network spanning 23 states. Large amounts of data are generated and retained by UPRR for management purposes. These include tracking the location and status of capital assets (e.g., locomotives and rail cars), tracking performance of specific activities, and managing operations. These databases can be queried for data records specific to the Davis Yard, but their content does not directly relate to emissions. Where possible, data providing a complete record of emissions-related events (e.g., locomotive arrivals and departures) were identified and retrieved. Where 100 percent data for an activity could not be obtained (e.g., locomotive model number for each arriving locomotive), distributions were developed based on available data. In some cases, data are not available for specific types of emission events (e.g., the duration of idling for individual trains prior to departure). In these cases, UPRR yard personnel were consulted to derive estimates of averages or typical operating practices.

### **Railyard Operations - Inbound and Outbound Trains**

The majority of locomotive activity in a railyard arises from inbound and outbound freight traffic. Following arrival, consists are decoupled from their trains in receiving areas and are either taken directly to outbound trains, or more commonly, are sent through servicing which can include washing, sanding, oiling, and minor maintenance prior to connecting to outbound trains. Some fraction of trains arriving at a yard simply pass through, possibly stopping briefly for a crew change. UPRR maintains a database that, when properly queried, can produce detailed information regarding both arriving and departing trains. Table 2 lists some of the key parameters that are available in this database. In this study, 12 months of data were obtained for all trains passing through the Davis Yard. The extracted data (over 60,000 records) included at least one record for every arriving and departing train, and each record contained specific information about a single locomotive, as well as other data for the train as a whole. The data were processed using a commercial relational database program and special purpose FORTRAN code to identify individual train arrivals and departures and train and consist characteristics.

| Parameter                     | Identification of | Location in | Consist     | Temporal | Train           |  |
|-------------------------------|-------------------|-------------|-------------|----------|-----------------|--|
|                               | Train Events      | Railyard    | Composition | Profile  | Characteristics |  |
| Train Symbol                  | Х                 | Х           |             |          |                 |  |
| Train Section                 | Х                 |             |             |          |                 |  |
| Train Date                    | Х                 |             |             |          |                 |  |
| Arrival or<br>Departure       | Х                 | Х           |             |          |                 |  |
| Originating or<br>Terminating | Х                 | Х           |             |          |                 |  |
| Direction                     |                   | Х           |             |          |                 |  |
| Crew Change?                  |                   | Х           |             |          |                 |  |
| Arrival &<br>Departure Times  |                   |             |             | Х        |                 |  |
| # of Locomotives              |                   |             | Х           |          |                 |  |
| # of Working                  |                   |             | Х           |          |                 |  |
| Locomotives                   |                   |             |             |          |                 |  |
| Trailing Tons                 |                   |             |             |          | X               |  |
| Locomotive ID #               |                   |             | Х           |          |                 |  |
| Locomotive Model              |                   |             | Х           |          |                 |  |

Table 2. Selected Train Database Parameters.

The parameters listed in Table 2 were used to calculate the number of trains by time of day arriving or departing from each area of the yard, as well as average composition of their consists (number of locomotives and distribution of locomotive models). The combination of train symbol, train segment, and train date provided a unique identifier for a single arrival or departure, and the individual locomotive models were tabulated to generate model distributions. Where necessary, working horsepower and total horsepower were used to estimate the number of working locomotives in the consist.

Emission calculations associated with inbound and outbound trains included both periods of movement within the yard boundaries and locomotive idling while consists we connected to their trains. Based on train direction and the location of its arrival or departure, moving emissions were based on calculations of time at different throttle settings based on distance traveled and estimated speed profiles, considering speed limits on different tracks. Yard operators provided estimates for the average duration of such idling for both inbound and outbound trains.

## **Railyard Operations - Classification**

On arrival, inbound trains are "broken" into sections of rail cars destined for different outgoing trains. Figure 1 shows a schematic diagram of the Davis Yard including a large central "bowl" consisting of a large number of parallel tracks connected by automated switching controls to a single track to the west. Trains are pulled back to the west and then pushed to the "hump," a slightly elevated portion of track just west of the bowl. As cars pass over the hump, they are disconnected and roll by gravity into the appropriate track in the bowl. Dedicated special purpose locomotives, known as "hump sets," are used in this operation. Unlike most locomotives, these units have continuously variable throttles, rather than discrete throttle notch settings, to allow precise control of speed approaching the hump. Switching locomotives, known as "trim sets" are responsible for retrieving the train segments or trains being "built" in the bowl and moving them to the appropriate outbound track. The Davis Yard operates a fixed number of hump sets and trim sets at any given time, with backup sets standing by for shift changes and possible breakdowns.

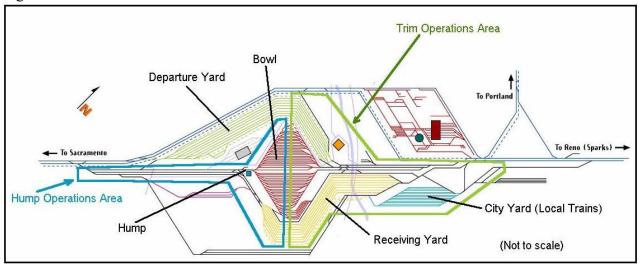



Figure 1. Schematic of the J. R. Davis Yard.

Emission calculations for hump and trim operations were based on the number of working hump and trim sets at any given time, plus assumed idling times of standby units. For the hump sets, yard operators provided estimates of average pull-back and pushing times, and the duty cycles associated with these operations. For pull-back, based on distance and speed limits, the EPA switcher duty cycle, excluding notch 7 and 8 was used. Pushing is conducted at the equivalent of notch 2. For the trim sets, speed limits within the Yard preclude any high throttle setting operation, but there is a greater time spent in mid-throttle settings than reflected in the EPA switcher cycle. A revised duty cycle was developed for these units based on the EPA switcher duty cycle, with high throttle fractions (notches 7 and 8) excluded, but with increased notch 1 and notch 4 operating time. These duty cycles are also shown in Table 1.

#### **Railyard Operations - Consist Movement, Service, Repair and Testing**

After disconnecting from inbound trains, consists move to one of several servicing locations for refueling and other maintenance, following designated routes in the yard. Typically, one locomotive in each consist will pull the others, with throttle settings at notch 1 or 2. Based on distance and speed limits, movement times were estimated for each route, and emissions calculated using the number of locomotives following each route.

While being serviced, locomotives may be either idling or shut down. Locomotives must be idling while oil and other routine checks are performed. In addition, since locomotive engines are water-cooled and do not use antifreeze, they are commonly left idling during cold weather conditions. New idling reduction technologies known as SmartStart and AESS provide computer-controlled engine shut down and restart as necessary, considering temperature, air pressure, battery charge, and other parameters. Yard personnel provided estimates of the average potential duration of idling associated with different servicing events. Databases for service and maintenance activities maintained by UPRR provide details on the number and types of service events at different locations in the yard. As for train activity, these data were processed with a commercial relational database program and special purpose FORTRAN code to characterize and tabulate service events. These results were used in conjunction with data for the number of inbound and outbound consists to estimate total idling emissions for different service event types and locations. Following service, consists are dispatched to outbound trains. The same procedures were followed for estimating idle time, number of locomotives moving to each outbound area of the yard, and the duration of each movement for emission calculations.

In addition to routine service, the databases include service codes indicating periodic inspections of various types, as well as major maintenance activities requiring load testing of stationary locomotives. Several types of load tests are conducted, including planned maintenance pre- and post-tests, quarterly maintenance tests, and unscheduled maintenance diagnostic and post-repair tests. Depending on the test type and locomotive model, these tests include some period of idling, notch 1 operation, and notch 8 operation. Data are not collected on the exact duration of individual tests, so estimates of average duration for each throttle setting were provided by shop personnel, as shown in Table 1. The number of tests of each type for each locomotive model group were tabulated based on the service codes in the database for each service event.

#### **Trends in Activity and Technology**

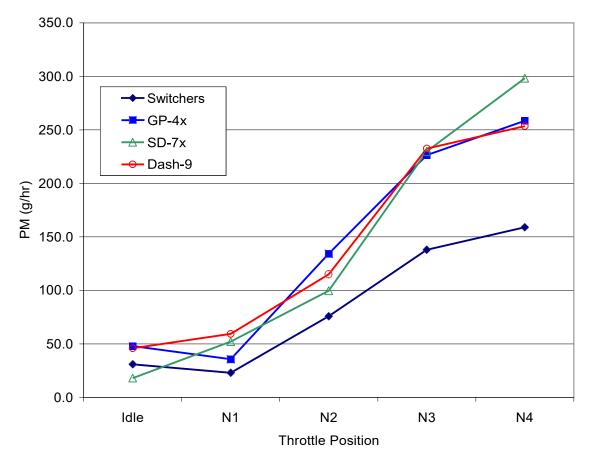
The initial study was based on data from December 1999 through November 2000. Since that time, UPRR's locomotive fleet modernization program as well as changes in freight volumes have occurred. A subsequent data retrieval for the period from May 2003 through April 2004 was made, and emission calculations updated. A number of significant changes occurred over this 40-month period. The distribution of locomotive models in line-haul operation showed a substantial shift from older, lower horsepower units to new high horsepower units. The average number of locomotives per consist remained the same at about 3, but the higher horsepower allowed an increase in train capacity (trailing tons per train). The decrease in older units also resulted in a decrease in the frequency of major maintenance load testing. In addition to updating activity inputs (number of locomotives by model) for

emission calculations, calculations were modified to reflect the penetration of new and retrofit technologies in the locomotive fleet, including SmartStart and AESS idling controls and Tier 0 and Tier 1 locomotives. UPRR data identifying the specific technologies installed on individual locomotives were matched with locomotive ID numbers in the train and servicing data retrievals to obtain a specific count of the number of locomotives of each model for which emissions reductions were achieved by these technologies. Historical temperature data for the Roseville area were used to estimate the fraction of time computer controls would require idling when the locomotive would otherwise be shut down.

#### **EMISSION FACTORS**

#### **Data Sources**

The study of the J. R. Davis Yard focused on diesel exhaust particulate matter emissions. At present, there is no unified database of emission test results for in-use locomotives. Appendix B of the USEPA's Regulatory Support Document for setting new emission standards for locomotives<sup>2</sup> contains a compilation of notch-specific emission factors. These data were supplemented by test data reported by Southwest Research Institute<sup>3,4</sup>, as well as test data provided by locomotive manufacturers to assemble emission factors for each of 11 locomotive model groups.


There are dozens of specific locomotive model designations, and emissions tests are not available for all of them. However many models are expected to have nearly identical emission characteristics. Depending on their intended use, locomotives of different models may have different configurations (e.g., number of axles), but share a common diesel engine. For this project, 11 locomotive model groups were defined based on their engine models (manufacturer, horsepower, number of cylinders, and turbo- or super-charging of intake air). Table 3 lists these model groups and some of the typical locomotive models assigned to each group.

| Model Group | Engine Family         | <b>Representative Models</b> |  |  |
|-------------|-----------------------|------------------------------|--|--|
| Switchers   | EMD 12-645E           | GP-15, SW1500                |  |  |
| GP-3x       | EMD 16-645E           | GP-30, GP-38                 |  |  |
| GP-4x       | EMD 16-645E3B         | GP-40, SD-40-2, SD-45-2      |  |  |
| GP-50       | EMD 16-645F3B         | GP-50, SD-50M                |  |  |
| GP-60       | EMD 16-710G3A         | GP-60, SD-60M                |  |  |
| SD-7x       | EMD 16-710G3B         | SD-70MAC, SD-75              |  |  |
| SD-90       | EMD 16V265H           | SD-90AC, SD-90-43AC          |  |  |
| Dash-7      | GE7FDL (12 cyl)       | B23-7, B30-7, C36-7          |  |  |
| Dash-8      | GE7FDL (12 or 16 cyl) | B39-8, B40-8, C41-8          |  |  |
| Dash-9      | GE7FDL (16 cyl)       | C44-9, C44AC                 |  |  |
| С60-А       | GE7HDL                | C60AC                        |  |  |

Table 3. Locomotive Model Groups

### **Emission Factors and Fuel Effects**

Figure 2 shows particulate matter (PM) emission factors for several of the more common locomotive model groups at the low to intermediate throttle settings typical of yard operations. As shown in the figure, emission rates generally increase with throttle setting. However, the older 3000 hp GP-4x series shows emissions comparable to (and in some cases, higher than) the newer 4000 to 4500 hp SD-7x and Dash-9 models. Due to the relatively large fraction of time locomotives spend at low throttle settings while in railyards, the relative differences in emission rates between models at these settings can significantly affect emissions estimates if locomotive model distributions change over time.





The emission factors used were based on tests using fuel typical of national off-road diesel. Initial emission estimates were derived by multiplying model-specific g/hr emission rates by the total hours of operation and locomotive model fraction for each activity within the yard. At the Davis Yard, over half of the diesel fuel dispensed to locomotives meets California on-road diesel fuel specifications (so-called "CARB diesel"). To account for the effect of fuel quality on emissions, estimates of the fraction of locally dispensed fuel burned by locomotives in different yard activities were developed. These ranged from 100 percent for hump and trim sets to zero percent for inbound line-haul units prior to refueling. These fractions were multiplied by the fraction of CARB diesel dispensed at the yard and an estimate of 14 percent reduction in PM emissions for locomotives burning CARB diesel to develop fuel effects adjustments for individual activities.

#### **EMISSION TRENDS**

Using the procedures described in the preceding sections, emissions estimates were developed for the December 1999 to November 2000 period, and the May 2003 to April 2004 period. During this period, significant changes in the UPRR locomotive fleet occurred, with the addition of new locomotives and the retirement of older units. Figure 3 shows the locomotive model distributions for all servicing events at the Davis Yard during these two periods. Service events include both the line-haul and local units arriving and departing on trains (which make up the bulk of these events), as well as the hump and trim sets. A significant increase in the relative fraction of high horsepower SD-7x and Dash-9 units is seen, and a corresponding decrease in the fraction of older GP-4x, GP-50, GP-60, Dash-7 and Dash-8 models. In addition to the fleet modernization, tabulations of specific emission control technologies on units serviced at the Davis Yard showed substantial penetration of new and retrofit technologies. Approximately 31 percent of locomotives serviced at the yard were equipped with computer-controlled shut-down and restart technology, resulting in reduced idling times. Also, approximately 27 percent of servicings were for Tier 0 locomotives, and approximately 25 percent were Tier 1 units. Although the Tier 0 and Tier 1 technologies are not expected to substantially reduce PM emissions, their nitrogen oxides emissions are lower. A few prototype Tier 2 units were observed in 2003 - 2004 data, and their reduced PM emissions will show benefits in the future.

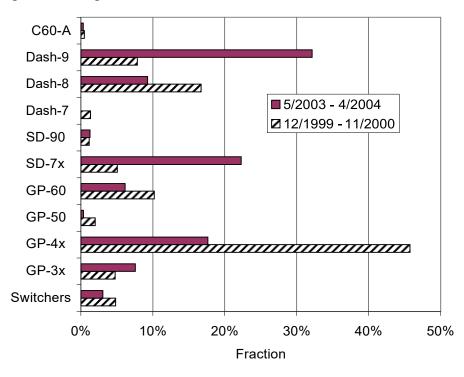



Figure 3. Changes in Locomotive Model Distributions.

The freight volume passing through the yard also changed between these periods. Table 4 lists the percent change in the number of arriving and departing trains, locomotives, and trailing tons (a measure of freight volume). The number of trains and locomotives showed little change, however the trailing tons increased by approximately 15 percent, implying that the average train weight (and correspondingly, the required consist horsepower) increased. This is a result of the increased availability of high horsepower units in the UPRR fleet. A higher fraction of trains bypass the yard, either not stopping, or stopping only for crew changes.

| Table 4. Percent Change in Faid Activity Levels from $12/1999 - 11/2000$ to $5/2005 - 4/2004$ . |        |             |               |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|--------|-------------|---------------|--|--|--|--|--|--|
|                                                                                                 | Trains | Locomotives | Trailing Tons |  |  |  |  |  |  |
| Arrivals                                                                                        | -5.2%  | -3.5%       |               |  |  |  |  |  |  |
| Departures                                                                                      | -7.0%  | -7.3%       |               |  |  |  |  |  |  |
| Throughs (Bypassing the yard)                                                                   | 8.0%   | 6.8%        |               |  |  |  |  |  |  |
| Total Arrivals and Departures                                                                   | -0.3%  | -0.9%       | 15.1%         |  |  |  |  |  |  |

Table 4. Percent Change in Yard Activity Levels from 12/1999 - 11/2000 to 5/2003 - 4/2004.

The newer locomotive fleet also affected the level of load testing activity required. Table 5 lists the percent change in the number of load tests of different types, and the corresponding change in total locomotive testing time at idle, notch 1, and notch 8. The extended 30-minute post-maintenance tests were substantially reduced, and total hours of testing were reduced for the various throttle settings between 12 and 43 percent.

| Table 5. Percent Change in Load Test Activity from 12/1999 - 11/2000 to 5/2003 - 4/2004. |        |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|--|
| 10-Minute Tests                                                                          | -18.9% |  |  |  |  |  |  |  |  |
| 15-Minute Tests                                                                          | 14.6%  |  |  |  |  |  |  |  |  |
| <b>30-Minute Tests</b>                                                                   | -43.2% |  |  |  |  |  |  |  |  |
| Total Tests                                                                              | -12.3% |  |  |  |  |  |  |  |  |
| Idling Hours                                                                             | -20.6% |  |  |  |  |  |  |  |  |
| Notch 1 Hours                                                                            | -43.2% |  |  |  |  |  |  |  |  |
| Notch 8 Hours                                                                            | -12.0% |  |  |  |  |  |  |  |  |

The combined net result of these changes is shown in Table 6. Between November 2000 and April 2003, total estimated PM emissions in the yard decreased by approximately 15 percent. Reductions in idling and movement emissions of about 20 percent were calculated, due to the combination of a newer, lower emitting locomotive fleet and the computer-controlled shutdown technologies (both retrofits and standard equipment on newer units). Hump and trim emissions were reduced by about 6 percent, and load testing emissions by about 14 percent.

|                                 | Estimated Emissio | Percent Change |        |
|---------------------------------|-------------------|----------------|--------|
|                                 | 12/1999 - 11/2000 |                |        |
| Idling and Movement of Trains   | 5.2               | 4.2            | -20.3% |
| Idling and Movement of Consists | 8.5               | 6.8            | -20.2% |
| Testing                         | 1.5               | 1.3            | -14.1% |
| Hump and Trim                   | 7.0               | 6.6            | -5.7%  |
| Total                           | 22.3              | 18.9           | -15.3% |

Table 6. Emissions Changes from 12/1999 - 11/2000 to 5/2003 - 4/2004.

## **CONCLUSIONS**

Because of the unique features of each individual railyard, top-down methods (e.g., based only on tons of freight handled or number of arriving locomotives) cannot provide reliable estimates of railyard emissions. Yard-specific data are needed. In-yard activity patterns (and emissions) will vary between yards depending on factors such as: the type of yard (e.g., hump or flat switching classification yards, or intermodal facilities); the presence and capabilities of service tracks or locomotive repair shops; the types of freight handled; the location of the yard in the rail network; and yard configuration. The development of procedures for retrieving and analyzing activity data and locomotive characteristics for a specific railyard is a substantial improvement of alternatives based on top-down estimation. By obtaining disaggregate data for the range of specific activities occurring within railyards, it is possible to reliably estimate historical trends in emissions, as well as to evaluate the potential effects of operational changes and new technologies. Railyard operations cannot be treated in isolation, since these yards are only one component of complex national level systems. Nevertheless, the ability to assess the details of yard operations and their emissions provides an improved basis for environmental management decisions at both local and larger scales.

## REFERENCES

1. Hand, R.; Di, P.; Servin, A.; Hunsaker, L.; Suer, C. Roseville Rail Yard Study, California Air Resources Board, Stationary Source Division, Sacramento, CA, October 14, 2004.

2. U. S. Environmental Protection Agency. Locomotive Emission Standards - Regulatory Support Document, U. S. Environmental Protection Agency, Office of Mobile Sources, April 1998.

3. Fritz, S. "Emissions Measurements - Locomotives", SwRI Project No. 08-5374-024, Prepared for the U.S. Environmental Protection Agency by Southwest Research Institute, San Antonio, TX, August 1995.

4. Fritz, S. "Diesel Fuel Effects on Locomotive Exhaust Emissions", SwRI Proposal No. 08-23088C, Prepared for the California Air Resources Board by Southwest Research Institute, San Antonio, TX, October 2000.

## **KEY WORDS**

Emission inventories Locomotives Railyards Diesel

### **ACKNOWLEDGEMENTS**

The authors gratefully acknowledge the assistance of numerous UPRR staff who assisted in data retrieval and interpretation, and in providing information on operating practices, including Deb Schafer, Punky Poff, Rob Cohee, Jim Diel, and Brock Nelson. In addition we acknowledge the contributions of Ron Hand of the California Air Resources Board.

# APPENDIX A-7

# SULFUR ADJUSTMENT CALCULATIONS

#### **Appendix A-7**

#### Development of Adjustment Factors for Locomotive DPM Emissions Based on Sulfur Content

Wong (undated) provides equations for estimating g/bhp-hr emission rates for 4-Stroke (GE) and 2-Stroke (EMD) locomotives. Rather than using these statistically derived estimates for absolute emissions when model- and notch-specific emission factors are available, we used these equations to develop *relative* emission rate changes for different sulfur levels. The basic form of the equation is

$$q = a \cdot S + b$$

Where,

*q* is the predicted g/bhp-hr emission rate of a locomotive at a specific throttle setting and sulfur content;

a and b are coefficients specific to a locomotive type (2- or 4-stroke) and throttle notch; and

*S* is the fuel sulfur content in ppm.

Thus, to calculate the emission adjustment factor for a specific fuel sulfur content, it is necessary to calculate the nominal emission rate  $q_0$  for the baseline fuel sulfur content  $S_0$ , and the emission rate  $q_i$  for the fuel of interest with sulfur content  $S_i$ . This adjustment factor  $k_i$  is simply

$$k_{i} = \frac{1}{q_{0}} \frac{(q_{0} q_{i})}{q_{0}},$$

Where,  $q_0$  and  $q_i$  are calculated using the equation above. Tables 1 and 2 give the values of the *a* and *b* coefficients for 4-stroke and 2-stroke locomotives. For throttle settings below notch 3, sulfur content is not expected to affect emission rates. The baseline emission rates from which actual emissions are estimated were derived from emission tests of different locomotive models. Although full documentation of fuels is not available for all of these tests, they are assumed to be representative of actual emissions of the different models running on 3,000 ppm sulfur EPA non-road Diesel fuel. For the purposes of modeling 2005 emissions, these factors are needed to adjust the baseline emission factors to emission factors representative of two fuels - 221 ppm and 2639 ppm. Table 3 shows the resulting correction factors for these two fuels by notch and engine type. To generate locomotive model-, throttle-, tier-, and fuel-specific emission factors, the base case (nominal 3,000 ppm S) emission factors in Table 4 were multiplied by the corresponding correction factors for throttle settings between notch 3 and notch 8.

| Sulfur Corre     | Table 1           Sulfur Correction Coefficients for 4-Stroke Engines |        |  |  |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------|--------|--|--|--|--|--|--|--|--|
| Throttle Setting |                                                                       |        |  |  |  |  |  |  |  |  |
| Notch 8          | 0.00001308                                                            | 0.0967 |  |  |  |  |  |  |  |  |
| Notch 7          | 0.00001102                                                            | 0.0845 |  |  |  |  |  |  |  |  |
| Notch 6          | 0.00000654                                                            | 0.1037 |  |  |  |  |  |  |  |  |
| Notch 5          | 0.00000548                                                            | 0.1320 |  |  |  |  |  |  |  |  |
| Notch 4          | 0.00000663                                                            | 0.1513 |  |  |  |  |  |  |  |  |
| Notch 3          | 0.00000979                                                            | 0.1565 |  |  |  |  |  |  |  |  |

|                                                                                              | Table 2   |        |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|-----------|--------|--|--|--|--|--|--|--|
| Sulfur Correction Coefficients for 2-Stroke Engines         Throttle Setting       a       b |           |        |  |  |  |  |  |  |  |
| Notch 8                                                                                      | 0.0000123 | 0.3563 |  |  |  |  |  |  |  |
| Notch 7                                                                                      | 0.0000096 | 0.2840 |  |  |  |  |  |  |  |
| Notch 6                                                                                      | 0.0000134 | 0.2843 |  |  |  |  |  |  |  |
| Notch 5                                                                                      | 0.0000150 | 0.2572 |  |  |  |  |  |  |  |
| Notch 4                                                                                      | 0.0000125 | 0.2629 |  |  |  |  |  |  |  |
| Notch 3                                                                                      | 0.0000065 | 0.2635 |  |  |  |  |  |  |  |

| DPM I    | Table 3           DPM Emission Adjustment Factors for Different Fuel Sulfur Levels |           |             |           |  |  |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------|-----------|-------------|-----------|--|--|--|--|--|--|--|
| Throttle | 4-Strok                                                                            | ke (GE)   | 2-Stroke    | e (EMD)   |  |  |  |  |  |  |  |
| Setting  | 2,639 ppm S                                                                        | 221 ppm S | 2,639 ppm S | 221 ppm S |  |  |  |  |  |  |  |
| Notch 8  | 0.9653                                                                             | 0.7326    | 0.9887      | 0.9131    |  |  |  |  |  |  |  |
| Notch 7  | 0.9662                                                                             | 0.7395    | 0.9889      | 0.9147    |  |  |  |  |  |  |  |
| Notch 6  | 0.9809                                                                             | 0.8526    | 0.9851      | 0.8852    |  |  |  |  |  |  |  |
| Notch 5  | 0.9867                                                                             | 0.8974    | 0.9821      | 0.8621    |  |  |  |  |  |  |  |
| Notch 4  | 0.9860                                                                             | 0.8924    | 0.9850      | 0.8844    |  |  |  |  |  |  |  |
| Notch 3  | 0.9810                                                                             | 0.8536    | 0.9917      | 0.9362    |  |  |  |  |  |  |  |

|           |      |      | Bas   | se Case I | ocomoti | ve Diesel | Table<br>Particul |          | er Emissio | on Factors | s (g/hr) |                                   |
|-----------|------|------|-------|-----------|---------|-----------|-------------------|----------|------------|------------|----------|-----------------------------------|
|           |      |      | 200   | e cuse i  |         |           |                   | ur Assun |            |            | (g,)     |                                   |
| Model     |      |      |       |           |         |           | le Setting        |          |            |            |          |                                   |
| Group     | Tier | Idle | DB    | N1        | N2      | N3        | N4                | N5       | N6         | N7         | N8       | Source                            |
| Switchers | Ν    | 31.0 | 56.0  | 23.0      | 76.0    | 138.0     | 159.0             | 201.0    | 308.0      | 345.0      | 448.0    | EPA RSD <sup>1</sup>              |
| GP-3x     | N    | 38.0 | 72.0  | 31.0      | 110.0   | 186.0     | 212.0             | 267.0    | 417.0      | 463.0      | 608.0    | EPA RSD <sup>1</sup>              |
| GP-4x     | N    | 47.9 | 80.0  | 35.7      | 134.3   | 226.4     | 258.5             | 336.0    | 551.9      | 638.6      | 821.3    | EPA RSD <sup>1</sup>              |
| GP-50     | N    | 26.0 | 64.1  | 51.3      | 142.5   | 301.5     | 311.2             | 394.0    | 663.8      | 725.3      | 927.8    | EPA RSD <sup>1</sup>              |
| GP-60     | N    | 48.6 | 98.5  | 48.7      | 131.7   | 284.5     | 299.4             | 375.3    | 645.7      | 743.6      | 941.6    | EPA RSD <sup>1</sup>              |
| GP-60     | 0    | 21.1 | 25.4  | 37.6      | 75.5    | 239.4     | 352.2             | 517.8    | 724.8      | 1125.9     | 1319.8   | SwRI <sup>2</sup> (KCS733)        |
| SD-7x     | N    | 24.0 | 4.8   | 41.0      | 65.7    | 156.8     | 243.1             | 321.1    | 374.8      | 475.2      | 589.2    | SwRI <sup>3</sup>                 |
| SD-7x     | 0    | 14.8 | 15.1  | 36.8      | 61.1    | 230.4     | 379.8             | 450.8    | 866.2      | 1019.1     | 1105.7   | GM EMD <sup>4</sup>               |
| SD-7x     | 1    | 29.2 | 31.8  | 37.1      | 66.2    | 219.3     | 295.9             | 436.7    | 713.2      | 783.2      | 847.7    | SwRI <sup>5</sup> (NS2630)        |
| SD-7x     | 2    | 55.4 | 59.5  | 38.3      | 134.2   | 271.7     | 300.4             | 335.2    | 551.5      | 672.0      | 704.2    | SwRI <sup>5</sup> (UP8353)        |
| SD-90     | 0    | 61.1 | 108.5 | 50.1      | 99.1    | 255.9     | 423.7             | 561.6    | 329.3      | 258.2      | 933.6    | GM EMD <sup>4</sup>               |
| Dash 7    | Ν    | 65.0 | 180.5 | 108.2     | 121.2   | 359.5     | 327.7             | 331.5    | 299.4      | 336.7      | 420.0    | EPA RSD <sup>1</sup>              |
| Dash 8    | 0    | 37.0 | 147.5 | 86.0      | 133.1   | 291.4     | 293.2             | 327.7    | 373.5      | 469.4      | 615.2    | GE <sup>4</sup>                   |
| Dash 9    | N    | 32.1 | 53.9  | 54.2      | 108.1   | 219.9     | 289.1             | 370.6    | 437.7      | 486.1      | 705.7    | SWRI 2000                         |
| Dash 9    | 0    | 33.8 | 50.7  | 56.1      | 117.4   | 229.2     | 263.8             | 615.9    | 573.9      | 608.0      | 566.6    | Average of GE & SwRI <sup>6</sup> |
| Dash 9    | 1    | 16.9 | 88.4  | 62.1      | 140.2   | 304.0     | 383.5             | 423.9    | 520.2      | 544.6      | 778.1    | SwRI <sup>2</sup> (CSXT595)       |
| Dash 9    | 2    | 7.7  | 42.0  | 69.3      | 145.8   | 304.3     | 365.0             | 405.2    | 418.4      | 513.5      | 607.5    | SwRI <sup>2</sup> (BNSF 7736)     |
| C60-A     | 0    | 71.0 | 83.9  | 68.6      | 78.6    | 277.9     | 234.1             | 276.0    | 311.4      | 228.0      | 362.7    | GE <sup>4</sup> (UP7555)          |

2. Base emission rates provided by ENVIRON as part of the BNSF analyses for the Railyard MOU (Personal communication from Chris Lindhjem to R.

Ireson, 2006) based on data produced in the AAR/SwRI Exhaust Plume Study (Personal communication from Steve Fritz to C. Lindhjem, 2006).

3. SwRI final report "Emissions Measurments - Locomotives" by Steve Fritz, August 1995.

4. Manufacturers' emissions test data as tabulated by ARB.

Base SD-70 emission rates taken from data produced in the AAR/SwRI Exhaust Plume Study (Personal communication from Steve Fritz to R. Ireson, 5.

Average of manufacturer's emissions test data as tabulated by ARB and data from the AAR/SwRI Exhaust Plume Study, tabulated and calculated by ENVIRON. 6.

## **OFFROAD Modeling Change Technical Memo**

- **SUBJECT:** Changes to the Locomotive Inventory
- LEAD: Walter Wong

### <u>Summarv</u>

The statewide locomotive emission inventory has not been updated since 2002. Using the Booz-Allen Hamilton's (BAH) study (Locomotive Emission Study) published in 1992 as a guideline (summary of inventory methodology can be found in Appendix A), staff updated the locomotive inventory.

The history of locomotive emission inventory updates began in 1992 using the results from the BAH report as the baseline inventory. In 2003, staff began updating the emissions inventory by revising the growth assumptions used in the inventory. The revised growth factors were incorporated into the ARB's 2003 Almanac Emission Inventory. With additional data, staff is proposing further update to the locomotive inventory to incorporate fuel correction factors, add passenger train data and Class III locomotives. Changes from updated locomotive activity data have made a significant impact on the total inventory (see Table 1).

|      | Pre 2003 ARB<br>Almanac Inventory<br>(tons/day) |       |     | Rev | rised Invent<br>(tons/day) | ory | Difference<br>(tons/day) |      |     |
|------|-------------------------------------------------|-------|-----|-----|----------------------------|-----|--------------------------|------|-----|
| Year | HC                                              | NOx   | PM  | HC  | NOx                        | PM  | HC                       | NOx  | PM  |
| 1987 | 7.2                                             | 158.8 | 3.6 | 7.2 | 158.8                      | 3.6 | 0.0                      | 0.0  | 0.0 |
| 2000 | 7.2                                             | 144.8 | 2.8 | 9.8 | 207.2                      | 4.7 | 2.6                      | 62.4 | 1.9 |
| 2010 | 7.2                                             | 77.8  | 2.8 | 9.5 | 131.9                      | 4.2 | 2.3                      | 54.1 | 1.4 |
| 2020 | 7.2                                             | 77.8  | 2.8 | 9.4 | 134.6                      | 4.1 | 2.2                      | 56.8 | 1.3 |

Table 1. Impact of Changes on Statewide Locomotive Inventory

### **Reasons For Change**

During the 2003 South Coast's State Implementation Plan (SIP) development process, industry consultants approached Air Resources Board (ARB) staff to refine the locomotive emissions inventory. Specifically, their concerns were related to the growth factors and fuel correction factors used in the inventory

calculations. This document outlines how the locomotive emissions inventory was updated and the subsequent changes made to address industry's concerns.

## Background : Baseline 1987 Locomotive Emissions Inventory (BAH report)

Locomotive operations can be characterized by the type of service performed. For emission inventory purposes, locomotives are classified into five different service types as defined in BAH's report.

<u>Line-haul/intermodal</u> - Intermodal locomotives generally operate at higher speeds and with higher power than other types and incorporate modern, high-speed engines.

<u>Mixed/bulk</u> - Mixed locomotives are the most common and operate with a wide range of power. They also perform line-haul duties.

<u>Local/Short Haul</u> – Local locomotives perform services that are a mixture of mixed freight and yard service. They operate with lower power and use older horsepower engines.

<u>Yard/Switcher</u> – Yard operations are used in switching locomotives and characterized by stop and start type movements. They operate with smaller engines and have the oldest locomotive engines.

<u>Passenger</u> - Passenger locomotives are generally high speed line haul type operations.

Categories of railroads are further explained by a precise revenue-based definition found in the regulations of the Surface Transportation Board (STB). Rail carriers are grouped into three classes for the purposes of accounting and reporting:

Class I -Carriers with annual operating revenues of \$250 million or more

<u>Class II</u> - Carriers with annual operating revenues of less than \$250 million but in excess of \$20 million

<u>Class III</u> - Carriers with annual operating revenues of less than \$20 million or less, and all switching companies regardless of operating revenues.

The threshold figures are adjusted annually for inflation using the base year of 1991.

The 1987 locomotive inventory as shown in Table 2 is taken from the BAH report prepared for the ARB entitled "Locomotive Emission Study" completed in 1992 (<u>http://www.arb.ca.gov/app/library/libcc.php</u>). Information was gathered from many sources including ARB, the South Coast Air Quality Management District, the California Energy Commission, the Association of American Railroads (AAR), locomotive and large engine manufacturers, and Southwest Research Institute. Railroad companies, such as Southern Pacific, Union Pacific, and Atchison, Topeka and Santa Fe (ATSF), provided emission factors, train operation data, and throttle position profiles for trains operating in their respective territories. Southwest Research Institute provided emission test data.

| TYPE                 | HC   | CO    | NOX    | PM   | SOX   |
|----------------------|------|-------|--------|------|-------|
| Line-Haul/Intermodal | 3.97 | 12.89 | 86.21  | 1.97 | 6.36  |
| Short-Haul/Local     | 0.96 | 3.06  | 21.30  | 0.46 | 1.59  |
| Mixed                | 1.51 | 4.85  | 37.34  | 0.81 | 2.76  |
| Passenger            | 0.10 | 0.22  | 3.24   | 0.07 | 0.30  |
| Yard/Switcher        | 0.62 | 1.57  | 10.69  | 0.24 | 0.58  |
| Total                | 7.16 | 22.59 | 158.78 | 3.55 | 11.59 |

 Table 2. 1987 Locomotive Inventory in Tons Per Day, Statewide, BAH report

The assumed average fuel sulfur content is 2700 parts per million (ppm) obtained from the BAH report.

## **Current Growth Estimates**

Prior to the 2003 South Coast SIP update, growth factors were based on employment data in the railroad industry. Staff believes that the use of historic employment data, which translates to a decline in emissions in future years, may be masking actual positive growth in locomotive operations. It may be assumed that the number of employees is declining due to increased efficiency.

## Changes to the Locomotive Inventory

## Summary of Growth in Emission Based on BAH Report

Growth is estimated based on train operation type and by several operating characteristics.

<u>Increased Rail Lube and Aerodynamics</u> - this arises from reduction in friction and will help reduce power requirements.

3

<u>Introduction of New Locomotives</u> – older locomotive units will be replaced by newer models.

Changes in Traffic Level - the increase or decrease in railroad activity

In the BAH report, projected emission estimates for years 2000 and 2010 were based on the factors shown in Tables 3 and 4. A substantial part of the locomotive emission inventory forecast is based upon projections of rail traffic levels. BAH projected future rail traffic level as a function of population and economic growth in the state. BAH also projected growth in emission only to 2010.

Table 3. Changes in Emissions from 1987-2000 (Exhibit 4 p. 11 of the 8/92 Locomotive Emission Study Supplement) (1987 Base Year)

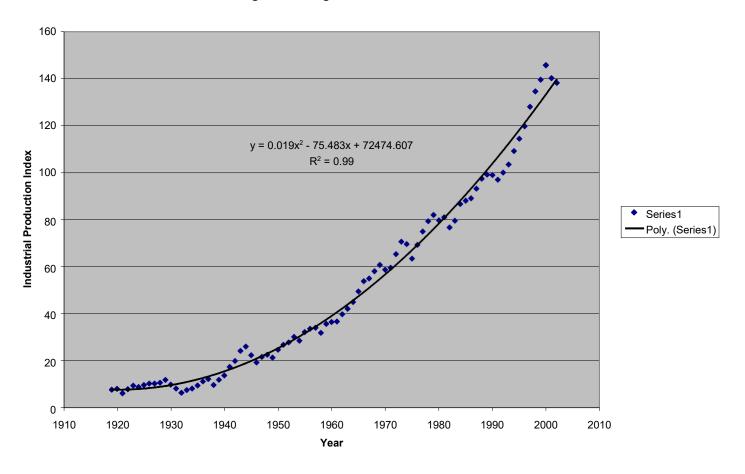
| Train        | Increased Rail | Introduction | Changes in | Cumulative    |
|--------------|----------------|--------------|------------|---------------|
| Operation    | Lube and       | of New       | Traffic    | Net Growth in |
| Туре         | Aerodynamics   | Locomotive   | Levels     | Emissions     |
| Intermodal   | -7.0%          | -8.0%        | 17.0%      | 2.0%          |
| Mixed & Bulk | -7.0%          | -8.0%        | 2.0%       | -13.0%        |
| Local        | -3.0%          | -3.0%        | -2.0%      | -8.0%         |
| Yard         | 0.0%           | -1.0%        | -25.0%     | -26.0%        |
| Passenger    | -7.0%          | -8.0%        | 10.0%      | -5.0%         |

Table 4. Changes in Emissions from 2001-2010 (Exhibit 4 p. 11 of the 8/92 Locomotive Emission Study Supplement) (2000 Base Year)

| Train<br>Operation | Increased Rail<br>Lube and | Improved<br>Dispatching | Introduction<br>of New | Changes in<br>Traffic | Cumulative<br>Net Growthin |
|--------------------|----------------------------|-------------------------|------------------------|-----------------------|----------------------------|
| Туре               | Aerodynamics               | and Train               | Locomotive             | Levels                | Emissions                  |
|                    | Control                    |                         |                        |                       |                            |
| Intermodal         | -2.0%                      | -3.0%                   | -8.0%                  | 25.0%                 | 12.0%                      |
| Mixed & Bulk       | -2.0%                      | -3.0%                   | -8.0%                  | 0.0%                  | -13.0%                     |
| Local              | -1.0%                      | 0.0%                    | -12.0%                 | -10.0%                | -23.0%                     |
| Yard               | 0.0%                       | 0.0%                    | -10.0%                 | -15.0%                | -25.0%                     |
| Passenger          | -2.0%                      | -3.0%                   | -8.0%                  | 15.0%                 | 2.0%                       |

BAH added "Improved Dispatching and Train Control" to differentiate these impacts from the "Increased Rail Lubing" which helps to improve fuel efficiency from locomotive engines. Since train control techniques are emerging from the

signal company research work, these assumed changes will not impact emission until year 2000.


Based on industry's input, staff recommends several changes to the locomotive emissions inventory. These include modifying growth factors, making adjustments to control factors reflecting the U. S. EPA regulations that went into effect in year 2000, incorporating fuel correction factors, adding smaller class III railroad and industrial locomotive, and updating passenger data.

## **Revised Growth in Emissions**

Staff revised the growth factors for locomotives based on new data that better reflect locomotive operations. This includes U.S. industrial production and various railroad statistics available from the AAR.

Based on historic data recently obtained from U.S. industrial productions and the AAR, the changes in traffic levels were revised. A better estimate for changes in traffic levels for locomotives can be made to the line-haul class of railroad, which are the intermodal and mixed and bulk type of locomotives, using industrial production and AAR's data.

Industrial production data is considered to be a surrogate for changes in traffic levels of the line-haul locomotive. It is assumed that railroad activity would increase in order to accommodate the need to move more product. Industrial production is the total output of U.S. factories and mines, and is a key economic indicator released monthly by the Federal Reserve Board. U.S. industrial production historical data from 1920 to 2002 was obtained and analyzed from government sources. Figure 1 shows the historical industrial production trend (Source : <u>http://www.research.stlouisfed.org/fred2/series/INDPRO/3/Max</u>). Statistical analysis was used to derive a polynomial equation to fit the data.



# PRELIMINARY DRAFTER DRUNDT FUTE OR QUOTE

Another surrogate for growth is net ton-miles per engine. Consequently, staff analyzed railroad data from the AAR's Railroad Facts booklet (2001 edition). The booklet contains line-haul railroad statistics including financial status, operation and employment data, and usage profiles. Revenue ton-mile and locomotives in service data from the booklet were used to compute the net tonmiles per engine as shown in Table 5.

| Year | Locomotive   | Revenue Ton- | Ton-         |
|------|--------------|--------------|--------------|
|      | Diesel in    | Miles        | Miles/Engine |
|      | Service (US) |              | _            |
| 1987 | 19,647       | 943,747      | 48.04        |
| 1988 | 19,364       | 996,182      | 51.45        |
| 1989 | 19,015       | 1,013,841    | 53.32        |
| 1990 | 18,835       | 1,033,969    | 54.90        |
| 1991 | 18,344       | 1,038,875    | 56.63        |
| 1992 | 18,004       | 1,066,781    | 59.25        |
| 1993 | 18,161       | 1,109,309    | 61.08        |
| 1994 | 18,496       | 1,200,701    | 64.92        |
| 1995 | 18,810       | 1,305,688    | 69.41        |
| 1996 | 19,267       | 1,355,975    | 70.38        |
| 1997 | 19,682       | 1,348,926    | 68.54        |
| 1998 | 20,259       | 1,376,802    | 67.96        |
| 1999 | 20,254       | 1,433,461    | 70.77        |
| 2000 | 20,026       | 1,465,960    | 73.20        |

Table 5. Revenue Ton-Miles and Ton-Miles/Engine (AAR Railroad Facts 2001 edition)

As shown in Figure 2, there is a relatively good correlation between net ton-miles per engine growth and industrial production. Because net ton-miles per engine data are compiled by the railroad industry and pertains directly to the railroad segment, staff believes that net ton-miles per engine will better characterize future traffic level changes.

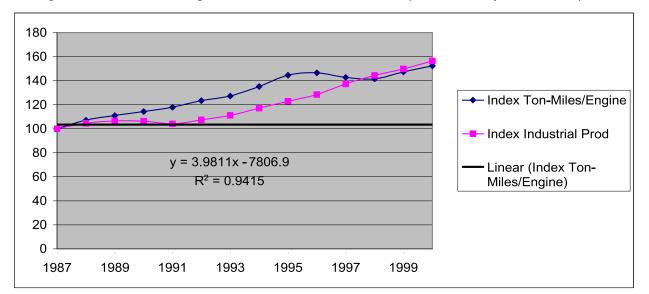



Figure 2. Ton-miles/Engine vs. Industrial Production (index base year = 1987)

The ton-miles/engine data were projected to calculate the future growth rate of traffic level using a linear equation.

Staff also made changes to the "Increased Rail Lube and Aerodynamics" assumption shown in Tables 3 and 4. Rail lubing does not benefit the idling portion of locomotive activity. Since idling contributes 20% of the weighting in the line-haul duty cycle, staff reduced the rail lubing benefit by 20%. Meanwhile, improved dispatching and train control is assumed only to reduce engine idling. Therefore, staff reduced the improved dispatching benefit by 80%.

The benefit of the introduction of new locomotives to the fleet was decreased from the original BAH assumption. BAH assumed 50% penetration of the new engines by 2000. Literature research suggests that the new engines accounted for only about 34% of the fleet in 2000 (<u>www.railwatch.com</u>, http://utahrails.net/all-time/modern-index.php). These new engines are assumed to be 15% cleaner. Therefore, the benefit from new locomotive engines has been reduced to 5% ( $34\% \times 15\% = 5\%$  reduction).

Tables 6, 7, and 8 present the revised growth factors to be used to project the baseline (1987) locomotive emissions inventory into the future.

| Train        | Increased Rail | Introduction | Population | Changes in     | Cumulative    | Annual |
|--------------|----------------|--------------|------------|----------------|---------------|--------|
| Operation    | Lube and       | of New       | Increase   | Traffic Levels | Net Growth in | Growth |
| Туре         | Aerodynamics   | Locos        |            |                | Emissions     |        |
| Intermodal   | -5.6%          | -5.1%        | 1.9%       | 50.0%          | 41.2%         | 2.69%  |
| Mixed & Bulk | -5.6%          | -5.1%        | 1.9%       | 50.0%          | 41.2%         | 2.69%  |
| Local        | -2.4%          | 0%           | 0%         | -2.0%          | -4.4%         | -0.35% |
| Yard         | 0.0%           | 0%           | 0%         | -25.0%         | -25.0%        | -2.19% |
| Passenger    | -5.6%          | 0%           | 1.9%       | 10.0%          | 6.3%          | 0.47%  |

Table 6. ARB Revised Growth 1987-2000, ARB's 2003 Almanac Emission Inventory

The benefit of new locomotives with cleaner burning engines is accounted for in the control factor from EPA's regulation beginning in 2001, which takes into account introduction of new locomotive engines meeting Tier I and Tier II standards.

| Train        | Increased Rail | Improved    | Changes in | Cumulative    | Annual |
|--------------|----------------|-------------|------------|---------------|--------|
| Operation    | Lube and       | Dispatching | Traffic    | Net Growth in | Growth |
| Туре         | Aerodynamics   | and Train   | Levels     | Emissions     |        |
|              |                | Control     |            |               |        |
| Intermodal   | -1.6%          | -0.6%       | 22.5%      | 20.3%         | 1.87%  |
| Mixed & Bulk | -1.6%          | -0.6%       | 22.5%      | 20.3%         | 1.87%  |
| Local        | -0.8%          | -0.6%       | -10.0%     | -11.4%        | -1.20% |
| Yard         | 0.0%           | 0.0%        | -15.0%     | -15.0%        | -1.61% |
| Passenger    | -1.6%          | 0.0%        | 15.0%      | 13.4%         | 1.27%  |

Table 7. ARB Revised Growth 2001-2010(2000 Base Year, ARB's 2003Almanac Emission Inventory)

Table 8. ARB Revised Growth 2010-2020(2010 Base Year, ARB's 2003Almanac Emission Inventory)

| Train        | Increased Rail | Improved    | Changes in | Cumulative | Annual |
|--------------|----------------|-------------|------------|------------|--------|
| Operation    | Lube and       | Dispatching | Traffic    | Net Growth | Growth |
| Туре         | Aerodynamics   | and Train   | Levels     |            |        |
|              | -              | Control     |            |            |        |
| Intermodal   | 0.0%           | 0.0%        | 18.0%      | 18.0%      | 1.67%  |
| Mixed & Bulk | 0.0%           | 0.0%        | 18.0%      | 18.0%      | 1.67%  |
| Local        | 0.0%           | 0.0%        | 0.0%       | 0.0%       | 0.00%  |
| Yard         | 0.0%           | 0.0%        | 0.0%       | 0.0%       | 0.00%  |
| Passenger    | 0.0%           | 0.0%        | 0.0%       | 0.0%       | 0.00%  |

In Table 8, staff assumes no benefit from aerodynamics and improved train controls. Staff seeks guidance from industry as to their input regarding future benefits.

| Year | Intermodal | Mixed &<br>Bulk | Local | Yard | Passenger |
|------|------------|-----------------|-------|------|-----------|
| 1987 | 1.00       | 1.00            | 1.00  | 1.00 | 1.00      |
| 1988 | 1.03       | 1.03            | 1.00  | 0.98 | 1.00      |
| 1989 | 1.05       | 1.05            | 0.99  | 0.96 | 1.01      |
| 1990 | 1.08       | 1.08            | 0.99  | 0.94 | 1.01      |
| 1991 | 1.11       | 1.11            | 0.99  | 0.92 | 1.02      |
| 1992 | 1.14       | 1.14            | 0.98  | 0.90 | 1.02      |
| 1993 | 1.17       | 1.17            | 0.98  | 0.88 | 1.03      |
| 1994 | 1.20       | 1.20            | 0.98  | 0.86 | 1.03      |
| 1995 | 1.24       | 1.24            | 0.97  | 0.84 | 1.04      |
| 1996 | 1.27       | 1.27            | 0.97  | 0.82 | 1.04      |
| 1997 | 1.30       | 1.30            | 0.97  | 0.80 | 1.05      |
| 1998 | 1.34       | 1.34            | 0.96  | 0.78 | 1.05      |
| 1999 | 1.38       | 1.38            | 0.96  | 0.77 | 1.06      |
| 2000 | 1.41       | 1.41            | 0.96  | 0.75 | 1.06      |
| 2001 | 1.44       | 1.44            | 0.94  | 0.74 | 1.08      |
| 2002 | 1.47       | 1.47            | 0.93  | 0.73 | 1.09      |
| 2003 | 1.49       | 1.49            | 0.92  | 0.71 | 1.10      |
| 2004 | 1.52       | 1.52            | 0.91  | 0.70 | 1.12      |
| 2005 | 1.55       | 1.55            | 0.90  | 0.69 | 1.13      |
| 2006 | 1.58       | 1.58            | 0.89  | 0.68 | 1.15      |
| 2007 | 1.61       | 1.61            | 0.88  | 0.67 | 1.16      |
| 2008 | 1.64       | 1.64            | 0.87  | 0.66 | 1.18      |
| 2009 | 1.67       | 1.67            | 0.86  | 0.65 | 1.19      |
| 2010 | 1.70       | 1.70            | 0.85  | 0.64 | 1.21      |
| 2011 | 1.73       | 1.73            | 0.85  | 0.64 | 1.21      |
| 2012 | 1.76       | 1.76            | 0.85  | 0.64 | 1.21      |
| 2013 | 1.79       | 1.79            | 0.85  | 0.64 | 1.21      |
| 2014 | 1.81       | 1.81            | 0.85  | 0.64 | 1.21      |
| 2015 | 1.85       | 1.85            | 0.85  | 0.64 | 1.21      |
| 2016 | 1.88       | 1.88            | 0.85  | 0.64 | 1.21      |
| 2017 | 1.91       | 1.91            | 0.85  | 0.64 | 1.21      |
| 2018 | 1.94       | 1.94            | 0.85  | 0.64 | 1.21      |
| 2019 | 1.97       | 1.97            | 0.85  | 0.64 | 1.21      |
| 2020 | 2.00       | 2.00            | 0.85  | 0.64 | 1.21      |

# Table 9. Revised Growth in Emissions (Base Year 1987)

## Control Factors for U.S. EPA regulation

In December 1997, the U.S. EPA finalized the locomotive emission standard regulation. The regulatory support document lists the control factors used (http://www.epa.gov/otaq/regs/nonroad/locomotv/frm/locorsd.pdf). Staff modified the control factors to incorporate the existing memorandum of understanding (http://www.arb.ca.gov/msprog/offroad/loco/loco.htm) between the South Coast AQMD and the railroads that operate in the region. Previously, one control factor was applied statewide. In the revised emissions inventory starting in 2010, a lower control factor reflecting the introduction of lower emitting locomotive

engines in the SCAB region was applied. Tables 10 and 11 show the revised control factors. Road hauling definition as used by U.S. EPA applies to the line-haul/intermodal, mixed, and local/short haul train type in the emissions inventory.

|       | State           | State           | State           | State    | State    | State    | State     | State     | State     |
|-------|-----------------|-----------------|-----------------|----------|----------|----------|-----------|-----------|-----------|
|       | Road<br>Hauling | Road<br>Hauling | Road<br>Hauling | Switcher | Switcher | Switcher | Passenger | Passenger | Passenger |
| Year  | HC              | NOx             | PM              | HC       | NOx      | PM       | HC        | NOx       | PM        |
| 1999  | 1.00            | 1.00            | 1.00            | 1.00     | 1.00     | 1.00     | 1.00      | 1.00      | 1.00      |
| 2000  | 1.00            | 0.99            | 1.00            | 1.00     | 1.00     | 1.00     | 1.00      | 1.00      | 1.00      |
| 2001  | 1.00            | 0.95            | 1.00            | 1.00     | 1.00     | 1.00     | 1.00      | 1.00      | 1.00      |
| 2002  | 1.00            | 0.88            | 1.00            | 1.00     | 0.98     | 1.00     | 1.00      | 0.98      | 1.00      |
| 2003  | 1.00            | 0.82            | 1.00            | 1.00     | 0.97     | 1.00     | 1.00      | 0.96      | 1.00      |
| 2004  | 1.00            | 0.75            | 1.00            | 1.00     | 0.95     | 1.00     | 1.00      | 0.94      | 1.00      |
| 2005  | 0.96            | 0.68            | 0.96            | 0.99     | 0.93     | 0.99     | 0.98      | 0.92      | 0.98      |
| 2006  | 0.92            | 0.62            | 0.92            | 0.99     | 0.91     | 0.99     | 0.96      | 0.90      | 0.96      |
| 2007  | 0.89            | 0.59            | 0.89            | 0.98     | 0.89     | 0.98     | 0.94      | 0.83      | 0.94      |
| 2008  | 0.87            | 0.57            | 0.86            | 0.98     | 0.87     | 0.97     | 0.92      | 0.76      | 0.92      |
| 2009  | 0.84            | 0.55            | 0.84            | 0.97     | 0.85     | 0.97     | 0.91      | 0.69      | 0.90      |
| 2010  | 0.82            | 0.54            | 0.81            | 0.96     | 0.83     | 0.96     | 0.89      | 0.62      | 0.88      |
| 2011  | 0.81            | 0.53            | 0.80            | 0.96     | 0.81     | 0.95     | 0.87      | 0.57      | 0.87      |
| 2012  | 0.80            | 0.53            | 0.79            | 0.95     | 0.79     | 0.94     | 0.85      | 0.56      | 0.85      |
| 2013  | 0.79            | 0.52            | 0.78            | 0.94     | 0.77     | 0.93     | 0.83      | 0.54      | 0.83      |
| 2014  | 0.77            | 0.51            | 0.76            | 0.94     | 0.75     | 0.93     | 0.82      | 0.53      | 0.81      |
| 2015  | 0.76            | 0.50            | 0.75            | 0.93     | 0.73     | 0.92     | 0.80      | 0.52      | 0.79      |
| 2016  | 0.75            | 0.50            | 0.74            | 0.92     | 0.71     | 0.91     | 0.78      | 0.51      | 0.77      |
| 2017  | 0.74            | 0.49            | 0.72            | 0.91     | 0.70     | 0.90     | 0.76      | 0.50      | 0.75      |
| 2018  | 0.73            | 0.48            | 0.71            | 0.90     | 0.69     | 0.89     | 0.74      | 0.49      | 0.73      |
| 2019  | 0.71            | 0.48            | 0.70            | 0.89     | 0.68     | 0.88     | 0.73      | 0.48      | 0.71      |
| 2020+ | 0.70            | 0.47            | 0.69            | 0.89     | 0.67     | 0.87     | 0.71      | 0.47      | 0.69      |

## Table 10. Revised Statewide Control Factors

| SCAB            | SCAB                                                                                                                                                                                                  | SCAB                                                                                                                                                                                                | SCAB                                                                                                                                                                                                                                                                                                                         | SCAB                                                                                                                                                                                                                                                                                                                                                                                           | SCAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Road<br>Hauling | Road<br>Hauling                                                                                                                                                                                       | Road<br>Hauling                                                                                                                                                                                     | Switcher                                                                                                                                                                                                                                                                                                                     | Switcher                                                                                                                                                                                                                                                                                                                                                                                       | Switcher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HC              | NOx                                                                                                                                                                                                   | PM                                                                                                                                                                                                  | HC                                                                                                                                                                                                                                                                                                                           | NOx                                                                                                                                                                                                                                                                                                                                                                                            | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.00            | 1.00                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00            | 0.99                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00            | 0.95                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00            | 0.88                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                         | 0.98                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00            | 0.82                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                         | 0.97                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00            | 0.75                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.96            | 0.68                                                                                                                                                                                                  | 0.96                                                                                                                                                                                                | 0.99                                                                                                                                                                                                                                                                                                                         | 0.93                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.92            | 0.62                                                                                                                                                                                                  | 0.92                                                                                                                                                                                                | 0.99                                                                                                                                                                                                                                                                                                                         | 0.91                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.89            | 0.59                                                                                                                                                                                                  | 0.89                                                                                                                                                                                                | 0.98                                                                                                                                                                                                                                                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.87            | 0.57                                                                                                                                                                                                  | 0.86                                                                                                                                                                                                | 0.98                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.84            | 0.55                                                                                                                                                                                                  | 0.84                                                                                                                                                                                                | 0.97                                                                                                                                                                                                                                                                                                                         | 0.85                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.82            | 0.36                                                                                                                                                                                                  | 0.81                                                                                                                                                                                                | 0.96                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.81            | 0.36                                                                                                                                                                                                  | 0.80                                                                                                                                                                                                | 0.96                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.80            | 0.36                                                                                                                                                                                                  | 0.79                                                                                                                                                                                                | 0.95                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.79            | 0.36                                                                                                                                                                                                  | 0.78                                                                                                                                                                                                | 0.94                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.77            | 0.36                                                                                                                                                                                                  | 0.76                                                                                                                                                                                                | 0.94                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.76            | 0.36                                                                                                                                                                                                  | 0.75                                                                                                                                                                                                | 0.93                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.75            | 0.36                                                                                                                                                                                                  | 0.74                                                                                                                                                                                                | 0.92                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.74            | 0.36                                                                                                                                                                                                  | 0.72                                                                                                                                                                                                | 0.91                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.73            | 0.36                                                                                                                                                                                                  | 0.71                                                                                                                                                                                                | 0.90                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.71            | 0.36                                                                                                                                                                                                  | 0.70                                                                                                                                                                                                | 0.89                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.70            | 0.36                                                                                                                                                                                                  | 0.69                                                                                                                                                                                                | 0.89                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                           | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Road<br>Hauling<br>HC<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>0.96<br>0.92<br>0.89<br>0.87<br>0.84<br>0.82<br>0.81<br>0.82<br>0.81<br>0.80<br>0.79<br>0.77<br>0.76<br>0.75<br>0.74<br>0.73<br>0.71 | Road<br>Hauling<br>HCRoad<br>Hauling<br>NOx1.001.001.000.991.000.951.000.881.000.821.000.750.960.680.920.620.890.590.870.570.840.550.820.360.790.360.770.360.750.360.750.360.750.360.740.360.710.36 | Road<br>Hauling<br>HCRoad<br>Hauling<br>NOxRoad<br>Hauling<br>PM1.001.001.001.000.991.001.000.951.001.000.951.001.000.881.001.000.821.001.000.751.001.000.751.000.960.680.960.920.620.920.890.590.890.870.570.860.840.550.840.820.360.790.790.360.780.770.360.760.760.360.750.750.360.740.740.360.720.730.360.710.710.360.70 | Road<br>Hauling<br>HCRoad<br>Hauling<br>NOxRoad<br>Hauling<br>PMSwitcher<br>HC1.001.001.001.001.001.000.991.001.001.001.000.991.001.001.001.000.951.001.001.001.000.881.001.001.000.821.001.001.000.751.001.000.960.680.960.990.920.620.920.990.890.590.860.980.870.570.860.980.840.550.840.970.820.360.790.950.790.360.780.940.770.360.760.940.760.360.750.930.750.360.710.900.710.360.700.89 | Road<br>Hauling<br>HCRoad<br>Hauling<br>NOxRoad<br>Hauling<br>PMSwitcherSwitcher1.001.001.001.001.001.001.001.001.001.001.001.000.991.001.001.001.000.951.001.001.001.000.881.001.000.981.000.821.001.000.971.000.751.001.000.971.000.751.001.000.950.960.680.960.990.930.920.620.920.990.910.890.590.860.980.890.870.570.860.980.870.840.550.840.970.850.820.360.780.940.360.790.360.780.940.360.770.360.750.930.360.760.360.750.930.360.750.360.740.920.360.740.360.710.900.360.710.360.710.900.36 |

Table 11. Revised SCAB Control Factors

# Addition of Class III Locomotive and Industrial/Military Locomotive

The annual hours operated by the class III railroads are shown in Table 12. The results were tabulated from ARB Stationary Source Division's (SSD) survey (<u>http://www.arb.ca.gov/regact/carblohc/carblohc.htm</u>) conducted to support regulation with regards to ARB ultra-clean diesel fuel.

| Air Basin           | Operations | Population | Annual Hours Operated |
|---------------------|------------|------------|-----------------------|
| Mountain Counties   | SW         | 2          | 10214                 |
|                     | 577        |            | -                     |
| Mojave Desert       | L          | 10         | 27440                 |
| North Coast         | L          | 3          | 5700                  |
| North Central Coast | L          | 1          | 1332                  |
|                     | SW         | 3          | 3996                  |
| Northeast Plateau   | L          | 5          | 9892                  |
| South Coast         | SW         | 21         | 75379                 |
| South Central Coast | L          | 5          | 3200                  |
| San Diego           | L          | 4          | 5000                  |
| San Francisco       | L          | 8          | 31600                 |
|                     | SW         | 4          | 5059                  |
| San Joaquin Valley  | L          | 29         | 68780                 |
|                     | SW         | 19         | 72248                 |
| Sacramento Valley   | L          | 6          | 11400                 |
| Total               | •          | 120        | 331240                |

Table 12. Short-Haul and Switcher Annual Hours for Class III Railroads

L = local short-haul, SW = switcher

The short-haul and switcher emission rate are derived from BAH report. The report cites studies from testing done at EPA and Southwest Research Institute.

Table 13. Short-Haul and Switcher Emission Rate

| Emission Rate     | Short-Haul | Switcher   |
|-------------------|------------|------------|
|                   | (g/bhp-hr) | (g/bhp-hr) |
| HC                | 0.38       | 0.44       |
| CO                | 1.61       | 1.45       |
| NOx               | 12.86      | 15.82      |
| PM                | 0.26       | 0.28       |
| SOx               | 0.89       | 0.90       |
| Fuel Rate (lb/hr) | 120.00     | 60.00      |

| Air Basin          | Number of   | Avg. HP | Avg. Age |
|--------------------|-------------|---------|----------|
|                    | Locomotives |         |          |
| Mojave Desert      | 9           | 1,138   | 56       |
| Others             | 11          | 587     | 54       |
| San Francisco      | 11          | 525     | 54       |
| San Joaquin Valley | 38          | 1,176   | 54       |
| South Coast        | 24          | 1,290   | 55       |
| TOTALS             | 93          | 1,055   | 55       |

Table 14. Statewide Summary of Industrial Locomotives

 Table 15. Statewide Summary of Military Locomotives

| Air Basin           | Number of   | Avg. HP | Avg. Age |
|---------------------|-------------|---------|----------|
|                     | Locomotives |         |          |
| Mojave Desert       | 7           | 900     | 50       |
| Northeast Plateau   | 2           | 1,850   | 50       |
| Sacramento Valley   | 1           | 500     | 50       |
| San Diego           | 7           | 835     | 50       |
| San Francisco       | 4           | 1525    | 47.5     |
| San Joaquin Valley  | 2           | 400     | 50       |
| South Central Coast | 1           | 500     | 50       |
| TOTALS              | 24          | 930     | 49.6     |

The data from the survey provides a reasonable depiction of railroad activities in 2003. To forecast and backcast, an assumption was made to keep the data constant and have no growth. More research is needed to quantify the growth projections of smaller, local railroad activities.

# Update to Passenger Trains

ARB's survey of intrastate locomotives included passenger agency trains that operated within the state. Staff attempted to reconcile the survey results by calculating the operation schedules posted by the operating agency to obtain hours of operation and mileage information. The results of the survey and calculated operating hours were comparable. Table 16 lists the calculated annual hours operated and miles traveled used to estimate emissions.

| Air Basin           | Annual         | Annual         |
|---------------------|----------------|----------------|
|                     | Miles Operated | Hours Operated |
| South Coast         | 3,700,795      | 92,392         |
| South Central Coast | 151,864        | 4,020          |
| San Diego           | 914,893        | 25,278         |
| San Francisco       | 2,578,862      | 77,944         |
| San Joaquin Valley  | 674,824        | 17,313         |
| Sacramento Valley   | 635,384        | 20,058         |
| Total               | 8,656,621      | 237,006        |

 Table 16. Passenger Trains Annual Miles and Hours

The passenger train emission rate is derived from testing done at SWRI on several passenger locomotives.

| Table 17. Passeng | ger Train Emission Rate |
|-------------------|-------------------------|
|-------------------|-------------------------|

| Emission Rate     | Passenger Train |
|-------------------|-----------------|
|                   | (g/bhp-hr)      |
| HC                | 0.50            |
| CO                | 0.69            |
| Nox               | 12.83           |
| PM                | 0.36            |
| Sox               | 0.90            |
| Fuel Rate (lb/hr) | 455.00          |

## **Fuel Correction Factors**

#### Aromatics

Previous studies quantifying the effects of lowering aromatic content are listed in Table 18. These studies tested four-stroke heavy-duty diesel engines (HDD). Although staff would have preferred to analyze data from tests performed on various locomotive engines to determine the effects of lower aromatics, these HDD tests are the best available resources to determine the fuel corrections factors due to lower aromatics.

| STUDY           | Sulfur<br>(ppm) | Aromatics<br>(Volume %) | PM Reduction<br>(%) |
|-----------------|-----------------|-------------------------|---------------------|
| Chevron (1984)  | 2,800           | 31                      | Baseline            |
| Chevron (1984)  | 500             | 31                      | 23.8                |
| Chevron (1984)  | 500             | 20                      | 32.2                |
| Chevron (1984)  | 500             | 15                      | 36.0                |
| Chevron (1984)  | 500             | 10                      | 39.9                |
|                 |                 |                         |                     |
| CRC-SWRI (1988) | 500             | 31                      | Baseline            |
| CRC-SWRI (1988) | 500             | 20                      | 9                   |
| CRC-SWRI (1988) | 500             | 15                      | 13                  |
| CRC-SWRI (1988) | 500             | 10                      | 17                  |

Table 18. Effect of Lowering Aromatic Volume on PM Emission

Source : http://www.arb.ca.gov/fuels/diesel/diesel.htm

Using a linear regression of the data from the Table 18, the PM reduction from a change in aromatic content can be described as :

#### 4-Stroke Engine

PM reduction = [(Difference in Aromatic Volume) \* 0.785 + 0.05666]/100

For 2-Stroke engines, staff used test data from SWRI's report published in 2000 entitled "Diesel Fuel Effects on Locomotive Exhaust Emissions" to estimate indirectly the potential PM reduction for 2-Stroke engines due to lower aromatics. Table 19 lists the summary of the test results.

Table 19. SWRI 2000 Study Summary Results

| Locomotive | Aromatic       | PM         | PM %       |
|------------|----------------|------------|------------|
| Engine     | Changes        | Difference | Difference |
| _          | (Volume %)     | (g/bhp-hr) |            |
| 4 Stroke   | 28.35 to 21.84 | 0.080      | 37.6%      |
| 2 Stroke   | 28.35 to 21.84 | 0.056      | 14.1%      |

Staff assumes that PM emission reduction from 2-Stroke engine will have a factor of 0.38 (14.1%/37.6%) to the 4-Stroke engine PM emission reduction.

Currently, the baseline locomotive emissions inventory assumes an aromatic total volume percent of 31%. Table 21 describes the changes in PM emission due to changes in total volume percent of aromatics.

Table 20. Examples of PM Reductions Due to Changes in Aromatic Total Volume Percent

| Aromatic | volume      | PM Reduction PM Reduction |          | PM Reduction |
|----------|-------------|---------------------------|----------|--------------|
| Percent  |             |                           |          |              |
| From     | To 2 Stroke |                           | 4 Stroke | Composite    |
| 31       | 28          | 0.9%                      | 2.4%     | 1.3%         |
| 31       | 19          | 3.6%                      | 9.5%     | 5.1%         |
| 31       | 31 10 6.3   |                           | 16.5%    | 8.9%         |

\*composite is 75% 2 Stroke Engine and 25% 4 Stroke Engine

Table 21, Table 22, and Table 23 show the PM emission reduction for the different type of fuels used in the state.

Table 21. PM Emission Percent Change of Line-Haul Due to Aromatics, Statewide

| Calendar<br>Year | CARB<br>Aromatic<br>Volume | EPA<br>Aromatic<br>Volume | Off-road<br>Aromatic<br>Volume | Weighted<br>Aromatic<br>Volume | PM Emission<br>Percent<br>Change |
|------------------|----------------------------|---------------------------|--------------------------------|--------------------------------|----------------------------------|
|                  | (%)                        | (%)                       | (%)                            | (%)                            |                                  |
| 1992             | 31                         | 31                        | 31                             | 31.00                          | 0.00                             |
| 1993             | 10                         | 31                        | 31                             | 31.00                          | 0.00                             |
| 1994             | 10                         | 31                        | 31                             | 31.00                          | 0.00                             |
| 1995             | 10                         | 31                        | 31                             | 31.00                          | 0.00                             |
| 1996             | 10                         | 31                        | 31                             | 31.00                          | 0.00                             |
| 1997             | 10                         | 31                        | 31                             | 31.00                          | 0.00                             |
| 1998-2001        | 10                         | 31                        | 31                             | 30.18                          | -0.004                           |
| 2002-2006        | 10                         | 31                        | 31                             | 29.05                          | -0.009                           |
| 2007+            | 10                         | 31                        | 31                             | 29.05                          | -0.009                           |

| Interstate        | Air   | 1993-2001       | 2002+          |
|-------------------|-------|-----------------|----------------|
| Locomotive        | Basin | Weighted        | Weighted       |
|                   |       | Aromatic Aromat |                |
|                   |       | Volume Percent  | Volume Percent |
| Class I Line Haul | SCC   | 31.0            | 31.0           |
|                   | MC    | 31.0            | 26.6           |
|                   | MD    | 30.0            | 29.8           |
|                   | NEP   | 31.0            | 27.9           |
|                   | SC    | 31.0            | 31.0           |
|                   | SF    | 28.6            | 23.1           |
|                   | SJV   | 29.1            | 29.4           |
|                   | SS    | 31.0            | 31.0           |
|                   | SV    | 31.0            | 27.4           |

Table 22. Class I Line Haul Weighted Aromatic Volume Percent by Air Basin

Table 23. PM Emission Reduction from Intrastate Locomotives Due to Aromatics by Air Basin, 1993+

| Intrastate                  | Air   | CARB     | EPA      | Nonroad  | Weighted | PM Emission |
|-----------------------------|-------|----------|----------|----------|----------|-------------|
| Locomotive                  | Basin | Aromatic | Aromatic | Aromatic | Aromatic | Reduction   |
|                             |       | Volume   | Volume   | Volume   | Volume   | Percent     |
|                             |       | Percent  | Percent  | Percent  | Percent  |             |
| Class I                     | SC    | 10       | 31       | 31       | 29.0     | -0.9%       |
| Local/Switcher              |       |          |          |          |          |             |
|                             | SJV   | 10       | 31       | 31       | 25.2     | -2.4%       |
|                             | MD    | 10       | 31       | 31       | 31.0     | 0.0%        |
|                             | BA    | 10       | 31       | 31       | 13.9     | -7.2%       |
|                             | SD    | 10       | 31       | 31       | 13.2     | -7.5%       |
|                             | SV    | 10       | 31       | 31       | 13.2     | -7.5%       |
|                             | SCC   | 10       | 31       | 31       | 13.2     | -7.5%       |
| Class III<br>Local/Switcher | SC    | 10       | 31       | 31       | 31.0     | 0.0%        |
|                             | SJV   | 10       | 31       | 31       | 18.6     | -5.2%       |
|                             | MD    | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | BA    | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | SD    | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | SV    | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | SCC   | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | NEP   | 10       | 31       | 31       | 26.6     | -1.9%       |
|                             | MC    | 10       | 31       | 31       | 31.0     | 0.0%        |
|                             | NC    | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | NCC   | 10       | 31       | 31       | 10.0     | -8.8%       |
| Industrial/Military         | SC    | 10       | 31       | 31       | 24.0     | -3.0%       |
|                             | SJV   | 10       | 31       | 31       | 24.0     | -3.0%       |
|                             | MD    | 10       | 31       | 31       | 24.0     | -3.0%       |
|                             | BA    | 10       | 31       | 31       | 24.0     | -3.0%       |
|                             | NEP   | 10       | 31       | 31       | 24.0     | -3.0%       |
|                             | SD    | 10       | 31       | 31       | 24.0     | -3.0%       |
|                             | SV    | 10       | 31       | 31       | 24.0     | -3.0%       |
|                             | SCC   | 10       | 31       | 31       | 24.0     | -3.0%       |
| Passenger                   | SC    | 10       | 31       | 31       | 10.8     | -8.5%       |
|                             | SJV   | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | BA    | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | SD    | 10       | 31       | 31       | 10.0     | -8.8%       |
|                             | SV    | 10       | 31       | 31       | 10.0     | -8.8%       |
| Source : Euel Estimate      | SCC   | 10       | 31       | 31       | 12.1     | -8.0%       |

Source : Fuel Estimate from http://www.arb.ca.gov/regact/carblohc/carblohc.htm

#### <u>Sulfur</u>

Currently, the baseline locomotive emissions inventory assumes an average fuel sulfur content of 2700 ppm. Industry has provided information on the sulfur content of the fuel that is currently being used by intrastate locomotives. Together with industry data and prior locomotive tests, staff believes a fuel correction factor should be incorporated into the model.

Table 24 shows the test data collected by the ARB, U.S. EPA, and others, where locomotive engines were tested on different fuel sulfur levels.

| Locomotive<br>Engine      | Fuel Properties<br>Sulfur Content | Percent<br>Change<br>PM | Percent<br>Change<br>NOX | Percent<br>Change<br>CO | Percent<br>Change<br>HC | Source                    |
|---------------------------|-----------------------------------|-------------------------|--------------------------|-------------------------|-------------------------|---------------------------|
|                           |                                   |                         |                          |                         |                         |                           |
| EMD 12-645E3B             | 100/3300ppm                       | -0.29                   | -0.06                    | 0.17                    | 0.07                    | Fritz, 1991               |
| GE DASH9-40C              | 330/3150ppm                       | -0.43                   | -0.07                    | -0.05                   | -0.18                   | Fritz (1995,<br>EPA/SWRI) |
| MK 5000C                  | 330/3150ppm                       | -0.71                   | -0.03                    | -0.03                   | -0.07                   | Fritz (1995,<br>EPA/SWRI) |
| EMD 16-710G3B,<br>SD70MAC | 330/3150ppm                       | -0.38                   | -0.08                    | -0.30                   | -0.01                   | Fritz (1995,<br>EPA/SWRI) |
| EMD SD70MAC               | 50/330ppm                         | -0.03                   | -0.04                    | 0.07                    | 0.01                    | Fritz (ARB/AAR,<br>2000)  |
| EMD SD70MAC               | 50/4760ppm                        | -0.16                   | -0.06                    | 0.08                    | 0.03                    | Fritz (ARB/AAR,<br>2000)  |
| EMD SD70MAC               | 330/4760ppm                       | -0.13                   | -0.03                    | 0.01                    | 0.01                    | Fritz (ARB/AAR,<br>2000)  |
| GE DASH9-44CW             | 50/330ppm                         | -0.03                   | -0.03                    | -0.01                   | -0.04                   | Fritz (ARB/AAR,<br>2000)  |
| GE DASH9-44CW             | 50/4760ppm                        | -0.39                   | -0.07                    | -0.02                   | 0.02                    | Fritz (ARB/AAR,<br>2000)  |
| GE DASH9-44CW             | 330/4760ppm                       | -0.38                   | -0.04                    | -0.02                   | 0.06                    | Fritz (ARB/AAR,<br>2000)  |
| GE DASH9-44CW             | 50/3190ppm                        | -0.27                   | -0.05                    | -0.03                   | 0.01                    | Fritz (ARB/AAR,<br>2000)  |
| GE DASH9-44CW             | 330/3190ppm                       | -0.25                   | -0.02                    | -0.02                   | 0.04                    | Fritz (ARB/AAR,<br>2000)  |
| GE DASH9-44CW             | 3190/4760ppm                      | -0.17                   | 02                       | 0.00                    | 0.02                    | Fritz (ARB/AAR,<br>2000)  |
| Average                   |                                   | -0.28                   | -0.05                    | -0.01                   | 0.00                    |                           |

| Table 24 Locomotive Engine  | Test with Different Sulfur Lovels   |
|-----------------------------|-------------------------------------|
| Table 24. LOCOTIONVE ENGINE | e Test with Different Sulfur Levels |

From the above table, staff concluded that HC and CO emissions are not affected by different sulfur levels in the fuel. From these tests, staff computed the changes in PM emissions associated with changes in sulfur level. Staff corrected the PM emissions to account for the aromatic differences because the test data were not tested at the same aromatic volume percent. Because the locomotive engine testing was performed at various fuel sulfur levels (some at 330 ppm vs. 3190 ppm and some at 50 ppm vs. 3190 ppm), staff cannot assume the average percent change in PM emission is characteristics over the whole range of sulfur levels. From previous studies that staff has analyzed, it is possible to generate estimates of the percent change at various sulfur levels and throttle positions. Locomotive engines have 8 throttle positions plus dynamic braking and idle. During idle, braking, and throttle positions 1 and 2, there are no significant differences in emissions attributable to sulfur level. For the GE 4-

stroke engine, effect of sulfur on PM for throttle positions 3 to 8 can be defined by using the following equations:

Equations to correct for PM for GE (4-Stroke) engines

Notch 8 : PM (g/bhp-hr) = 0.00001308 \* (sulfur level,ppm) + 0.0967 Notch 7 : PM (g/bhp-hr) = 0.00001102 \* (sulfur level,ppm) + 0.0845 Notch 6 : PM (g/bhp-hr) = 0.00000654 \* (sulfur level,ppm) + 0.1037 Notch 5 : PM (g/bhp-hr) = 0.00000548 \* (sulfur level,ppm) + 0.1320 Notch 4 : PM (g/bhp-hr) = 0.00000663 \* (sulfur level,ppm) + 0.1513 Notch 3 : PM (g/bhp-hr) = 0.00000979 \* (sulfur level,ppm) + 0.1565

For the EMD 2-stroke engine, throttle positions 3 to 8 can be defined by using the following equations:

Equations to correct for PM for EMD (2-Stroke) engines

| Notch 8 : PM (g/bhp-hr) = 0.0000123 * (sulfur level,ppm) + 0.3563 |
|-------------------------------------------------------------------|
| Notch 7 : PM (g/bhp-hr) = 0.0000096 * (sulfur level,ppm) + 0.2840 |
| Notch 6 : PM (g/bhp-hr) = 0.0000134 * (sulfur level,ppm) + 0.2843 |
| Notch 5 : PM (g/bhp-hr) = 0.0000150 * (sulfur level,ppm) + 0.2572 |
| Notch 4 : PM (g/bhp-hr) = 0.0000125 * (sulfur level,ppm) + 0.2629 |
| Notch 3 : PM (g/bhp-hr) = 0.0000065 * (sulfur level,ppm) + 0.2635 |

| Sulfur Le | vel (ppm) | PM Reduction | PM Reduction | PM Reduction |
|-----------|-----------|--------------|--------------|--------------|
| From      | То        | 2 Stroke     | 4 Stroke     | Composite    |
| 3100      | 1900      | 4.1%         | 8.4%         | 5.2%         |
| 3100      | 1300      | 6.1% 12.6%   |              | 7.7%         |
| 1300      | 330       | 3.5%         | 7.9%         | 4.6%         |
| 1300      | 140       | 4.2%         | 9.5%         | 5.5%         |
| 140       | 15        | 1.8%         | 4.0%         | 2.4%         |

Table 25. Examples of PM Reductions Due to Changes in Sulfur Level

\*composite is 75% 2 Stroke Engine and 25% 4 Stroke Engine

Data provided by industry show that when operating in California, the three main types of diesel fuel used in locomotive engines consists of CARB diesel, EPA On-Highway diesel fuel, and EPA Off-road or High Sulfur diesel fuel. Four-stroke engines and two-stroke engines show different characteristics with respect to sulfur content. From the BAH report, 4-stroke engines make up about 25%, and 2-stroke engines make up about 75% of the locomotive engine fleet. Combining industry data, 4-stroke/2-stroke engine percent change and fleet makeup, Table 26 shows the percent change in PM emissions by year for the line-haul segment of the fleet.

| Calendar  | CARB    | EPA     | EPA      | Weighted | 4-Stroke | 2-Stroke | Weighted |
|-----------|---------|---------|----------|----------|----------|----------|----------|
| Year      | Sulfur  | On-     | Off-road | Fuel     | Engines  | Engines  | PM       |
|           | Content | Highway | Sulfur   | Sulfur   | PM       | ΡM       | Emission |
|           |         | Sulfur  | Content  | Content  | Percent  | Percent  | Percent  |
|           |         | Content |          |          | Change   | Change   | Change   |
| 1992      | 3100    | 3100    | 3100     | 3100     | 0.03     | 0.01     | 0.015    |
| 1993      | 500     | 330     | 3100     | 2919     | 0.02     | 0.01     | 0.009    |
| 1994      | 150     | 330     | 3100     | 2740     | 0.01     | 0.00     | 0.003    |
| 1995      | 140     | 330     | 3100     | 2557     | -0.01    | 0.00     | -0.006   |
| 1996      | 140     | 330     | 3100     | 2377     | -0.02    | -0.01    | -0.014   |
| 1997      | 140     | 330     | 3100     | 2196     | -0.04    | -0.02    | -0.022   |
| 1998-2001 | 140     | 330     | 3100     | 1899     | -0.06    | -0.03    | -0.035   |
| 2002-2006 | 140     | 330     | 3100     | 1312     | -0.10    | -0.05    | -0.061   |
| 2007+     | 15      | 15      | 330      | 129      | -0.19    | -0.09    | -0.113   |

Table 26. PM Emission Percent Change of Line-Haul Due to Sulfur, Statewide

Table 27 and Table 28 provide further details of weighted fuel sulfur level by air basin. Weighted sulfur levels vary significantly from one air basin to another.

| Interstate        | Air   | 1998     | 2002-2006 | 2007+    |
|-------------------|-------|----------|-----------|----------|
| Locomotive        | Basin | Weighted | Weighted  | Weighted |
|                   |       | Sulfur   | Sulfur    | Sulfur   |
|                   |       | ppm      | ppm       | ppm      |
| Class I Line Haul | SCC   | 1023     | 467       | 31       |
|                   | MC    | 2333     | 1149      | 113      |
|                   | MD    | 2352     | 1767      | 180      |
|                   | NEP   | 2560     | 1632      | 166      |
|                   | SC    | 1985     | 1472      | 145      |
|                   | SF    | 1711     | 899       | 88       |
|                   | SJV   | 1600     | 868       | 78       |
|                   | SS    | 2425     | 1328      | 129      |
|                   | SV    | 2473     | 1456      | 147      |

Table 27. Class I Line Haul Weighted Fuel Sulfur by Air Basin

| Intrastate Locomotive    | Air   | 1993     | 1994-2006 | 2007+    |
|--------------------------|-------|----------|-----------|----------|
|                          | Basin | Weighted | Weighted  | Weighted |
|                          | Dasin | Sulfur   | Sulfur    | Sulfur   |
|                          |       | ppm      | ppm       | ppm      |
| Class I Local/Switcher   | SC    | 346      | 312       | 15       |
|                          | SJV   | 377      | 278       | 15       |
|                          | MD    | 330      | 330       | 15       |
|                          | BA    | 468      | 175       | 15       |
|                          | SD    | 475      | 169       | 15       |
|                          | SV    | 475      | 169       | 15       |
|                          | SCC   | 475      | 169       | 15       |
| Class III Local/Switcher | SC    | 388      | 388       | 21       |
|                          | SJV   | 1016     | 804       | 80       |
|                          | MD    | 500      | 140       | 15       |
|                          | BA    | 500      | 140       | 15       |
|                          | SD    | 500      | 140       | 15       |
|                          | SV    | 500      | 140       | 15       |
|                          | SCC   | 500      | 140       | 15       |
|                          | NEP   | 2628     | 2553      | 264      |
|                          | MC    | 1573     | 1573      | 152      |
|                          | NC    | 500      | 140       | 15       |
|                          | NCC   | 500      | 140       | 15       |
| Industrial/Military      | SC    | 1340     | 1220      | 120      |
|                          | SJV   | 1340     | 1220      | 120      |
|                          | MD    | 1340     | 1220      | 120      |
|                          | BA    | 1340     | 1220      | 120      |
|                          | NEP   | 1340     | 1220      | 120      |
|                          | SD    | 1340     | 1220      | 120      |
|                          | SV    | 1340     | 1220      | 120      |
|                          | SCC   | 1340     | 1220      | 120      |
| Passenger                | SC    | 493      | 147       | 15       |
|                          | SJV   | 500      | 140       | 15       |
|                          | BA    | 500      | 140       | 15       |
|                          | SD    | 500      | 140       | 15       |
|                          | SV    | 500      | 140       | 15       |
|                          | SCC   | 483      | 159       | 15       |

Table 28. Intrastate Locomotives Weighted Fuel Sulfur by Air Basin

Appendix B,C, and D contains the fuel correction factors for PM, NOx, and SOx emissions by air basin.

## **Revised Locomotive Emission Inventory**

Tables 29-31 shows the revised locomotive emission inventory for calendar years 2000,2010 and 2020.

| TYPE                 | HC   | CO    | NOx    | PM   | SOx  |
|----------------------|------|-------|--------|------|------|
| Intermodal/Line-Haul | 5.61 | 18.21 | 113.03 | 2.68 | 6.22 |
| Local/Short-Run      | 1.01 | 3.33  | 22.58  | 0.41 | 0.22 |
| Mixed/Bulk           | 2.13 | 6.85  | 48.95  | 1.09 | 2.20 |
| Passenger/Amtrak     | 0.53 | 1.01  | 12.21  | 0.29 | 0.05 |
| Yard/Switcher        | 0.55 | 1.46  | 10.43  | 0.20 | 0.09 |
| Total                | 9.83 | 30.86 | 207.20 | 4.67 | 8.78 |

 Table 29.
 2000 Statewide Locomotive Emission Inventory, tons/day

Table 30. 2010 Statewide Locomotive Emission Inventory, tons/day

| TYPE                 | HC   | CO    | NOx    | PM   | SOx  |
|----------------------|------|-------|--------|------|------|
| Intermodal/Line-Haul | 5.56 | 21.90 | 71.35  | 2.40 | 0.60 |
| Local/Short-Run      | 0.77 | 2.99  | 12.03  | 0.30 | 0.01 |
| Mixed/Bulk           | 2.11 | 8.24  | 29.46  | 0.99 | 0.19 |
| Passenger/Amtrak     | 0.58 | 1.14  | 12.29  | 0.31 | 0.02 |
| Yard/Switcher        | 0.47 | 1.29  | 6.78   | 0.17 | 0.01 |
| Total                | 9.49 | 35.56 | 131.91 | 4.17 | 0.83 |

| Table 31. | 2020 Statewide | Locomotive Emission | Inventory, tons/day |
|-----------|----------------|---------------------|---------------------|
|           |                |                     |                     |

| TYPE                 | HC   | CO    | NOx    | PM   | SOx  |
|----------------------|------|-------|--------|------|------|
| Intermodal/Line-Haul | 5.60 | 25.84 | 74.33  | 2.38 | 0.71 |
| Local/Short-Run      | 0.67 | 2.99  | 11.17  | 0.26 | 0.01 |
| Mixed/Bulk           | 2.13 | 9.72  | 31.14  | 0.98 | 0.23 |
| Passenger/Amtrak     | 0.56 | 1.14  | 11.72  | 0.30 | 0.02 |
| Yard/Switcher        | 0.44 | 1.29  | 6.22   | 0.16 | 0.01 |
| Total                | 9.40 | 40.98 | 134.58 | 4.08 | 0.98 |

# Appendix A

Methodology to Calculate Locomotive Inventory

## Methodology

The methodology and assumptions used for estimating locomotive emissions consists of several steps taken from the Booz-Allen Hamilton's Locomotive Emission Study report (<u>http://www.arb.ca.gov/app/library/libcc.php</u>). First, emission factor data from various engine manufacturers such as EMD and General Electric (GE) must be gathered to calculate average emission factors for locomotives operated by the railroad companies. Second, train operations data, including throttle position profiles and time spent on various types of operations from different railroad companies needs to be estimated. Finally, the locomotive emission inventory can be calculated using train operations data, emission factors, and throttle position profiles.

# Step 1 - Average Emission Factors

Engine emission factors are required for the different locomotive engines manufactured by the major locomotive suppliers EMD or GE. Emission factors are obtained from testing done by either the engine manufacturers or by Southwest Research Institute, a consulting company that has performed many tests on locomotive engines. Table A-1 lists the available emission factors.

| [            |              |                                |
|--------------|--------------|--------------------------------|
| Engine       | Engine Model | Locomotive Model               |
| Manufacturer |              |                                |
| EMD          | 12-567BC     | SW10                           |
| EMD          | 12-645E      | SW1500,MP15,GP15-1             |
| EMD          | 16-567C      | GP9                            |
| EMD          | 16-645E      | GP38,GP38-2, GP28              |
| EMD          | 12-645E3B    | GP39-2                         |
| EMD          | 12-645E3     | GP39-2, SD39                   |
| EMD          | 16-645E3     | GP40, SD40, F40PH              |
| EMD          | 16-645E3B    | GP40-2, SD40-2, SDF40-2, F40PH |
| EMD          | 16-645F3     | GP40X, GP50, SD45              |
| EMD          | 16-645F3B    | SD50                           |
| EMD          | 20-645E3     | SD45,SD45-2, F45, FP45         |
| EMD          | 16-710G3     | GP60, SD60, SD60M              |
| GE           | 127FDL2500   | B23-7                          |
| GE           | 127FDL3000   | SF30B                          |
| GE           | 167FDL3000   | C30-7, SF30C                   |
| GE           | 167FDL4000   | B40-8                          |
| -            | 1000         |                                |

Table A-1. Available Emission Factors for Different Locomotive Engines

Source: BAH report, 1992

Next, the locomotive roster from the largest railroad companies operating in the state were obtained. Table A-2 lists the locomotive roster for railroad companies in 1987.

| Table A-2. | Locomotive F | Roster 1987 |
|------------|--------------|-------------|
|------------|--------------|-------------|

|          |              |              |           |       |           | Type of Se | rvice         |
|----------|--------------|--------------|-----------|-------|-----------|------------|---------------|
| Railroad | Engine       | Engine Model | Horspower | Units | Line Haul | Local      | Yard/Switcher |
| Company  | Manufacturer |              | Rating    |       |           |            |               |
| ATSF     | EMD          | 16-567BC     | 1500      | 211   |           |            | Х             |
| ATSF     | EMD          | 16-567C      | 1750      | 53    |           |            | Х             |
| ATSF     | EMD          | 16-567D2     | 2000      | 71    |           | Х          | Х             |
| ATSF     | EMD          | 16-645E      | 2000      | 69    |           | Х          | Х             |
| ATSF     | EMD          | 12-645E3     | 2300      | 62    |           | Х          |               |
| ATSF     | EMD          | 12-645E3B    | 2300      | 60    |           | Х          |               |
| ATSF     | EMD          | 16-645E3     | 2500      | 231   | Х         | Х          |               |
| ATSF     | EMD          | 16-645E3     | 3000      | 18    | Х         | Х          |               |
| ATSF     | EMD          | 16-645E3B    | 3000      | 203   | Х         | Х          |               |
| ATSF     | EMD          | 16-645F3     | 3500      | 52    | Х         |            |               |
| ATSF     | EMD          | 16-645F3B    | 3600      | 15    | Х         |            |               |
| ATSF     | EMD          | 20-645E3     | 3600      | 243   | Х         |            |               |
| ATSF     | EMD          | 16-710G3     | 3800      | 20    | Х         |            |               |
| ATSF     | GE           | GE-12        | 2350      | 60    |           | Х          |               |
| ATSF     | GE           | GE-12        | 3000      | 10    | Х         | Х          |               |
| ATSF     | GE           | GE-16        | 3000      | 226   | Х         | Х          |               |

| ATSF             | GE  | GE-16     | 3600 | 43  | Х |   |   |
|------------------|-----|-----------|------|-----|---|---|---|
| ATSF             | GE  | GE-16     | 3900 | 3   | Х |   |   |
| ATSF             | GE  | GE-16     | 4000 | 20  | Х |   |   |
| Union Pacific    | EMD | 16-645BC  | 1200 | 56  |   |   | Х |
| Union Pacific    | EMD | 12-567A   | 1200 | 12  |   |   | Х |
| Union Pacific    | EMD | 12-645E   | 1500 | 281 |   |   | Х |
| Union Pacific    | EMD | 16-567CE  | 1500 | 35  |   |   | Х |
| Union Pacific    | EMD | 16-645E   | 2000 | 365 |   | Х | Х |
| Union Pacific    | EMD | 12-645E3C | 2300 | 24  |   | Х |   |
| Union Pacific    | EMD | 16-567D3A | 2500 | 16  |   | Х |   |
| Union Pacific    | EMD | 16-645E3  | 3000 | 828 | Х | Х |   |
| Union Pacific    | EMD | 16-645E3B | 3000 | 446 | Х | Х |   |
| Union Pacific    | EMD | 16-645F3  | 3500 | 36  | Х |   |   |
| Union Pacific    | EMD | 16-645F3B | 3600 | 60  | Х |   |   |
| Union Pacific    | EMD | 16-710G3  | 3800 | 227 | Х |   |   |
| Union Pacific    | GE  | GE-12     | 2300 | 106 |   | Х |   |
| Union Pacific    | GE  | GE-12     | 3000 | 57  | Х | Х |   |
| Union Pacific    | GE  | GE-16     | 3000 | 156 | Х | Х |   |
| Union Pacific    | GE  | GE-16     | 3750 | 60  | Х |   |   |
| Union Pacific    | GE  | GE-16     | 3800 | 256 | Х |   |   |
| Southern Pacific | EMD | 12-567C   | 1200 | 11  |   |   | Х |
| Southern Pacific | EMD | 12-645E   | 1500 | 286 |   |   | Х |
| Southern Pacific | EMD | 16-567BC  | 1500 | 37  |   |   | Х |
| Southern Pacific | EMD | 16-567C   | 1750 | 326 |   | Х |   |
| Southern Pacific | EMD | 16-567D2  | 2000 | 145 |   | Х |   |
| Southern Pacific | EMD | 16-645E   | 2000 | 84  |   | Х |   |
| Southern Pacific | EMD | 12-645E3  | 2300 | 12  |   | Х |   |
| Southern Pacific | EMD | 16-645E3  | 2500 | 137 | Х | Х |   |
| Southern Pacific | EMD | 16-645E3  | 3000 | 92  | Х |   |   |
| Southern Pacific | EMD | 16-645E3B | 3000 | 353 | Х |   |   |
| Southern Pacific | EMD | 16-645F3  | 3500 | 4   | Х |   |   |
| Southern Pacific | EMD | 20-645E3  | 3600 | 425 | Х |   |   |
| Southern Pacific | EMD | 16-710G3  | 3800 | 65  | Х |   |   |
| Southern Pacific | GE  | GE-12     | 2300 | 15  |   | Х |   |
| Southern Pacific | GE  | GE-12     | 3000 | 107 | Х |   |   |
| Southern Pacific | GE  | GE-16     | 3600 | 20  | Х |   |   |
| Southern Pacific | GE  | GE-16     | 3900 | 92  | Х |   |   |

Source : BAH report, 1992

Using the available emission factors and the locomotive rosters, the average emission factors for each class of service can be calculated. Emission factors for models that were not available were assigned an emission factor based on horsepower rating and the number of cylinders from similar engine models.

## Step 2 - Throttle Position Profiles and Train Operations Data

The railroad companies provided throttle position profiles. Locomotive engines operate at eight different constant loads and speeds called throttle notches. In

addition, several other settings (idle and dynamic brake) are also common. For line haul and local operations, profiles were obtained from Train Performance Calculation (TPC) data and actual event recorder data, which are summarized in the BAH report.

For line haul operations, the data was modified to account for additional idle time between dispatch. Data supplied by Atchison, Topeka and Santa Fe (ATSF) indicates that the turnaround time for line haul locomotives in yards is approximately eight hours.

For local operations, several assumptions were used to develop throttle profiles. First, ten hours was used as an average hours per assignment. Second, the additional average idle time per day per locomotive was assumed to be ten hours.

The switch engine duty cycle is based upon actual tape data supplied by the ATSF railroad company on a switch engine that operated over a 2-day period. Yard engines are assumed to operate 350 days per year, with 2 weeks off for inspections and maintenance.

| Line Haul               | Local                   | Yard/Switcher            |  |  |  |  |
|-------------------------|-------------------------|--------------------------|--|--|--|--|
| Train type              | Average trailing tons   | Number of units assigned |  |  |  |  |
| Number of runs per year | Number of runs per year | Number of assignments    |  |  |  |  |
| Average horsepower      | Average horsepower      | Average horsepower       |  |  |  |  |
| Average units           | Average units           |                          |  |  |  |  |
| Origin/destination      | Origin/destination      |                          |  |  |  |  |
| Link miles              |                         |                          |  |  |  |  |

Train operations data provided by the railroad companies included :

# Step 3 - Calculate Locomotive Emission Inventory

Emission inventories are calculated on a train-by-train basis using train operations data, average emission factor, and throttle position profiles.

Emission Inventory = Emission factor x average horsepower x time in notch per train x number of runs per year

Appendix B PM Fuel Correction Factor by Air Basin

| Interstate Loo | Air Basin | PM Fuel Correcti | on Factor |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------|-----------|------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                |           | pre 1993         | 1993      | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007+ |
| Class I Line   | ISCC      | 1.000            | 0.991     | 0.982 | 0.973 | 0.964 | 0.955 | 0.937 | 0.931 | 0.925 | 0.919 | 0.913 | 0.913 | 0.913 | 0.913 | 0.913 | 0.883 |
|                | MC        | 1.000            | 0.998     | 0.996 | 0.994 | 0.992 | 0.990 | 0.987 | 0.971 | 0.955 | 0.939 | 0.923 | 0.923 | 0.923 | 0.923 | 0.923 | 0.867 |
|                | MD        | 1.000            | 0.998     | 0.995 | 0.993 | 0.991 | 0.988 | 0.984 | 0.978 | 0.973 | 0.967 | 0.962 | 0.962 | 0.962 | 0.962 | 0.962 | 0.884 |
|                | NEP       | 1.000            | 0.999     | 0.998 | 0.998 | 0.997 | 0.996 | 0.995 | 0.983 | 0.971 | 0.959 | 0.947 | 0.947 | 0.947 | 0.947 | 0.947 | 0.875 |
|                | SC        | 1.000            | 0.996     | 0.993 | 0.989 | 0.986 | 0.982 | 0.975 | 0.970 | 0.965 | 0.960 | 0.955 | 0.955 | 0.955 | 0.955 | 0.955 | 0.888 |
|                | SF        | 1.000            | 0.993     | 0.987 | 0.980 | 0.974 | 0.967 | 0.954 | 0.940 | 0.926 | 0.912 | 0.898 | 0.898 | 0.898 | 0.898 | 0.898 | 0.851 |
|                | SJV       | 1.000            | 0.993     | 0.986 | 0.979 | 0.972 | 0.965 | 0.952 | 0.944 | 0.937 | 0.930 | 0.923 | 0.923 | 0.923 | 0.923 | 0.923 | 0.878 |
|                | SS        | 1.000            | 0.999     | 0.997 | 0.996 | 0.995 | 0.993 | 0.991 | 0.980 | 0.970 | 0.959 | 0.949 | 0.949 | 0.949 | 0.949 | 0.949 | 0.887 |
|                | SV        | 1.000            | 0.993     | 0.986 | 0.979 | 0.972 | 0.965 | 0.952 | 0.948 | 0.945 | 0.942 | 0.939 | 0.939 | 0.939 | 0.939 | 0.939 | 0.873 |

| Intrastate Loc   | Air Basin | PM Fuel Correcti | on Factor |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|------------------|-----------|------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  |           | pre 1993         | 1993      | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  |
| Class I Local/   | SC        | 1.000            | 0.890     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.86  |
|                  | SJV       | 1.000            | 0.863     | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.858 | 0.83  |
|                  | MD        | 1.000            | 0.906     | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906 | 0.88  |
|                  | BA        | 1.000            | 0.778     | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.74  |
|                  | SD        | 1.000            | 0.772     | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.74  |
|                  | SV        | 1.000            | 0.772     | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.74  |
|                  | SCC       | 1.000            | 0.772     | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 | 0.74  |
| Class III Loca   | SC        | 1.000            | 0.909     | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 | 0.88  |
|                  | SJV       | 1.000            | 0.839     | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.830 | 0.78  |
|                  | MD        | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | BA        | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | SD        | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | SV        | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | SCC       | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | NEP       | 1.000            | 0.963     | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.960 | 0.858 |
|                  | MC        | 1.000            | 0.959     | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.959 | 0.888 |
|                  | NC        | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.717 |
|                  | NCC       | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.722 |
| Industrial/Milit | SC        | 1.000            | 0.894     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.831 |
|                  | SJV       | 1.000            | 0.894     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.831 |
|                  | MD        | 1.000            | 0.894     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.831 |
|                  | BA        | 1.000            | 0.894     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.83  |
|                  | NEP       | 1.000            | 0.894     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.83  |
|                  | SD        | 1.000            | 0.894     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.83  |
|                  | SV        | 1.000            | 0.894     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.83  |
|                  | SCC       | 1.000            | 0.894     | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.83  |
| Passenger        | SC        | 1.000            | 0.754     | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.739 | 0.72  |
|                  | SJV       | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | BA        | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | SD        | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | SV        | 1.000            | 0.749     | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.733 | 0.71  |
|                  | SCC       | 1.000            | 0.764     | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.749 | 0.73  |

01/05/07

A-5

APP-102

Appendix C NOx Fuel Correction Factor by Air Basin

| Interstate Loc | Air Basin | NOx Fuel Correct | ion Factor |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------|-----------|------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                |           | pre 1993         | 1993       | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007+ |
| Class I Line   | ISCC      | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |
|                | MC        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |
|                | MD        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |
|                | NEP       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |
|                | SC        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |
|                | SF        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |
|                | SJV       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |
|                | SS        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |
|                | SV        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 |

| Intrastate Loc   | Air Basin | NOx Fuel Correct | ion Factor |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
|------------------|-----------|------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
|                  |           | pre 1993         | 1993       | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007 |
| Class I Local/   | SC        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SJV       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | MD        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | BA        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SD        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SV        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SCC       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
| Class III Loca   | SC        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SJV       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | MD        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | BA        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SD        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SV        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SCC       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | NEP       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | MC        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | NC        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | NCC       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
| Industrial/Milit | SC        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SJV       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | MD        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | BA        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | NEP       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SD        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SV        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SCC       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
| Passenger        | SC        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SJV       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | BA        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SD        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SV        | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |
|                  | SCC       | 1.000            | 0.940      | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.940 | 0.94 |

01/05/07

A-6

APP-103

Appendix D SOx Fuel Correction Factor by Air Basin

| Interstate Loc | Air Basin | SOx Fuel Correct | ion Factor |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------|-----------|------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                |           | pre 1993         | 1993       | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007+ |
| Class I Line   | ISCC      | 1.000            | 0.896      | 0.793 | 0.689 | 0.586 | 0.482 | 0.379 | 0.327 | 0.276 | 0.225 | 0.173 | 0.173 | 0.173 | 0.173 | 0.173 | 0.011 |
|                | MC        | 1.000            | 0.977      | 0.955 | 0.932 | 0.909 | 0.887 | 0.864 | 0.755 | 0.645 | 0.535 | 0.426 | 0.426 | 0.426 | 0.426 | 0.426 | 0.042 |
|                | MD        | 1.000            | 0.979      | 0.957 | 0.936 | 0.914 | 0.893 | 0.871 | 0.817 | 0.763 | 0.709 | 0.654 | 0.654 | 0.654 | 0.654 | 0.654 | 0.067 |
|                | NEP       | 1.000            | 0.991      | 0.983 | 0.974 | 0.965 | 0.957 | 0.948 | 0.862 | 0.776 | 0.690 | 0.605 | 0.605 | 0.605 | 0.605 | 0.605 | 0.062 |
|                | SC        | 1.000            | 0.956      | 0.912 | 0.868 | 0.823 | 0.779 | 0.735 | 0.688 | 0.640 | 0.593 | 0.545 | 0.545 | 0.545 | 0.545 | 0.545 | 0.054 |
|                | SF        | 1.000            | 0.939      | 0.878 | 0.817 | 0.756 | 0.695 | 0.634 | 0.559 | 0.483 | 0.408 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0.033 |
|                | SJV       | 1.000            | 0.932      | 0.864 | 0.796 | 0.728 | 0.660 | 0.593 | 0.525 | 0.457 | 0.389 | 0.322 | 0.322 | 0.322 | 0.322 | 0.322 | 0.029 |
|                | SS        | 1.000            | 0.983      | 0.966 | 0.949 | 0.932 | 0.915 | 0.898 | 0.797 | 0.695 | 0.594 | 0.492 | 0.492 | 0.492 | 0.492 | 0.492 | 0.048 |
|                | SV        | 1.000            | 0.986      | 0.972 | 0.958 | 0.944 | 0.930 | 0.916 | 0.822 | 0.728 | 0.634 | 0.539 | 0.539 | 0.539 | 0.539 | 0.539 | 0.054 |

| Intrastate Loc   | Air Basin | SOx Fuel Correct | ion Factor |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|------------------|-----------|------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  |           | pre 1993         | 1993       | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007+ |
| Class I Local/   | SC        | 1.000            | 0.128      | 0.127 | 0.126 | 0.125 | 0.124 | 0.122 | 0.121 | 0.120 | 0.119 | 0.118 | 0.117 | 0.115 | 0.115 | 0.115 | 0.00  |
|                  | SJV       | 1.000            | 0.139      | 0.136 | 0.133 | 0.130 | 0.126 | 0.123 | 0.120 | 0.116 | 0.113 | 0.110 | 0.106 | 0.103 | 0.103 | 0.103 | 0.006 |
|                  | MD        | 1.000            | 0.122      | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.006 |
|                  | BA        | 1.000            | 0.173      | 0.164 | 0.154 | 0.144 | 0.134 | 0.124 | 0.114 | 0.104 | 0.095 | 0.085 | 0.075 | 0.065 | 0.065 | 0.065 | 0.006 |
|                  | SD        | 1.000            | 0.176      | 0.165 | 0.155 | 0.145 | 0.135 | 0.124 | 0.114 | 0.104 | 0.093 | 0.083 | 0.073 | 0.062 | 0.062 | 0.062 | 0.006 |
|                  | SV        | 1.000            | 0.176      | 0.165 | 0.155 | 0.145 | 0.135 | 0.124 | 0.114 | 0.104 | 0.093 | 0.083 | 0.073 | 0.062 | 0.062 | 0.062 | 0.006 |
|                  | SCC       | 1.000            | 0.176      | 0.165 | 0.155 | 0.145 | 0.135 | 0.124 | 0.114 | 0.104 | 0.093 | 0.083 | 0.073 | 0.062 | 0.062 | 0.062 | 0.006 |
| Class III Loca   |           | 1.000            | 0.144      | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.008 |
|                  | SJV       | 1.000            | 0.376      | 0.369 | 0.362 | 0.355 | 0.348 | 0.341 | 0.333 | 0.326 | 0.319 | 0.312 | 0.305 | 0.298 | 0.298 | 0.298 | 0.029 |
|                  | MD        | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | BA        | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | SD        | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | SV        | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | SCC       | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | NEP       | 1.000            | 0.973      | 0.971 | 0.968 | 0.966 | 0.963 | 0.961 | 0.958 | 0.956 | 0.953 | 0.951 | 0.948 | 0.946 | 0.946 | 0.946 | 0.098 |
|                  | MC        | 1.000            | 0.583      | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.056 |
|                  | NC        | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | NCC       | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
| Industrial/Milit |           | 1.000            | 0.496      | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 | 0.460 | 0.456 | 0.452 | 0.452 | 0.452 | 0.044 |
|                  | SJV       | 1.000            | 0.496      | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 | 0.460 | 0.456 | 0.452 | 0.452 | 0.452 | 0.044 |
|                  | MD        | 1.000            | 0.496      | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 | 0.460 | 0.456 | 0.452 | 0.452 | 0.452 | 0.044 |
|                  | BA        | 1.000            | 0.496      | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 | 0.460 | 0.456 | 0.452 | 0.452 | 0.452 | 0.044 |
|                  | NEP       | 1.000            | 0.496      | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 | 0.460 | 0.456 | 0.452 | 0.452 | 0.452 | 0.044 |
|                  | SD        | 1.000            | 0.496      | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 | 0.460 | 0.456 | 0.452 | 0.452 | 0.452 | 0.044 |
|                  | SV        | 1.000            | 0.496      | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 | 0.460 | 0.456 | 0.452 | 0.452 | 0.452 | 0.044 |
|                  | SCC       | 1.000            | 0.496      | 0.492 | 0.488 | 0.484 | 0.480 | 0.476 | 0.472 | 0.468 | 0.464 | 0.460 | 0.456 | 0.452 | 0.452 | 0.452 | 0.044 |
| Passenger        | SC        | 1.000            | 0.183      | 0.171 | 0.159 | 0.148 | 0.136 | 0.124 | 0.113 | 0.101 | 0.090 | 0.078 | 0.066 | 0.055 | 0.055 | 0.055 | 0.006 |
|                  | SJV       | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | BA        | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | SD        | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | SV        | 1.000            | 0.185      | 0.173 | 0.161 | 0.149 | 0.137 | 0.125 | 0.112 | 0.100 | 0.088 | 0.076 | 0.064 | 0.052 | 0.052 | 0.052 | 0.006 |
|                  | SCC       | 1.000            | 0.179      | 0.168 | 0.157 | 0.146 | 0.135 | 0.124 | 0.113 | 0.103 | 0.092 | 0.081 | 0.070 | 0.059 | 0.059 | 0.059 | 0.006 |

01/05/07

A-7

APP-104

# APPENDIX B

## EMISSION FACTOR DERIVATION AND EMFAC-WD 2006 OUTPUT FOR LHD DIESEL-FUELED TRUCK

#### CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

Emission Factors for Light Duty Diesel-Fueled Trucks Los Angeles Transportation Center, Los Angeles, CA

#### **Running Exhaust Emissions**

| Equipment | Equip. | Vehicle |       |       |      |      | Emissic | on Factors | (g/mi) |      |
|-----------|--------|---------|-------|-------|------|------|---------|------------|--------|------|
| Type      | ID     | Class   | Make  | Model | Year | ROG  | CO      | NOx        | DPM    | SOx  |
| Pickup    | 3518   | LHDD    | Dodge | 2500  | 2003 | 0.32 | 1.65    | 6.69       | 0.08   | 0.05 |
|           |        |         |       |       |      |      |         |            |        |      |

#### **Idling Exhaust Emissions**

| Equipment | Equip. | Vehicle |       |       |      |       | Emissie | on Factors | s (g/hr) |       |
|-----------|--------|---------|-------|-------|------|-------|---------|------------|----------|-------|
| Туре      | ID     | Class   | Make  | Model | Year | ROG   | CO      | NOx        | DPM      | SOx   |
| Pickup    | 3518   | LHDD    | Dodge | 2500  | 2003 | 3.173 | 26.300  | 75.051     | 0.753    | 0.357 |
|           |        |         |       |       |      |       |         |            |          |       |

Notes:

- 1. Emission factor calculations assumed an average speed of 15 mph.
- 2. Running exhaust emission factors calculated using the EMFAC-WD 2006 model with the BURDEN output option.
- 3. Idling exhaust emission factors for LHDT1 vehicles calculated using the EMFAC-WD 2006 model with the EMFAC output option.

Title : Statewide totals Avg Annual CYr 2005 Default Title Version : Emfac working draft V2.23.7.60616 Sp: 2.20.8+FCF+IM+Bugs+BER+Accr+IMDlg Run Date : 2006/10/05 13:37:10 Scen Year: 2005 Model year 2003 selected Season : Annual Area : Statewide totals Average I/M Stat : Enhanced Interim (2005) Using I/M schedule for area 59 Los Angeles (SC) Emissions: Tons Per Day

|                                | LHDT1 DSL |
|--------------------------------|-----------|
| Vehicles                       | 15991     |
| VMT/1000                       | 758       |
| Trips                          | 201147    |
| Reactive Organic Gas Emissions |           |
| Run Exh                        | 0.27      |
| Idle Exh                       | 0         |
| Start Ex                       | 0         |
| Total Ex                       | 0.27      |
|                                |           |
| Diurnal                        | 0         |
| Hot Soak                       | 0         |
| Running                        | 0         |
| Resting                        | 0         |
| Total                          | 0.27      |
| Carbon Monoxide Emissions      |           |
| Run Exh                        | 1.38      |
| Idle Exh                       | 0.02      |
| Start Ex                       | 0         |
| Start Ex                       | 0         |
| Total Ex                       | 1.4       |
| Oxides of Nitrogen Emissions   |           |
| Run Exh                        | 5.59      |
| Idle Exh                       | 0.05      |
| Start Ex                       | 0         |
|                                |           |
| Total Ex                       | 5.63      |
| Carbon Dioxide Emissions (000) |           |
| Run Exh                        | 0.43      |
| Idle Exh                       | 0         |
| Start Ex                       | 0         |
| Total Ex                       | 0.44      |
| Total Ex<br>PM10 Emissions     | 0.44      |
| Run Exh                        | 0.07      |
| Idle Exh                       | 0         |
| Start Ex                       |           |
| Start Ex                       | 0         |
| Total Ex                       | 0.07      |
| TireWear                       | 0.01      |
| BrakeWr                        | 0.01      |
| Brakewi                        | 0.01      |
| Total                          | 0.09      |
| Lead                           | 0         |
| SOx                            | 0.04      |
| Fuel Consumption (000 gallons) |           |
| Gasoline                       | 0         |
| Diesel                         | 39.24     |
|                                |           |

Title : Statewide totals Avg Annual CYr 2005 Default Title Version : Emfac working draft V2.23.7.60616 Sp: 2.20.S+FCF+IM+Bugs+BER+Accr+IMDlg +FCF2+Po Run Date : 2006/10/11 12:20:17 Scen Year: 2005 -- Model year 2003 selected Season : Annual Area : Statewide totals Year: 2005 -- Model Years 2003 to 2003 Inclusive --Emfac working draft Emission Factors: V2.23.7.60616 Sp: 2.20.S+FCF+IM+Bugs+BER+Accr+IMDlg

State Average

Table 1: Running Exhaust Emissions (grams/mile; grams/idle-hour)

| Pollutant N  | ame: Reac    | ive Org Gas   | es          | Temperature: 65F | Relative Humidity: 60% |
|--------------|--------------|---------------|-------------|------------------|------------------------|
| Speed<br>MPH | LHD1<br>NCAT | LHD1<br>CAT   | LHD1<br>DSL | LHD1<br>ALL      |                        |
| 0            | 0            | 23.103        | 3.173       | 17.027           |                        |
| Pollutant N  | ame: Carbo   | on Monoxide   |             | Temperature: 65F | Relative Humidity: 60% |
| Speed<br>MPH | LHD1<br>NCAT | LHD1<br>CAT   | LHD1<br>DSL | LHD1<br>ALL      |                        |
| 0            | 0            | 141.992       | 26.3        | 106.721          |                        |
| Pollutant N  | ame: Oxide   | s of Nitroger | ı           | Temperature: 65F | Relative Humidity: 60% |
| Speed<br>MPH | LHD1<br>NCAT | LHD1<br>CAT   | LHD1<br>DSL | LHD1<br>ALL      |                        |
| 0            | 0            | 1.561         | 75.051      | 23.965           |                        |
| Pollutant N  | ame: Sulfu   | Dioxide       |             | Temperature: 65F | Relative Humidity: 60% |
| Speed<br>MPH | LHD1<br>NCAT | LHD1<br>CAT   | LHD1<br>DSL | LHD1<br>ALL      |                        |
| 0            | 0            | 0.049         | 0.357       | 0.143            |                        |
| Pollutant N  | ame: PM10    | I             |             | Temperature: 65F | Relative Humidity: 60% |
| Speed<br>MPH | LHD1<br>NCAT | LHD1<br>CAT   | LHD1<br>DSL | LHD1<br>ALL      |                        |
| 0            | 0            | 0             | 0.753       | 0.23             |                        |
| Pollutant N  | ame: PM10    | - Tire Wear   | r           | Temperature: 65F | Relative Humidity: 60% |
| Speed<br>MPH | LHD1<br>NCAT | LHD1<br>CAT   | LHD1<br>DSL | LHD1<br>ALL      |                        |
| 0            | 0            | 0             | 0           | 0                |                        |
| Pollutant N  | ame: PM10    | - Break We    | ear         | Temperature: 65F | Relative Humidity: 60% |
| Speed<br>MPH | LHD1<br>NCAT | LHD1<br>CAT   | LHD1<br>DSL | LHD1<br>ALL      |                        |
| 0            | 0            | 0             | 0           | 0                |                        |

# APPENDIX C

# EMISSION FACTOR DERIVATION AND EMFAC-WD 2006 OUTPUT FOR HHD DIESEL-FUELED TRUCKS

#### CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

Emission Factors for Heavy-Heavy Duty Diesel-Fueled Trucks Los Angeles Transportation Center, Los Angeles, CA

#### **Running Exhaust Emissions**

|      | Emiss | ion Factors (g | g/mi) |      |
|------|-------|----------------|-------|------|
| ROG  | CO    | NOx            | DPM   | SOx  |
| 5.73 | 15.40 | 27.41          | 2.27  | 0.24 |

#### **Idling Exhaust Emissions**

|        | Emiss  | ion Factors ( | g/hr) |       |
|--------|--------|---------------|-------|-------|
| ROG    | СО     | NOx           | DPM   | SOx   |
| 16.163 | 52.988 | 100.382       | 2.845 | 0.550 |

Notes:

1. Running exhaust emission factors from EMFAC-WD 2006 with the BURDEN output option.

2. Idling exhaust emission factors from EMFAC-Wd 2006 with the EMFAC output option.

3. Emission factor calculations assumed an average speed of 15 mph.

Title : Los Angeles County Avg Annual CYr 2005 Default Title Version : Emfac working draft V2.23.7.60616 Sp: 2.20.8+FCF+IM+Bugs+BER+Accr+IMDlg + Run Date : 2006/08/22 16:01:02 Scen Year: 2005 All model years in the range 1965 to 2005 selected Season : Annual Area : Los Angeles County Average I/M Stat : Enhanced Interim (2005) Using I/M schedule for area 59 Los Angeles (SC) Emissions: Tons Per Day

| *************************************** | *******           |
|-----------------------------------------|-------------------|
| Vehicles                                | HHDT DSL<br>23847 |
| VMT/1000                                | 4179              |
|                                         |                   |
| Trips                                   | 120678            |
| Reactive Organic Gas Emissions          |                   |
| Run Exh                                 | 26.4              |
| Idle Exh                                | 0.72              |
| Start Ex                                | 0                 |
|                                         |                   |
| Total Ex                                | 27.12             |
|                                         |                   |
| Diurnal                                 | 0                 |
| Hot Soak                                |                   |
|                                         | 0                 |
| Running                                 | 0                 |
| Resting                                 | 0                 |
|                                         |                   |
| Total                                   | 27.12             |
| Carbon Monoxide Emissions               |                   |
| Run Exh                                 | 70.96             |
|                                         |                   |
| Idle Exh                                | 2.35              |
| Start Ex                                | 0                 |
|                                         |                   |
| Total Ex                                | 73.31             |
| Oxides of Nitrogen Emissions            |                   |
| Run Exh                                 | 126.26            |
| Idle Exh                                | 4.45              |
| Start Ex                                | 0                 |
| Start EX                                | 0                 |
|                                         | 400 74            |
| Total Ex                                | 130.71            |
| Carbon Dioxide Emissions (000)          |                   |
| Run Exh                                 | 13.21             |
| ldle Exh                                | 0.29              |
| Start Ex                                | 0                 |
|                                         | -                 |
| Total Ex                                | 13.5              |
|                                         | 10.0              |
| PM10 Emissions                          | 40.47             |
| Run Exh                                 | 10.47             |
| Idle Exh                                | 0.13              |
| Start Ex                                | 0                 |
|                                         |                   |
| Total Ex                                | 10.6              |
|                                         |                   |
| TireWear                                | 0.17              |
| BrakeWr                                 | 0.13              |
| DIAREWI                                 | 0.15              |
| Total                                   | 10.90             |
| Total                                   | 10.89             |
| Lead                                    | 0                 |
| SOx                                     | 1.12              |
| Fuel Consumption (000 gallons)          |                   |
| Gasoline                                | 0                 |
| Diesel                                  | 1214.88           |
| Biosof                                  | 1217.00           |

#### CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

|        | In-Gate            | Out-Gate           | In & Out              | In & Out |
|--------|--------------------|--------------------|-----------------------|----------|
| Month  | Total <sup>1</sup> | Total <sup>1</sup> | Bobtails <sup>2</sup> | Total    |
| Jan    | 6,205              | 4,967              | 2,793                 | 13,965   |
| Feb    | 6,448              | 4,555              | 2,751                 | 13,754   |
| Mar    | 7,448              | 5,700              | 3,287                 | 16,435   |
| Apr    | 6,291              | 5,206              | 2,874                 | 14,371   |
| May    | 6,746              | 5,691              | 3,109                 | 15,546   |
| June   | 7,815              | 5,110              | 3,231                 | 16,156   |
| July   | 7,194              | 4,764              | 2,990                 | 14,948   |
| Aug    | 7,584              | 5,645              | 3,307                 | 16,536   |
| Sept   | 6,939              | 5,200              | 3,035                 | 15,174   |
| Oct    | 7,926              | 5,908              | 3,459                 | 17,293   |
| Nov    | 8,803              | 5,856              | 3,665                 | 18,324   |
| Dec    | 6,297              | 5,119              | 2,854                 | 14,270   |
|        |                    |                    |                       |          |
| Totals | 85,696             | 63,721             | 37,354                | 186,771  |

Summary of Intermodal Traffic Gate Counts Los Angeles Transfer Center, Los Angeles, CA

Notes:

1. Provided by UPRR. (In&Out Gate Box Balance.pdf Reports).

2. Personal communication with Tony Jardino and Ben Shelton of UPRR.

| Title : Los Angeles County Avg Annual CYr 2005 Default Title<br>Version : Emfac working draft V2.23.7.60616 Sp: 2.20.8+FCF+IM+Bugs+BER+Accr+IMDIg +FCF2+Po<br>Run Date : 2006/12/03 10:21:20<br>Scen Year: 2005 All model years in the range 1965 to 2005 selected<br>Season : Annual<br>Area : Los Angeles |             |               |            |                  |                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------------|------------------|------------------------|--|--|--|--|--|
| Year: 2005 Model Years 1965 to 2005 Inclusive<br>Emfac working draft Emission Factors: V2.23.7.60616 Sp: 2.20.8+FCF+IM+Bugs+BER+Accr+IMDlg                                                                                                                                                                  |             |               |            |                  |                        |  |  |  |  |  |
| County Average Los Angeles                                                                                                                                                                                                                                                                                  |             |               |            |                  |                        |  |  |  |  |  |
| Table 1: Running Exhaust Emissions (grams/mile; grams/idle-hour)                                                                                                                                                                                                                                            |             |               |            |                  |                        |  |  |  |  |  |
| Pollutant Na                                                                                                                                                                                                                                                                                                | ame: Reacti | ve Org Gas    | es         | Temperature: 65F | Relative Humidity: 60% |  |  |  |  |  |
| Speed<br>MPH                                                                                                                                                                                                                                                                                                | HHD<br>NCAT | HHD<br>CAT    | HHD<br>DSL | HHD<br>ALL       |                        |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                           | 0           | 0             | 16.163     | 15.188           |                        |  |  |  |  |  |
| Pollutant Na                                                                                                                                                                                                                                                                                                | ame: Carbo  | n Monoxide    |            | Temperature: 65F | Relative Humidity: 60% |  |  |  |  |  |
| Speed<br>MPH                                                                                                                                                                                                                                                                                                | HHD<br>NCAT | HHD<br>CAT    | HHD<br>DSL | HHD<br>ALL       |                        |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                           | 0           | 0             | 52.988     | 49.792           |                        |  |  |  |  |  |
| Pollutant Na                                                                                                                                                                                                                                                                                                | ame: Oxides | s of Nitroger | ı          | Temperature: 65F | Relative Humidity: 60% |  |  |  |  |  |
| Speed<br>MPH                                                                                                                                                                                                                                                                                                | HHD<br>NCAT | HHD<br>CAT    | HHD<br>DSL | HHD<br>ALL       |                        |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                           | 0           | 0             | 100.382    | 94.327           |                        |  |  |  |  |  |
| Pollutant Name: Sulfur Dioxide                                                                                                                                                                                                                                                                              |             |               |            | Temperature: 65F | Relative Humidity: 60% |  |  |  |  |  |
| Speed<br>MPH                                                                                                                                                                                                                                                                                                | HHD<br>NCAT | HHD<br>CAT    | HHD<br>DSL | HHD<br>ALL       |                        |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                           | 0           | 0             | 0.55       | 0.517            |                        |  |  |  |  |  |
| Pollutant Na                                                                                                                                                                                                                                                                                                | ame: PM10   |               |            | Temperature: 65F | Relative Humidity: 60% |  |  |  |  |  |
| Speed<br>MPH                                                                                                                                                                                                                                                                                                | HHD<br>NCAT | HHD<br>CAT    | HHD<br>DSL | HHD<br>ALL       |                        |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                           | 0           | 0             | 2.845      | 2.674            |                        |  |  |  |  |  |
| Pollutant Na                                                                                                                                                                                                                                                                                                | ame: PM10   | - Tire Wear   | r          | Temperature: 65F | Relative Humidity: 60% |  |  |  |  |  |
| Speed<br>MPH                                                                                                                                                                                                                                                                                                | HHD<br>NCAT | HHD<br>CAT    | HHD<br>DSL | HHD<br>ALL       |                        |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                           | 0           | 0             | 0          | 0                |                        |  |  |  |  |  |
| Pollutant Name: PM10 - Break Wear                                                                                                                                                                                                                                                                           |             |               |            | Temperature: 65F | Relative Humidity: 60% |  |  |  |  |  |
| Speed<br>MPH                                                                                                                                                                                                                                                                                                | HHD<br>NCAT | HHD<br>CAT    | HHD<br>DSL | HHD<br>ALL       |                        |  |  |  |  |  |
| 0                                                                                                                                                                                                                                                                                                           | 0           | 0             | 0          | 0                |                        |  |  |  |  |  |

## APPENDIX D

# EMISSION FACTOR DERIVATION AND OFFROAD2006 OUTPUT FOR CARGO HANDLING EQUIPMENT

#### CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

Emission Factors for Cargo Handling Equipment Los Angeles Transfer Center, Los Angeles, CA

| Equipment    |         |             |      | Load   | Emission Factors (g/bhp-hr) |        |         |        |        |
|--------------|---------|-------------|------|--------|-----------------------------|--------|---------|--------|--------|
| Туре         | Make    | Model       | Year | Factor | THC                         | СО     | NOx     | DPM    | SOx    |
| Fork Lift    | Taylor  | THD200S     | 2000 | 0.30   | 0.5307                      | 2.8296 | 6.8159  | 0.3536 | 0.0597 |
| RTG          | Mi Jack | 1000RC      | 2004 | 0.43   | 0.0906                      | 0.9456 | 4.1618  | 0.0972 | 0.0521 |
| RTG          | Mi Jack | 1000R       | 1984 | 0.43   | 0.9965                      | 5.4833 | 12.8557 | 0.7230 | 0.0521 |
| RTG          | Mi Jack | 1000R       | 1984 | 0.43   | 0.9965                      | 5.4833 | 12.8557 | 0.7230 | 0.0521 |
| RTG          | Mi Jack | 1000R       | 1984 | 0.43   | 0.9965                      | 5.4833 | 12.8557 | 0.7230 | 0.0521 |
| Top Pick     | Taylor  | TEC 155H    | 1998 | 0.59   | 0.5505                      | 2.8920 | 6.9482  | 0.3734 | 0.0597 |
| Top Pick     | Mi Jack | MJ9090      | 1990 | 0.59   | 0.6811                      | 3.3000 | 9.0164  | 0.4547 | 0.0597 |
| Yard Hostler | Ottawa  | Commando 30 | 2003 | 0.55   | 0.2501                      | 2.7810 | 5.1174  | 0.2136 | 0.0597 |
| Yard Hostler | Ottawa  | Commando 30 | 2004 | 0.55   | 0.1639                      | 2.7540 | 4.5529  | 0.1648 | 0.0597 |

Notes:

1. Emission factors and load factors from CARB's Cargo Handling Equipment Emission Calculation Spreadsheet.

| Cal Year | Yard | Equipment Type          | Code | Useful<br>Life<br>(hours) | Model<br>Year | Age<br>(years) | Populatio<br>n | HP  | HP Bin | Yearly<br>Operation<br>al Hrs | Cummula<br>tive<br>Hours |
|----------|------|-------------------------|------|---------------------------|---------------|----------------|----------------|-----|--------|-------------------------------|--------------------------|
| 2005     | LATC | Crane                   | 1    | 39420                     | 2003          | 3              | 1              | 275 | 500    | 2190                          | 6570                     |
| 2005     | LATC | Forklift                | 3    | 5200                      | 2000          | 6              | 1              | 154 | 175    | 260                           | 1560                     |
| 2005     | LATC | Forklift                | 3    | 160000                    | 2004          | 2              | 1              | 150 | 175    | 8000                          | 16000                    |
| 2005     | LATC | Forklift                | 3    | 43800                     | 1999          | 7              | 1              | 150 | 175    | 2190                          | 15330                    |
| 2005     | LATC | Crane                   | 1    | 52560                     | 2004          | 2              | 2              | 300 | 500    | 2920                          | 5840                     |
| 2005     | LATC | Crane                   | 1    | 52560                     | 1984          | 22             | 1              | 300 | 500    | 2920                          | 64240                    |
| 2005     | LATC | Crane                   | 1    | 0                         | 1984          | 22             | 1              | 300 | 500    | 0                             | 0                        |
| 2005     | LATC | Crane                   | 1    | 0                         | 1984          | 22             | 1              | 300 | 500    | 0                             | 0                        |
| 2005     | LATC | Material Handling Equip | 4    | 18720                     | 1998          | 8              | 1              | 150 | 175    | 1040                          | 8320                     |
| 2005     | LATC | Material Handling Equip | 4    | 1080                      | 1990          | 16             | 1              | 335 | 500    | 60                            | 960                      |
| 2005     | LATC | Yard Tractor offroad    | 8    | 128000                    | 2003          | 3              | 3              | 150 | 175    | 8000                          | 24000                    |
| 2005     | LATC | Yard Tractor offroad    | 8    | 128000                    | 2004          | 2              | 10             | 150 | 175    | 8000                          | 16000                    |

| Emission<br>Control Emission<br>Factor? Control<br>(y/n) | Load<br>Factor | HPMY    | HC EF    | Emission<br>Control<br>HC EF | HC dr    | FCF HC   | CO EF    | Emission<br>Control<br>CO EF | CO dr    | NOX EF   | Emission<br>Control<br>NOX EF | NOX dr   |
|----------------------------------------------------------|----------------|---------|----------|------------------------------|----------|----------|----------|------------------------------|----------|----------|-------------------------------|----------|
| n                                                        | 0.43           | 5002003 | 1.20E-01 | 0.00E+00                     | 0.000001 | 0.720000 | 9.20E-01 | 0.00E+00                     | 0.000006 | 4.29E+00 | 0.00E+00                      | 0.000023 |
| n                                                        | 0.30           | 1752000 | 6.80E-01 | 0.00E+00                     | 0.000037 | 0.720000 | 2.70E+00 | 0.00E+00                     | 0.000083 | 6.90E+00 | 0.00E+00                      | 0.000186 |
| n                                                        | 0.30           | 1752004 | 2.20E-01 | 0.00E+00                     | 0.000000 | 0.720000 | 2.70E+00 | 0.00E+00                     | 0.000003 | 4.72E+00 | 0.00E+00                      | 0.000004 |
| n                                                        | 0.30           | 1751999 | 6.80E-01 | 0.00E+00                     | 0.000004 | 0.720000 | 2.70E+00 | 0.00E+00                     | 0.000010 | 6.90E+00 | 0.00E+00                      | 0.000022 |
| n                                                        | 0.43           | 5002004 | 1.20E-01 | 0.00E+00                     | 0.000001 | 0.720000 | 9.20E-01 | 0.00E+00                     | 0.000004 | 4.29E+00 | 0.00E+00                      | 0.000017 |
| n                                                        | 0.43           | 5001984 | 9.00E-01 | 0.00E+00                     | 0.000008 | 0.720000 | 4.20E+00 | 0.00E+00                     | 0.000020 | 1.10E+01 | 0.00E+00                      | 0.000044 |
| n                                                        | 0.43           | 5001984 | 9.00E-01 | 0.00E+00                     | #DIV/0!  | 0.720000 | 4.20E+00 | 0.00E+00                     | #DIV/0!  | 1.10E+01 | 0.00E+00                      | #DIV/0!  |
| n                                                        | 0.43           | 5001984 | 9.00E-01 | 0.00E+00                     | #DIV/0!  | 0.720000 | 4.20E+00 | 0.00E+00                     | #DIV/0!  | 1.10E+01 | 0.00E+00                      | #DIV/0!  |
| n                                                        | 0.59           | 1751998 | 6.80E-01 | 0.00E+00                     | 0.000010 | 0.720000 | 2.70E+00 | 0.00E+00                     | 0.000023 | 6.90E+00 | 0.00E+00                      | 0.000052 |
| n                                                        | 0.59           | 5001990 | 6.80E-01 | 0.00E+00                     | 0.000277 | 0.720000 | 2.70E+00 | 0.00E+00                     | 0.000625 | 8.17E+00 | 0.00E+00                      | 0.001589 |
| n                                                        | 0.55           | 1752003 | 3.30E-01 | 0.00E+00                     | 0.000001 | 0.720000 | 2.70E+00 | 0.00E+00                     | 0.000003 | 5.26E+00 | 0.00E+00                      | 0.000006 |
| n                                                        | 0.55           | 1752004 | 2.20E-01 | 0.00E+00                     | 0.000000 | 0.720000 | 2.70E+00 | 0.00E+00                     | 0.000003 | 4.72E+00 | 0.00E+00                      | 0.000005 |

| FCF NOX  | PM EF    | Emission<br>Control<br>PM EF | PM dr    | FCF PM   | SOX EF   | Final<br>EF HC | Final<br>EF CO | Final<br>EF NOX | Final<br>EF SOX | Final<br>EF PM | TOG      | ROG      | со       |
|----------|----------|------------------------------|----------|----------|----------|----------------|----------------|-----------------|-----------------|----------------|----------|----------|----------|
| 0.948000 | 1.10E-01 | 0.00E+00                     | 0.000002 | 0.822000 | 5.21E-02 | 9.27E-02       | 9.58E-01       | 4.21E+00        | 5.21E-02        | 1.01E-01       | 3.81E-02 | 3.35E-02 | 2.73E-01 |
| 0.948000 | 3.80E-01 | 0.00E+00                     | 0.000032 | 0.822000 | 5.97E-02 | 5.31E-01       | 2.83E+00       | 6.82E+00        | 5.97E-02        | 3.54E-01       | 1.01E-02 | 8.88E-03 | 3.74E-02 |
| 0.948000 | 1.90E-01 | 0.00E+00                     | 0.000001 | 0.822000 | 5.97E-02 | 1.63E-01       | 2.74E+00       | 4.54E+00        | 5.97E-02        | 1.63E-01       | 9.30E-02 | 8.17E-02 | 1.09E+00 |
| 0.948000 | 3.80E-01 | 0.00E+00                     | 0.000004 | 0.822000 | 5.97E-02 | 5.38E-01       | 2.85E+00       | 6.86E+00        | 5.97E-02        | 3.60E-01       | 8.40E-02 | 7.38E-02 | 3.09E-01 |
| 0.948000 | 1.10E-01 | 0.00E+00                     | 0.000001 | 0.822000 | 5.21E-02 | 9.06E-02       | 9.46E-01       | 4.16E+00        | 5.21E-02        | 9.72E-02       | 1.08E-01 | 9.51E-02 | 7.85E-01 |
| 0.930000 | 5.30E-01 | 0.00E+00                     | 0.000007 | 0.750000 | 5.21E-02 | 9.96E-01       | 5.48E+00       | 1.29E+01        | 5.21E-02        | 7.23E-01       | 5.95E-01 | 5.23E-01 | 2.27E+00 |
| 0.930000 | 5.30E-01 | 0.00E+00                     | #DIV/0!  | 0.750000 | 5.21E-02 | #DIV/0!        | #DIV/0!        | #DIV/0!         | 5.21E-02        | #DIV/0!        | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| 0.930000 | 5.30E-01 | 0.00E+00                     | #DIV/0!  | 0.750000 | 5.21E-02 | #DIV/0!        | #DIV/0!        | #DIV/0!         | 5.21E-02        | #DIV/0!        | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| 0.948000 | 3.80E-01 | 0.00E+00                     | 0.000009 | 0.822000 | 5.97E-02 | 5.51E-01       | 2.89E+00       | 6.95E+00        | 5.97E-02        | 3.73E-01       | 8.04E-02 | 7.06E-02 | 2.93E-01 |
| 0.930000 | 3.80E-01 | 0.00E+00                     | 0.000236 | 0.750000 | 5.97E-02 | 6.81E-01       | 3.30E+00       | 9.02E+00        | 5.97E-02        | 4.55E-01       | 1.28E-02 | 1.13E-02 | 4.31E-02 |
| 0.948000 | 2.40E-01 | 0.00E+00                     | 0.000001 | 0.822000 | 5.97E-02 | 2.50E-01       | 2.78E+00       | 5.12E+00        | 5.97E-02        | 2.14E-01       | 7.85E-01 | 6.90E-01 | 6.06E+00 |
| 0.948000 | 1.90E-01 | 0.00E+00                     | 0.000001 | 0.822000 | 5.97E-02 | 1.64E-01       | 2.75E+00       | 4.55E+00        | 5.97E-02        | 1.65E-01       | 1.72E+00 | 1.51E+00 | 2.00E+01 |

| NOX      | SOX      | РМ       | PM10     | PM2.5    | TOG      | ROG      | сO       | NOX      | SOX      | РМ       | PM10     | PM2.5    |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 1.20E+00 | 1.49E-02 | 2.87E-02 | 2.87E-02 | 2.64E-02 | 1.04E-04 | 9.17E-05 | 7.49E-04 | 3.29E-03 | 4.07E-05 | 7.85E-05 | 7.85E-05 | 7.23E-05 |
| 9.02E-02 | 7.90E-04 | 4.68E-03 | 4.68E-03 | 4.30E-03 | 2.77E-05 | 2.43E-05 | 1.03E-04 | 2.47E-04 | 2.17E-06 | 1.28E-05 | 1.28E-05 | 1.18E-05 |
| 1.80E+00 | 2.37E-02 | 6.46E-02 | 6.46E-02 | 5.95E-02 | 2.55E-04 | 2.24E-04 | 2.98E-03 | 4.93E-03 | 6.49E-05 | 1.77E-04 | 1.77E-04 | 1.63E-04 |
| 7.45E-01 | 6.48E-03 | 3.91E-02 | 3.91E-02 | 3.60E-02 | 2.30E-04 | 2.02E-04 | 8.48E-04 | 2.04E-03 | 1.78E-05 | 1.07E-04 | 1.07E-04 | 9.86E-05 |
| 3.45E+00 | 4.32E-02 | 8.06E-02 | 8.06E-02 | 7.42E-02 | 2.97E-04 | 2.61E-04 | 2.15E-03 | 9.46E-03 | 1.18E-04 | 2.21E-04 | 2.21E-04 | 2.03E-04 |
| 5.33E+00 | 2.16E-02 | 3.00E-01 | 3.00E-01 | 2.76E-01 | 1.63E-03 | 1.43E-03 | 6.23E-03 | 1.46E-02 | 5.92E-05 | 8.22E-04 | 8.22E-04 | 7.56E-04 |
| 0.00E+00 |
| 0.00E+00 |
| 7.04E-01 | 6.06E-03 | 3.79E-02 | 3.79E-02 | 3.48E-02 | 2.20E-04 | 1.93E-04 | 8.03E-04 | 1.93E-03 | 1.66E-05 | 1.04E-04 | 1.04E-04 | 9.54E-05 |
| 1.18E-01 | 7.80E-04 | 5.94E-03 | 5.94E-03 | 5.46E-03 | 3.51E-05 | 3.08E-05 | 1.18E-04 | 3.23E-04 | 2.14E-06 | 1.63E-05 | 1.63E-05 | 1.50E-05 |
| 1.12E+01 | 1.30E-01 | 4.66E-01 | 4.66E-01 | 4.28E-01 | 2.15E-03 | 1.89E-03 | 1.66E-02 | 3.06E-02 | 3.57E-04 | 1.28E-03 | 1.28E-03 | 1.17E-03 |
| 3.31E+01 | 4.34E-01 | 1.20E+00 | 1.20E+00 | 1.10E+00 | 4.70E-03 | 4.13E-03 | 5.48E-02 | 9.07E-02 | 1.19E-03 | 3.28E-03 | 3.28E-03 | 3.02E-03 |

| Type                           | Useful Life | Load Factor |
|--------------------------------|-------------|-------------|
| Crane                          | 18          | 0.43        |
| Excavator                      | 16          | 0.57        |
| Forklift                       | 20          | 0.30        |
| Material Handling Equip        | 18          | 0.59        |
| Other General Industrial Equip | 16          | 0.51        |
| Sweeper/Scrubber               | 16          | 0.68        |
| Tractor/Loader/Backhoe         | 16          | 0.55        |
| Yard Tractor offroad engine    | 8           | 0.65        |
| Yard Tractor onroad engine     | 8           | 0.65        |

| Tractor onroad engine  | 8            | 0.65  |                  |       |
|------------------------|--------------|-------|------------------|-------|
|                        |              |       |                  |       |
| Fuel Correction Factor | ]            |       |                  |       |
| t_fcf                  |              |       | Calyr 1994 -2006 |       |
|                        | Model Yr     | NOX   | PM               | HC    |
|                        | 1970         | 0.930 | 0.750            | 0.720 |
|                        | 1971         | 0.930 | 0.750            | 0.720 |
|                        | 1972         | 0.930 | 0.750            | 0.720 |
|                        | 1973         | 0.930 | 0.750            | 0.720 |
|                        | 1974         | 0.930 | 0.750            | 0.720 |
|                        | 1975         | 0.930 | 0.750            | 0.720 |
|                        | 1976         | 0.930 | 0.750            | 0.720 |
|                        | 1977         | 0.930 | 0.750            | 0.720 |
|                        | 1978         | 0.930 | 0.750            | 0.720 |
|                        | 1979         | 0.930 | 0.750            | 0.720 |
|                        | 1980         | 0.930 | 0.750            | 0.720 |
|                        | 1981         | 0.930 | 0.750            | 0.720 |
|                        | 1982         | 0.930 | 0.750            | 0.720 |
|                        | 1983         | 0.930 | 0.750            | 0.720 |
|                        | 1984         | 0.930 | 0.750            | 0.720 |
|                        | 1985         | 0.930 | 0.750            | 0.720 |
|                        | 1986         | 0.930 | 0.750            | 0.720 |
|                        | 1987         | 0.930 | 0.750            | 0.720 |
|                        | 1988         | 0.930 | 0.750            | 0.720 |
|                        | 1989         | 0.930 | 0.750            | 0.720 |
|                        | 1990         | 0.930 | 0.750            | 0.720 |
|                        | 1991         | 0.930 | 0.750            | 0.720 |
|                        | 1992         | 0.930 | 0.750            | 0.720 |
|                        | 1993         | 0.930 | 0.750            | 0.720 |
|                        | 1994         | 0.930 | 0.750            | 0.720 |
|                        | 1995         | 0.930 | 0.750            | 0.720 |
|                        | 1996         | 0.948 | 0.822            | 0.720 |
|                        | 1997         | 0.948 | 0.822            | 0.720 |
|                        | 1998         | 0.948 | 0.822            | 0.720 |
|                        | 1999         | 0.948 | 0.822            | 0.720 |
|                        | 2000         | 0.948 | 0.822            | 0.720 |
|                        | 2001         | 0.948 | 0.822            | 0.720 |
|                        | 2002         | 0.948 | 0.822            | 0.720 |
|                        | 2003<br>2004 | 0.948 | 0.822<br>0.822   | 0.720 |
|                        | 2004 2005    | 0.948 | 0.822            | 0.720 |
|                        | 2005         | 0.948 | 0.822            | 0.720 |
|                        | 2006         | 0.948 | 0.822            | 0.720 |
|                        | 2007         | 0.948 | 0.822            | 0.720 |
|                        | 2009         | 0.948 | 0.822            | 0.720 |
|                        | 2009         | 0.948 | 0.822            | 0.720 |
|                        | 2010         | 0.948 | 0.822            | 0.720 |
|                        | 2011         | 0.948 | 0.822            | 0.720 |
|                        | 2012         | 0.948 | 0.822            | 0.720 |
|                        | 2013         | 0.948 | 0.822            | 0.720 |
|                        | 2015         | 0.948 | 0.822            | 0.720 |
|                        | 2015         | 0.948 | 0.822            | 0.720 |
|                        | 2016 2017    | 0.948 | 0.822            | 0.720 |
|                        | 2017         | 0.948 | 0.822            | 0.720 |

|            | D | et. Rate |     |     |     |
|------------|---|----------|-----|-----|-----|
| HP         | н | с        | Co  | Nox | PM  |
| <u>5</u> 0 |   | 51%      | 41% | 6%  | 31% |
| 120        | 0 | 28%      | 16% | 14% | 44% |
| 175        | 5 | 28%      | 16% | 14% | 44% |
| 250        | ) | 44%      | 25% | 21% | 67% |
| 500        |   | 44%      | 25% | 21% | 67% |

#### \*New Tier4 emfacs included with 43/57% split for 120 hp merged (diesel only)

| units = g/bhp hr        | Ц'n             | Voor                |                   | 00             | NOY                | DM                 | CO2                   |
|-------------------------|-----------------|---------------------|-------------------|----------------|--------------------|--------------------|-----------------------|
| <u>Lookup</u><br>251968 | <u>Нр</u><br>25 | <u>Year</u><br>1968 | <u>HC</u><br>1.84 | <u>CO</u><br>5 | <u>NOX</u><br>6.92 | <u>PM</u><br>0.764 | <u>CO2</u><br>10176.3 |
|                         |                 |                     |                   | 5              | 6.92               |                    |                       |
| 251969                  | 25<br>25        | 1969                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251970                  | 25<br>25        | 1970                | 1.84              | 5              | 6.92               | 0.764              | 10176.3<br>10176.3    |
| 251971                  | 25<br>25        | 1971                | 1.84              | 5              | 6.92               | 0.764              |                       |
| 251972                  | 25              | 1972                | 1.84              |                |                    | 0.764              | 10176.3               |
| 251973                  | 25              | 1973                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251974                  | 25              | 1974                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251975                  | 25              | 1975                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251976                  | 25              | 1976                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251977                  | 25              | 1977                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251978                  | 25              | 1978                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251979                  | 25              | 1979                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251980                  | 25              | 1980                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251981                  | 25              | 1981                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251982                  | 25              | 1982                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251983                  | 25              | 1983                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251984                  | 25              | 1984                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251985                  | 25              | 1985                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251986                  | 25              | 1986                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251987                  | 25              | 1987                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251988                  | 25              | 1988                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251989                  | 25              | 1989                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251990                  | 25              | 1990                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251991                  | 25              | 1991                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251992                  | 25              | 1992                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251993                  | 25              | 1993                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251994                  | 25              | 1994                | 1.84              | 5              | 6.92               | 0.764              | 10176.3               |
| 251995                  | 25              | 1995                | 1.63              | 1.4            | 3.89               | 0.417              | 10176.3               |
| 251996                  | 25              | 1996                | 1.63              | 1.4            | 3.89               | 0.417              | 10176.3               |
| 251997                  | 25              | 1997                | 1.63              | 1.4            | 3.89               | 0.417              | 10176.3               |
| 251998                  | 25              | 1998                | 1.63              | 1.4            | 3.89               | 0.417              | 10176.3               |
| 251999                  | 25              | 1999                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252000                  | 25              | 2000                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252001                  | 25              | 2001                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252002                  | 25              | 2002                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252003                  | 25              | 2003                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252004                  | 25              | 2004                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252005                  | 25              | 2005                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252006                  | 25              | 2006                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252007                  | 25              | 2007                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252008                  | 25              | 2008                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252009                  | 25              | 2009                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252010                  | 25              | 2010                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252011                  | 25              | 2011                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252012                  | 25              | 2012                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252013                  | 25              | 2013                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252014                  | 25              | 2014                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252015                  | 25              | 2015                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252016                  | 25              | 2016                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252017                  | 25              | 2017                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252018                  | 25              | 2018                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252019                  | 25              | 2019                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252020                  | 25              | 2010                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252020                  | 25              | 2020                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252021                  | 25              | 2021                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252022                  |                 | 2022                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 252023                  | 25<br>25        |                     |                   | 0.5            | 1.24               |                    |                       |
|                         | 25<br>25        | 2024                | 0.52              |                |                    | 0.116<br>0.116     | 10176.3<br>10176.3    |
| 252025                  | 25<br>25        | 2025                | 0.52              | 0.5            | 1.24               |                    | 10176.3               |
| 252026                  | 25<br>50        | 2026                | 0.52              | 0.5            | 1.24               | 0.116              | 10176.3               |
| 501969                  | 50              | 1969                | 1.84              | 5              | 7                  | 0.76               | 10176.3               |
| 501969                  | 50              | 1969                | 1.84              | 5              | 7                  | 0.76               | 10176.3               |
| 501970                  | 50              | 1970                | 1.84              | 5              | 7                  | 0.76               | 10176.3               |
| 501971                  | 50              | 1971                | 1.84              | 5              | 7                  | 0.76               | 10176.3               |
| 501972                  | 50              | 1972                | 1.84              | 5              | 7                  | 0.76               | 10176.3               |
| 501973                  | 50              | 1973                | 1.84              | 5              | 7                  | 0.76               | 10176.3               |
| 501974                  | 50              | 1974                | 1.84              | 5              | 7                  | 0.76               | 10176.3               |
| 501975                  | 50              | 1975                | 1.84              | 5              | 7                  | 0.76               | 10176.3               |

| 501976  | 50  | 1976 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
|---------|-----|------|------|------|------|------|---------|
| 501977  | 50  | 1977 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
|         |     |      |      |      | 7    |      |         |
| 501978  | 50  | 1978 | 1.84 | 5    |      | 0.76 | 10176.3 |
| 501979  | 50  | 1979 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
| 501980  | 50  | 1980 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
| 501981  | 50  | 1981 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
| 501982  | 50  | 1982 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
| 501983  | 50  | 1983 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 501984  | 50  | 1984 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
| 501985  | 50  | 1985 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
| 501986  | 50  | 1986 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
| 501987  | 50  | 1987 | 1.84 | 5    | 7    | 0.76 | 10176.3 |
| 501988  | 50  | 1988 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
| 501989  | 50  | 1989 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
|         |     |      |      | 5    | 6.9  |      |         |
| 501990  | 50  | 1990 | 1.8  |      |      | 0.76 | 10176.3 |
| 501991  | 50  | 1991 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
| 501992  | 50  | 1992 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
| 501993  | 50  | 1993 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
| 501994  | 50  | 1994 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
| 501995  | 50  | 1995 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 501996  | 50  | 1996 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
| 501997  | 50  | 1997 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
| 501998  | 50  | 1998 | 1.8  | 5    | 6.9  | 0.76 | 10176.3 |
| 501999  | 50  | 1999 | 1.45 | 4.1  | 5.55 | 0.6  | 10176.3 |
| 502000  | 50  | 2000 | 1.45 | 4.1  | 5.55 | 0.6  | 10176.3 |
| 502001  | 50  | 2001 | 1.45 | 4.1  | 5.55 | 0.6  | 10176.3 |
|         |     |      |      |      |      |      |         |
| 502002  | 50  | 2002 | 1.45 | 4.1  | 5.55 | 0.6  | 10176.3 |
| 502003  | 50  | 2003 | 1.45 | 4.1  | 5.55 | 0.6  | 10176.3 |
| 502004  | 50  | 2004 | 0.64 | 3.27 | 5.1  | 0.43 | 10176.3 |
| 502005  | 50  | 2005 | 0.37 | 3    | 4.95 | 0.38 | 10176.3 |
| 502006  | 50  | 2006 | 0.24 | 2.86 | 4.88 | 0.35 | 10176.3 |
| 502007  | 50  | 2007 | 0.24 | 2.86 | 4.88 | 0.35 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 502008  | 50  | 2008 | 0.1  | 2.72 | 4.8  | 0.16 | 10176.3 |
| 502009  | 50  | 2009 | 0.1  | 2.72 | 4.8  | 0.16 | 10176.3 |
| 502010  | 50  | 2010 | 0.1  | 2.72 | 4.8  | 0.16 | 10176.3 |
| 502011  | 50  | 2011 | 0.1  | 2.72 | 4.8  | 0.16 | 10176.3 |
| 502012  | 50  | 2012 | 0.1  | 2.72 | 4.8  | 0.16 | 10176.3 |
| 502013  | 50  | 2013 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 502014  | 50  | 2014 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502015  | 50  | 2015 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502016  | 50  | 2016 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502017  | 50  | 2017 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502018  | 50  | 2018 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502019  | 50  | 2019 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 502020  | 50  | 2020 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502021  | 50  | 2021 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502022  | 50  | 2022 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502023  | 50  | 2023 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 502024  | 50  | 2024 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
|         |     |      |      |      |      | 0.01 | 10176.3 |
| 502025  | 50  | 2025 | 0.1  | 2.72 | 2.9  |      |         |
| 502026  | 50  | 2026 | 0.1  | 2.72 | 2.9  | 0.01 | 10176.3 |
| 1201968 | 120 | 1968 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201969 | 120 | 1969 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201970 | 120 | 1970 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201971 | 120 | 1971 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 1201972 | 120 | 1972 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201973 | 120 | 1973 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201974 | 120 | 1974 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201975 | 120 | 1975 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201976 | 120 | 1976 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201970 | 120 | 1970 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 1201978 | 120 | 1978 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201979 | 120 | 1979 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201980 | 120 | 1980 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201981 | 120 | 1981 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201982 | 120 | 1982 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 1201983 | 120 | 1983 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201984 | 120 | 1984 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201985 | 120 | 1985 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201986 | 120 | 1986 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
| 1201987 | 120 | 1987 | 1.44 | 4.8  | 13   | 0.84 | 10176.3 |
|         |     |      |      |      |      |      |         |

| 1201988                                                                   | 120                                           | 1988                                         | 0.99                                 | 3.49                            | 8.75                                        | 0.69                                         | 10176.3                                             |
|---------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------------|----------------------------------------------|-----------------------------------------------------|
| 1201989                                                                   | 120                                           | 1989                                         | 0.99                                 | 3.49                            | 8.75                                        | 0.69                                         | 10176.3                                             |
|                                                                           | 120                                           |                                              | 0.99                                 |                                 | 8.75                                        | 0.69                                         |                                                     |
| 1201990                                                                   |                                               | 1990                                         |                                      | 3.49                            |                                             |                                              | 10176.3                                             |
| 1201991                                                                   | 120                                           | 1991                                         | 0.99                                 | 3.49                            | 8.75                                        | 0.69                                         | 10176.3                                             |
| 1201992                                                                   | 120                                           | 1992                                         | 0.99                                 | 3.49                            | 8.75                                        | 0.69                                         | 10176.3                                             |
| 1201993                                                                   | 120                                           | 1993                                         | 0.99                                 | 3.49                            | 8.75                                        | 0.69                                         | 10176.3                                             |
| 1201994                                                                   | 120                                           | 1994                                         | 0.99                                 | 3.49                            | 8.75                                        | 0.69                                         | 10176.3                                             |
| 1201995                                                                   | 120                                           | 1995                                         | 0.99                                 | 3.49                            | 8.75                                        | 0.69                                         | 10176.3                                             |
| 1201996                                                                   | 120                                           | 1996                                         | 0.99                                 | 3.49                            | 8.75                                        | 0.69                                         | 10176.3                                             |
|                                                                           |                                               |                                              |                                      |                                 | 8.75                                        | 0.69                                         | 10176.3                                             |
| 1201997                                                                   | 120                                           | 1997                                         | 0.99                                 | 3.49                            |                                             |                                              |                                                     |
| 1201998                                                                   | 120                                           | 1998                                         | 0.99                                 | 3.49                            | 6.9                                         | 0.69                                         | 10176.3                                             |
| 1201999                                                                   | 120                                           | 1999                                         | 0.99                                 | 3.49                            | 6.9                                         | 0.69                                         | 10176.3                                             |
| 1202000                                                                   | 120                                           | 2000                                         | 0.99                                 | 3.49                            | 6.9                                         | 0.69                                         | 10176.3                                             |
| 1202001                                                                   | 120                                           | 2001                                         | 0.99                                 | 3.49                            | 6.9                                         | 0.69                                         | 10176.3                                             |
| 1202002                                                                   | 120                                           | 2002                                         | 0.99                                 | 3.49                            | 6.9                                         | 0.69                                         | 10176.3                                             |
| 1202003                                                                   | 120                                           | 2003                                         | 0.99                                 | 3.49                            | 6.9                                         | 0.69                                         | 10176.3                                             |
| 1202004                                                                   | 120                                           | 2000                                         | 0.46                                 | 3.23                            | 5.64                                        | 0.39                                         | 10176.3                                             |
|                                                                           |                                               |                                              |                                      |                                 |                                             |                                              |                                                     |
| 1202005                                                                   | 120                                           | 2005                                         | 0.28                                 | 3.14                            | 5.22                                        | 0.29                                         | 10176.3                                             |
| 1202006                                                                   | 120                                           | 2006                                         | 0.19                                 | 3.09                            | 5.01                                        | 0.24                                         | 10176.3                                             |
| 1202007                                                                   | 120                                           | 2007                                         | 0.19                                 | 3.09                            | 5.01                                        | 0.24                                         | 10176.3                                             |
| 1202008                                                                   | 120                                           | 2008                                         | 0.1                                  | 3.05                            | 2.89                                        | 0.197                                        | 10176.3                                             |
| 1202009                                                                   | 120                                           | 2009                                         | 0.1                                  | 3.05                            | 2.89                                        | 0.197                                        | 10176.3                                             |
| 1202010                                                                   | 120                                           | 2010                                         | 0.1                                  | 3.05                            | 2.89                                        | 0.197                                        | 10176.3                                             |
|                                                                           | 120                                           | 2010                                         |                                      | 3.05                            | 2.89                                        | 0.197                                        | 10176.3                                             |
| 1202011                                                                   |                                               |                                              | 0.1                                  |                                 |                                             |                                              |                                                     |
| 1202012                                                                   | 120                                           | 2012                                         | 0.0943                               | 3.05                            | 2.5309                                      | 0.0659                                       | 10176.3                                             |
| 1202013                                                                   | 120                                           | 2013                                         | 0.0943                               | 3.05                            | 2.5309                                      | 0.01                                         | 10176.3                                             |
| 1202014                                                                   | 120                                           | 2014                                         | 0.0943                               | 3.05                            | 2.5309                                      | 0.01                                         | 10176.3                                             |
| 1202015                                                                   | 120                                           | 2015                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1202016                                                                   | 120                                           | 2016                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1202017                                                                   | 120                                           | 2017                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
|                                                                           | 120                                           |                                              |                                      |                                 |                                             | 0.01                                         |                                                     |
| 1202018                                                                   |                                               | 2018                                         | 0.0715                               | 3.05                            | 1.3966                                      |                                              | 10176.3                                             |
| 1202019                                                                   | 120                                           | 2019                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1202020                                                                   | 120                                           | 2020                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1202021                                                                   | 120                                           | 2021                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1202022                                                                   | 120                                           | 2022                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1202023                                                                   | 120                                           | 2023                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1202024                                                                   | 120                                           | 2024                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
|                                                                           |                                               |                                              |                                      |                                 |                                             |                                              |                                                     |
| 1202025                                                                   | 120                                           | 2025                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1202026                                                                   | 120                                           | 2026                                         | 0.0715                               | 3.05                            | 1.3966                                      | 0.01                                         | 10176.3                                             |
| 1751968                                                                   | 175                                           | 1968                                         | 1.32                                 | 4.4                             | 14                                          | 0.77                                         | 10176.3                                             |
| 1751969                                                                   | 175                                           | 1969                                         | 1.32                                 | 4.4                             | 14                                          | 0.77                                         | 10176.3                                             |
| 1751970                                                                   | 175                                           | 1970                                         | 1.1                                  | 4.4                             | 13                                          | 0.66                                         | 10176.3                                             |
| 1751971                                                                   | 175                                           | 1971                                         | 1.1                                  | 4.4                             | 13                                          | 0.66                                         | 10176.3                                             |
| 1751972                                                                   | 175                                           | 1972                                         | 1                                    | 4.4                             | 12                                          | 0.55                                         | 10176.3                                             |
|                                                                           |                                               |                                              |                                      |                                 |                                             |                                              |                                                     |
| 1751973                                                                   | 175                                           | 1973                                         | 1                                    | 4.4                             | 12                                          | 0.55                                         | 10176.3                                             |
| 1751974                                                                   | 175                                           | 1974                                         | 1                                    | 4.4                             | 12                                          | 0.55                                         | 10176.3                                             |
| 1751975                                                                   | 175                                           | 1975                                         | 1                                    | 4.4                             | 12                                          | 0.55                                         | 10176.3                                             |
| 1751976                                                                   | 175                                           | 1976                                         | 1                                    | 4.4                             | 12                                          | 0.55                                         | 10176.3                                             |
| 1751977                                                                   | 175                                           | 1977                                         | 1                                    | 4.4                             | 12                                          | 0.55                                         | 10176.3                                             |
| 1751978                                                                   | 175                                           | 1978                                         | 1                                    | 4.4                             | 12                                          | 0.55                                         | 10176.3                                             |
| 1751979                                                                   | 175                                           | 1979                                         | 1                                    | 4.4                             | 12                                          | 0.55                                         | 10176.3                                             |
| 1751980                                                                   |                                               | 1980                                         | 0.94                                 |                                 | 11                                          |                                              | 10176.3                                             |
|                                                                           | 175                                           |                                              |                                      | 4.3                             |                                             | 0.55                                         |                                                     |
| 1751981                                                                   | 175                                           | 1981                                         | 0.94                                 | 4.3                             | 11                                          | 0.55                                         | 10176.3                                             |
| 1751982                                                                   | 175                                           | 1982                                         | 0.94                                 | 4.3                             | 11                                          | 0.55                                         | 10176.3                                             |
| 1751983                                                                   | 175                                           | 1983                                         | 0.94                                 | 4.3                             | 11                                          | 0.55                                         | 10176.3                                             |
| 1751984                                                                   | 175                                           | 1984                                         | 0.94                                 | 4.3                             | 11                                          | 0.55                                         | 10176.3                                             |
| 1751985                                                                   | 175                                           | 1985                                         | 0.88                                 | 4.2                             | 11                                          | 0.55                                         | 10176.3                                             |
| 1751986                                                                   | 175                                           | 1986                                         | 0.88                                 | 4.2                             | 11                                          | 0.55                                         | 10176.3                                             |
|                                                                           |                                               |                                              |                                      |                                 |                                             |                                              |                                                     |
| 1751987                                                                   | 175                                           | 1987                                         | 0.88                                 | 4.2                             | 11                                          | 0.55                                         | 10176.3                                             |
| 1751988                                                                   | 175                                           | 1988                                         | 0.68                                 | 2.7                             | 8.17                                        | 0.38                                         | 10176.3                                             |
| 1751989                                                                   | 175                                           | 1989                                         | 0.68                                 | 2.7                             | 8.17                                        | 0.38                                         | 10176.3                                             |
|                                                                           | 175                                           | 1990                                         | 0.68                                 | 2.7                             | 8.17                                        | 0.38                                         | 10176.3                                             |
| 1751990                                                                   |                                               | 1991                                         | 0.68                                 | 2.7                             | 8.17                                        | 0.38                                         | 10176.3                                             |
| 1751990<br>1751991                                                        | 175                                           | 1991                                         |                                      | 2.7                             | 8.17                                        | 0.38                                         | 10176.3                                             |
| 1751991                                                                   | 175                                           |                                              | 0.68                                 |                                 |                                             |                                              |                                                     |
| 1751991<br>1751992                                                        | 175<br>175                                    | 1992                                         | 0.68<br>0.68                         |                                 |                                             |                                              |                                                     |
| 1751991<br>1751992<br>1751993                                             | 175<br>175<br>175                             | 1992<br>1993                                 | 0.68                                 | 2.7                             | 8.17                                        | 0.38                                         | 10176.3                                             |
| 1751991<br>1751992<br>1751993<br>1751994                                  | 175<br>175<br>175<br>175                      | 1992<br>1993<br>1994                         | 0.68<br>0.68                         | 2.7<br>2.7                      | 8.17<br>8.17                                | 0.38<br>0.38                                 | 10176.3<br>10176.3                                  |
| 1751991<br>1751992<br>1751993<br>1751994<br>1751995                       | 175<br>175<br>175<br>175<br>175               | 1992<br>1993<br>1994<br>1995                 | 0.68<br>0.68<br>0.68                 | 2.7<br>2.7<br>2.7               | 8.17<br>8.17<br>8.17                        | 0.38<br>0.38<br>0.38                         | 10176.3<br>10176.3<br>10176.3                       |
| 1751991<br>1751992<br>1751993<br>1751994<br>1751995<br>1751996            | 175<br>175<br>175<br>175<br>175<br>175        | 1992<br>1993<br>1994<br>1995<br>1996         | 0.68<br>0.68<br>0.68<br>0.68         | 2.7<br>2.7<br>2.7<br>2.7        | 8.17<br>8.17<br>8.17<br>8.17                | 0.38<br>0.38<br>0.38<br>0.38                 | 10176.3<br>10176.3<br>10176.3<br>10176.3            |
| 1751991<br>1751992<br>1751993<br>1751994<br>1751995                       | 175<br>175<br>175<br>175<br>175               | 1992<br>1993<br>1994<br>1995                 | 0.68<br>0.68<br>0.68                 | 2.7<br>2.7<br>2.7               | 8.17<br>8.17<br>8.17                        | 0.38<br>0.38<br>0.38                         | 10176.3<br>10176.3<br>10176.3                       |
| 1751991<br>1751992<br>1751993<br>1751994<br>1751995<br>1751996            | 175<br>175<br>175<br>175<br>175<br>175        | 1992<br>1993<br>1994<br>1995<br>1996         | 0.68<br>0.68<br>0.68<br>0.68         | 2.7<br>2.7<br>2.7<br>2.7        | 8.17<br>8.17<br>8.17<br>8.17                | 0.38<br>0.38<br>0.38<br>0.38                 | 10176.3<br>10176.3<br>10176.3<br>10176.3            |
| 1751991<br>1751992<br>1751993<br>1751994<br>1751995<br>1751996<br>1751997 | 175<br>175<br>175<br>175<br>175<br>175<br>175 | 1992<br>1993<br>1994<br>1995<br>1996<br>1997 | 0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 2.7<br>2.7<br>2.7<br>2.7<br>2.7 | 8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>6.9 | 0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3 |

| 1752000 | 175 | 2000 | 0.68 | 2.7  | 6.9  | 0.38 | 10176.3 |
|---------|-----|------|------|------|------|------|---------|
|         |     |      |      |      |      |      |         |
| 1752001 | 175 | 2001 | 0.68 | 2.7  | 6.9  | 0.38 | 10176.3 |
| 1752002 | 175 | 2002 | 0.68 | 2.7  | 6.9  | 0.38 | 10176.3 |
| 1752003 | 175 | 2003 | 0.33 | 2.7  | 5.26 | 0.24 | 10176.3 |
| 1752004 | 175 | 2004 | 0.22 | 2.7  | 4.72 | 0.19 | 10176.3 |
|         |     |      | 0.16 | 2.7  |      |      |         |
| 1752005 | 175 | 2005 |      |      | 4.44 | 0.16 | 10176.3 |
| 1752006 | 175 | 2006 | 0.16 | 2.7  | 4.44 | 0.16 | 10176.3 |
| 1752007 | 175 | 2007 | 0.1  | 2.7  | 2.45 | 0.14 | 10176.3 |
| 1752008 | 175 | 2008 | 0.1  | 2.7  | 2.45 | 0.14 | 10176.3 |
| 1752009 | 175 | 2009 | 0.1  | 2.7  | 2.45 |      | 10176.3 |
|         |     |      |      |      |      | 0.14 |         |
| 1752010 | 175 | 2010 | 0.1  | 2.7  | 2.45 | 0.14 | 10176.3 |
| 1752011 | 175 | 2011 | 0.1  | 2.7  | 2.45 | 0.14 | 10176.3 |
| 1752012 | 175 | 2012 | 0.09 | 2.7  | 2.27 | 0.01 | 10176.3 |
| 1752013 | 175 | 2013 | 0.09 | 2.7  | 2.27 | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 1752014 | 175 | 2014 | 0.09 | 2.7  | 2.27 | 0.01 | 10176.3 |
| 1752015 | 175 | 2015 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752016 | 175 | 2016 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752017 | 175 | 2017 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752018 | 175 | 2018 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 1752019 | 175 | 2019 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752020 | 175 | 2020 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752021 | 175 | 2021 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752022 | 175 | 2022 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 1752023 | 175 | 2023 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752024 | 175 | 2024 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752025 | 175 | 2025 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 1752026 | 175 | 2026 | 0.05 | 2.7  | 0.27 | 0.01 | 10176.3 |
| 2501968 | 250 | 1968 | 1.32 | 4.4  | 14   | 0.77 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2501969 | 250 | 1969 | 1.32 | 4.4  | 14   | 0.77 | 10176.3 |
| 2501970 | 250 | 1970 | 1.1  | 4.4  | 13   | 0.66 | 10176.3 |
| 2501971 | 250 | 1971 | 1.1  | 4.4  | 13   | 0.66 | 10176.3 |
| 2501972 | 250 | 1972 | 1    | 4.4  | 12   | 0.55 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2501973 | 250 | 1973 | 1    | 4.4  | 12   | 0.55 | 10176.3 |
| 2501974 | 250 | 1974 | 1    | 4.4  | 12   | 0.55 | 10176.3 |
| 2501975 | 250 | 1975 | 1    | 4.4  | 12   | 0.55 | 10176.3 |
| 2501976 | 250 | 1976 | 1    | 4.4  | 12   | 0.55 | 10176.3 |
| 2501977 | 250 | 1977 | 1    | 4.4  | 12   | 0.55 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2501978 | 250 | 1978 | 1    | 4.4  | 12   | 0.55 | 10176.3 |
| 2501979 | 250 | 1979 | 1    | 4.4  | 12   | 0.55 | 10176.3 |
| 2501980 | 250 | 1980 | 0.94 | 4.3  | 11   | 0.55 | 10176.3 |
| 2501981 | 250 | 1981 | 0.94 | 4.3  | 11   | 0.55 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2501982 | 250 | 1982 | 0.94 | 4.3  | 11   | 0.55 | 10176.3 |
| 2501983 | 250 | 1983 | 0.94 | 4.3  | 11   | 0.55 | 10176.3 |
| 2501984 | 250 | 1984 | 0.94 | 4.3  | 11   | 0.55 | 10176.3 |
| 2501985 | 250 | 1985 | 0.88 | 4.2  | 11   | 0.55 | 10176.3 |
| 2501986 | 250 | 1986 | 0.88 | 4.2  | 11   | 0.55 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2501987 | 250 | 1987 | 0.88 | 4.2  | 11   | 0.55 | 10176.3 |
| 2501988 | 250 | 1988 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 2501989 | 250 | 1989 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 2501990 | 250 | 1990 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 2501991 | 250 | 1991 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2501992 | 250 | 1992 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 2501993 | 250 | 1993 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 2501994 | 250 | 1994 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 2501995 | 250 | 1995 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2501996 | 250 | 1996 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 2501997 | 250 | 1997 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 2501998 | 250 | 1998 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 2501999 | 250 | 1999 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 2502000 | 250 | 2000 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2502001 | 250 | 2001 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 2502002 | 250 | 2002 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 2502003 | 250 | 2003 | 0.19 | 0.92 | 5    | 0.12 | 10176.3 |
| 2502004 | 250 | 2004 | 0.14 | 0.92 | 4.58 | 0.11 | 10176.3 |
| 2502004 | 250 | 2004 | 0.12 | 0.92 | 4.38 | 0.11 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2502006 | 250 | 2006 | 0.12 | 0.92 | 4.38 | 0.11 | 10176.3 |
| 2502007 | 250 | 2007 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
| 2502008 | 250 | 2008 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
| 2502009 | 250 | 2009 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
| 2502003 | 250 | 2005 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 2502011 | 250 | 2011 | 0.07 | 0.92 | 1.36 | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |

| 2502012<br>2502013<br>2502014<br>2502015                                                                                                                                                                                                                                        |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2502013<br>2502014<br>2502015                                                                                                                                                                                                                                                   | 250                                                                | 2012                                                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 2502014<br>2502015                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 2502015                                                                                                                                                                                                                                                                         | 250                                                                | 2013                                                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 | 250                                                                | 2014                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 | 250                                                                | 2015                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 | 250                                                                | 2016                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 2502016                                                                                                                                                                                                                                                                         |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 2502017                                                                                                                                                                                                                                                                         | 250                                                                | 2017                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 2502018                                                                                                                                                                                                                                                                         | 250                                                                | 2018                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 2502019                                                                                                                                                                                                                                                                         | 250                                                                | 2019                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 2502020                                                                                                                                                                                                                                                                         | 250                                                                | 2020                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 2502021                                                                                                                                                                                                                                                                         | 250                                                                | 2021                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 2502022                                                                                                                                                                                                                                                                         | 250                                                                | 2022                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 2502023                                                                                                                                                                                                                                                                         | 250                                                                | 2023                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 |
| 2502024                                                                                                                                                                                                                                                                         | 250                                                                | 2024                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10176.3                                                                                                                                                                                                                                                                         |
| 2502025                                                                                                                                                                                                                                                                         | 250                                                                | 2025                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 2502026                                                                                                                                                                                                                                                                         | 250                                                                | 2026                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001968                                                                                                                                                                                                                                                                         | 500                                                                | 1968                                                                                                                                                                                                         | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 5001969                                                                                                                                                                                                                                                                         | 500                                                                | 1969                                                                                                                                                                                                         | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001970                                                                                                                                                                                                                                                                         | 500                                                                | 1970                                                                                                                                                                                                         | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001971                                                                                                                                                                                                                                                                         | 500                                                                | 1971                                                                                                                                                                                                         | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001972                                                                                                                                                                                                                                                                         | 500                                                                | 1972                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 5001973                                                                                                                                                                                                                                                                         | 500                                                                | 1973                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001974                                                                                                                                                                                                                                                                         | 500                                                                | 1974                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001975                                                                                                                                                                                                                                                                         | 500                                                                | 1975                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001976                                                                                                                                                                                                                                                                         | 500                                                                | 1976                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 5001977                                                                                                                                                                                                                                                                         | 500                                                                | 1977                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001978                                                                                                                                                                                                                                                                         | 500                                                                | 1978                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001979                                                                                                                                                                                                                                                                         | 500                                                                | 1979                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001980                                                                                                                                                                                                                                                                         | 500                                                                | 1980                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 5001981                                                                                                                                                                                                                                                                         | 500                                                                | 1981                                                                                                                                                                                                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001982                                                                                                                                                                                                                                                                         | 500                                                                | 1982                                                                                                                                                                                                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001983                                                                                                                                                                                                                                                                         | 500                                                                | 1983                                                                                                                                                                                                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001984                                                                                                                                                                                                                                                                         | 500                                                                | 1984                                                                                                                                                                                                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 5001985                                                                                                                                                                                                                                                                         | 500                                                                | 1985                                                                                                                                                                                                         | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001986                                                                                                                                                                                                                                                                         | 500                                                                | 1986                                                                                                                                                                                                         | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001987                                                                                                                                                                                                                                                                         | 500                                                                | 1987                                                                                                                                                                                                         | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001988                                                                                                                                                                                                                                                                         | 500                                                                | 1988                                                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 5001989                                                                                                                                                                                                                                                                         | 500                                                                | 1989                                                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001990                                                                                                                                                                                                                                                                         | 500                                                                | 1990                                                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001991                                                                                                                                                                                                                                                                         | 500                                                                | 1991                                                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |
| 5001992                                                                                                                                                                                                                                                                         | 500                                                                | 1992                                                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001993                                                                                                                                                                                                                                                                         | 500                                                                | 1993                                                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001994                                                                                                                                                                                                                                                                         | 500                                                                | 1994                                                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 |
| 5001995                                                                                                                                                                                                                                                                         | 500                                                                |                                                                                                                                                                                                              | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10176.3                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |                                                                    | 1005                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                 |                                                                    | 1995                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3                                                                                                                                                                                                                                                                         |
| 5001996                                                                                                                                                                                                                                                                         | 500                                                                | 1996                                                                                                                                                                                                         | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3                                                                                                                                                                                                                                                              |
| 5001998<br>5001997                                                                                                                                                                                                                                                              | 500<br>500                                                         |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10176.3                                                                                                                                                                                                                                                                         |
| 5001997                                                                                                                                                                                                                                                                         | 500                                                                | 1996<br>1997                                                                                                                                                                                                 | 0.32<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3                                                                                                                                                                                                                                                   |
| 5001997<br>5001998                                                                                                                                                                                                                                                              | 500<br>500                                                         | 1996<br>1997<br>1998                                                                                                                                                                                         | 0.32<br>0.32<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.25<br>6.25<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                                                                                        |
| 5001997<br>5001998<br>5001999                                                                                                                                                                                                                                                   | 500<br>500<br>500                                                  | 1996<br>1997<br>1998<br>1999                                                                                                                                                                                 | 0.32<br>0.32<br>0.32<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                                                                             |
| 5001997<br>5001998<br>5001999<br>5002000                                                                                                                                                                                                                                        | 500<br>500<br>500<br>500                                           | 1996<br>1997<br>1998<br>1999<br>2000                                                                                                                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                                                                  |
| 5001997<br>5001998<br>5001999                                                                                                                                                                                                                                                   | 500<br>500<br>500                                                  | 1996<br>1997<br>1998<br>1999                                                                                                                                                                                 | 0.32<br>0.32<br>0.32<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                                                                             |
| 5001997<br>5001998<br>5001999<br>5002000                                                                                                                                                                                                                                        | 500<br>500<br>500<br>500                                           | 1996<br>1997<br>1998<br>1999<br>2000                                                                                                                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                                                                  |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002                                                                                                                                                                                                                  | 500<br>500<br>500<br>500<br>500<br>500                             | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2001                                                                                                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                                            |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003                                                                                                                                                                                                       | 500<br>500<br>500<br>500<br>500<br>500<br>500                      | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003                                                                                                                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                                 |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002003                                                                                                                                                                                            | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500               | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2003<br>2004                                                                                                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                      |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003                                                                                                                                                                                                       | 500<br>500<br>500<br>500<br>500<br>500<br>500                      | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003                                                                                                                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                           |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002003                                                                                                                                                                                            | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500               | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2003<br>2004                                                                                                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                                      |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002003<br>5002004<br>5002005<br>5002006                                                                                                                                                           | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006                                                                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.12<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                                |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002004<br>5002005<br>5002006<br>5002007                                                                                                                                                | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007                                                                                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.12<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4<br>2.45<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                     |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002007<br>5002008                                                                                                                                     | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008                                                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4<br>2.45<br>2.45<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                          |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002004<br>5002005<br>5002006<br>5002007                                                                                                                                                | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007                                                                                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.12<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4<br>2.45<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                                     |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002007<br>5002008                                                                                                                                     | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008                                                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4<br>2.45<br>2.45<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                                          |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010                                                                                                                          | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2007<br>2008<br>2009<br>2010                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45 | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                                    |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002007<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011                                                                                                               | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4.29<br>4.29<br>4.29<br>4.23<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                         |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002012                                                                                         | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2011                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                         |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002012<br>5002013                                                                              | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013                                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                              |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002012                                                                                         | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2011                                                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                                         |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002007<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002012<br>5002013<br>5002014                                                                   | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2010<br>2011<br>2012<br>2013<br>2014                                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                              |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002007<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002012<br>5002013<br>5002014<br>5002015                                                        | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2011<br>2011<br>2011<br>2013<br>2014<br>2015                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.07<br>0.07<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                                   |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002004<br>5002005<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002011<br>5002013<br>5002014<br>5002015<br>5002016                                                        | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                        |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002007<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002012<br>5002013<br>5002014<br>5002015                                                        | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2011<br>2011<br>2011<br>2013<br>2014<br>2015                                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.07<br>0.07<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                             |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002004<br>5002005<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002011<br>5002013<br>5002014<br>5002015<br>5002016                                                        | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016                                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                                        |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002011<br>5002011<br>5002014<br>5002015<br>5002016<br>5002017<br>5002018                                             | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018                         | 0.32<br>0.32<br>0.32<br>0.32<br>0.12<br>0.14<br>0.12<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92 | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>0.27<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                         | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                  |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002003<br>5002004<br>5002005<br>5002006<br>5002007<br>5002008<br>5002007<br>5002008<br>5002010<br>5002011<br>5002012<br>5002013<br>5002014<br>5002015<br>5002017<br>5002018<br>5002019                                  | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.12<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                  |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002006<br>5002007<br>5002008<br>5002010<br>5002010<br>5002011<br>5002012<br>5002013<br>5002014<br>5002015<br>5002016<br>5002017<br>5002018<br>5002019<br>5002020 | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020         | 0.32<br>0.32<br>0.32<br>0.32<br>0.12<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                       |
| 5001997<br>5001998<br>5001999<br>5002000<br>5002001<br>5002003<br>5002004<br>5002005<br>5002006<br>5002007<br>5002008<br>5002007<br>5002008<br>5002010<br>5002011<br>5002012<br>5002013<br>5002014<br>5002015<br>5002017<br>5002018<br>5002019                                  | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019                 | 0.32<br>0.32<br>0.32<br>0.32<br>0.12<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                                  |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002006<br>5002007<br>5002008<br>5002010<br>5002010<br>5002011<br>5002012<br>5002013<br>5002014<br>5002015<br>5002016<br>5002017<br>5002018<br>5002019<br>5002020 | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020         | 0.32<br>0.32<br>0.32<br>0.32<br>0.12<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92                                                                                                                         | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3                       |
| 5001997<br>5001998<br>5002000<br>5002001<br>5002002<br>5002003<br>5002004<br>5002005<br>5002006<br>5002006<br>5002007<br>5002008<br>5002009<br>5002010<br>5002010<br>5002011<br>5002013<br>5002014<br>5002014<br>5002014<br>5002015<br>5002018<br>5002019<br>5002020<br>5002020 | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | 1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021 | 0.32<br>0.32<br>0.32<br>0.32<br>0.19<br>0.14<br>0.12<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.5<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | 0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92 | 6.25<br>6.25<br>6.25<br>6.25<br>4.95<br>4.51<br>4.29<br>4<br>2.45<br>2.45<br>2.45<br>2.45<br>2.45<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27<br>0.27 | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.12<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3<br>10176.3 |

| 5002024 | 500 | 2024 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
|---------|-----|------|------|------|------|------|---------|
|         |     |      |      | 0.92 | 0.27 | 0.01 |         |
| 5002025 | 500 | 2025 | 0.05 |      |      |      | 10176.3 |
| 5002026 | 500 | 2026 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7501968 | 750 | 1968 | 1.26 | 4.2  | 14   | 0.74 | 10176.3 |
| 7501969 | 750 | 1969 | 1.26 | 4.2  | 14   | 0.74 | 10176.3 |
| 7501970 | 750 | 1970 | 1.05 | 4.2  | 13   | 0.63 | 10176.3 |
| 7501971 |     |      | 1.05 | 4.2  | 13   |      | 10176.3 |
|         | 750 | 1971 |      |      |      | 0.63 |         |
| 7501972 | 750 | 1972 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 7501973 | 750 | 1973 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 7501974 | 750 | 1974 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 7501975 | 750 | 1975 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 7501976 |     | 1976 | 0.95 | 4.2  |      | 0.53 | 10176.3 |
|         | 750 |      |      |      | 12   |      |         |
| 7501977 | 750 | 1977 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 7501978 | 750 | 1978 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 7501979 | 750 | 1979 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 7501980 | 750 | 1980 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 7501981 | 750 | 1981 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7501982 | 750 | 1982 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 7501983 | 750 | 1983 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 7501984 | 750 | 1984 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 7501985 | 750 | 1985 | 0.84 | 4.1  | 11   | 0.53 | 10176.3 |
| 7501986 | 750 | 1986 | 0.84 | 4.1  | 11   | 0.53 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7501987 | 750 | 1987 | 0.84 | 4.1  | 11   | 0.53 | 10176.3 |
| 7501988 | 750 | 1988 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 7501989 | 750 | 1989 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 7501990 | 750 | 1990 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 7501991 | 750 | 1991 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7501992 | 750 | 1992 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 7501993 | 750 | 1993 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 7501994 | 750 | 1994 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 7501995 | 750 | 1995 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 7501996 | 750 | 1996 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7501997 | 750 | 1997 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 7501998 | 750 | 1998 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 7501999 | 750 | 1999 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 7502000 | 750 | 2000 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 7502001 | 750 | 2001 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7502002 | 750 | 2002 | 0.19 | 0.92 | 4.95 | 0.12 | 10176.3 |
| 7502003 | 750 | 2003 | 0.14 | 0.92 | 4.51 | 0.11 | 10176.3 |
| 7502004 | 750 | 2004 | 0.12 | 0.92 | 4.29 | 0.11 | 10176.3 |
| 7502005 | 750 | 2005 | 0.12 | 0.92 | 4.29 | 0.11 | 10176.3 |
| 7502006 | 750 | 2006 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7502007 | 750 | 2007 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
| 7502008 | 750 | 2008 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
| 7502009 | 750 | 2009 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
| 7502010 | 750 | 2010 | 0.1  | 0.92 | 2.45 | 0.11 | 10176.3 |
| 7502011 | 750 | 2011 | 0.07 | 0.92 | 1.36 | 0.01 | 10176.3 |
| 7502012 | 750 | 2012 | 0.07 | 0.92 | 1.36 | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7502013 | 750 | 2013 | 0.07 | 0.92 | 1.36 | 0.01 | 10176.3 |
| 7502014 | 750 | 2014 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502015 | 750 | 2015 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502016 | 750 | 2016 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502017 | 750 | 2017 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7502018 | 750 | 2018 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502019 | 750 | 2019 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502020 | 750 | 2020 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502021 | 750 | 2021 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502022 | 750 | 2022 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502023 | 750 | 2023 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 7502024 | 750 | 2024 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502025 | 750 | 2025 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 7502026 | 750 | 2026 | 0.05 | 0.92 | 0.27 | 0.01 | 10176.3 |
| 9991968 | 999 | 1968 | 1.26 | 4.2  | 14   | 0.74 | 10176.3 |
| 9991969 | 999 | 1969 | 1.26 | 4.2  | 14   | 0.74 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 9991970 | 999 | 1970 | 1.05 | 4.2  | 13   | 0.63 | 10176.3 |
| 9991971 | 999 | 1971 | 1.05 | 4.2  | 13   | 0.63 | 10176.3 |
| 9991972 | 999 | 1972 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 9991973 | 999 | 1973 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 9991974 | 999 | 1974 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 9991975 | 999 | 1975 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
|         |     |      |      |      |      |      |         |
| 9991976 | 999 | 1976 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
|         |     |      |      |      |      |      |         |

| 9991977 | 999 | 1977 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
|---------|-----|------|------|------|------|------|---------|
| 9991978 | 999 | 1978 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 9991979 | 999 | 1979 | 0.95 | 4.2  | 12   | 0.53 | 10176.3 |
| 9991980 | 999 | 1980 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 9991981 | 999 | 1981 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 9991982 | 999 | 1982 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 9991983 | 999 | 1983 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 9991984 | 999 | 1984 | 0.9  | 4.2  | 11   | 0.53 | 10176.3 |
| 9991985 | 999 | 1985 | 0.84 | 4.1  | 11   | 0.53 | 10176.3 |
| 9991986 | 999 | 1986 | 0.84 | 4.1  | 11   | 0.53 | 10176.3 |
| 9991987 | 999 | 1987 | 0.84 | 4.1  | 11   | 0.53 | 10176.3 |
| 9991988 | 999 | 1988 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991989 | 999 | 1989 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991990 | 999 | 1990 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991991 | 999 | 1991 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991992 | 999 | 1992 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991993 | 999 | 1993 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991994 | 999 | 1994 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991995 | 999 | 1995 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991996 | 999 | 1996 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991997 | 999 | 1997 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991998 | 999 | 1998 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9991999 | 999 | 1999 | 0.68 | 2.7  | 8.17 | 0.38 | 10176.3 |
| 9992000 | 999 | 2000 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 9992001 | 999 | 2001 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 9992002 | 999 | 2002 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 9992003 | 999 | 2003 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 9992004 | 999 | 2004 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 9992005 | 999 | 2005 | 0.32 | 0.92 | 6.25 | 0.15 | 10176.3 |
| 9992006 | 999 | 2006 | 0.19 | 0.92 | 4.95 | 0.12 | 10176.3 |
| 9992007 | 999 | 2007 | 0.14 | 0.92 | 4.51 | 0.11 | 10176.3 |
| 9992008 | 999 | 2008 | 0.12 | 0.92 | 4.29 | 0.11 | 10176.3 |
| 9992009 | 999 | 2009 | 0.12 | 0.92 | 4.29 | 0.11 | 10176.3 |
| 9992010 | 999 | 2010 | 0.1  | 0.92 | 4.08 | 0.11 | 10176.3 |
| 9992011 | 999 | 2011 | 0.1  | 0.92 | 2.36 | 0.06 | 10176.3 |
| 9992012 | 999 | 2012 | 0.1  | 0.92 | 2.36 | 0.06 | 10176.3 |
| 9992013 | 999 | 2013 | 0.1  | 0.92 | 2.36 | 0.06 | 10176.3 |
| 9992014 | 999 | 2014 | 0.1  | 0.92 | 2.36 | 0.06 | 10176.3 |
| 9992015 | 999 | 2015 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992016 | 999 | 2016 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992017 | 999 | 2017 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992018 | 999 | 2018 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992019 | 999 | 2019 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992020 | 999 | 2020 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992021 | 999 | 2021 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992022 | 999 | 2022 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992023 | 999 | 2023 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992024 | 999 | 2024 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992025 | 999 | 2025 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
| 9992026 | 999 | 2026 | 0.05 | 0.92 | 2.36 | 0.02 | 10176.3 |
|         |     |      |      |      |      |      |         |

#### \*New Tier4 emfacs included with 43/57% split for 120 hp merged (diesel only)

| units = g/bhp hr<br>Lookup | Hp | Year | HC   | <u>_CO</u> | NOX | PM   | CO2     |
|----------------------------|----|------|------|------------|-----|------|---------|
| 251968                     | 25 | 1968 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251969                     | 25 | 1969 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251970                     | 25 | 1970 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251970                     | 25 |      |      | 15.5       | 6   |      | 10176.3 |
|                            |    | 1971 | 1.3  |            |     | 0.6  |         |
| 251972                     | 25 | 1972 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251973                     | 25 | 1973 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251974                     | 25 | 1974 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251975                     | 25 | 1975 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251976                     | 25 | 1976 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251977                     | 25 | 1977 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251978                     | 25 | 1978 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251979                     | 25 | 1979 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251980                     | 25 | 1980 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251981                     | 25 | 1981 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251982                     | 25 | 1982 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251983                     | 25 | 1983 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251984                     | 25 | 1984 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251985                     | 25 | 1985 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251986                     | 25 | 1986 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251987                     | 25 | 1987 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251988                     | 25 | 1988 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251989                     | 25 | 1989 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 251989                     | 25 | 1989 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
|                            |    |      |      |            |     |      |         |
| 251991                     | 25 | 1991 | 1.3  | 15.5       | 5   | 0.25 | 10176.3 |
| 251992                     | 25 | 1992 | 1.3  | 15.5       | 5   | 0.25 | 10176.3 |
| 251993                     | 25 | 1993 | 1.3  | 15.5       | 5   | 0.25 | 10176.3 |
| 251994                     | 25 | 1994 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 251995                     | 25 | 1995 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 251996                     | 25 | 1996 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 251997                     | 25 | 1997 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 251998                     | 25 | 1998 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 251999                     | 25 | 1999 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 252000                     | 25 | 2000 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 252001                     | 25 | 2001 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 252002                     | 25 | 2002 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 252003                     | 25 | 2003 | 1.3  | 15.5       | 5   | 0.1  | 10176.3 |
| 252004                     | 25 | 2004 | 0.5  | 15.5       | 2   | 0.1  | 10176.3 |
| 252005                     | 25 | 2005 | 0.5  | 15.5       | 2   | 0.1  | 10176.3 |
| 252006                     | 25 | 2006 | 0.5  | 15.5       | 2   | 0.1  | 10176.3 |
| 252007                     | 25 | 2007 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252008                     | 25 | 2008 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252009                     | 25 | 2009 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252005                     | 25 | 2003 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252010                     | 25 | 2010 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252011                     | 25 |      |      | 15.5       | 2   | 0.01 | 10176.3 |
|                            |    | 2012 | 0.14 |            | 2   |      |         |
| 252013                     | 25 | 2013 | 0.14 | 15.5       |     | 0.01 | 10176.3 |
| 252014                     | 25 | 2014 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252015                     | 25 | 2015 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252016                     | 25 | 2016 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252017                     | 25 | 2017 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252018                     | 25 | 2018 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252019                     | 25 | 2019 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252020                     | 25 | 2020 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252021                     | 25 | 2021 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252022                     | 25 | 2022 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252023                     | 25 | 2023 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252024                     | 25 | 2024 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252025                     | 25 | 2025 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 252026                     | 25 | 2026 | 0.14 | 15.5       | 2   | 0.01 | 10176.3 |
| 501969                     | 50 | 1969 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501969                     | 50 | 1969 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501970                     | 50 | 1970 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501971                     | 50 | 1971 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
|                            |    |      |      |            |     |      |         |
| 501972                     | 50 | 1972 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501973                     | 50 | 1973 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501974                     | 50 | 1974 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501975                     | 50 | 1975 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501976                     | 50 | 1976 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501977                     | 50 | 1977 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501978                     | 50 | 1978 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501979                     | 50 | 1979 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501980                     | 50 | 1980 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501981                     | 50 | 1981 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501982                     | 50 | 1982 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501983                     | 50 | 1983 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501984                     | 50 | 1984 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
| 501985                     | 50 | 1985 | 1.3  | 15.5       | 6   | 0.6  | 10176.3 |
|                            |    |      |      |            |     |      |         |

| 501986  | 50  | 1986 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|---------|-----|------|------|------|-----|------|---------|
|         |     |      |      |      |     |      |         |
| 501987  | 50  | 1987 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 501988  | 50  | 1988 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 501989  | 50  | 1989 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 501990  | 50  | 1990 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 501991  | 50  | 1991 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 501992  | 50  | 1992 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 501993  | 50  | 1993 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 501994  | 50  | 1994 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 501995  | 50  | 1995 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 501996  | 50  | 1996 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 501997  | 50  | 1997 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 501998  | 50  | 1998 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 501999  | 50  | 1999 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 502000  | 50  | 2000 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502001  | 50  | 2001 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 502002  | 50  | 2002 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     | 2003 |      |      | 5   | 0.1  |         |
| 502003  | 50  |      | 1.3  | 15.5 |     |      | 10176.3 |
| 502004  | 50  | 2004 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 502005  | 50  | 2005 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502006  | 50  | 2006 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 502007  | 50  | 2007 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 502008  | 50  | 2008 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502009  | 50  | 2009 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 502010  | 50  | 2010 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502011  | 50  | 2011 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502012  | 50  | 2012 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502013  | 50  | 2013 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502014  | 50  | 2014 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502015  | 50  | 2015 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502016  | 50  | 2016 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502017  | 50  | 2017 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502018  | 50  | 2018 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502019  | 50  | 2019 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502020  | 50  | 2020 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502021  | 50  | 2021 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502022  | 50  | 2022 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502023  | 50  | 2023 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502024  | 50  | 2024 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 502025  | 50  | 2025 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 502026  | 50  | 2026 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201968 | 120 | 1968 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201969 | 120 | 1969 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201970 | 120 | 1970 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201971 | 120 | 1971 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201972 | 120 | 1972 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201973 | 120 | 1973 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201974 | 120 | 1974 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201975 | 120 | 1975 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201976 | 120 | 1976 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201977 | 120 | 1977 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201978 | 120 | 1978 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201979 | 120 | 1979 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201980 | 120 | 1980 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201981 | 120 | 1981 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201982 | 120 | 1982 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201983 | 120 | 1983 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201984 | 120 | 1984 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201985 | 120 | 1985 | 1.3  |      | 6   | 0.6  | 10176.3 |
|         |     |      |      | 15.5 |     |      |         |
| 1201986 | 120 | 1986 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201987 | 120 | 1987 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201988 | 120 | 1988 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201989 | 120 | 1989 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1201990 | 120 | 1990 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201991 | 120 | 1991 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 1201992 | 120 | 1992 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201993 | 120 | 1993 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 1201994 | 120 | 1994 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1201995 | 120 | 1995 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201996 | 120 | 1996 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1201997 | 120 | 1997 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1201998 | 120 | 1998 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1201999 | 120 | 1999 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202000 | 120 | 2000 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1202001 | 120 | 2001 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1202002 | 120 | 2002 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202003 | 120 | 2003 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1202004 | 120 | 2004 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202005 | 120 | 2005 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 1202006 | 120 | 2006 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 1202007 | 120 | 2007 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 1202001 | 120 | 2007 | 0.14 | 10.0 | 1.1 | 0.01 | 10170.0 |
|         |     |      |      |      |     |      |         |

| 1000000 | 100 | 2008 | 0.14 | 15 5 | 1.1 | 0.01 | 10176.2 |
|---------|-----|------|------|------|-----|------|---------|
| 1202008 | 120 | 2008 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 1202009 | 120 | 2009 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 1202010 | 120 | 2010 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202011 | 120 | 2011 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202012 | 120 | 2012 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202013 | 120 | 2013 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202014 | 120 | 2014 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202015 | 120 | 2015 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202016 | 120 | 2016 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202017 | 120 | 2017 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202018 | 120 | 2018 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202019 | 120 | 2019 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202020 | 120 | 2020 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202021 | 120 | 2021 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202022 | 120 | 2022 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202023 | 120 | 2023 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202024 | 120 | 2024 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1202025 | 120 | 2025 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1202026 | 120 | 2026 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751968 | 175 | 1968 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751969 | 175 | 1969 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      | 6   |      |         |
| 1751970 | 175 | 1970 | 1.3  | 15.5 |     | 0.6  | 10176.3 |
| 1751971 | 175 | 1971 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751972 | 175 | 1972 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751973 | 175 | 1973 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751974 | 175 | 1974 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751975 | 175 | 1975 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751976 | 175 | 1976 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751977 | 175 | 1977 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751978 | 175 | 1978 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751979 | 175 | 1979 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751980 | 175 | 1980 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751981 | 175 | 1981 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751982 | 175 | 1982 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751983 | 175 | 1983 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751984 | 175 | 1984 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751985 | 175 | 1985 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      | 6   |      |         |
| 1751986 | 175 | 1986 | 1.3  | 15.5 |     | 0.6  | 10176.3 |
| 1751987 | 175 | 1987 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751988 | 175 | 1988 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751989 | 175 | 1989 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 1751990 | 175 | 1990 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751991 | 175 | 1991 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 1751992 | 175 | 1992 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751993 | 175 | 1993 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 1751994 | 175 | 1994 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1751995 | 175 | 1995 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751996 | 175 | 1996 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1751997 | 175 | 1997 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1751998 | 175 | 1998 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1751999 | 175 | 1999 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      | 5   |      |         |
| 1752000 | 175 | 2000 | 1.3  | 15.5 |     | 0.1  | 10176.3 |
| 1752001 | 175 | 2001 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1752002 | 175 | 2002 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1752003 | 175 | 2003 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 1752004 | 175 | 2004 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
|         | 175 | 2005 | 0.5  |      | 2   | 0.1  |         |
| 1752005 |     |      |      | 15.5 |     |      | 10176.3 |
| 1752006 | 175 | 2006 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 1752007 | 175 | 2007 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1752008 | 175 | 2008 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 1752009 | 175 | 2009 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 1752010 | 175 | 2010 | 0.14 |      | 0.2 | 0.01 | 10176.3 |
|         |     |      |      | 15.5 |     |      |         |
| 1752011 | 175 | 2011 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752012 | 175 | 2012 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1752013 | 175 | 2013 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752014 | 175 | 2014 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1752015 | 175 | 2015 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752016 | 175 | 2016 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752017 | 175 | 2017 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1752018 | 175 | 2018 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752019 | 175 | 2019 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1752020 | 175 | 2020 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752021 | 175 | 2021 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1752022 | 175 | 2022 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752023 | 175 | 2023 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752024 | 175 | 2024 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 1752025 | 175 | 2025 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 1752026 | 175 | 2026 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 2501968 | 250 | 1968 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 2501969 | 250 | 1969 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 2501970 | 250 | 1970 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 2001010 | 200 | 1010 | 1.0  | 10.0 | 5   | 0.0  | 10110.0 |
|         |     |      |      |      |     |      |         |

| 2501971                                             | 250                      | 1971                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|-----------------------------------------------------|--------------------------|----------------------|-------------------|----------------------|-------------|-------------------|-------------------------------|
| 2501972                                             | 250                      | 1972                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2501973                                             | 250                      | 1973                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501974                                             | 250                      | 1974                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501975                                             | 250                      | 1975                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501976                                             | 250                      | 1976                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501977                                             | 250                      | 1977                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2501978                                             | 250                      | 1978                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501979                                             | 250                      | 1979                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501980                                             | 250                      | 1980                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501981                                             | 250                      | 1981                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501982                                             | 250                      | 1982                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2501983                                             | 250                      | 1983                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501984                                             | 250                      | 1984                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501985                                             | 250                      | 1985                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501986                                             | 250                      | 1986                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501987                                             | 250                      | 1987                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501988                                             | 250                      | 1988                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2501989                                             | 250                      | 1989                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501990                                             | 250                      | 1990                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 2501991                                             | 250                      | 1991                 | 1.3               | 15.5                 | 5           | 0.25              | 10176.3                       |
| 2501992                                             | 250                      | 1992                 | 1.3               | 15.5                 | 5           | 0.25              | 10176.3                       |
| 2501993                                             | 250                      | 1993                 | 1.3               | 15.5                 | 5           | 0.25              | 10176.3                       |
| 2501994                                             | 250                      | 1994                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2501995                                             | 250                      | 1995                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
| 2501996                                             | 250                      | 1996                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
| 2501997                                             | 250                      | 1997                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
| 2501998                                             | 250                      | 1998                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
| 2501999                                             | 250                      | 1999                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2502000                                             | 250                      | 2000                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
| 2502001                                             | 250                      | 2001                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
| 2502002                                             | 250                      | 2002                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
| 2502003                                             | 250                      | 2003                 | 1.3               | 15.5                 | 5           | 0.1               | 10176.3                       |
| 2502004                                             | 250                      | 2004                 | 0.5               | 15.5                 | 2           | 0.1               | 10176.3                       |
| 2502005                                             | 250                      | 2005                 | 0.5               | 15.5                 | 2           | 0.1               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2502006                                             | 250                      | 2006                 | 0.5               | 15.5                 | 2           | 0.1               | 10176.3                       |
| 2502007                                             | 250                      | 2007                 | 0.14              | 15.5                 | 1.1         | 0.01              | 10176.3                       |
| 2502008                                             | 250                      | 2008                 | 0.14              | 15.5                 | 1.1         | 0.01              | 10176.3                       |
| 2502009                                             | 250                      | 2009                 | 0.14              | 15.5                 | 1.1         | 0.01              | 10176.3                       |
| 2502010                                             | 250                      | 2010                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
|                                                     |                          |                      | 0.14              |                      |             |                   |                               |
| 2502011                                             | 250                      | 2011                 |                   | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502012                                             | 250                      | 2012                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502013                                             | 250                      | 2013                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502014                                             | 250                      | 2014                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502015                                             | 250                      | 2015                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502016                                             | 250                      | 2016                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2502017                                             | 250                      | 2017                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502018                                             | 250                      | 2018                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502019                                             | 250                      | 2019                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502020                                             | 250                      | 2020                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502021                                             | 250                      | 2021                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502022                                             | 250                      | 2022                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 2502023                                             | 250                      | 2023                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502024                                             | 250                      | 2024                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502025                                             | 250                      | 2025                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 2502026                                             | 250                      | 2026                 | 0.14              | 15.5                 | 0.2         | 0.01              | 10176.3                       |
| 5001968                                             | 500                      | 1968                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001969                                             | 500                      | 1969                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 5001970                                             | 500                      | 1970                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001971                                             | 500                      | 1971                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001972                                             | 500                      | 1972                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001973                                             | 500                      | 1973                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001974                                             | 500                      | 1974                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001975                                             | 500                      | 1975                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001975                                             | 500                      | 1975                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 5001977                                             | 500                      | 1977                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001978                                             | 500                      | 1978                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001979                                             | 500                      | 1979                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001980                                             | 500                      | 1980                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001981                                             | 500                      | 1981                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     |                          |                      |                   |                      |             |                   |                               |
| 5001982                                             | 500                      | 1982                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001983                                             | 500                      | 1983                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001984                                             | 500                      | 1984                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     | 500                      | 1985                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001985                                             |                          | 1986                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
|                                                     | 500                      |                      |                   |                      | 6           |                   |                               |
| 5001986                                             | 500                      | 1097                 | 1 2               |                      |             |                   | 10176 2                       |
| 5001986<br>5001987                                  | 500                      | 1987                 | 1.3               | 15.5                 |             | 0.6               | 10176.3                       |
| 5001986<br>5001987<br>5001988                       | 500<br>500               | 1988                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001986<br>5001987<br>5001988<br>5001989            | 500<br>500<br>500        | 1988<br>1989         | 1.3<br>1.3        | 15.5<br>15.5         | 6<br>6      | 0.6<br>0.6        | 10176.3<br>10176.3            |
| 5001986<br>5001987<br>5001988                       | 500<br>500               | 1988                 | 1.3               | 15.5                 | 6           | 0.6               | 10176.3                       |
| 5001986<br>5001987<br>5001988<br>5001989            | 500<br>500<br>500<br>500 | 1988<br>1989         | 1.3<br>1.3        | 15.5<br>15.5<br>15.5 | 6<br>6<br>6 | 0.6<br>0.6        | 10176.3<br>10176.3            |
| 5001986<br>5001987<br>5001988<br>5001989<br>5001990 | 500<br>500<br>500        | 1988<br>1989<br>1990 | 1.3<br>1.3<br>1.3 | 15.5<br>15.5         | 6<br>6      | 0.6<br>0.6<br>0.6 | 10176.3<br>10176.3<br>10176.3 |

| 5001993 | 500 | 1993 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
|---------|-----|------|------|------|-----|------|---------|
| 5001994 | 500 | 1994 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5001995 | 500 |      |      |      |     |      |         |
|         |     | 1995 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5001996 | 500 | 1996 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5001997 | 500 | 1997 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5001998 | 500 | 1998 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5001999 | 500 | 1999 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5002000 | 500 | 2000 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 5002001 | 500 | 2001 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5002002 | 500 | 2002 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5002003 | 500 | 2003 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 5002004 | 500 | 2004 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 5002005 | 500 | 2005 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 5002006 | 500 | 2006 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 5002007 | 500 | 2007 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 5002008 | 500 | 2008 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 5002009 | 500 | 2009 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 5002010 | 500 | 2010 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 5002011 | 500 | 2011 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002012 | 500 | 2012 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002013 | 500 | 2013 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002014 | 500 | 2014 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002015 | 500 | 2015 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002016 | 500 | 2016 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 5002017 | 500 | 2017 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002018 | 500 | 2018 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002019 | 500 | 2019 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002020 | 500 | 2020 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002021 | 500 | 2021 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002022 | 500 | 2022 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 5002023 | 500 | 2023 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002024 | 500 | 2024 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002025 | 500 | 2025 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 5002026 | 500 | 2026 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7501968 | 750 | 1968 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      | 6   |      |         |
| 7501969 | 750 | 1969 | 1.3  | 15.5 |     | 0.6  | 10176.3 |
| 7501970 | 750 | 1970 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501971 | 750 | 1971 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501972 | 750 | 1972 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501973 | 750 | 1973 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501974 | 750 | 1974 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 7501975 | 750 | 1975 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501976 | 750 | 1976 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501977 | 750 | 1977 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501978 | 750 | 1978 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501979 | 750 | 1979 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      | 6   |      |         |
| 7501980 | 750 | 1980 | 1.3  | 15.5 |     | 0.6  | 10176.3 |
| 7501981 | 750 | 1981 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501982 | 750 | 1982 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501983 | 750 | 1983 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501984 | 750 | 1984 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501985 | 750 | 1985 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501986 | 750 | 1986 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 7501987 | 750 | 1987 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501988 | 750 | 1988 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501989 | 750 | 1989 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501990 | 750 | 1990 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 7501991 | 750 | 1991 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 7501992 | 750 | 1992 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 7501993 | 750 | 1993 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 7501994 | 750 | 1994 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7501995 | 750 | 1995 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7501996 | 750 | 1996 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7501997 | 750 | 1997 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7501998 | 750 | 1998 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7501999 | 750 | 1999 | 1.3  |      | 5   |      | 10176.3 |
|         |     |      |      | 15.5 |     | 0.1  |         |
| 7502000 | 750 | 2000 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7502001 | 750 | 2001 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7502002 | 750 | 2002 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7502003 | 750 | 2003 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 7502004 | 750 | 2004 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
|         |     |      |      |      | 2   |      |         |
| 7502005 | 750 | 2005 | 0.5  | 15.5 |     | 0.1  | 10176.3 |
| 7502006 | 750 | 2006 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 7502007 | 750 | 2007 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 7502008 | 750 | 2008 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 7502009 | 750 | 2009 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 7502010 | 750 | 2010 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 7502011 | 750 | 2011 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502012 | 750 | 2012 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502013 | 750 | 2013 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      | 0.44 |      | 0.2 | 0.01 | 10170.0 |
| 7502014 | 750 | 2014 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |

| 7502015 | 750 | 2015 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|---------|-----|------|------|------|-----|------|---------|
| 7502016 | 750 | 2016 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 7502017 | 750 | 2017 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502018 | 750 | 2018 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502019 | 750 | 2019 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502020 | 750 | 2020 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502021 | 750 | 2021 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502022 | 750 | 2022 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 7502023 | 750 | 2023 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502024 | 750 | 2024 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502025 | 750 | 2025 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 7502026 | 750 | 2026 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9991968 | 999 | 1968 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9991969 | 999 | 1969 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991970 | 999 | 1970 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991971 | 999 | 1971 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991972 | 999 | 1972 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991973 | 999 | 1973 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991974 | 999 | 1974 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9991975 | 999 | 1975 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991976 | 999 | 1976 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991977 | 999 | 1977 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991978 | 999 | 1978 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991979 | 999 | 1979 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991980 | 999 | 1980 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9991981 | 999 | 1981 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991982 | 999 | 1982 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991983 | 999 | 1983 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991984 | 999 | 1984 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991985 | 999 | 1985 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991986 | 999 | 1986 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9991987 | 999 | 1987 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991988 | 999 | 1988 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991989 | 999 | 1989 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991990 | 999 | 1990 | 1.3  | 15.5 | 6   | 0.6  | 10176.3 |
| 9991991 | 999 | 1991 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 9991992 | 999 | 1992 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9991993 | 999 | 1993 | 1.3  | 15.5 | 5   | 0.25 | 10176.3 |
| 9991994 | 999 | 1994 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 9991995 | 999 | 1995 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 9991996 | 999 | 1996 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 9991997 | 999 | 1997 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9991998 | 999 | 1998 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 9991999 | 999 | 1999 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 9992000 | 999 | 2000 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 9992001 | 999 | 2001 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 9992002 | 999 | 2002 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
| 9992003 | 999 | 2003 | 1.3  | 15.5 | 5   | 0.1  | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9992004 | 999 | 2004 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 9992005 | 999 | 2005 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 9992006 | 999 | 2006 | 0.5  | 15.5 | 2   | 0.1  | 10176.3 |
| 9992007 | 999 | 2007 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 9992008 | 999 | 2008 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
| 9992009 | 999 | 2009 | 0.14 | 15.5 | 1.1 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9992010 | 999 | 2010 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992011 | 999 | 2011 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992012 | 999 | 2012 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992013 | 999 | 2013 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992014 | 999 | 2014 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9992015 | 999 | 2015 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992016 | 999 | 2016 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992017 | 999 | 2017 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992018 | 999 | 2018 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992019 | 999 | 2019 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992020 | 999 | 2020 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
|         |     |      |      |      |     |      |         |
| 9992021 | 999 | 2021 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992022 | 999 | 2022 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992023 | 999 | 2023 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992024 | 999 | 2024 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992025 | 999 | 2025 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 9992026 | 999 | 2026 | 0.14 | 15.5 | 0.2 | 0.01 | 10176.3 |
| 0002020 | 555 | 2020 | 0.14 | 13.5 | 0.2 | 0.01 | 10170.5 |
|         |     |      |      |      |     |      |         |

| ABB Equipment                  |                     | a COV/ha ha) |
|--------------------------------|---------------------|--------------|
| ARB Equipment<br>Excavator     | HP Bin SOX (9<br>50 | 0.0686448    |
|                                |                     |              |
| Excavator                      | 120                 | 0.0622888    |
| Excavator                      | 175                 | 0.0597464    |
| Excavator                      | 250                 | 0.0597464    |
| Excavator                      | 500                 | 0.0521192    |
| Excavator                      | 750                 | 0.0533904    |
| Crane                          | 50                  | 0.0686448    |
| Crane                          | 120                 | 0.0622888    |
| Crane                          | 175                 | 0.0597464    |
| Crane                          | 250                 | 0.0597464    |
| Crane                          | 500                 | 0.0521192    |
| Crane                          | 750                 | 0.0533904    |
| Crane                          | 999                 | 0.0533904    |
| Forklift                       | 50                  | 0.0686448    |
| Forklift                       | 120                 | 0.0622888    |
| Forklift                       | 175                 | 0.0597464    |
| Forklift                       | 250                 | 0.0597464    |
| Forklift                       | 500                 | 0.0521192    |
| Material Handling Equip        | 120                 | 0.0597464    |
| Other General Industrial Equip | 50                  | 0.0686448    |
| Other General Industrial Equip | 120                 | 0.0622888    |
| Other General Industrial Equip | 175                 | 0.0597464    |
| Other General Industrial Equip | 250                 | 0.0597464    |
| Other General Industrial Equip | 500                 | 0.0521192    |
| Other General Industrial Equip | 750                 | 0.0533904    |
| Other General Industrial Equip | 999                 | 0.0533904    |
| Sweeper/Scrubber               | 50                  | 0.0686448    |
| Sweeper/Scrubber               | 120                 | 0.0622888    |
| Sweeper/Scrubber               | 175                 | 0.0597464    |
| Sweeper/Scrubber               | 250                 | 0.0597464    |
| Tractor/Loader/Backhoe         | 230<br>50           | 0.0686448    |
| Tractor/Loader/Backhoe         | 120                 | 0.0622888    |
|                                |                     |              |
| Tractor/Loader/Backhoe         | 175                 | 0.0597464    |
| Tractor/Loader/Backhoe         | 250                 | 0.0597464    |
| Tractor/Loader/Backhoe         | 500                 | 0.0597464    |
| Tractor/Loader/Backhoe         | 750                 | 0.0597464    |
| Yard Tractor offroad engine    | 120                 | 0.0622888    |
| Yard Tractor offroad engine    | 175                 | 0.0597464    |
| Yard Tractor offroad engine    | 250                 | 0.0597464    |
| Yard Tractor offroad engine    | 750                 | 0.0533904    |
| Yard Tractor offroad engine    | 999                 | 0.0533904    |
| Yard Tractor onroad engine     | 120                 | 0.0622888    |
| Yard Tractor onroad engine     | 175                 | 0.0597464    |
| Yard Tractor onroad engine     | 250                 | 0.0597464    |
| Yard Tractor onroad engine     | 750                 | 0.0533904    |
| Yard Tractor onroad engine     | 999                 | 0.0533904    |
|                                |                     |              |

| Engine changes       | Emission C | hanges % |      |      |
|----------------------|------------|----------|------|------|
|                      | HC         | čo       | NOx  | PM   |
| DOC                  | 0.7        | 0.7      | 0    | 0.3  |
| DPF (P)              | 0.9        | 0.9      | 0    | 0.85 |
| DPF (A)              | 0          | 0        | 0    | 0.85 |
| Emulsified Fuel      | 0          | 0        | 0.15 | 0.3  |
| Emulsified Fuel+ DOC | 0          | 0        | 0.2  | 0.5  |

456789

| Equipment Types Code         |  |
|------------------------------|--|
| Crane                        |  |
| Excavator                    |  |
| Forklift                     |  |
| Material Handling Equip      |  |
| Other General Industrial Equ |  |
| Sweeper/Scrubber             |  |
| Tractor/Loader/Backhoe       |  |
| Yard Tractor offroad         |  |
| Yard Tractor onroad          |  |

# APPENDIX E

# EMISSION FACTOR DERIVATION AND OFFROAD2006 OUTPUT FOR HEAVY EQUIPMENT

## CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

Emissions Factors for Heavy Equipment Los Angeles Transportation Center, Los Angeles, CA

| Equipment |        |            |      | Load   | Exha   | Exhaust & Crankcase Emissions (g/hp hr) |        |        |        |                | VOC Evaporative Emissions |  |  |
|-----------|--------|------------|------|--------|--------|-----------------------------------------|--------|--------|--------|----------------|---------------------------|--|--|
| Туре      | Make   | Model      | Year | Factor | ROG    | CO                                      | NOX    | DPM    | SOx    | Part 1 (lb/hr) | Part 2 (lb/yr)            |  |  |
| Crane     | Grove  | RT650E     | 2003 | 0.43   | 0.2332 | 0.2332                                  | 0.2332 | 0.1053 | 0.0478 |                |                           |  |  |
| Fork Lift | Lull   | John Deere | 2004 | 0.30   | 0.3500 | 0.3500                                  | 0.3500 | 0.1861 | 0.0548 |                |                           |  |  |
| Fork Lift | Toyota |            | 1999 | 0.30   | 0.3500 | 0.3500                                  | 0.3500 | 0.5778 | 0.0548 |                |                           |  |  |
| Totals    |        |            |      |        |        |                                         |        |        |        |                |                           |  |  |

Notes:

1. Emission factors and load factors from CARB's OFFROAD2006 model.

2. Evaporative emissions are negligible.

CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

| Cnty       | SubR | SCC      | HP | TechType MYr |      | Population ROG-Exhaust | CO-Exhaust  | NOx-Exhaust | CO2-Exhaust | SO2-Exhaust |
|------------|------|----------|----|--------------|------|------------------------|-------------|-------------|-------------|-------------|
| Los Angele | es   | 22700020 | 45 | 500          | 2003 | 0.000775849            | 0.003250596 | 0.01410521  | 1.890868    | 0.000158969 |
| Los Angele | es   | 22700030 | 20 | 175          | 2004 | 2.89E-03               | 2.38E-02    | 3.85E-02    | 4.68E+00    | 4.51E-04    |

| PM-Exhaust  | Crankcase FuelCons. | Activity LF | HF   | PAvg RO | G/ROG R | OG (lb/hp-hr) C | O (lb/hp-hr) NO | Ox (lb/hp-hr) SO | x (lb/hp-hr) PM (lb/hp-hr) |    |
|-------------|---------------------|-------------|------|---------|---------|-----------------|-----------------|------------------|----------------------------|----|
| 0.000350414 |                     | 21.0167     | 0.43 | 334     | 1       | 0.000514077     | 0.00215384      | 0.009346093      | 0.000105332 0.0002321      | 84 |
| 1.53E-03    |                     | 167.2895    | 0.3  | 149     | 1       | 0.000771666     | 0.006377483     | 0.010289056      | 0.000120747 0.0004103      | 72 |
| 0.006011251 |                     | 2.11E+02    | 0.3  | 149     | 1       | 0.002780425     | 0.007794182     | 0.01833333       | 0.000120747 0.0012738      | 32 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CY Season AvgDays Code Equipment                             | Euel M | laxHP Class                           | C/R | Pre Hand Port County  | Air Basin Air Dist | MY Population | on Activit | v Consumption | ROG Exhaust | CO Exhaust NO | X Exhaust CO | 2 Exhaust SO2 | Exhaust PM Ex | haust N2O Exh | aust CH4 Ext | naust    |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------|---------------------------------------|-----|-----------------------|--------------------|---------------|------------|---------------|-------------|---------------|--------------|---------------|---------------|---------------|--------------|----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2005 Annual Mon-Sun 2270002045 Cranes                        |        | 500 Construction and Mining Equipment | U   | N NHH P Los Angeles S | C SC               |               | 1          | 7 2.45E+01    | 1.99E+02    | 5.40E-04      | 3.62E-03     | 1.48E-02      | 2.21E+00      | 1.86E-04      | 3.62E-04     | 0.00E+00 | 4.87E-05 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | D      |                                       |     |                       |                    |               | 6          |               |             |               |              |               |               |               |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | D      |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | D      |                                       |     |                       | sc sc              | 1998          | é          |               |             |               |              |               |               |               |              |          |          |
| Distant         Distant <t< td=""><td>2005 Annual Mon-Sun 2270002045 Cranes</td><td>D</td><td>500 Construction and Mining Equipment</td><td>U</td><td>N NHH P Los Angeles S</td><td>c sc</td><td>1997</td><td>5</td><td>5 1.84E+01</td><td>1.50E+02</td><td>1.54E-03</td><td>3.24E-03</td><td>2.03E-02</td><td>1.66E+00</td><td>1.39E-04</td><td>5.62E-04</td><td>0.00E+00</td><td>1.39E-04</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                          | 2005 Annual Mon-Sun 2270002045 Cranes                        | D      | 500 Construction and Mining Equipment | U   | N NHH P Los Angeles S | c sc               | 1997          | 5          | 5 1.84E+01    | 1.50E+02    | 1.54E-03      | 3.24E-03     | 2.03E-02      | 1.66E+00      | 1.39E-04      | 5.62E-04     | 0.00E+00 | 1.39E-04 |
| Bit Mathe 17 10000 Monthe 1         Control of Mathematics 1         Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| No. Description         No. Descri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |        |                                       | U   |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| No. De J. 200000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |        |                                       | U   |                       |                    |               | 1          |               |             |               |              |               |               |               |              |          |          |
| MAIN         MAIN        MAIN        MAIN        MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| Description         D         D         Description        D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| Disk         Disk        Disk        Disk         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | D      |                                       | Ū   |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2005 Annual Mon-Sun 2270002045 Cranes                        | D      | 500 Construction and Mining Equipment | U   | N NHH P Los Angeles S |                    |               | (          | 0 2.17E-01    |             |               |              |               |               |               |              |          |          |
| Bit Mode 200314 Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |        |                                       |     |                       |                    |               |            |               | 4.79E+01    |               |              |               |               | 4.45E-05      | 8.69E-05     |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| Disk         Disk <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |        |                                       |     |                       |                    |               | 1          |               |             |               |              |               |               |               |              |          |          |
| Disk         Disk        Disk        Disk         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |        |                                       |     |                       |                    |               |            |               |             |               | 7.22E-04     |               |               |               |              |          |          |
| Disk         Disk <th< td=""><td></td><td></td><td></td><td></td><td></td><td>sc</td><td></td><td></td><td></td><td>3.17E+01</td><td></td><td>6.42E-04</td><td></td><td>3.49E-01</td><td>2.94E-05</td><td>1.03E-03</td><td>0.00E+00</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |        |                                       |     |                       | sc                 |               |            |               | 3.17E+01    |               | 6.42E-04     |               | 3.49E-01      | 2.94E-05      | 1.03E-03     | 0.00E+00 |          |
| Dest         Dest        Dest        Dest         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| Dest         Dest <thdest< th="">         Dest         Dest         <thd< td=""><td>2005 Annual Mon-Sun 2270002045 Cranes</td><td>D</td><td></td><td>Ū</td><td>N NHH P Riverside SC</td><td>SC</td><td>1998</td><td></td><td>1 3.84E+00</td><td>3.13E+01</td><td>3.11E-04</td><td>6.63E-04</td><td>4.16E-03</td><td>3.45E-01</td><td>2.90E-05</td><td>1.12E-04</td><td>0.00E+00</td><td>2.80E-05</td></thd<></thdest<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2005 Annual Mon-Sun 2270002045 Cranes                        | D      |                                       | Ū   | N NHH P Riverside SC  | SC                 | 1998          |            | 1 3.84E+00    | 3.13E+01    | 3.11E-04      | 6.63E-04     | 4.16E-03      | 3.45E-01      | 2.90E-05      | 1.12E-04     | 0.00E+00 | 2.80E-05 |
| Dist         Dist <thdist< th="">         Dist         Dist         <thd< td=""><td>2005 Annual Mon-Sun 2270002045 Cranes</td><td>D</td><td></td><td>U</td><td></td><td>SC</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd<></thdist<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2005 Annual Mon-Sun 2270002045 Cranes                        | D      |                                       | U   |                       | SC                 |               | 1          |               |             |               |              |               |               |               |              |          |          |
| Display         Display <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| Displand Mach         Displand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| Dot         Description         Disc         Disc        Disc        Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| Dep Mark         Dep Monte         Dep Monte <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.09E-06</td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               | 3.09E-06      |              |          |          |
| Display         Display <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| Display         Display <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2015         Andle Machine 277000000 Fruith         0         17         Mith Pic Jack Ages         0         0         16         0         16         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2005 Annual Mon-Sun 2270002045 Cranes                        | D      | 500 Construction and Mining Equipment | U   | N NHH P Riverside SC  | SC                 | 1989          | (          | 0 1.23E-01    | 1.01E+00    | 2.73E-05      | 7.38E-05     | 1.98E-04      | 1.10E-02      | 9.27E-07      | 1.16E-05     | 0.00E+00 | 2.46E-06 |
| 2005         All Monday Department         0         P         NHH PLE Angenes DC         SC         2006         3         17E-ro         348-ro         348-ro        348-ro         348-ro         348-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005         Answeds         2000 Parking         D         P         PHI MI La Angeles C         SC         2000 As         4         Left C         4.86-24         2.85-24         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26         4.85-26<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2016         Aurolina Composition Parkins         D         111         P         NMM Num Auges         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C        C         C         C <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000        1000        1000        10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2055       And Mon-Sun 227000000 FriefMa       0       17 Instantis Expensert       U       P       NHTM La Auges 60       C       2000       4       218-00       516-00       516-00       586-00       516-00       586-00       516-00       586-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00       516-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2055         Aurul Man-San 227000000 Franks         D         T75 Induited Examples         U         P         HHN PL ca Argine SC         SC         1999         42         211-52         3.86-20         5.86-30         576-44         6.86-30         000-50         1.52-30           2005         Annul Man-San 227000000 Franks         D         T75 Induited Examples         D         P         HHN PL ca Argine SC         SC         1999         43         1.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.86-20         3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005       Annu Man-San 227000000 Fruths       D       P HMM PL as Angles EC       SC       1999       42       2 More Col       5 ST-64       5 ST-64      5 ST-64       5 ST-64 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| b05       Annu Man-Su       277000000 Frain       D       D1       Pinter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              | D      | 175 Industrial Equipment              | U   |                       |                    |               | 42         |               |             |               |              |               |               |               |              |          |          |
| 2000       Anual Man-Sun 227000000 FreeMan       D       T St Industitie Expensent       U       P       NM HM PLG Angles SC       SC       196       34       1.81e-20       2.85e-00       0.85e-00       4.70e-00       4.81e-40       4.81e-40      4.81e-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2000         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005       Anual Mon-Sun 227000020 Freidman       D       P       NHM HV Lax Angeles SC       SC       1000       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 1000 Annual Mon-Sur 227000320 Forkins       0       175 Industint Expirement       U       P       NHH NP Lar Angeles       S       0.902       5       2.66E-01       2.06E-01       3.06E-01       1.56E-02       7.4E-05       0.4E-01       0.06E-00       2.06E-01       3.06E-01       2.06E-01       3.06E-01       2.0E-05       3.0E-01       3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2020 Annual Mon-Sun 227000320 Forkins       D       175 Industrial Europenets       U       P       NHH N D La Angeles C       SC       1991       5       2.21E-01       3.32E-03       3.22E-03       1.32E-03       1.42E-04       1.62E-05       0.62E-01       0.52E-01       0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sina 270003020 Forkiths       D       175 Industrial Equipment       U       P       NHH NF Lax Angeles SC       SC       1990       7       3.98E-01       3.28E-30       6.74E-30       1.75E-20       7.66E-50       1.55E-30       0.00E-100       2.28E-30         0005 Annual Mon-Sina 270003020 Forkiths       D       177 Industrial Equipment       U       P       NHH NF Lax Angeles SC       SC       1980       6       2.48E-01       2.48E-01       2.48E-30       6.74E-30       1.75E-30       6.8E-50       1.8E-50       0.00E-100       2.28E-31         0005 Annual Mon-Sina 270003020 Forkiths       D       175 Industrial Equipment       U       P       NHH NF Lax Angeles SC       SC       1986       2       1.8E-50       2.6E-50       3.8E-50       3.8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |        |                                       |     |                       | SC SC              |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sine 270003020 Forkiths       D       175 Industrial Equipment       U       P       NHH NP Lox Angeles SC       SC       1987       2.44E-01       2.44E-03       1.81E-02       4.80E-01       1.81E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2005 Annual Mon-Sun 2270003020 Forklifts                     |        | 175 Industrial Equipment              | U   | P NHH NP Los Angeles  |                    | 1990          | 1          | 7 3.59E+01    |             | 3.32E-03      |              |               |               |               | 1.53E-03     | 0.00E+00 | 2.99E-04 |
| 2005 Annual Mon-Sun 227000320 Forkiths       D       175 Industrial Equipment       U       P       NHH N Los Angeles SC       SC       1967       4       2.016-01       3.84E-01       2.08E-33       1.78E-23       6.81E-01       0.08E-01       3.84E-01       2.08E-33       1.78E-23       0.01E-01       2.08E-01       1.88E-01       0.08E-01       3.84E-01       2.08E-33       1.78E-23       0.01E-01       2.08E-03       0.12E-03       0.01E-01       2.08E-03       1.82E-04       0.01E-01       2.08E-03       0.12E-03       0.01E-01       2.08E-03       0.12E-03       0.01E-01       2.08E-03       0.12E-03       0.01E-01       2.08E-03       0.01E-01       2.08E-03       0.01E-01       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              | D      |                                       |     |                       |                    |               | 6          |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 227003020 Forkiths         D         175 Industrial Equipment         U         P         NHH MP Lox Angeles SC         SC         1986         3         1.46E-01         3.84E-01         2.052-03         5.82E-03         1.38E-02         4.80E-01         1.80E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |        |                                       |     |                       | SC SC              | 1988          |            |               | 6.44E+01    | 2.46E-03      | 6.06E-03     |               |               | 6.70E-05      | 1.15E-03     |          |          |
| 2005 Annual Mon-Sun 227003200 Farkilla       D       175 Industrial Equipment       U       P       NHH NP Lax Angles SC       SC       1985       2       1.0E-01       1.3E-03       1.0E-02       3.2E-03       7.1E-03       2.0E-05       8.1E-04       0.0E-00       1.8E-04         2005 Annual Mon-Sun 227003200 Farkilla       D       175 Industrial Equipment       U       P       NHH NP Lax Angles SC       SC       1983       1       3.4E-01       1.8E-03       3.4E-03       3.4E-03       3.4E-03       3.4E-03       3.4E-03       3.4E-03       3.4E-03       3.4E-03       3.4E-04       0.0E-00       1.8E-04       0.0E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              | -      |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005       Annual Mon-Sun 227003202 Frielding       D       175 Industrial Equipment       U       P       NHHN PL ca Angeles SC       SC       1984       2       7.48E-03       1.18E-33       2.28E-03       7.18E-33       1.10E-10       1.08E-04       1.08E-04       1.18E-33       2.28E-03       7.18E-33       1.10E-10       1.08E-05       1.08E-05 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>SC SC</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |        |                                       |     |                       | SC SC              |               |            |               |             |               |              |               |               |               |              |          |          |
| 2026 Annual Mon-Sun 227003020 Forkiths       D       175 Industrial Equipment       U       P       NHH NP Cax Angeles SC       SC       1983       1       3.04E-00       1.04E-01       6.31E-04       3.18E-03       3.18E-03       3.18E-04       0.04E-05       5.70E-05         2005 Annual Mon-Sun 227003020 Forkiths       D       175 Industrial Equipment       U       P       NHH NP Riverside SC       SC       2005       2       9.11E-00       3.48E-00       2.28E-01       5.50E-05       1.28E-03       2.48E-05       6.31E-04       3.48E-00       2.28E-01       5.50E-05       2.48E-05       2.48E-05       6.31E-04       0.48E-05       6.31E-05       0.38E-05       3.48E-00       2.28E-01       2.58E-05       2.48E-05       6.31E-05       0.34E-05       0.52E-05       3.48E-00       2.48E-05       2.48E-05 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005         Annual Man-Sun 220003200 Forkiths         D         175 Industrial Equipment         U         P         NHH NP Eox Angeles SC         SC         1982         0         3.48E-00         2.37E-04         3.38E-02         3.58E-06         1.09E-06         0.00E-00         1.98E-06           2005 Annual Man-Sun 220003200 Forkiths         D         175 Industrial Equipment         U         P         NHH NP Riveridies SC         SC         2.00E         2.38E-04         2.44E-01         2.44E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 227003020 Forkiths         D         175 Industrial Equipment         V         NH NP Riverside SC         SC         2004         2         8.88E-00         2.27E-01         2.40E-03         2.40E-05         1.45E-05         2.40E-05         2.40E-05        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003202 Forkiffs         D         175 Industrial Equipment         V         NIH MP Riverside SC         SC         2003         2 4.86-00         2.46E-01         2.46E-03         2.46E-03        2.46E-03         2.46E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2005 Annual Mon-Sun 2270003020 Forklifts                     | D      | 175 Industrial Equipment              | U   | P NHH NP Riverside SC | SC                 | 2005          |            | 2 9.13E+00    | 2.32E+01    | 9.91E-05      | 1.24E-03     | 1.92E-03      | 2.56E-01      | 2.46E-05      | 6.31E-05     | 0.00E+00 | 8.94E-06 |
| 2005 Annual Mon-Sun 227003020 Forkiths         D         175 Industrial Equipment         V         NH NP Riverside SC         SC         202         2         9.69e-00         2.41E-01         3.64E-33         3.64E-33         2.68E-01         2.59E-05         2.15E-04         0.00E-00         4.70E-05           2005 Annual Mon-Sun 227003020 Forkiths         D         175 Industrial Equipment         U         P         NH NP Riverside SC         SC         2006         2.68E-01         2.47E-04         1.35E-03         3.68E-33         2.16E-01         2.12E-04         0.00E-00         4.28E-05           2005 Annual Mon-Sun 2270003020 Forkiths         D         175 Industrial Equipment         U         P         NH NP Riverside SC         SC         1098         2         7.66E-00         1.66E-03         3.18E-33         2.18E-01         2.32E-04         0.00E-04         4.38E-05           2005 Annual Mon-Sun 227003020 Forkiths         D         175 Industrial Equipment         U         P         NH NP Riverside SC         SC         1997         1.72E+00         1.38E-01         5.14E-04         1.38E-03         3.17E-03         1.39E-10         1.32E-04         0.00E+00         4.22E-04         0.00E+00         4.22E-04         0.00E+00         4.22E-04         0.00E+00         4.22E-05         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | D      |                                       |     |                       |                    |               |            |               |             |               |              |               |               | 2.40E-05      |              |          |          |
| 2005 Annual Mon-Sun 2270003020 Frikilfis         D         175 Industrial Equipment         U         N.H. HV P. Riverside SC         SC         2001         2         8 41E-00         2 41E-01         5 21E-04         1.52E-03         3.86E-03         2.85E-01         2.54E-04         0.00E-00         4.72E-04           2005 Annual Mon-Sun 2270003020 Frikifis         D         175 Industrial Equipment         U         P         N.H. HV P. Riverside SC         SC         1099         2         7.6E-00         2.06E-01         4.8E-03         3.1E-03         3.1E-03         2.1E-01         2.01E-04         0.00E+00         4.4E-05           2005 Annual Mon-Sun 2270003020 Frikifis         D         175 Industrial Equipment         U         P         N.H. HV P. Riverside SC         SC         1999         1         7.2E+01         1.3E+03         3.7E+03         2.9E+01         1.9E+05         2.4E+0         0.0E+00         4.4E+05           2005 Annual Mon-Sun 2270003020 Frikifis         D         175 Industrial Equipment         U         N         N.H. HV P. Riverside SC         SC         1996         1         5.0E+01         1.8E+01         3.8E+03         3.7E+03         3.7E+03         3.7E+03         3.7E+03         3.7E+03         3.7E+04         3.6E+05         3.6E+05         3.6E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003202 Forkiths         D         175 Industrial Equipment         V         NH NP Riverside SC         SC         2000         2 / 8.05-00         2.05E-01         4.72E-04         1.35E-03         3.18E-03         2.18E-01         2.17E-04         0.00E-00         4.38E-05           2005 Annual Mon-Sun 2270003202 Forkiths         D         175 Industrial Equipment         V         N H NP Riverside SC         SC         1998         2         7.06E+00         1.8E-03         3.18E-03         3.18E-03         2.12E-04         2.03E-04         0.00E+00         4.38E-05           2005 Annual Mon-Sun 2270003202 Forkiths         D         175 Industrial Equipment         V         N H NP Riverside SC         SC         1998         1         7.2EE+00         1.38E-03         3.1EE-03         2.04E-01         1.38E-03         2.2EE-04         0.00E+00         4.42E-05           2005 Annual Mon-Sun 2270003202 Forkiths         D         175 Industrial Equipment         V         N H NP Riverside SC         SC         1996         1         5.14E-04         1.3EE-03         3.3EE-03         3.3EE-03         1.3EE-04         0.3EE-04         0.3EE-04         0.3EE-04         0.3EE-04         0.3EE-04         0.3EE-04         0.3EE-04         0.3EE-05         0.3EE-04         0.3EE-03         3.3E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 227003020 Forkiths         D         175 Industrial Equipment         V         NH NP Riverside SC         SC         1999         2         7.78E-00         1.08E-03         3.18E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003202 Forkiths         D         175 Industrial Equipment         V         NIH MP Riverside SC         SC         1989         1         7.260-10         1.48E-03         1.27E-03         1.27E-03         1.27E-03         1.27E-03         1.28E-05         2.23E-04         0.000-700         4.48E-05           2005 Annual Mon-Sun 2270003202 Forkiths         D         175 Industrial Equipment         U         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003202 Forkiths         D         175 Industrial Equipment         V         NH HV Reverside SC         SC         197         1         7.27E-00         1.38E-01         3.27E-03         2.08E-03         3.27E-03         2.08E-04         3.08E-03         3.27E-03         2.08E-04         3.08E-03         3.27E-03         3.07E-03         3.27E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 227003020 Forkiths         D         175 Industrial Equipment         V         NH HV Piverside SC         SC         196         1         6.196-10         1.486E-04         1.23E-03         3.278-30         3.778-03         2.078-10         1.67E-05         2.00E-00         4.22E-05           2005 Annual Mon-Sun 227003020 Forkiths         D         175 Industrial Equipment         U         P         NHH VP Riverside SC         SC         1994         1.38E+00         3.58E-05         7.78E-04         2.87E-06         3.68E-05         2.78E-04         3.78E-04         3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2005 Annual Mon-Sun 2270003020 Forklifts                     | D      | 175 Industrial Equipment              | Ū   | P NHH NP Riverside SC | SC                 | 1997          | -          | 1 7.27E+00    | 1.87E+01    | 5.00E-04      | 1.36E-03     | 3.17E-03      | 2.04E-01      | 1.96E-05      | 2.36E-04     | 0.00E+00 | 4.52E-05 |
| 2005 Annual Mon-Sun 2270003220 Forkiffs         D         175 Industrial Equipment         V         NIH MP Riverside SC         SC         194         1         500E-10         3.98E-04         1.08E-03         2.77E-03         1.08E-10         1.78E-06         1.78E-06         1.08E-03         3.08E-04           2005 Annual Mon-Sun 2270003202 Forkiffs         D         175 Industrial Equipment         U         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |        |                                       |     |                       |                    |               | 1          |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003202 Forkiths         D         175 Industrial Equipment         V         NH HV P Noverside SC         SC         193         0         1.38E-r00         2.38E-r00         2.38E-r00         2.38E-r00         2.38E-r00         2.38E-r00         2.38E-r00         2.38E-r00         2.38E-r00         2.78E-r00         3.78E-r00         3.78E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |        |                                       |     |                       |                    |               | 1          |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003020 Forkiffs         D         NT Multi Equipment         P         NH H P Riverside SC         SC         192         0         9.78E-01         2.38E-06         2.44E-04         5.72E-04         2.44E-04         5.72E-04         2.44E-04         5.72E-04         2.44E-04         5.72E-04         2.44E-04         5.72E-04         2.44E-04         5.72E-04         2.48E-06         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |        |                                       |     |                       |                    | 1994          | 1          |               | 1.29E+01    |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270030202 Forkiths         D         175 Industrial Equipment         V         NH NP Riverside SC         SC         199         0         8.58E-01         2.21E-04         3.02E-04         3.12E-04         3.02E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003202 Forkiffs         D         175 Industrial Equipment         V         NH NP Reverside SC         SC         199         0         1.32E-00         3.43E-00         1.22E-04         3.0E-04         3.0E-04         3.17E-06         5.33E-05         0.00E-00         1.10E-05           2005 Annual Mon-Sun 2270003202 Forkiffs         D         175 Industrial Equipment         U         N.H NP Reverside SC         SC         198         0         0.16E-10         2.71E-00         9.02E-06         6.81E-05         2.00E-06         4.24E-05         0.0E-00         9.04E-06           2005 Annual Mon-Sun 2270003202 Forkiffs         D         175 Industrial Equipment         U         N.H NP Reverside SC         SC         198         0         7.4EE-01         2.82E-04         6.8EE-0         2.0EE-06         6.8EE-05         0.0E-00         8.8EE-06           2005 Annual Mon-Sun 2270003202 Forkiffs         D         175 Industrial Equipment         U         N.H NP Reverside SC         SC         1986         0         4.8EE-0         6.1E-0         4.3EE-0         4.8EE-0         6.8EE-0         0.0E+00         6.8EE-0         0.0E+00         6.8EE-0         0.0E+00         6.8EE-0         0.0E+00         6.8EE-0         0.0E+00         6.3EE-0         0.0E+00         5.0E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270030202 Forkiths         D         175 Industrial Equipment         V         NH HV Piverside SC         SC         198         0         1.06E-00         2.71E-00         1.00E-04         2.49E-04         6.81E-02         2.82E-06         6.46E-05         0.00E-06         9.44E-06           2005 Annual Mon-Sun 2270030202 Forkiths         D         175 Industrial Equipment         U         P         NHH NP Riverside SC         SC         1988         0         0.91E-01         2.37E+00         9.22E-04         9.58E-04         2.66E-02         2.00E-06         8.19E-06           2005 Annual Mon-Sun 2270003020 Forkiths         D         175 Industrial Equipment         U         P         NHH NP Riverside SC         SC         1988         0         4.08E-01         1.58E-04         1.51E-02         2.00E-06         5.68E-05         0.00E+00         6.64E-06           2005 Annual Mon-Sun 2270003020 Forkiths         D         175 Industrial Equipment         U         P         NHH NP Riverside SC         SC         1986         0         4.00E-01         1.5E-04         3.1E-04         1.4E+00         2.4E+04         1.5E+04         3.1E+04         2.4E+05         0.00E+00         3.9E+06         3.9E+06         3.9E+06         3.9E+06         3.9E+06         3.9E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 227003020 Prixitita         D         175 Industrial Equipment         V         NH HV Piverside SC         SC         198         0         7.41E-01         1.45E-00         9.82E-06         2.88E-44         6.81E-02         2.00E-06         8.8E-06           2005 Annual Mon-Sun 227003020 Prixitita         D         175 Industrial Equipment         U         N HH NP Riverside SC         SC         1986         0         5.38E-01         1.41E+00         7.38E-05         2.88E-44         6.91E-02         2.00E-06         5.8E-05         0.00E+00         6.84E-06           2005 Annual Mon-Sun 2270003020 Prixitita         D         175 Industrial Equipment         U         N HH NP Riverside SC         SC         1986         0         4.00E-01         1.41E+00         2.48E-04         1.51E-02         1.48E-01         2.38E-04         2.48E-04         7.3E-03         2.48E-07         0.00E+00         3.87E-06         3.87E-07         1.1E-02         0.00E+00         3.87E-07         0.00E+00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2005 Annual Mon-Sun 2270003020 Forklifts                     | D      | 175 Industrial Equipment              | U   | P NHH NP Riverside SC | SC                 | 1989          | (          | 0 1.05E+00    | 2.71E+00    | 1.00E-04      | 2.49E-04     | 6.61E-04      | 2.93E-02      | 2.82E-06      | 4.64E-05     | 0.00E+00 | 9.04E-06 |
| 2005 Annual Mon-Sun 227003020 Farkitits         D         15 Industrial Equipment         V         NIH NP Riverside SC         SC         198         0         5 38E-01         1.41E-00         7.38E-05         2.15E-04         3.45E-06         3.48E-05         0.00E-00         6.54E-06           2005 Annual Mon-Sun 2270003202 Farkitits         D         175 Industrial Equipment         U         N.1H NP Riverside SC         SC         1985         0         4.00E-01         1.05E+00         5.56E-05         1.55E-04         7.32E-03         7.45E-07         2.14E-05         0.00E+00         5.09E-06         3.87E-01           2005 Annual Mon-Sun 2270003020 Farkitits         D         175 Industrial Equipment         U         N.1H NP Riverside SC         SC         1984         0         2.78E-01         7.28E-03         1.48E-04         4.78E-04         7.28E-07         7.16E-05         2.04E-05         0.00E+00         3.87E-06           2005 Annual Mon-Sun 2270003020 Forkitits         D         175 Industrial Equipment         U         N.1H NP Riverside SC         SC         1982         0         4.84E-02         1.28E-01         7.88E-05         1.38E-01         3.48E-01         2.48E-05         1.38E-01         3.48E-01         2.48E-05         1.38E-01         3.48E-01         2.48E-05         1.38E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003020 Forkifits         D         175 Industrial Equipment         U         N HH NP Riverside SC         SC         198         0         4.00E-01         5.64E-03         1.75E-04         1.12E-02         1.08E-06         2.09E-06         2.09E-06         3.87E-06           2005 Annual Mon-Sun 2270003020 Forkifits         D         175 Industrial Equipment         U         P         NHH NP Riverside SC         SC         1984         0         1.45E-01         2.42E-05         1.19E-04         2.44E-04         7.73E-03         7.74E-07         2.47E-05         0.00E+00         3.87E-06           2005 Annual Mon-Sun 2270003020 Forkifits         D         175 Industrial Equipment         U         P         NHH NP Riverside SC         SC         1983         0         1.45E-01         3.84E-01         2.38E-05         6.39E-05         1.42E-04         4.07E-03         3.92E-07         1.17E-05         0.00E+00         2.10E-06           2005 Annual Mon-Sun 2270003020 Forkifits         D         175 Industrial Equipment         U         P         NHH NP Riverside SC         SC         1982         0         1.48E-01         2.48E-03         1.48E-04         1.48E-04         1.48E-04         1.48E-04         1.48E-04         1.48E-04         1.48E-04         1.48E-04         1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003020 Forkiffs         D         175 Industrial Equipment         V         NH HV P Neverside SC         SC         198         0         2.78E-01         4.28E-05         1.48E-04         7.7.45E-07         2.14E-05         0.00E-00         3.87E-06           2005 Annual Mon-Sun 2270003020 Forkiffs         D         175 Industrial Equipment         U         N HH NP Neverside SC         SC         198         0         2.78E-01         3.84E-01         2.38E-05         3.84E-01         2.48E-05         1.48E-01         2.48E-04         7.78E-03         7.45E-07         2.14E-05         0.00E-00         3.87E-06         2.026         3.84E-01         2.38E-05         3.24E-07         1.78E-05         0.00E-00         2.10E-03         2.10E-03         1.45E-01         1.45E-01         1.48E-01         2.48E-04         7.87E-03         7.45E-07         2.14E-05         0.00E-00         2.10E-03         1.02E-07         1.25E-07         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |        |                                       |     |                       |                    | 1986          |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270003020 Forklifts         D         175 Industrial Equipment         U         P         NHH NP Riverside SC         SC         1983         0         1.45E-01         2.38E-05         6.39E-05         1.42E-04         4.07E-03         3.92E-07         1.17E-05         0.00E+00         2.10E-06           2005 Annual Mon-Sun 2270003020 Forklifts         D         175 Industrial Equipment         U         P         NHH NP Riverside SC         SC         1982         0         1.43E-01         2.38E-05         1.42E-04         4.07E-03         3.92E-07         1.17E-05         0.00E+00         2.10E-06           2005 Annual Mon-Sun 2270003020 Frankport Refrigeration Units         U         N         NHH NP Rox angeles SC         SC         2005         1.77E+02         1.43E-04         1.77E+02         1.48E-04         1.47E+04         1.49E+00         1.21E-04         1.49E+00         0.00E+00         1.42E-04           2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units         U         N         NHH NP Lox angeles SC         SC         2004         161         4.75E+02         1.48E+02         1.42E+04         1.49E+00         1.9E+04         1.25E-03         0.00E+00         1.82E+04           2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units         U         N.HH NP Lox Ange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270005020 Franking         D         175 Industrial Equipment         V         NH HV Pic Nerviside SC         SC         192         0         4.84E-02         1.28E-01         7.98E-06         2.18E-55         1.38E-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | -      |                                       | -   |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 15 Transport Refrigeration Units U N NHH NP Los Angeles SC SC 2005 170 4.84E+02 1.77E+02 2.01E-03 1.18E+02 1.44E+00 2.11E+04 1.07E+03 0.00E+00 1.82E+04 2.00E+04 1.02E+03 0.00E+00 1.82E+04 2.00E+04 1.02E+03 0.00E+00 1.82E+04 2.00E+03 0.00E+00 1.82E+04 2.00E+03 0.00E+00 1.82E+04 2.00E+03 0.00E+00 1.82E+04 2.00E+03 0.00E+00 1.82E+04 1.02E+03 0.00E+00 1.82E+04 2.00E+03 0.00E+00 1.82E+04 1.02E+03 0.00E+00 1.82E+03 0.00E+00 1.82E+04 1.82 |                                                              | D      |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270000005 Transport Refrigeration Units D 15 Transport Refrigeration Units U N NHH MP Los Angeles SC SC 2004 161 4.57E+02 1.88E+02 2.64E-03 1.12E+02 1.88E-02 1.88E-02 1.89E-04 1.25E-03 0.00E+00 2.38E-04 2.005 Annual Mon-Sun 2270000005 Transport Refrigeration Units U N NHH MP Los Angeles SC SC 2003 165 4.43E+02 1.62E+02 2.56E-03 1.0EE+02 1.88E-02 1.83E+03 1.33E+04 1.21E+03 0.00E+00 2.38E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | D      |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 15 Transport Refrigeration Units U N NHH NP Los Angeles SC SC 2003 156 4.43E+02 1.26E+02 2.56E+03 1.08E+02 1.78E+00 1.33E+04 1.21E-03 0.00E+00 2.31E+04 2.005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 15 Transport Refrigeration Units U N NHH NP Los Angeles SC SC 2002 158 4.48E+02 1.64E+02 2.56E+03 1.10E+02 1.82E+02 1.82E+03 1.82E+02 1.82 |                                                              | D      |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 15 Transport Refrigeration Units U N NHH NP Los Angeles SC SC 2002 158 4.48E+02 1.64E+02 2.59E-03 1.10E-02 1.82E-02 1.80E+00 1.95E-04 1.22E-03 0.00E+00 2.33E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units | D      |                                       |     |                       | sc sc              | 2003          |            |               | 1.62E+02    |               |              |               |               |               |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units | D      | 15 Transport Refrigeration Units      | U   | N NHH NP Los Angeles  | SC SC              | 2002          | 158        | 8 4.48E+02    | 1.64E+02    | 2.59E-03      | 1.10E-02     | 1.82E-02      | 1.80E+00      | 1.95E-04      | 1.22E-03     | 0.00E+00 | 2.33E-04 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |        |                                       |     |                       |                    |               |            |               |             |               |              |               |               |               |              |          |          |

| CY Season AvgDays Code Equipment                                                                                                 | Fuel MaxHP Class                                                     | C/R Pre Hand Port County                         | Air Bas  | sin Air Dist. M | IY Population | n Activity | Consumption          | ROG Exhaust          | CO Exhaust NC        | X Exhaust CO         | 2 Exhaust SO2        | Exhaust PM Ex        | haust N2O Exh        | aust CH4 Exh         | aust                 |                      |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|----------|-----------------|---------------|------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2001          | 178        | 5.08E+02             | 1.86E+02             | 2.93E-03             | 1.24E-02             | 2.07E-02             | 2.04E+00             | 2.21E-04             | 1.38E-03             | 0.00E+00             | 2.64E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2000          | 68         | 1.93E+02             | 7.09E+01             | 1.12E-03             | 4.73E-03             | 7.86E-03             | 7.75E-01             | 8.43E-05             | 5.27E-04             | 0.00E+00             | 1.01E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC<br>SC | SC<br>SC        | 1999<br>1998  | 77<br>63   | 2.20E+02<br>1.79E+02 | 8.14E+01<br>6.63E+01 | 1.96E-03<br>1.60E-03 | 7.78E-03<br>6.33E-03 | 1.38E-02<br>1.12E-02 | 8.84E-01<br>7.19E-01 | 9.61E-05<br>7.82E-05 | 7.29E-04<br>5.93E-04 | 0.00E+00<br>0.00E+00 | 1.77E-04<br>1.44E-04 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC       | SC              | 1998          | 40         | 1.79E+02<br>1.15E+02 | 6.63E+01<br>4.26E+01 | 1.60E-03<br>1.03E-03 | 6.33E-03<br>4.06E-03 | 1.12E-02<br>7.20E-03 | 7.19E-01<br>4.62E-01 | 7.82E-05<br>5.02E-05 | 5.93E-04<br>3.81E-04 | 0.00E+00             | 1.44E-04<br>9.26E-05 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1996          | 29         | 8.21E+01             | 3.03E+01             | 7.31E-04             | 2.90E-03             | 5.13E-03             | 3.29E-01             | 3.58E-05             | 2 71E-04             | 0.00E+00             | 6.60E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1995          | 24         | 6.92E+01             | 2.56E+01             | 6.17E-04             | 2.44E-03             | 4.33E-03             | 2.78E-01             | 3.02E-05             | 2.29E-04             | 0.00E+00             | 5.57E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1994          | 14         | 4.11E+01             | 1.52E+01             | 5.23E-04             | 1.45E-03             | 2.70E-03             | 1.65E-01             | 1.79E-05             | 2.17E-04             | 0.00E+00             | 4.72E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1993          | 7          | 1.85E+01             | 6.87E+00             | 2.36E-04             | 6.53E-04             | 1.22E-03             | 7.43E-02             | 8.07E-06             | 9.80E-05             | 0.00E+00             | 2.13E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1992          | 3          | 7.35E+00             | 2.73E+00             | 9.36E-05             | 2.59E-04             | 4.82E-04             | 2.95E-02             | 3.20E-06             | 3.89E-05             | 0.00E+00             | 8.44E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC<br>SC | SC<br>SC        | 1991<br>1990  | 1          | 1.98E+00<br>3.26E-01 | 7.34E-01<br>1.21E-01 | 2.52E-05<br>4.15E-06 | 6.98E-05<br>1.15E-05 | 1.30E-04<br>2.14E-05 | 7.94E-03<br>1.31E-03 | 8.63E-07<br>1.42E-07 | 1.05E-05<br>1.72E-06 | 0.00E+00<br>0.00E+00 | 2.27E-06<br>3.74E-07 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1989          | 0          | 4.67E-02             | 1.73E-02             | 5.95E-07             | 1.65E-06             | 3.06E-06             | 1.87E-04             | 2.04E-08             | 2.47E-07             | 0.00E+00             | 5.36E-08             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1988          | ő          | 3.78E-03             | 1.40E-02             | 4.82E-08             | 1.33E-07             | 2.48E-07             | 1.52E-05             | 1.65E-09             | 2.00E-08             | 0.00E+00             | 4.35E-09             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1987          | 0          | 2.21E-04             | 8.20E-05             | 2.81E-09             | 7.80E-09             | 1.45E-08             | 8.86E-07             | 9.63E-11             | 1.17E-09             | 0.00E+00             | 2.54E-10             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1986          | 0          | 1.11E-05             | 4.11E-06             | 1.41E-10             | 3.91E-10             | 7.26E-10             | 4.44E-08             | 4.82E-12             | 5.86E-11             | 0.00E+00             | 1.27E-11             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2005          | 27         | 7.63E+01             | 2.79E+01             | 3.17E-04             | 1.87E-03             | 2.23E-03             | 3.06E-01             | 3.32E-05             | 1.68E-04             | 0.00E+00             | 2.86E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units | U N NHH NP Riverside                             | SC       | SC<br>SC        | 2004          | 25<br>25   | 7.21E+01<br>6.99E+01 | 2.64E+01<br>2.56E+01 | 4.16E-04<br>4.03E-04 | 1.76E-03<br>1.71E-03 | 2.93E-03<br>2.84E-03 | 2.89E-01<br>2.80E-01 | 3.14E-05<br>3.04E-05 | 1.96E-04<br>1.90E-04 | 0.00E+00<br>0.00E+00 | 3.75E-05<br>3.64E-05 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2003          | 25         | 7.07E+01             | 2.50E+01<br>2.59E+01 | 4.03E-04<br>4.08E-04 | 1.73E-03             | 2.84E-03<br>2.87E-03 | 2.80E-01<br>2.83E-01 | 3.04E-05<br>3.08E-05 | 1.90E-04<br>1.93E-04 | 0.00E+00             | 3.68E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2002          | 28         | 8.01E+01             | 2.94E+01             | 4.62E-04             | 1.96E-03             | 3.26E-03             | 3.21E-01             | 3.49E-05             | 2.18E-04             | 0.00E+00             | 4 17E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2000          | 11         | 3.05E+01             | 1.12E+01             | 1.76E-04             | 7.47E-04             | 1.24E-03             | 1.22E-01             | 1.33E-05             | 8.31E-05             | 0.00E+00             | 1.59E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1999          | 12         | 3.48E+01             | 1.28E+01             | 3.10E-04             | 1.23E-03             | 2.17E-03             | 1.39E-01             | 1.51E-05             | 1.15E-04             | 0.00E+00             | 2.79E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1998          | 10         |                      | 1.04E+01             | 2.52E-04             | 9.98E-04             | 1.77E-03             | 1.13E-01             | 1.23E-05             | 9.35E-05             | 0.00E+00             | 2.27E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1997          | 6          | 1.82E+01             | 6.71E+00             | 1.62E-04             | 6.41E-04             | 1.14E-03             | 7.28E-02             | 7.91E-06             | 6.00E-05             | 0.00E+00             | 1.46E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units | U N NHH NP Riverside<br>U N NHH NP Riverside     | SC<br>SC | SC<br>SC        | 1996<br>1995  | 5<br>4     | 1.29E+01<br>1.09E+01 | 4.78E+00<br>4.03E+00 | 1.15E-04<br>9.73E-05 | 4.57E-04<br>3.85E-04 | 8.09E-04<br>6.83E-04 | 5.19E-02<br>4.38E-02 | 5.64E-06<br>4.76E-06 | 4.28E-05<br>3.61E-05 | 0.00E+00<br>0.00E+00 | 1.04E-05<br>8.78E-06 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1995          | 2          | 6.48E+00             | 4.03E+00<br>2.40E+00 | 9.73E-05<br>8.25E-05 | 2.29E-04             | 4.25E-04             | 4.38E-02<br>2.60E-02 | 4.76E-06<br>2.82E-06 | 3.43E-05             | 0.00E+00             | 7.44E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1994          | 2          | 2.92E+00             | 2.40E+00<br>1.08E+00 | 3.72E-05             | 1.03E-04             | 4.25E-04<br>1.92E-04 | 1.17E-02             | 1.27E-06             | 1.55E-05             | 0.00E+00             | 3.35E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1993          | 0          | 1.16E+00             | 4.30E-01             | 1.48E-05             | 4.09E-05             | 7.61E-05             | 4.65E-03             | 5.05E-07             | 6.13E-06             | 0.00E+00             | 1.33E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1991          | 0          | 3.12E-01             | 1.16E-01             | 3.97E-06             | 1.10E-05             | 2.05E-05             | 1.25E-03             | 1.36E-07             | 1.65E-06             | 0.00E+00             | 3.59E-07             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1990          | 0          | 5.14E-02             | 1.91E-02             | 6.54E-07             | 1.81E-06             | 3.37E-06             | 2.06E-04             | 2.24E-08             | 2.72E-07             | 0.00E+00             | 5.90E-08             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1989          | 0          | 7.37E-03             | 2.73E-03             | 9.37E-08             | 2.60E-07             | 4.83E-07             | 2.95E-05             | 3.21E-09             | 3.90E-08             | 0.00E+00             | 8.46E-09             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1988          | 0          | 5.97E-04             | 2.21E-04             | 7.59E-09             | 2.10E-08             | 3.91E-08             | 2.39E-06             | 2.60E-10             | 3.16E-09             | 0.00E+00             | 6.85E-10             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 15 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1987          | 0          | 3.49E-05             | 1.29E-05             | 4.44E-10             | 1.23E-09             | 2.29E-09             | 1.40E-07             | 1.52E-11             | 1.84E-10             | 0.00E+00             | 4.00E-11             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 15 Transport Refrigeration Units<br>25 Transport Refrigeration Units | U N NHH NP Riverside<br>U N NHH NP Los Angeles   | SC<br>SC | SC<br>SC        | 1986<br>2005  | 0<br>63    | 1.75E-06<br>1.78E+02 | 6.47E-07<br>1.10E+02 | 2.22E-11<br>1.46E-03 | 6.16E-11<br>4.99E-03 | 1.15E-10<br>9.25E-03 | 7.00E-09<br>1.21E+00 | 7.61E-13<br>1.32E-04 | 9.24E-12<br>6.67E-04 | 0.00E+00<br>0.00E+00 | 2.00E-12<br>1.32E-04 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2005          | 60         | 1.70E+02             | 1.06E+02             | 1.46E-03             | 4.99E-03<br>4.78E-03 | 9.25E-03<br>1.12E-02 | 1.16E+00             | 1.32E-04<br>1.26E-04 | 6.38E-04             | 0.00E+00             | 1.42E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2003          | 59         | 1.67E+02             | 1.04E+02             | 1.54E-03             | 4.69E-03             | 1.10E-02             | 1.14E+00             | 1.24E-04             | 6.26E-04             | 0.00E+00             | 1.39E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2002          | 60         | 1.72E+02             | 1.07E+02             | 1.59E-03             | 4.83E-03             | 1.13E-02             | 1.17E+00             | 1.27E-04             | 6.44E-04             | 0.00E+00             | 1.43E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2001          | 70         | 2.00E+02             | 1.24E+02             | 1.84E-03             | 5.61E-03             | 1.32E-02             | 1.36E+00             | 1.48E-04             | 7.49E-04             | 0.00E+00             | 1.66E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2000          | 29         | 8.14E+01             | 5.06E+01             | 7.52E-04             | 2.29E-03             | 5.36E-03             | 5.55E-01             | 6.03E-05             | 3.05E-04             | 0.00E+00             | 6.78E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1999          | 33         | 9.29E+01             | 5.82E+01             | 1.21E-03             | 5.57E-03             | 7.31E-03             | 6.33E-01             | 6.88E-05             | 5.22E-04             | 0.00E+00             | 1.09E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1998          | 27         | 7.55E+01             | 4.74E+01             | 9.81E-04             | 4.53E-03             | 5.94E-03             | 5.15E-01             | 5.60E-05             | 4.24E-04             | 0.00E+00             | 8.85E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1997          | 17         | 4.85E+01             | 3.04E+01             | 6.30E-04             | 2.91E-03             | 3.82E-03             | 3.31E-01             | 3.59E-05             | 2.73E-04             | 0.00E+00             | 5.68E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 25 Transport Refrigeration Units<br>25 Transport Refrigeration Units | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC<br>SC | SC<br>SC        | 1996<br>1995  | 12<br>10   | 3.46E+01<br>2.92E+01 | 2.17E+01<br>1.83E+01 | 4.49E-04<br>3.79E-04 | 2.07E-03<br>1.75E-03 | 2.72E-03<br>2.29E-03 | 2.36E-01<br>1.99E-01 | 2.56E-05<br>2.16E-05 | 1.94E-04<br>1.64E-04 | 0.00E+00<br>0.00E+00 | 4.05E-05<br>3.42E-05 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 25 Transport Refrigeration Units<br>25 Transport Refrigeration Units | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC       | SC              | 1995          | 10         | 2.92E+01<br>1.73E+01 | 1.83E+01<br>1.09E+01 | 3.79E-04<br>4.59E-04 | 1.75E-03<br>1.04E-03 | 2.29E-03<br>1.34E-03 | 1.99E-01<br>1.18E-01 | 2.16E-05<br>1.28E-05 | 1.54E-04<br>1.18E-04 | 0.00E+00<br>0.00E+00 | 3.42E-05<br>4.14E-05 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1993          | 3          | 7.80E+00             | 4.93E+00             | 2.07E-04             | 4.68E-04             | 6.02E-04             | 5.32E-02             | 5.78E-06             | 5.33E-05             | 0.00E+00             | 1.87E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1992          | 1          | 3.10E+00             | 1.96E+00             | 8.22E-05             | 1.86E-04             | 2.39E-04             | 2.11E-02             | 2.29E-06             | 2.12E-05             | 0.00E+00             | 7.42E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1991          | 0          | 8.34E-01             | 5.27E-01             | 2.21E-05             | 5.00E-05             | 6.44E-05             | 5.68E-03             | 6.18E-07             | 5.70E-06             | 0.00E+00             | 2.00E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1990          | 0          | 1.37E-01             | 8.68E-02             | 3.64E-06             | 8.23E-06             | 1.06E-05             | 9.36E-04             | 1.02E-07             | 9.39E-07             | 0.00E+00             | 3.29E-07             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1989          | 0          | 1.97E-02             | 1.24E-02             | 5.22E-07             | 1.18E-06             | 1.52E-06             | 1.34E-04             | 1.46E-08             | 1.34E-07             | 0.00E+00             | 4.71E-08             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1988          | 0          | 1.59E-03             | 1.01E-03             | 4.23E-08             | 9.56E-08             | 1.23E-07             | 1.09E-05             | 1.18E-09             | 1.09E-08             | 0.00E+00             | 3.82E-09             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC<br>SC | SC              | 1987<br>1986  | 0          | 9.31E-05<br>4.66E-06 | 5.88E-05<br>2.95E-06 | 2.47E-09             | 5.58E-09<br>2.80E-10 | 7.18E-09<br>3.60E-10 | 6.34E-07<br>3.18E-08 | 6.89E-11<br>3.45E-12 | 6.36E-10<br>3.19E-11 | 0.00E+00<br>0.00E+00 | 2.23E-10             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 25 Transport Refrigeration Units<br>25 Transport Refrigeration Units | U N NHH NP Los Angeles<br>U N NHH NP Riverside   | SC       | SC<br>SC        | 2005          | 10         | 4.66E-06<br>2.81E+01 | 2.95E-06<br>1.74E+01 | 1.24E-10<br>2.31E-04 | 2.80E-10<br>7.88E-04 | 3.60E-10<br>1.46E-03 | 3.18E-08<br>1.91E-01 | 3.45E-12<br>2.08E-05 | 3.19E-11<br>1.05E-04 | 0.00E+00<br>0.00E+00 | 1.12E-11<br>2.08E-05 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2003          | 9          |                      | 1.67E+01             | 2.31E-04             | 7.53E-04             | 1.77E-03             | 1.83E-01             | 1.99E-05             | 1.01E-04             | 0.00E+00             | 2.00E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2004          | 9          | 2.64E+01             | 1.64E+01             | 2.43E-04             | 7.40E-04             | 1.73E-03             | 1.80E-01             | 1.95E-05             | 9.87E-05             | 0.00E+00             | 2.24E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2002          | 10         | 2.71E+01             | 1.68E+01             | 2.50E-04             | 7.61E-04             | 1.79E-03             | 1.85E-01             | 2.01E-05             | 1.02E-04             | 0.00E+00             | 2.26E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2001          | 11         |                      | 1.96E+01             | 2.91E-04             | 8.84E-04             | 2.07E-03             | 2.15E-01             | 2.33E-05             | 1.18E-04             | 0.00E+00             | 2.62E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2000          | 5          | 1.28E+01             | 7.98E+00             | 1.19E-04             | 3.60E-04             | 8.45E-04             | 8.75E-02             | 9.51E-06             | 4.81E-05             | 0.00E+00             | 1.07E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1999          | 5          | 1.46E+01             | 9.18E+00             | 1.90E-04             | 8.78E-04             | 1.15E-03             | 9.98E-02             | 1.08E-05             | 8.23E-05             | 0.00E+00             | 1.72E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units<br>25 Transport Refrigeration Units | U N NHH NP Riverside<br>U N NHH NP Riverside     | SC<br>SC | SC<br>SC        | 1998<br>1997  | 4          | 1.19E+01<br>7.65E+00 | 7.47E+00<br>4.80E+00 | 1.55E-04<br>9.93E-05 | 7.14E-04<br>4.59E-04 | 9.37E-04<br>6.02E-04 | 8.12E-02<br>5.21E-02 | 8.82E-06<br>5.67E-06 | 6.69E-05<br>4.30E-05 | 0.00E+00<br>0.00E+00 | 1.40E-05<br>8.96E-06 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 25 Transport Refrigeration Units<br>25 Transport Refrigeration Units | U N NHH NP Riverside<br>U N NHH NP Riverside     | SC       | SC              | 1997<br>1996  | 3          | 7.65E+00<br>5.45E+00 | 4.80E+00<br>3.42E+00 | 9.93E-05<br>7.08E-05 | 4.59E-04<br>3.27E-04 | 6.02E-04<br>4.29E-04 | 5.21E-02<br>3.72E-02 | 5.67E-06<br>4.04E-06 | 4.30E-05<br>3.06E-05 | 0.00E+00<br>0.00E+00 | 8.96E-06<br>6.39E-06 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1995          | 2          | 4.60E+00             | 2.88E+00             | 5.97E-05             | 2.76E-04             | 4.29E-04<br>3.62E-04 | 3.13E-02             | 4.04E-06<br>3.41E-06 | 2.58E-05             | 0.00E+00             | 5.39E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1994          | 1          | 2.73E+00             | 1.72E+00             | 7.24E-05             | 1.64E-04             | 2.11E-04             | 1.86E-02             | 2.02E-06             | 1.87E-05             | 0.00E+00             | 6.53E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1993          | 0          | 1.23E+00             | 7.78E-01             | 3.27E-05             | 7.38E-05             | 9.49E-05             | 8.38E-03             | 9.11E-07             | 8.41E-06             | 0.00E+00             | 2.95E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1992          | 0          | 4.88E-01             | 3.09E-01             | 1.30E-05             | 2.93E-05             | 3.77E-05             | 3.33E-03             | 3.62E-07             | 3.34E-06             | 0.00E+00             | 1.17E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1991          | 0          | 1.31E-01             | 8.31E-02             | 3.49E-06             | 7.88E-06             | 1.01E-05             | 8.96E-04             | 9.74E-08             | 8.99E-07             | 0.00E+00             | 3.15E-07             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1990          | 0          | 2.16E-02             | 1.37E-02             | 5.75E-07             | 1.30E-06             | 1.67E-06             | 1.48E-04             | 1.60E-08             | 1.48E-07             | 0.00E+00             | 5.18E-08             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 25 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 1989          | 0          | 3.10E-03             | 1.96E-03             | 8.23E-08             | 1.86E-07             | 2.39E-07             | 2.11E-05             | 2.30E-09             | 2.12E-08             | 0.00E+00             | 7.43E-09             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 25 Transport Refrigeration Units<br>25 Transport Refrigeration Units | U N NHH NP Riverside<br>U N NHH NP Riverside     | SC       | SC<br>SC        | 1988<br>1987  | 0          | 2.51E-04<br>1.47E-05 | 1.59E-04<br>9.28E-06 | 6.67E-09<br>3.90E-10 | 1.51E-08<br>8.80E-10 | 1.94E-08<br>1.13E-09 | 1.71E-06<br>1.00E-07 | 1.86E-10<br>1.09E-11 | 1.72E-09<br>1.00E-10 | 0.00E+00<br>0.00E+00 | 6.02E-10<br>3.52E-11 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 25 Transport Refrigeration Units<br>25 Transport Refrigeration Units | U N NHH NP Riverside<br>U N NHH NP Riverside     | SC       | SC              | 1987<br>1986  | 0          | 1.47E-05<br>7.35E-07 | 9.28E-06<br>4.65E-07 | 3.90E-10<br>1.95E-11 | 8.80E-10<br>4.41E-11 | 1.13E-09<br>5.67E-11 | 1.00E-07<br>5.01E-09 | 1.09E-11<br>5.45E-13 | 1.00E-10<br>5.03E-12 | 0.00E+00<br>0.00E+00 | 3.52E-11<br>1.76E-12 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 50 Transport Refrigeration Units                                     | U N NHH NP Riverside                             | SC       | SC              | 2005          | 1239       | 4.98E+03             | 4.65E-07<br>5.88E+03 | 5.74E-02             | 4.41E-11<br>3.66E-01 | 5.40E-01             | 6.45E+01             | 7.14E-03             | 3.74E-02             | 0.00E+00             | 5 18E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 50 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2003          | 1165       | 4.68E+03             | 5.56E+03             | 1.10E-01             | 4.27E-01             | 5.36E-01             | 6.06E+01             | 6.71E-03             | 4.42E-02             | 0.00E+00             | 9.90E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 50 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2003          | 1123       | 4.51E+03             | 5.44E+03             | 2.63E-01             | 5.80E-01             | 5.78E-01             | 5.84E+01             | 6.47E-03             | 6.51E-02             | 0.00E+00             | 2.37E-02             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 50 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2002          | 1129       | 4.53E+03             | 5.49E+03             | 2.98E-01             | 6.46E-01             | 5.95E-01             | 5.87E+01             | 6.50E-03             | 7.12E-02             | 0.00E+00             | 2.69E-02             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 50 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2001          | 1266       | 5.09E+03             | 6.19E+03             | 3.72E-01             | 7.96E-01             | 6.85E-01             | 6.59E+01             | 7.29E-03             | 8.64E-02             | 0.00E+00             | 3.36E-02             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 50 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 2000          | 470        | 1.89E+03             | 2.30E+03             | 1.52E-01             | 3.22E-01             | 2.60E-01             | 2.44E+01             | 2.71E-03             | 3.45E-02             | 0.00E+00             | 1.37E-02             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 50 Transport Refrigeration Units                                     | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC       | SC              | 1999          | 536        | 2.15E+03             | 2.64E+03             | 1.89E-01             | 3.97E-01             | 3.04E-01             | 2.79E+01             | 3.08E-03             | 4.20E-02             | 0.00E+00             | 1.71E-02             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 50 Transport Refrigeration Units<br>50 Transport Refrigeration Units | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC<br>SC | SC<br>SC        | 1998<br>1997  | 436<br>280 | 1.75E+03<br>1.12E+03 | 2.18E+03<br>1.41E+03 | 2.08E-01<br>1.44E-01 | 4.24E-01<br>2.92E-01 | 2.98E-01<br>1.95E-01 | 2.27E+01<br>1.46E+01 | 2.51E-03<br>1.61E-03 | 4.21E-02<br>2.87E-02 | 0.00E+00<br>0.00E+00 | 1.87E-02<br>1.30E-02 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D | 50 Transport Refrigeration Units<br>50 Transport Refrigeration Units | U N NHH NP Los Angeles<br>U N NHH NP Los Angeles | SC       | SC              | 1997          | 280        | 1.12E+03<br>8.01E+02 | 1.41E+03<br>1.01E+03 | 1.44E-01<br>1.10E-01 | 2.92E-01<br>2.22E-01 | 1.95E-01<br>1.42E-01 | 1.46E+01<br>1.04E+01 | 1.61E-03<br>1.15E-03 | 2.87E-02<br>2.16E-02 | 0.00E+00<br>0.00E+00 | 1.30E-02<br>9.91E-03 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 50 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           | SC       | SC              | 1995          | 168        | 6.76E+02             | 8.53E+02             | 9.88E-02             | 1.98E-01             | 1.22E-01             | 8.75E+00             | 9.69E-04             | 1.92E-02             | 0.00E+00             | 8.92E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   | 50 Transport Refrigeration Units                                     | U N NHH NP Los Angeles                           |          | SC              | 1994          |            | 4.01E+02             | 5.09E+02             | 6.24E-02             | 1.25E-01             | 7.35E-02             | 5.19E+00             | 5.75E-04             | 1.20E-02             | 0.00E+00             | 5.63E-03             |
|                                                                                                                                  |                                                                      | 5                                                |          |                 |               |            |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |

| CY Season AvgDays Code Equipment                                                                                                 | Fuel Ma | axHP Class                                                                     |        |     | and Port County                          |          |          |              |            |                      |                      |                      |                      |                      | Exhaust PM Ex        |                      |                      |                      |                      |
|----------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------|--------|-----|------------------------------------------|----------|----------|--------------|------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Los Angeles<br>IHH NP Los Angeles | SC<br>SC | SC<br>SC | 1993<br>1992 | 45<br>18   | 1.81E+02<br>7.18E+01 | 2.30E+02<br>9.19E+01 | 2.98E-02<br>1.25E-02 | 5.93E-02<br>2.48E-02 | 3.37E-02<br>1.36E-02 | 2.34E+00<br>9.29E-01 | 2.59E-04<br>1.03E-04 | 5.68E-03<br>2.36E-03 | 0.00E+00<br>0.00E+00 | 2.69E-03<br>1.13E-03 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 50 Transport Refrigeration Units<br>50 Transport Refrigeration Units           |        |     | IHH NP Los Angeles                       | SC       | SC       | 1992         | 18         | 7.18E+01<br>1.93E+01 | 9.19E+01<br>2.49E+01 | 1.25E-02<br>3.54E-03 | 2.48E-02<br>7.00E-03 | 1.36E-02<br>3.73E-03 | 9.29E-01<br>2.50E-01 | 1.03E-04<br>2.77E-05 | 2.36E-03<br>6.64E-04 | 0.00E+00             | 1.13E-03<br>3.19E-04 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | ŭ      |     | IHH NP Los Angeles                       | SC       | SC       | 1990         | 1          | 3.18E+00             | 4.11E+00             | 6.12E-04             | 1.21E-03             | 6.24E-04             | 4.12E-02             | 4.56E-06             | 1.14E-04             | 0.00E+00             | 5.52E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | U      | N N | IHH NP Los Angeles                       | SC       | SC       | 1989         | 0          | 4.56E-01             | 5.92E-01             | 9.19E-05             | 1.81E-04             | 9.09E-05             | 5.90E-03             | 6.54E-07             | 1.70E-05             | 0.00E+00             | 8.30E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | U      | N N | IHH NP Los Angeles                       | SC       | SC       | 1988         | 0          | 3.69E-02             | 4.82E-02             | 7.79E-06             | 1.53E-05             | 7.49E-06             | 4.78E-04             | 5.29E-08             | 1.43E-06             | 0.00E+00             | 7.03E-07             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | U      |     | IHH NP Los Angeles                       | SC       | SC       | 1987         | 0          | 2.16E-03             | 2.83E-03             | 4.85E-07             | 9.29E-07             | 4.50E-07             | 2.79E-05             | 3.09E-09             | 8.68E-08             | 0.00E+00             | 4.38E-08             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Los Angeles                       | SC       | SC       | 1986         | 0          | 1.08E-04             | 1.42E-04             | 2.53E-08             | 4.84E-08             | 2.29E-08             | 1.40E-06             | 1.55E-10             | 4.51E-09             | 0.00E+00             | 2.29E-09             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 50 Transport Refrigeration Units<br>50 Transport Refrigeration Units           | U<br>U |     | IHH NP Riverside<br>IHH NP Riverside     | SC<br>SC | SC<br>SC | 2005<br>2004 | 195<br>184 | 7.85E+02<br>7.38E+02 | 9.27E+02<br>8.77E+02 | 9.05E-03<br>1.73E-02 | 5.77E-02<br>6.73E-02 | 8.52E-02<br>8.46E-02 | 1.02E+01<br>9.56E+00 | 1.13E-03<br>1.06E-03 | 5.90E-03<br>6.96E-03 | 0.00E+00<br>0.00E+00 | 8.16E-04<br>1.56E-03 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC       | SC       | 2004         | 177        | 7.12E+02             | 8.58E+02             | 4.15E-02             | 9.14E-02             | 9.11E-02             | 9.21E+00             | 1.02E-03             | 1.03E-02             | 0.00E+00             | 3.74E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC       | SC       | 2002         | 178        | 7.15E+02             | 8.66E+02             | 4.70E-02             | 1.02E-01             | 9.39E-02             | 9.26E+00             | 1.03E-03             | 1.12E-02             | 0.00E+00             | 4.24E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | U      | N N | IHH NP Riverside                         | SC       | SC       | 2001         | 200        | 8.02E+02             | 9.75E+02             | 5.87E-02             | 1.26E-01             | 1.08E-01             | 1.04E+01             | 1.15E-03             | 1.36E-02             | 0.00E+00             | 5.30E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | U      | N N | IHH NP Riverside                         | SC       | SC       | 2000         | 74         | 2.98E+02             | 3.63E+02             | 2.40E-02             | 5.07E-02             | 4.10E-02             | 3.85E+00             | 4.27E-04             | 5.43E-03             | 0.00E+00             | 2.16E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC       | SC       | 1999         | 84         | 3.39E+02             | 4.16E+02             | 2.99E-02             | 6.26E-02             | 4.79E-02             | 4.39E+00             | 4.86E-04             | 6.63E-03             | 0.00E+00             | 2.69E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC       | SC       | 1998         | 69         | 2.76E+02             | 3.44E+02             | 3.27E-02             | 6.69E-02             | 4.70E-02             | 3.57E+00             | 3.96E-04             | 6.64E-03             | 0.00E+00             | 2.95E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | U      |     | IHH NP Riverside                         | SC       | SC<br>SC | 1997         | 44         | 1.77E+02             | 2.22E+02             | 2.27E-02             | 4.60E-02             | 3.08E-02             | 2.30E+00             | 2.54E-04             | 4.52E-03             | 0.00E+00             | 2.04E-03             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 50 Transport Refrigeration Units<br>50 Transport Refrigeration Units           | U      |     | IHH NP Riverside<br>IHH NP Riverside     | SC<br>SC | SC       | 1996<br>1995 | 31<br>27   | 1.26E+02<br>1.07E+02 | 1.59E+02<br>1.35E+02 | 1.73E-02<br>1.56E-02 | 3.49E-02<br>3.13E-02 | 2.23E-02<br>1.92E-02 | 1.64E+00<br>1.38E+00 | 1.81E-04<br>1.53E-04 | 3.41E-03<br>3.03E-03 | 0.00E+00<br>0.00E+00 | 1.56E-03<br>1.41E-03 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC       | SC       | 1994         | 16         | 6.32E+01             | 8.02E+01             | 9.83E-03             | 1.97E-02             | 1.16E-02             | 8.19E-01             | 9.06E-05             | 1.89E-03             | 0.00E+00             | 8.87E-04             |
| 2005 Annual Mon-Sun 2270003005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | Ŭ      |     | IHH NP Riverside                         | SC       | SC       | 1993         | 7          | 2.85E+01             | 3.63E+01             | 4.70E-03             | 9.35E-03             | 5.32E-03             | 3.69E-01             | 4.09E-05             | 8.96E-04             | 0.00E+00             | 4.24E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC       | SC       | 1992         | 3          | 1.13E+01             | 1.45E+01             | 1.97E-03             | 3.90E-03             | 2.15E-03             | 1.46E-01             | 1.62E-05             | 3.72E-04             | 0.00E+00             | 1.78E-04             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               | U      |     | IHH NP Riverside                         | SC       | SC       | 1991         | 1          | 3.05E+00             | 3.92E+00             | 5.58E-04             | 1.10E-03             | 5.88E-04             | 3.95E-02             | 4.37E-06             | 1.05E-04             | 0.00E+00             | 5.04E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        | N N | IHH NP Riverside                         | SC       | SC       | 1990         | 0          | 5.02E-01             | 6.48E-01             | 9.65E-05             | 1.90E-04             | 9.84E-05             | 6.50E-03             | 7.19E-07             | 1.80E-05             | 0.00E+00             | 8.71E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC       | SC       | 1989         | 0          | 7.19E-02             | 9.33E-02             | 1.45E-05             | 2.85E-05             | 1.43E-05             | 9.31E-04             | 1.03E-07             | 2.68E-06             | 0.00E+00             | 1.31E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC<br>SC | SC       | 1988         | 0          | 5.82E-03             | 7.59E-03             | 1.23E-06             | 2.41E-06             | 1.18E-06             | 7.54E-05             | 8.35E-09             | 2.26E-07             | 0.00E+00             | 1.11E-07             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 50 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SC       | SC<br>SC | 1987<br>1986 | 0          | 3.40E-04<br>1.70E-05 | 4.46E-04<br>2.24E-05 | 7.65E-08<br>3.99E-09 | 1.46E-07<br>7.63E-09 | 7.10E-08<br>3.61E-09 | 4.40E-06<br>2.21E-07 | 4.88E-10<br>2.44E-11 | 1.37E-08<br>7.11E-10 | 0.00E+00<br>0.00E+00 | 6.90E-09<br>3.60E-10 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270002045 Cranes                          | D       | 50 Transport Refrigeration Units<br>500 Construction and Mining Equipment      |        |     | IHH NP Riverside                         | SC       | SC       | 1986<br>2005 | 0          | 1.70E-05<br>1.27E+00 | 2.24E-05<br>1.03E+01 | 3.99E-09<br>2.80E-05 | 7.63E-09<br>1.88E-04 | 3.61E-09<br>7 70E-04 | 2.21E-07<br>1 14E-01 | 2.44E-11<br>1.04E-05 | 7.11E-10<br>1.88E-05 | 0.00E+00<br>0.00E+00 | 3.60E-10<br>2.53E-06 |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          | U      |     | IHH P Riverside                          | SS       | SC       | 2005         | ŏ          | 1.19E+00             | 9.65E+00             | 3.71E-05             | 1.79E-04             | 7.83E-04             | 1.07E-01             | 9.67E-06             | 1.87E-05             | 0.00E+00             | 2.33E-06<br>3.35E-06 |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          | Ū      |     | IHH P Riverside                          | SS       | SC       | 2003         | ō          | 1.09E+00             | 8.91E+00             | 4.04E-05             | 1.69E-04             | 7.35E-04             | 9.85E-02             | 8.92E-06             | 1.83E-05             | 0.00E+00             | 3.65E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          | U      | N N | IHH P Riverside                          | SS       | SC       | 2002         | 0          | 9.69E-01             | 7.89E+00             | 4.38E-05             | 1.53E-04             | 6.96E-04             | 8.72E-02             | 7.89E-06             | 1.72E-05             | 0.00E+00             | 3.95E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          |        |     | IHH P Riverside                          | SS       | SC       | 2001         | 0          | 9.29E-01             | 7.57E+00             | 5.31E-05             | 1.50E-04             | 7.48E-04             | 8.36E-02             | 7.57E-06             | 1.89E-05             | 0.00E+00             | 4.79E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          | U      |     | IHH P Riverside                          | SS       | SC       | 2000         | 0          | 9.62E-01             | 7.84E+00             | 7.27E-05             | 1.59E-04             | 1.01E-03             | 8.65E-02             | 7.84E-06             | 2.56E-05             | 0.00E+00             | 6.56E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          |        |     | IHH P Riverside                          | SS       | SC       | 1999         | 0          | 9.93E-01             | 8.10E+00             | 7.77E-05             | 1.68E-04             | 1.06E-03             | 8.93E-02             | 8.09E-06             | 2.77E-05             | 0.00E+00             | 7.01E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes<br>2005 Annual Mon-Sun 2270002045 Cranes                                                   | D       | 500 Construction and Mining Equipment<br>500 Construction and Mining Equipment |        |     | IHH P Riverside<br>IHH P Riverside       | SS<br>SS | SC<br>SC | 1998<br>1997 | 0          | 9.51E-01<br>8.59E-01 | 7.76E+00<br>7.01E+00 | 7.70E-05<br>7.18E-05 | 1.64E-04<br>1.51E-04 | 1.03E-03<br>9.48E-04 | 8.56E-02<br>7.73E-02 | 7.75E-06<br>7.00E-06 | 2.78E-05<br>2.62E-05 | 0.00E+00<br>0.00E+00 | 6.95E-06<br>6.48E-06 |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          | U      |     | IHH P Riverside                          | SS       | SC       | 1997         | 0          | 3.67E-01             | 2.99E+00             | 3.16E-05             | 6.60E-05             | 9.48E-04<br>4.12E-04 | 3.30E-02             | 2.99E-06             | 1.17E-05             | 0.00E+00             | 2.85E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          |        |     | IHH P Riverside                          | SS       | SC       | 1995         | 0          | 2 44E-01             | 2.00E+00             | 4.61E-05             | 1.32E-04             | 3 58E-04             | 2 20E-02             | 1.99E-06             | 1.87E-05             | 0.00E+00             | 4 16E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          | Ū      | N N | IHH P Riverside                          | SS       | SC       | 1994         | ō          | 1.81E-01             | 1.49E+00             | 3.52E-05             | 9.93E-05             | 2.70E-04             | 1.63E-02             | 1.47E-06             | 1.44E-05             | 0.00E+00             | 3.17E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          | U      |     | IHH P Riverside                          | SS       | SC       | 1993         | 0          | 1.01E-01             | 8.36E-01             | 2.03E-05             | 5.67E-05             | 1.54E-04             | 9.11E-03             | 8.25E-07             | 8.37E-06             | 0.00E+00             | 1.83E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          | -      |     | IHH P Riverside                          | SS       | SC       | 1992         | 0          | 8.02E-02             | 6.63E-01             | 1.65E-05             | 4.58E-05             | 1.24E-04             | 7.22E-03             | 6.54E-07             | 6.87E-06             | 0.00E+00             | 1.49E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes                                                                                            | D       | 500 Construction and Mining Equipment                                          |        |     | IHH P Riverside                          | SS       | SC       | 1991         | 0          | 5.73E-02             | 4.74E-01             | 1.21E-05             | 3.33E-05             | 8.98E-05             | 5.16E-03             | 4.67E-07             | 5.08E-06             | 0.00E+00             | 1.09E-06             |
| 2005 Annual Mon-Sun 2270002045 Cranes<br>2005 Annual Mon-Sun 2270002045 Cranes                                                   | D       | 500 Construction and Mining Equipment                                          | U<br>U |     | IHH P Riverside<br>IHH P Riverside       | SS<br>SS | SC       | 1990<br>1989 | 0          | 5.06E-02             | 4.18E-01<br>2.51E-01 | 1.10E-05<br>6.76E-06 | 2.99E-05<br>1.83E-05 | 8.05E-05<br>4.91E-05 | 4.55E-03<br>2.73E-03 | 4.12E-07<br>2.47E-07 | 4.64E-06<br>2.87E-06 | 0.00E+00<br>0.00E+00 | 9.91E-07<br>6.10E-07 |
| 2005 Annual Mon-Sun 2270002045 Cranes<br>2005 Annual Mon-Sun 2270002045 Cranes                                                   | D       | 500 Construction and Mining Equipment<br>500 Construction and Mining Equipment |        |     | IHH P Riverside                          | SS       | SC<br>SC | 1989         | 0          | 3.04E-02<br>1.01E-02 | 2.51E-01<br>8.37E-02 | 2.31E-06             | 1.83E-05<br>6.20E-06 | 4.91E-05<br>1.66E-05 | 2.73E-03<br>9.10E-04 | 2.4/E-07<br>8.24E-08 | 2.87E-06<br>9.88E-07 | 0.00E+00             | 6.10E-07<br>2.09E-07 |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       |        |     | IHH NP Riverside                         | SS       | SC       | 2005         | ō          | 1.85E+00             | 4.70E+00             | 2.00E-05             | 2.52E-04             | 3.88E-04             | 5.17E-02             | 5.37E-06             | 1.28E-05             | 0.00E+00             | 1.81E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | ŭ      |     | IHH NP Riverside                         | SS       | SC       | 2004         | ŏ          | 1.80E+00             | 4.59E+00             | 3.10E-05             | 2.56E-04             | 4.14E-04             | 5.04E-02             | 5.23E-06             | 1.65E-05             | 0.00E+00             | 2.80E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | Ū      |     | IHH NP Riverside                         | SS       | SC       | 2003         | ō          | 1.82E+00             | 4.63E+00             | 4.90E-05             | 2.70E-04             | 4.83E-04             | 5.08E-02             | 5.28E-06             | 2.33E-05             | 0.00E+00             | 4.42E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      | P N | IHH NP Riverside                         | SS       | SC       | 2002         | 0          | 2.00E+00             | 5.13E+00             | 1.04E-04             | 3.11E-04             | 7.39E-04             | 5.60E-02             | 5.82E-06             | 4.49E-05             | 0.00E+00             | 9.40E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      |     | IHH NP Riverside                         | SS       | SC       | 2001         | 0          | 1.97E+00             | 5.06E+00             | 1.09E-04             | 3.18E-04             | 7.55E-04             | 5.52E-02             | 5.73E-06             | 4.82E-05             | 0.00E+00             | 9.86E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      |     | IHH NP Riverside                         | SS       | SC       | 2000         | 0          | 1.99E+00             | 5.11E+00             | 1.17E-04             | 3.34E-04             | 7.88E-04             | 5.57E-02             | 5.78E-06             | 5.26E-05             | 0.00E+00             | 1.06E-05             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       |        |     | IHH NP Riverside                         | SS<br>SS | SC       | 1999         | 0          | 1.93E+00             | 4.96E+00<br>4.85E+00 | 1.20E-04             | 3.36E-04             | 7.90E-04             | 5.40E-02             | 5.61E-06             | 5.49E-05             | 0.00E+00             | 1.08E-05             |
| 2005 Annual Mon-Sun 2270003020 Forklifts<br>2005 Annual Mon-Sun 2270003020 Forklifts                                             | D       | 175 Industrial Equipment<br>175 Industrial Equipment                           | U      |     | IHH NP Riverside<br>IHH NP Riverside     | SS       | SC<br>SC | 1998<br>1997 | 0          | 1.88E+00<br>1.80E+00 | 4.85E+00<br>4.64E+00 | 1.23E-04<br>1.24E-04 | 3.40E-04<br>3.37E-04 | 7.97E-04<br>7.86E-04 | 5.28E-02<br>5.04E-02 | 5.48E-06<br>5.23E-06 | 5.74E-05<br>5.85E-05 | 0.00E+00<br>0.00E+00 | 1.11E-05<br>1.12E-05 |
| 2005 Annual Mon-Sun 2270003020 Forkins                                                                                           | D       | 175 Industrial Equipment                                                       | ü      |     | IHH NP Riverside                         | SS       | SC       | 1997         | 0          | 1.76E+00             | 4.54E+00             | 1.24E-04             | 3.41E-04             | 9.22E-04             | 4.94E-02             | 5.13E-06             | 5.55E-05             | 0.00E+00             | 1.12E-05             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | Ū      |     | IHH NP Riverside                         | SS       | SC       | 1995         | ō          | 1.53E+00             | 3.95E+00             | 1.16E-04             | 3.06E-04             | 8.25E-04             | 4.29E-02             | 4.46E-06             | 5.11E-05             | 0.00E+00             | 1.05E-05             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      | P N | IHH NP Riverside                         | SS       | SC       | 1994         | 0          | 1.24E+00             | 3.20E+00             | 9.78E-05             | 2.55E-04             | 6.86E-04             | 3.47E-02             | 3.60E-06             | 4.36E-05             | 0.00E+00             | 8.83E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      | P N | IHH NP Riverside                         | SS       | SC       | 1993         | 0          | 3.41E-01             | 8.82E-01             | 2.81E-05             | 7.25E-05             | 1.94E-04             | 9.56E-03             | 9.92E-07             | 1.26E-05             | 0.00E+00             | 2.54E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      |     | IHH NP Riverside                         | SS       | SC       | 1992         | 0          | 2.42E-01             | 6.26E-01             | 2.08E-05             | 5.30E-05             | 1.42E-04             | 6.79E-03             | 7.04E-07             | 9.41E-06             | 0.00E+00             | 1.87E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts<br>2005 Annual Mon-Sun 2270003020 Forklifts                                             | D       | 175 Industrial Equipment<br>175 Industrial Equipment                           | U<br>U |     | IHH NP Riverside                         | SS<br>SS | SC<br>SC | 1991<br>1990 | 0          | 2.11E-01<br>3.28E-01 | 5.47E-01<br>8.49E-01 | 1.88E-05<br>3.03E-05 | 4.75E-05<br>7.59E-05 | 1.27E-04<br>2.02E-04 | 5.92E-03<br>9.19E-03 | 6.14E-07<br>9.54E-07 | 8.60E-06<br>1.39E-05 | 0.00E+00<br>0.00E+00 | 1.70E-06<br>2.73E-06 |
| 2005 Annual Mon-Sun 2270003020 Forklifts<br>2005 Annual Mon-Sun 2270003020 Forklifts                                             | D       | 175 Industrial Equipment<br>175 Industrial Equipment                           | U      |     | IHH NP Riverside<br>IHH NP Riverside     | SS       | SC       | 1990         | 0          | 3.28E-01<br>2.59E-01 | 8.49E-01<br>6.72E-01 | 2.48E-05             | 7.59E-05<br>6.16E-05 | 2.02E-04<br>1.64E-04 | 9.19E-03<br>7.26E-03 | 9.54E-07<br>7.54E-07 | 1.39E-05<br>1.15E-05 | 0.00E+00             | 2.73E-06<br>2.24E-06 |
| 2005 Annual Mon-Sun 2270003020 Forkins                                                                                           | D       | 175 Industrial Equipment                                                       |        |     | IHH NP Riverside                         | SS       | SC       | 1988         | 0          | 2.39E-01<br>2.27E-01 | 5.88E-01             | 2.46E-05<br>2.25E-05 | 5.53E-05             | 1.47E-04             | 6.35E-03             | 6.59E-07             | 1.05E-05             | 0.00E+00             | 2.24E-06<br>2.03E-06 |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      |     | IHH NP Riverside                         | SS       | SC       | 1987         | ō          | 1.84E-01             | 4.82E-01             | 2.43E-05             | 7.15E-05             | 1.64E-04             | 5.14E-03             | 5.34E-07             | 1.28E-05             | 0.00E+00             | 2.20E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | Ū      |     | IHH NP Riverside                         | SS       | SC       | 1986         | ō          | 1.33E-01             | 3.50E-01             | 1.82E-05             | 5.32E-05             | 1.22E-04             | 3.73E-03             | 3.87E-07             | 9.62E-06             | 0.00E+00             | 1.64E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      | P N | IHH NP Riverside                         | SS       | SC       | 1985         | 0          | 9.90E-02             | 2.61E-01             | 1.40E-05             | 4.05E-05             | 9.25E-05             | 2.77E-03             | 2.88E-07             | 7.41E-06             | 0.00E+00             | 1.26E-06             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      |     | IHH NP Riverside                         | SS       | SC       | 1984         | 0          | 6.84E-02             | 1.81E-01             | 1.06E-05             | 2.94E-05             | 6.53E-05             | 1.92E-03             | 1.99E-07             | 5.31E-06             | 0.00E+00             | 9.60E-07             |
| 2005 Annual Mon-Sun 2270003020 Forklifts                                                                                         | D       | 175 Industrial Equipment                                                       | U      |     | IHH NP Riverside                         | SS       | SC       | 1983         | 0          | 3.60E-02             | 9.52E-02             | 5.77E-06             | 1.58E-05             | 3.51E-05             | 1.01E-03             | 1.05E-07             | 2.89E-06             | 0.00E+00             | 5.20E-07             |
| 2005 Annual Mon-Sun 2270003020 Forklifts<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                       | D       | 175 Industrial Equipment<br>15 Transport Refrigeration Units                   |        |     | IHH NP Riverside<br>IHH NP Riverside     | SS<br>SS | SC<br>SC | 1982<br>2005 | 0          | 1.20E-02<br>1.89E+01 | 3.18E-02<br>6.92E+00 | 1.98E-06<br>7.86E-05 | 5.40E-06<br>4.63E-04 | 1.20E-05<br>5.53E-04 | 3.36E-04<br>7.58E-02 | 3.49E-08<br>8.87E-06 | 9.95E-07<br>4.17E-05 | 0.00E+00<br>0.00E+00 | 1.78E-07<br>7.09E-06 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units           |        |     | IHH NP Riverside                         | SS       | SC       | 2005         | 6          | 1.89E+01<br>1.79E+01 | 6.92E+00<br>6.55E+00 | 7.86E-05<br>1.03E-04 | 4.63E-04<br>4.37E-04 | 5.53E-04<br>7.26E-04 | 7.58E-02<br>7.16E-02 | 8.87E-06<br>8.38E-06 | 4.17E-05<br>4.87E-05 | 0.00E+00<br>0.00E+00 | 9.30E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units           |        |     | IHH NP Riverside                         | SS       | SC       | 2004         | 6          | 1.79E+01<br>1.73E+01 | 6.35E+00<br>6.35E+00 | 1.03E-04<br>9.99E-05 | 4.37E-04<br>4.24E-04 | 7.26E-04<br>7.04E-04 | 7.16E-02<br>6.94E-02 | 8.38E-06<br>8.12E-06 | 4.87E-05<br>4.72E-05 | 0.00E+00<br>0.00E+00 | 9.30E-06<br>9.01E-06 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SS       | SC       | 2003         | 6          | 1.75E+01             | 6.42E+00             | 1.01E-04             | 4.29E-04             | 7 12E-04             | 7.02E-02             | 8.22E-06             | 4.77E-05             | 0.00E+00             | 9.12E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SS       | SC       | 2001         | 7          | 1.98E+01             | 7.28E+00             | 1.15E-04             | 4.86E-04             | 8.07E-04             | 7.96E-02             | 9.31E-06             | 5.41E-05             | 0.00E+00             | 1.03E-05             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               | U      | NN  | IHH NP Riverside                         | SS       | SC       | 2000         | 3          | 7.56E+00             | 2.77E+00             | 4.36E-05             | 1.85E-04             | 3.07E-04             | 3.03E-02             | 3.55E-06             | 2.06E-05             | 0.00E+00             | 3.93E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SS       | SC       | 1999         |            | 8.61E+00             | 3.18E+00             | 7.68E-05             | 3.04E-04             | 5.39E-04             | 3.45E-02             | 4.04E-06             | 2.85E-05             | 0.00E+00             | 6.93E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SS       | SC       | 1998         | 2          | 7.01E+00             | 2.59E+00             | 6.24E-05             | 2.47E-04             | 4.38E-04             | 2.81E-02             | 3.29E-06             | 2.32E-05             | 0.00E+00             | 5.63E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               | -      |     | IHH NP Riverside<br>IHH NP Riverside     | SS       | SC<br>SC | 1997<br>1996 | 2          | 4.50E+00<br>3.21E+00 | 1.66E+00<br>1.18E+00 | 4.01E-05             | 1.59E-04             | 2.81E-04             | 1.80E-02             | 2.11E-06             | 1.49E-05             | 0.00E+00<br>0.00E+00 | 3.62E-06<br>2.58E-06 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units           |        |     | IHH NP Riverside                         | SS<br>SS | SC       | 1996<br>1995 | 1          | 3.21E+00<br>2.71E+00 | 1.18E+00<br>9.99E-01 | 2.86E-05<br>2.41E-05 | 1.13E-04<br>9.54E-05 | 2.01E-04<br>1.69E-04 | 1.29E-02<br>1.08E-02 | 1.50E-06<br>1.27E-06 | 1.06E-05<br>8.94E-06 | 0.00E+00<br>0.00E+00 | 2.58E-06<br>2.17E-06 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 15 Transport Refrigeration Units                                               |        |     | IHH NP Riverside                         | SS       | SC       | 1995         | 1          | 1.61E+00             | 5.95E-01             | 2.41E-05<br>2.04E-05 | 9.54E-05<br>5.66E-05 | 1.09E-04<br>1.05E-04 | 6.44E-03             | 7.53E-07             | 8.49E-06             | 0.00E+00             | 2.17E-06<br>1.84E-06 |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               | Ŭ      |     | IHH NP Riverside                         | SS       | SC       | 1993         | Ó          | 7.24E-01             | 2.68E-01             | 9.21E-06             | 2.55E-05             | 4.75E-05             | 2.90E-03             | 3.40E-07             | 3.83E-06             | 0.00E+00             | 8.31E-07             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               |        | N N | IHH NP Riverside                         | SS       | SC       | 1992         | 0          | 2.87E-01             | 1.07E-01             | 3.66E-06             | 1.01E-05             | 1.88E-05             | 1.15E-03             | 1.35E-07             | 1.52E-06             | 0.00E+00             | 3.30E-07             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               | U      |     | IHH NP Riverside                         | SS       | SC       | 1991         | 0          | 7.74E-02             | 2.87E-02             | 9.85E-07             | 2.73E-06             | 5.08E-06             | 3.10E-04             | 3.63E-08             | 4.09E-07             | 0.00E+00             | 8.88E-08             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D                                                                   |         | 15 Transport Refrigeration Units                                               | U      |     | IHH NP Riverside                         | SS       | SC       | 1990         | 0          | 1.27E-02             | 4.72E-03             | 1.62E-07             | 4.49E-07             | 8.36E-07             | 5.11E-05             | 5.98E-09             | 6.74E-08             | 0.00E+00             | 1.46E-08             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D<br>2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D |         | 15 Transport Refrigeration Units<br>15 Transport Refrigeration Units           |        |     | IHH NP Riverside<br>IHH NP Riverside     | SS<br>SS | SC<br>SC | 1989<br>1988 | 0          | 1.82E-03<br>1.48E-04 | 6.77E-04<br>5.48E-05 | 2.32E-08<br>1.88E-09 | 6.44E-08<br>5.22E-09 | 1.20E-07<br>9.70E-09 | 7.32E-06<br>5.93E-07 | 8.56E-10<br>6.94E-11 | 9.66E-09<br>7.82E-10 | 0.00E+00<br>0.00E+00 | 2.10E-09<br>1.70E-10 |
| 2005 Annual Mon-Sun 22/0009005 Transport Refrigeration Units D                                                                   |         | 15 mansport Reingeration Units                                                 | U      | N D | ann MP Roverside                         | 00       | 30       | 100          | U          | 1.402-04             | J.40E-U0             | 1.000-09             | J.22E-U9             | a.rue-u9             | 5.93E-0/             | 0.94E-11             | 1.020-10             | 0.0000000            | 1.70E-10             |

| CY Season AvgDavs Code Equipment Fuel MaxHP Class                           | C/R Pre Hand Port County                                                                 | Air Bas | in Air Dist MY | Population Act | vity Consumption           | ROG Exhaust C        | O Exhaust NO         | Exhaust CO2          | Exhaust SO2 F        | Exhaust PM Exh       | aust N2O Exh         | aust CH4 Exh         | aust                 |                      |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------|----------------|----------------|----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1987           | 0 8.64E-06                 | 3.20E-06             | 1.10E-10             | 3.05E-10             | 5.67E-10             | 3.46E-08             | 4.05E-12             | 4.57E-11             | 0.00E+00             | 9.92E-12             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 15 Transport | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1986           | 0 4.33E-07                 | 1.60E-07             | 5.51E-12             | 1.53E-11             | 2.84E-11             | 1.73E-09             | 2.03E-13             | 2.29E-12             | 0.00E+00             | 4.97E-13             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 25 Transport | Refrigeration Units U N NHH NP Riverside                                                 | SS      | SC             | 2005           | 2 6.95E+00                 | 4.32E+00             | 5.72E-05             | 1.95E-04             | 3.61E-04             | 4.74E-02             | 5.55E-06             | 2.60E-05             | 0.00E+00             | 5.16E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 25 Transport | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 2004           | 2 6.65E+00                 | 4.13E+00             | 6.14E-05             | 1.87E-04             | 4.38E-04             | 4.53E-02             | 5.31E-06             | 2.49E-05             | 0.00E+00             | 5.54E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 25 Transport | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 2003           | 2 6.53E+00                 | 4.06E+00             | 6.03E-05             | 1.83E-04             | 4.30E-04             | 4.45E-02             | 5.21E-06             | 2.45E-05             | 0.00E+00             | 5.44E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 25 Transport | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 2002           | 2 6.72E+00                 | 4.17E+00             | 6.20E-05             | 1.89E-04             | 4.42E-04             | 4.58E-02             | 5.36E-06             | 2.52E-05             | 0.00E+00             | 5.60E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 25 Transport | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 2001           | 3 7.81E+00                 | 4.85E+00             | 7.21E-05             | 2.19E-04             | 5.14E-04             | 5.32E-02             | 6.23E-06             | 2.92E-05             | 0.00E+00             | 6.50E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 25 Transport | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 2000           | 1 3.18E+00                 | 1.98E+00             | 2.94E-05             | 8.93E-05             | 2.09E-04             | 2.17E-02             | 2.54E-06             | 1.19E-05             | 0.00E+00             | 2.65E-06             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1999           | 1 3.63E+00                 | 2.28E+00             | 4.71E-05             | 2.18E-04             | 2.85E-04             | 2.47E-02             | 2.89E-06             | 2.04E-05             | 0.00E+00             | 4.25E-06             |
| 2005 Annual Mon-Sun 2270009005 Transport Refrigeration Units D 25 Transport | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1998           | 1 2.95E+00                 | 1.85E+00             | 3.83E-05             | 1.77E-04             | 2.32E-04             | 2.01E-02             | 2.35E-06             | 1.66E-05             | 0.00E+00             | 3.46E-06             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1997           | 1 1.90E+00                 | 1.19E+00             | 2.46E-05             | 1.14E-04             | 1.49E-04             | 1.29E-02             | 1.51E-06             | 1.07E-05             | 0.00E+00             | 2.22E-06             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1996           | 0 1.35E+00                 | 8.47E-01             | 1.75E-05             | 8.10E-05             | 1.06E-04             | 9.21E-03             | 1.08E-06             | 7.59E-06             | 0.00E+00             | 1.58E-06             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1995           | 0 1.14E+00                 | 7.14E-01             | 1.48E-05             | 6.83E-05             | 8.96E-05             | 7.77E-03             | 9.09E-07             | 6.40E-06             | 0.00E+00             | 1.33E-06             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1994           | 0 6.76E-01                 | 4.27E-01             | 1.79E-05             | 4.05E-05             | 5.22E-05             | 4.61E-03             | 5.39E-07             | 4.62E-06             | 0.00E+00             | 1.62E-06             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1993           | 0 3.05E-01                 | 1.93E-01             | 8.09E-06             | 1.83E-05             | 2.35E-05             | 2.08E-03             | 2.43E-07             | 2.08E-06             | 0.00E+00             | 7.30E-07             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1992           | 0 1.21E-01                 | 7.65E-02             | 3.21E-06             | 7.25E-06             | 9.34E-06             | 8.25E-04             | 9.65E-08             | 8.27E-07             | 0.00E+00             | 2.90E-07             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1991           | 0 3.26E-02                 | 2.06E-02             | 8.65E-07             | 1.95E-06             | 2.51E-06             | 2.22E-04             | 2.60E-08             | 2.23E-07             | 0.00E+00             | 7.80E-08             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1990           | 0 5.36E-03                 | 3.39E-03             | 1.42E-07             | 3.22E-07             | 4.14E-07             | 3.66E-05             | 4.28E-09             | 3.67E-08             | 0.00E+00             | 1.28E-08             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1989           | 0 7.69E-04                 | 4.86E-04             | 2.04E-08             | 4.61E-08             | 5.93E-08             | 5.24E-06             | 6.13E-10             | 5.25E-09             | 0.00E+00             | 1.84E-09             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1988           | 0 6.23E-05                 | 3.94E-05             | 1.65E-09             | 3.73E-09             | 4.81E-09             | 4.24E-07             | 4.97E-11             | 4.26E-10             | 0.00E+00             | 1.49E-10             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1987           | 0 3.64E-06                 | 2.30E-06             | 9.65E-11             | 2.18E-10             | 2.81E-10             | 2.48E-08             | 2.90E-12             | 2.49E-11             | 0.00E+00             | 8.71E-12             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1986           | 0 1.82E-07                 | 1.15E-07             | 4.84E-12             | 1.09E-11             | 1.41E-11             | 1.24E-09             | 1.45E-13             | 1.25E-12             | 0.00E+00             | 4.36E-13             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 2005           | 48 1.95E+02                | 2.30E+02             | 2.24E-03             | 1.43E-02             | 2.11E-02             | 2.52E+00             | 3.00E-04             | 1.46E-03             | 0.00E+00             | 2.02E-04             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 2004           | 46 1.83E+02                | 2.17E+02             | 4.29E-03             | 1.67E-02             | 2.10E-02             | 2.37E+00             | 2.82E-04             | 1.73E-03             | 0.00E+00             | 3.87E-04             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             |                | 44 1.76E+02                | 2.13E+02             | 1.03E-02             | 2.27E-02             | 2.26E-02             | 2.28E+00             | 2.72E-04             | 2.54E-03             | 0.00E+00             | 9.28E-04             |
|                                                                             |                                                                                          | SS      | SC<br>SC       | 2002           | 44 1.77E+02                | 2.15E+02             | 1.16E-02             | 2.52E-02             | 2.33E-02             | 2.29E+00             | 2.74E-04             | 2.78E-03             | 0.00E+00             | 1.05E-03             |
|                                                                             |                                                                                          | SS      |                |                | 49 1.99E+02                | 2.42E+02             | 1.45E-02             | 3.11E-02             | 2.67E-02             | 2.57E+00             | 3.07E-04             | 3.38E-03             | 0.00E+00             | 1.31E-03             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside<br>t Refrigeration Units U N NHH NP Riverside | SS      | SC             | 2000           | 18 7.37E+01<br>21 8.41E+01 | 9.00E+01             | 5.94E-03             | 1.26E-02             | 1.02E-02             | 9.55E-01             | 1.14E-04<br>1.30E-04 | 1.35E-03             | 0.00E+00             | 5.36E-04             |
|                                                                             |                                                                                          | SS      | SC<br>SC       |                |                            | 1.03E+02             | 7.40E-03             | 1.55E-02<br>1.66E-02 | 1.19E-02             | 1.09E+00             | 1.30E-04<br>1.06E-04 | 1.64E-03             | 0.00E+00<br>0.00E+00 | 6.68E-04<br>7.32E-04 |
|                                                                             | t Refrigeration Units U N NHH NP Riverside<br>t Refrigeration Units U N NHH NP Riverside | SS      | SC             |                | 17 6.84E+01<br>11 4.39E+01 | 8.51E+01<br>5.49E+01 | 8.11E-03<br>5.61E-03 | 1.66E-02<br>1.14E-02 | 1.17E-02<br>7.63E-03 | 8.85E-01<br>5.69E-01 | 1.06E-04<br>6.78E-05 | 1.64E-03<br>1.12E-03 | 0.00E+00<br>0.00E+00 | 7.32E-04<br>5.07E-04 |
|                                                                             |                                                                                          | SS      | SC             |                |                            | 3.93E+01             |                      | 8.66E-02             |                      |                      | 4.83E-05             | 8.45E-04             |                      | 3.87E-04             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside<br>t Refrigeration Units U N NHH NP Riverside | SS      | SC             | 1996<br>1995   | 8 3.13E+01<br>7 2.64E+01   | 3.93E+01<br>3.33E+01 | 4.29E-03<br>3.86E-03 | 8.66E-03<br>7.75E-03 | 5.54E-03<br>4.75E-03 | 4.05E-01<br>3.42E-01 | 4.83E-05<br>4.08E-05 | 8.45E-04<br>7.52E-04 | 0.00E+00<br>0.00E+00 | 3.87E-04<br>3.48E-04 |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1995           | 4 1.57E+01                 | 1.99E+01             | 2.44E-03             | 4.87E-03             | 4.75E-03<br>2.87E-03 | 2.03E-01             | 2.42E-05             | 4.69E-04             | 0.00E+00             | 2.20E-04             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1994           | 2 7.06E+00                 | 9.00E+00             | 2.44E-03<br>1.16E-03 | 4.87E-03<br>2.32E-03 | 2.87E-03<br>1.32E-03 | 9.15E-02             | 2.42E-05<br>1.09E-05 | 4.09E-04<br>2.22E-04 | 0.00E+00             | 2.20E-04<br>1.05E-04 |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1993           | 2 7.06E+00<br>1 2.80E+00   | 3.59E+00             | 4.88E-04             | 2.32E-03<br>9.67E-04 | 5.32E-03             | 3.63E-02             | 4.33E-06             | 9.22E-04<br>9.22E-05 | 0.00E+00             | 4.40E-05             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1991           | 0 7.55E-01                 | 9 71E-01             | 1.38E-04             | 2.73E-04             | 1 46E-04             | 9.77E-03             | 1 17E-06             | 2.59E-05             | 0.00E+00             | 1.25E-05             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1990           | 0 1.24E-01                 | 1.61E-01             | 2.39E-05             | 4.71E-05             | 2.44E-05             | 1.61E-03             | 1.92E-07             | 4.45E-06             | 0.00E+00             | 2.16E-06             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1989           | 0 1.78E-02                 | 2.31E-02             | 3.59E-06             | 7.06E-06             | 3.55E-06             | 2.31E-04             | 2.75E-08             | 6.65E-07             | 0.00E+00             | 3.24E-07             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1988           | 0 1.44E-03                 | 1.88E-03             | 3.04E-07             | 5.97E-07             | 2.92E-07             | 1.87E-05             | 2.23E-09             | 5.60E-08             | 0.00E+00             | 2.75E-08             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1987           | 0 8.43E-05                 | 1.11E-04             | 1.90E-08             | 3.63E-08             | 1.76E-08             | 1.09E-06             | 1.30E-10             | 3.39E-09             | 0.00E+00             | 1.71E-09             |
|                                                                             | t Refrigeration Units U N NHH NP Riverside                                               | SS      | SC             | 1986           | 0 4.22E-06                 | 5.56E-06             | 9.89E-10             | 1.89E-09             | 8.94E-10             | 5.47E-08             | 6.52E-12             | 1.76E-10             | 0.00E+00             | 8.93E-11             |
|                                                                             | <b>3</b> . <b>1</b>                                                                      |         |                |                |                            | =                    | = . =                |                      |                      |                      |                      |                      |                      |                      |
|                                                                             |                                                                                          |         |                |                |                            |                      |                      |                      |                      |                      |                      |                      |                      |                      |

# APPENDTX F

# TANKS OUTPUT AND SPECTATE DATABASE SECTTONS FOR THE GASOLTNE STORAGE TANK

#### CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

Summary of Storage Tank Specifications and Emissions Los Angeles Transfer Center, Los Angeles, CA

|        |          |                   |                          |          |                     |       |           | Annual     | VOC       |            |                |
|--------|----------|-------------------|--------------------------|----------|---------------------|-------|-----------|------------|-----------|------------|----------------|
|        |          | Tank              | Material                 | Tank     | Tank                | Shell | Shell     | Throughput | Emissions |            |                |
| Owner  | Tank No. | Location          | Stored                   | Capacity | Dimensions          | Color | Condition | (gal/yr)   | (tpy)     | Permitted? | Citation       |
| UP     | TBD      | Convault - RIP    | Diesel                   | 500      | 5 x 4 (H)           | Blue  | Good      | NA         | NA        | Exempt     | Rule 219(n)(4) |
| UP     | TBD      | Convault - RIP    | Gasoline                 | 500      | 5 x 4 (H)           | White | Good      | 6,000      | 0.081     | Yes        | Rule 461       |
| PARSEC | 1        | Crane Maintenance | Diesel                   | 1,000    | 12 x 4 (H)          | Gray  | Good      | NA         | NA        | Exempt     | Rule 219(n)(4) |
| PARSEC | 2        | Crane Maintenance | Hydraulic Oil            | 762      | 3.8 x 4 x 6.7 [R]   | Gray  | Good      | NA         | NA        | Exempt     | Rule 219(n)(4) |
| PARSEC | 3        | Crane Maintenance | SAE 15w-40 Motor Oil     | 136      | 2.7 x 2.7 x 2.5 [R] | Gray  | Good      | NA         | NA        | Exempt     | Rule 219(n)(9) |
| PARSEC | 4        | Crane Maintenance | Used Oil                 | 394      | 2.7 x 3 x 6.5 [R]   | Black | Good      | NA         | NA        | Exempt     | Rule 219(n)(4) |
| PARSEC | 5        | Crane Maintenance | SAE 15w-40 Motor Oil     | 367      | 3.5 x 3.5 x 4 [4]   | Gray  | Fair      | NA         | NA        | Exempt     | Rule 219(n)(4) |
| PARSEC | 6        | Crane Maintenance | Auto. Transmission Fluid | 314      | 3.5 x 4 x 3 [R]     | Gray  | Good      | NA         | NA        | Exempt     | Rule 219(n)(4) |

Notes:

1. UP owned tank throughput estimates provided by David Hawthorne.

2. Emissions calculated using EPA's TANKS programs.

3. Tanks exempt from SCAQMD permitting requirements are not being included in the inventory; therefore, emissions have not been calculated.

CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

Exerpts from CARB's Speciation Profile Database

| ORGPROF | SAROAD | ORGFRAC    | ORGPROFN                              |                 | CAS    | CHEM NAME                 |
|---------|--------|------------|---------------------------------------|-----------------|--------|---------------------------|
| 661     | 43231  | 0.01540998 | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 110543 | n-hexane                  |
| 661     | 43248  | 0.01028    | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 110827 | cyclohexane               |
| 661     | 43276  | 0.01294998 | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 540841 | 2,2,4-trimethylpentane    |
| 661     | 45201  | 0.0036     | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 71432  | benzene                   |
| 661     | 45202  | 0.01702    | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 108883 | toluene                   |
| 661     | 45203  | 0.00118    | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 100414 | ethylbenzene              |
| 661     | 45204  | 0.00128    | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 95476  | o-xylene                  |
| 661     | 45205  | 0.00343    | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 108383 | m-xylene                  |
| 661     | 45206  | 0.00107    | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 106423 | p-xylene                  |
| 661     | 98043  | 0.00011    | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 98828  | isopropylbenzene (cumene) |
| 661     | 98132  | 0.37335999 | Headspace vapors 1996 SSD etoh 2.0% o | (MTBE phaseout) | 78784  | isopentane                |

# TANKS 4.0 Emissions Report - Detail Format Tank Identification and Physical Characteristics

| Tank Dimensions         Shell Length (ft):       5.00         Diameter (ft):       4.00         Volume (gallons):       500.00         Turnovers:       12.00         Net Throughput (gal/yr):       6,000.00         Is Tank Heated (y/n):       N         Is Tank Underground (y/n):       N         Paint Characteristics       Shell Color/Shade:         Shell Condition:       Good         Breather Vent Settings       -0.03         Pressure Settings (psig):       0.03 | Identification<br>User Identification:<br>City:<br>State:<br>Company:<br>Type of Tank:<br>Description: | LATC - Gasoline Tank<br>Los Angeles C.O.<br>California<br>UPRR<br>Horizontal Tank<br>RIP Track |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Diameter (ft):       4.00         Volume (gallons):       500.00         Turnovers:       12.00         Net Throughput (gal/yr):       6,000.00         Is Tank Heated (y/n):       N         Is Tank Underground (y/n):       N         Paint Characteristics       Shell Color/Shade:         Shell Coor/Shade:       White/White         Shell Condition:       Good         Breather Vent Settings       -0.03                                                                | Tank Dimensions                                                                                        |                                                                                                |  |
| Volume (galíons):       500.00         Turnovers:       12.00         Net Throughput (gal/yr):       6,000.00         Is Tank Heated (y/n):       N         Is Tank Underground (y/n):       N         Paint Characteristics       Shell Color/Shade:         Shell Color/Shade:       White/White         Shell Condition:       Good         Breather Vent Settings       -0.03                                                                                                 | Shell Length (ft):                                                                                     | 5.00                                                                                           |  |
| Turnovers:       12.00         Net Throughput (gal/yr):       6,000.00         Is Tank Heated (y/n):       N         Is Tank Underground (y/n):       N         Paint Characteristics       Shell Color/Shade:         Shell Color/Shade:       White/White         Shell Condition:       Good         Breather Vent Settings       -0.03                                                                                                                                        | Diameter (ft):                                                                                         | 4.00                                                                                           |  |
| Net Throughput (gal/yr):       6,000.00         Is Tank Heated (y/n):       N         Is Tank Underground (y/n):       N         Paint Characteristics       Shell Color/Shade:         Shell Color/Shade:       White/White         Shell Condition:       Good         Breather Vent Settings       -0.03                                                                                                                                                                       | Volume (gallons):                                                                                      | 500.00                                                                                         |  |
| Is Tank Heated (y/n): N<br>Is Tank Underground (y/n): N<br>Paint Characteristics<br>Shell Color/Shade: White/White<br>Shell Condition: Good<br>Breather Vent Settings<br>Vacuum Settings (psig): -0.03                                                                                                                                                                                                                                                                            | Turnovers:                                                                                             | 12.00                                                                                          |  |
| Is Tank Underground (y/n): N<br>Paint Characteristics<br>Shell Color/Shade: White/White<br>Shell Condition: Good<br>Breather Vent Settings<br>Vacuum Settings (psig): -0.03                                                                                                                                                                                                                                                                                                       |                                                                                                        |                                                                                                |  |
| Paint Characteristics<br>Shell Color/Shade: White/White<br>Shell Condition: Good<br>Breather Vent Settings<br>Vacuum Settings (psig): -0.03                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |                                                                                                |  |
| Shell Color/Shade:     White/White       Shell Condition:     Good       Breather Vent Settings     -0.03                                                                                                                                                                                                                                                                                                                                                                         | Is Tank Underground (y/n):                                                                             | Ν                                                                                              |  |
| Shell Color/Shade:     White/White       Shell Condition:     Good       Breather Vent Settings     -0.03                                                                                                                                                                                                                                                                                                                                                                         | Paint Characteristics                                                                                  |                                                                                                |  |
| Shell Condition:     Good       Breather Vent Settings<br>Vacuum Settings (psig):     -0.03                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | White/White                                                                                    |  |
| Breather Vent Settings<br>Vacuum Settings (psig): -0.03                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                |  |
| Vacuum Settings (psig): -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Breather Vent Settings                                                                                 |                                                                                                |  |
| Pressure Settings (psig): 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vacuum Settings (psig):                                                                                | -0.03                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pressure Settings (psig):                                                                              | 0.03                                                                                           |  |

Meteorological Data used in Emissions Calculations: Los Angeles C.O., California (Avg Atmospheric Pressure = 14.67 psia)

Page 1 APP-148

# TANKS 4.0 Emissions Report - DetailFormat Liquid Contents of Storage Tank

|                   |       |       | ly Liquid Surf.<br>eratures (deg F | )     | Liquid<br>Bulk<br>Temp. | Vapor  | Pressures (psia | a)     | Vapor<br>Mol. | Liquid<br>Mass | Vapor<br>Mass | Mol.   | Basis for Vapor Pressure       |
|-------------------|-------|-------|------------------------------------|-------|-------------------------|--------|-----------------|--------|---------------|----------------|---------------|--------|--------------------------------|
| Mixture/Component | Month | Avg.  | Min.                               | Max.  | (deg F)                 | Avg.   | Min.            | Max.   | Weight        | Fract.         | Fract.        | Weight | Calculations                   |
| Gasoline (RVP 10) | All   | 68.08 | 62.92                              | 73.24 | 65.99                   | 6.0512 | 5.4862          | 6.6617 | 66.0000       |                |               | 92.00  | Option 4: RVP=10, ASTM Slope=3 |

# TANKS 4.0 Emissions Report - Detail Format Detail Calculations (AP-42)

| Standing Losses (lb):         105.744           Vapor Space Volume (cu ft):         40.020           Vapor Density (lb/cu ft):         0.070           Vapor Space Expansion Factor:         0.168           Vented Vapor Saturation Factor:         0.168           Vented Vapor Space Volume (cu ft):         40.020           Tank Damese Expansion Factor:         0.168           Vapor Space Volume (cu ft):         40.020           Tank Diameter (ft):         40.000           Effective Diameter (ft):         2.000           Tank Shell Length (ft):         5.000           Vapor Opace Outage (ft):         2.000           Vapor Molecular Weight (lb/lb-mole):         66.000           Vapor Pensity (lb/cu ft):         0.077           Vapor Molecular Weight (lb/lb-mole):         6.051           Daily Average Ambient Temp. (deg. R):         16.751           Daily Average Ambient Temp. (deg. R):         10.73           Liquid Bulk Temperature (deg. R):         0.166           Daily Average Lagind         0.177           Daily Yapor Temperature Range (deg. R):         0.166           Daily Yapor Temperature Range (deg. R):         1.175           Breather Vent Press. Setting Range(psia):         1.175           Braither Vent Press. Setting Range(psia                                                                                                                                |                                          |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|
| Vapor Space Volume (cu ft):         40.020           Vapor Density (lib/cu ft):         0.070           Vapor Space Expansion Factor:         0.168           Vented Vapor Saturation Factor:         0.168           Vapor Density         (loc uf):         40.020           Tank Vapor Space Volume (cu ft):         40.020           Vapor Space Volume (cu ft):         40.020           Tank Diameter (ft):         5.047           Vapor Space Outage (ft):         2.000           Tank Shell Length (ft):         5.047           Vapor Density         (loc uf):         6.051           Vapor Density (lib/cu ft):         0.070           Vapor Mecular Weight (lib/lb-mole):         66.000           Vapor Pressure at Daily Average Liquid         527.752           Daily Average Ambient Temp. (deg, R):         527.752           Daily Average Ambient Temp. (deg, F):         10.73           Liquid Bulf Temperature (deg, R):         525.656           Tank Naint Solar Absorptance (Shell):         0.170           Daily Yotol Solar Insulation         1.173           Factor (Btu/sqft day):         1.567.181           Vapor Space Expansion Factor:         0.168           Daily Yotol Solar Insulation         1.175           Surface Temperature                                                                                                                                                   | Annual Emission Calculations             | 405 744   |
| Vapor Density (lb/cu ft):         0.070           Vapor Space Expansion Factor:         0.168           Vented Vapor Saturation Factor:         0.609           Tank Vapor Space Volume (cu ft):         40.020           Tank Diameter (ft):         40.020           Effective Diameter (ft):         40.020           Tank Shell Length (ft):         2.000           Tank Shell Length (ft):         0.070           Vapor Space Outage (ft):         2.000           Vapor Density         0.070           Vapor Density (lb/cu ft):         0.070           Vapor Pressure at Daily Average Liquid         5.07.52           Surface Temperature (logia):         6.051           Daily Average Ambient Temp. (deg. R):         10.73           Liquid Bulk Temperature (deg. R):         10.73           Liquid Bulk Temperature (deg. R):         0.170           Daily Varda Solar Insulation         Factor (Btu/sqft day):         1.567.181           Vapor Pace Expansion Factor:         0.168         1.647           Daily Vapor Temperature Range (psia):         1.047           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         5.486           Vapor Pressure at Daily Average Liquid                                                                                                                                     |                                          |           |
| Vapor Space Expansion Factor:         0.168           Vented Vapor Saturation Factor:         0.609           Tank Vapor Space Volume         40.020           Vapor Space Volume (cu ft):         40.020           Tank Diameter (ft):         5.047           Vapor Space Outage (ft):         5.047           Vapor Space Outage (ft):         5.047           Vapor Density         0.070           Vapor Density (lb/to ft):         0.070           Vapor Molecular Weight (lb/lb-mole):         66.000           Vapor Molecular Weight (lb/lb-mole):         66.000           Vapor Pressure at Daily Average Liquid         507.752           Daily Average Ambient Temp. (deg. F):         627.752           Daily Average Ambient Temp. (deg. F):         625.656           Tank Falint Solar Absorptance (Shell):         0.170           Daily Average Ambient Temp. (deg. F):         0.52.656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Temperature Range (deg. R):         52.555           Tank Shell Usid Surface Temp. (deg R):         52.555           Oaly Maxil Usid Surface Temp. (deg R):         52.555                                                                                                                        |                                          |           |
| Vented Vapor Saturation Factor:         0.609           Tank Vapor Space Volume         40.020           Vapor Space Volume (cu ft):         40.020           Tank Dameter (ft):         4.000           Effective Diameter (ft):         2.000           Tank Shell Length (ft):         5.000           Vapor Space Outage (ft):         2.000           Tank Shell Length (ft):         0.070           Vapor Density         (Vapor Pressure at Daily Average Liquid           Vapor Pressure at Daily Average Liquid         6.051           Daily Average Ambient Temp (deg. R):         6.051           Daily Average Ambient Temp (deg. R):         6.051           Daily Average Ambient Temp (deg. R):         10.73           Liquid Bulk Temperature (deg. R):         0.170           Daily Varge Space Expansion Factor         Vapor Space Expansion Factor           Vapor Pressure at Daily Average Liquid         5.066           Daily Vapor Temperature Range (deg. R):         1.175           Breather Vent Press. Setting Range(psia):         1.475           Vapor Pressure at Daily Marimum Liquid         5.0466           Surface Temperature (psia):         6.481           Vapor Pressure at Daily Marimum Liquid         5.22.590           Daily Moptor Temperature Range (deg. R):         52                                                                                                      |                                          |           |
| Tank Vapor Space Volume         40.020           Tank Diameter (ft):         40.002           Tank Diameter (ft):         5.047           Vapor Space Outage (ft):         5.047           Vapor Space Outage (ft):         5.047           Vapor Density (lb/ct ft):         5.000           Vapor Density (lb/ct ft):         6.070           Vapor Density (lb/ct ft):         6.070           Vapor Mecular Weight (lb/lb-mole):         66.000           Vapor Mecular Weight (lb/lb-mole):         65.076           Daily Avg. Liquid Surface Temp. (deg. R):         527.752           Daily Average Ambient Temp. (deg. F):         63.966           Liquid Buft Temperature (deg. R):         525.656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Totl Solar Insulation         7.156           Factor (Bt/lsqft day):         1.567.181           Vapor Space Expansion Factor         0.168           Vapor Pressure Range (psia):         6.051           Surface Temperature Range (deg. R):         20.647           Daily Vapor Temperature Range (deg. R):         0.060           Vapor Space Expansion Factor:         0.168           Surface Temperature (psia):         6.051           Surface Temperature (psia):         5.486 <td></td> <td></td>                                                                                                                         |                                          |           |
| Vapor Space Volume (cu ft):         40.020           Tank Diameter (ft):         40.000           Effective Diameter (ft):         5.047           Vapor Space Outage (ft):         5.047           Vapor Density         5.047           Vapor Density (lb/cu ft):         5.047           Vapor Density (lb/cu ft):         6.070           Vapor Density (lb/cu ft):         6.070           Vapor Density (lb/cu ft):         6.071           Vapor Meeular Weight (lb/lb-mole):         66.000           Vapor Meeular Weight (lb/lb-mole):         65.060           Vapor Meeuga Ambient Temp, (deg, R):         527.752           Daily Average Ambient Temp, (deg, R):         65.2666           Tank Their Temperature (deg, R):         525.656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Total Solar Insulation         7.52           Factor (Btu/sqft day):         1,567.181           Vapor Space Expansion Factor         0.168           Vapor Pressure Range (deg, R):         0.060           Vapor Pressure Range (deg, R):         52.656           Daily Vapor Pressure Range (deg, R):         1.175           Breather Vent Press.Setting Range(psia):         0.060           Vapor Pressure Range (deg, R):         52.752 <td>Vented Vapor Saturation Factor:</td> <td>0.609</td>                                                                                     | Vented Vapor Saturation Factor:          | 0.609     |
| Tank Diameter (ft):         4.000           Effective Diameter (ft):         5.047           Vapor Space Outage (ft):         2.000           Tank Shell Length (ft):         5.047           Vapor Density (lk/cu ft):         0.070           Vapor Density (lk/cu ft):         0.070           Vapor Melecular Weight (lb/lb-mole):         66.000           Vapor Pensity (lk/cu ft):         0.070           Vapor Melecular Weight (lb/lb-mole):         6.051           Daily Average Ambient Temp. (deg. R):         527.752           Daily Average Ambient Temp. (deg. R):         60.51           Daily Average Ambient Temp. (deg. R):         10.73           Liquid Bulk Temperature (deg. R):         0.170           Daily Average Ambient Temp. (deg. R):         0.170           Daily Total Solar Absorptance (Shell):         0.170           Daily Total Solar Absorptance (Shell):         0.175           Daily Vapor Temperature Range (geisa):         1.175           Baily Vapor Temperature Range (geisa):         1.175           Buily Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         6.061           Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         6.486           Daily Max. Liquid Surface Temp. (deg R):         522.590                                                                                                  | Tank Vapor Space Volume                  |           |
| Tank Diameter (ft):         4.000           Effective Diameter (ft):         5.047           Vapor Space Outage (ft):         2.000           Tank Shell Length (ft):         5.047           Vapor Density (bl/cu ft):         0.070           Vapor Molecular Weight (bl/b-mole):         66.000           Vapor Density (bl/cu ft):         0.070           Vapor Molecular Weight (bl/b-mole):         66.000           Vapor Pressure at Daily Average Liquid         527.752           Daily Average Ambient Temp. (deg. F):         65.966           Ideal Gas Constant R         (psia cuff (bl-mol-deg R)):         10.73           Liquid Bulk Temperature (deg. R):         0.170         225.656           Tank Paint Solar Absorptance (Shell):         0.170         201y Total Solar Absorptance (Shell):         1.175           Daily Apor Temperature Range (deg. R):         1.567.181         Vapor Space Expansion Factor         Vapor Pressure at Daily Vaverage Liquid           Vapor Pressure at Daily Vaverage Liquid         5.175         Vapor Pressure at Daily Vaverage Liquid         5.27.590           Daily Vapor Temperature Range (deg. R):         0.060         Vapor Pressure at Daily Maximus Liquid         5.27.592           Daily Max Liquid Surface Temp, (deg R):         5.27.592         5.27.592         5.22.590                                                                 | Vapor Space Volume (cu ft):              | 40.020    |
| Effective Diameter (tt):         5.047           Vapor Space Outage (tt):         2.000           Tank Shell Length (tt):         5.000           Vapor Density         0.070           Vapor Density (tb/cu ft):         0.070           Vapor Density (tb/cu ft):         6.001           Vapor Density (tb/cu ft):         0.070           Vapor Mecluar Weight (tb/b-mole):         66.000           Vapor Mecluar Weight (tb/b-mole):         66.000           Surface Temperature (togia):         6.051           Daily Average Ambient Temp, (deg. R):         525.656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Arega Caller Insulation         772           Factor (Btu/sqft day):         1,567.181           Vapor Space Expansion Factor         0.168           Daily Varega Cerspansion Factor:         0.168           Vapor Pressure at Daily Average (tajud         5017           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Average (tajud         527.525           Daily Yapor Pressure at Daily Average (tajud         5017           Surface Temperature (psia):         6.461           Daily Avag. Liquid Surface Temp, (deg R):         527.525           Daily Max. Liquid Surface Temp, (deg R): </td <td></td> <td>4.000</td>                                                                                                    |                                          | 4.000     |
| Vapor Space Outage (ft):         2.000           Tank Shell Length (ft):         5.000           Vapor Density         5.000           Vapor Density (bl/cu ft):         0.070           Vapor Molecular Weight (bl/b-mole):         66.000           Vapor Density (bl/cu ft):         0.070           Vapor Molecular Weight (bl/b-mole):         66.000           Vapor Pressure at Daily Average Liquid         527.752           Daily Aye, Liquid Sufface Temp, (deg, R):         527.752           Daily Aye, Liquid Sufface Temp, (deg, R):         10.73           Liquid Bulk Temperature (deg, R):         0.170           Daily Total Solar Absorptance (Shell):         0.170           Daily Yapor Temperature Range (deg, R):         1.567.181           Vapor Space Expansion Factor         Vapor Space Expansion Factor           Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.660           Vapor Pressure at Daily Vaverage Liquid         Surface Temperature (psia):         6.661           Daily Vapor Tressure at Daily Maximum Liquid         523.941         523.941           Surface Temperature (psia):         6.661         527.525           Daily Max. Liquid Surface Temp. (deg R):         523.941           Daily Max. Liquid Surface Temp. (d                                                                                     |                                          |           |
| Tank Shell Length (ft):         5.000           Vapor Density         0.070           Vapor Density (lb/cu ft):         0.070           Vapor Density (lb/cu ft):         66.00           Vapor Pressure at Daily Average Liquid         527.752           Daily Average Ambient Temp. (deg. R):         65.966           Ibaily Aug. Liquid Surface Temp. (deg. R):         65.966           Idail Gas Constant R         (psia cuft (lb-moleg R)):         10.73           Liquid Bulk Temperature (deg. R):         525.656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Vardal Solar Insulation         Factor (Bt/uşft day):         1,567.181           Vapor Space Expansion Factor         20.647           Vapor Prese Expansion Factor:         0.168           Daily Vapor Temperature Range (psia):         1.175           Breather Vent Press: Setting Range(psia):         0.060           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.651           Surface Temperature (psia):         6.651           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         54.86           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.651           Daily Max. Liquid Surface Temp. (deg R): <td< td=""><td></td><td></td></td<>                                                 |                                          |           |
| Vapor Density (b/cu ft):         0.077           Vapor Melecular Weight (b/b/b-mole):         66.000           Vapor Melecular Weight (b/b/b-mole):         60.51           Daily Average Ambient Temp. (deg. R):         527.752           Daily Average Ambient Temp. (deg. F):         60.561           Liquid Bufface Temp. (deg. F):         525.656           Liquid Bufface Geg. R):         522.5656           Liquid Bufface Geg. R):         522.5656           Daily Yotal Solar Insulation         0.170           Daily Yotal Solar Insulation         1.567.181           Vapor Space Expansion Factor:         0.168           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Temperature Range (psia):         0.060           Vapor Pressure at Daily Average Liquid         50.006           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Maximum Liquid         527.752           Daily Max. Liquid Surface Temp. (deg R):         522.914           Daily Aux. Liquid Surface Temp. (deg R):         522.914           Daily Max. Liquid Surface Temp. (deg R                                                                                             |                                          | 5.000     |
| Vapor Density (b/cu ft):         0.077           Vapor Melecular Weight (b/b/b-mole):         66.000           Vapor Melecular Weight (b/b/b-mole):         60.51           Daily Average Ambient Temp. (deg. R):         527.752           Daily Average Ambient Temp. (deg. F):         60.561           Liquid Bufface Temp. (deg. F):         525.656           Liquid Bufface Geg. R):         522.5656           Liquid Bufface Geg. R):         522.5656           Daily Yotal Solar Insulation         0.170           Daily Yotal Solar Insulation         1.567.181           Vapor Space Expansion Factor:         0.168           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Temperature Range (psia):         0.060           Vapor Pressure at Daily Average Liquid         50.006           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Maximum Liquid         527.752           Daily Max. Liquid Surface Temp. (deg R):         522.914           Daily Aux. Liquid Surface Temp. (deg R):         522.914           Daily Max. Liquid Surface Temp. (deg R                                                                                             | Vapor Density                            |           |
| Vapor Melecular Weight (Ib/Ib-mole):         66.000           Vapor Pressure at Daily Average Liquid         60.51           Surface Temperature (psia):         6.051           Daily Aveg, Liquid Surface Temp, (deg. R):         65.966           Ideal Gas Constant R         (psia cut/ (lb-mol-deg R)):         10.73           Liquid Bulk Temperature (deg. R):         527.552         526.562           Jaily Aveg, Liquid Surface Temp, (deg. F):         60.961         526.565           Ideal Gas Constant R         (psia cut/ (lb-mol-deg R)):         10.73           Liquid Bulk Temperature (deg. R):         0.170         Daily Xergat Solar Absorptance (Shell):         0.170           Daily Yopit Solar Absorptance (Shell):         0.170         Daily Yapor Temperature Range (deg. R):         20.647           Vapor Space Expansion Factor         Vapor Space Expansion Factor:         0.168         Daily Vapor Temperature Range (psia):         1.175           Daily Vapor Temperature Range (psia):         1.175         Breather Vent Press. Setting Range(psia):         0.460           Vapor Pressure at Daily Warenge Liquid         Surface Temperature (psia):         6.661           Surface Temperature (psia):         5.486         Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         5.25.590           Daily Max. Liquid Surface Temp. (deg R) |                                          | 0.070     |
| Vapor Pressure at Daily Äverage Liquid           Surface Temperature (psia):         6.051           Daily Average Ambient Temp. (deg. R):         527.752           Daily Average Ambient Temp. (deg. F):         65.966           Ideal Gas Constant R         (psia cuft / (lb-mol-deg R)):         10.73           Liquid Bulk Temperature (deg. R):         522.5656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Total Solar Insulation         742           Factor (Btu/sqft day):         1,567.181           Vapor Space Expansion Factor         20.647           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Temperature Range (deg. R):         0.060           Vapor Space Expansion Factor:         0.168           Daily Vapor Pressure Range (logia):         0.060           Vapor Pressure Range (logia):         0.060           Vapor Pressure at Daily Marimum Liquid         Surface Temperature (psia):         6.651           Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         6.661           Daily Max. Liquid Surface Temp. (deg R):         532.914         Daily Ambient Temp. Range (deg. R):         532.914           Daily Max. Liquid Surface Temp. (deg R):         2.000         2.000         Surface Temperature (psia):                                                                 |                                          |           |
| Surface Temperature (psia):         6.051           Daily Aye, Liquid Surface Temp. (deg. R):         527.752           Daily Ayerage Ambient Temp. (deg. R):         65.966           Ideal Gas Constant R         (psia cuft / (b-mol-deg R)):         10.73           Liquid Buik Temperature (deg. R):         525.656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Yotal Solar Absorptance (Shell):         0.170           Daily Total Solar Absorptance (Shell):         0.170           Daily Vapit Temperature Range (psia):         1.567.181           Vapor Space Expansion Factor         Vapor Space Expansion Factor:         0.168           Vapor Pressure Range (psia):         1.175         Breather Vent Press. Setting Range(psia):         0.060           Vapor Pressure at Daily Vaverage Liquid         Surface Temperature (psia):         6.486           Vapor Pressure at Daily Vaverage Liquid         Surface Temperature (psia):         6.486           Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         6.661           Daily Max. Liquid Surface Temp. (deg R):         522.590         522.590           Daily Max. Liquid Surface Temp. (deg R):         522.591         522.591           Daily Max. Liquid Surface Temp. (deg R):         52.040         52.040           Vapor                                           |                                          | 66.000    |
| Daily Avg. Liquid Surface Temp. (deg. R):         527.752           Daily Average Ambient Temp. (deg. F):         65.966           Ideal Gas Constant R         (psia cuff / (lb-mol-deg R)):         10.73           Liquid Buik Temperature (deg. R):         525.686           Tank Paint Solar Absorptance (Shell):         0.170           Daily Varea Solar Insulation         1.770           Factor (Btu/sqft day):         1.567.181           Vapor Space Expansion Factor         20.647           Vapor Space Expansion Factor         2.0647           Daily Vapor Temperature Range (deg. R):         2.0647           Daily Vapor Pressure Range (psia):         0.060           Vapor Space Expansion Factor:         0.168           Daily Vapor Pressure an Daily Average (psia):         6.051           Vapor Pressure an Daily Maximum Liquid         Surface Temperature (psia):         5.486           Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         6.661           Daily Max. Liquid Surface Temp. (deg R):         532.940         2.049           Daily Max. Liquid Surface Temp. (deg R):         532.940         2.050           Daily Max. Liquid Surface Temp. (deg R):         5.005         2.000           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.0                                                            |                                          |           |
| Daily Average Ambient Temp. (deg. F):         65.966           Ideal Gas Constant R         10.73           Liquid Bulk Temperature (deg. R):         10.73           Liquid Bulk Temperature (deg. R):         525.656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Total Solar Insulation         1,567.181           Yapor Space Expansion Factor         20.647           Daily Vapor Temperature Range (deg. R):         0.168           Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.060           Vapor Pressure at Daily Vaerage Liquid         5.486           Vapor Pressure at Daily Vaerage Liquid         5.486           Vapor Pressure at Daily Maximum Liquid         5.425           Surface Temperature (psia):         6.661           Daily May, Liquid Surface Temp, (deg R):         522.590           Daily Max, Liquid Surface Temp, (deg R):         522.590           Daily Max, Liquid Surface Temp, (deg R):         523.2914           Daily Max, Liquid Surface Temp, (deg R):         52.000           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vented Vapor Saturation Factor:         0.609         0.000           Vapor Malecular Weight (Ib/Ib-mole): <td></td> <td></td>                                                           |                                          |           |
| Ideal Gas Constant R       10.73         Liquid Bulk Temperature (deg. R):       10.73         Liquid Bulk Temperature (deg. R):       525.656         Tank Paint Solar Absorptance (Shell):       0.170         Daily Total Solar Insulation       Factor (Btu/sqft day):       1,567.181         Vapor Space Expansion Factor       Vapor Space Expansion Factor:       0.168         Daily Vapor Temperature Range (deg. R):       20.647         Daily Vapor Pressure Range (psia):       1.175         Breather Vent Press: Setting Range(psia):       0.060         Vapor Pressure at Daily Average Liquid       Surface Temperature (psia):       6.051         Surface Temperature (psia):       5.486         Vapor Pressure at Daily Maximum Liquid       Surface Temperature (psia):       5.486         Daily Vapor Induid Surface Temp. (deg R):       522.590         Daily Max. Liquid Surface Temp. (deg R):       532.914         Daily Max. Liquid Surface Temp. (deg R):       532.914         Daily Max. Bayer aturation Factor       0.609         Vapor Pressure at Daily Average Liquid       Surface Temperature (psia):         Vapor Maccuser (b):       57.054         Vapor Orlessure at Daily Average Liquid       Surface Temperature (psia):         Vapor Maccuser (b):       60.000         Va                                                                                                      |                                          |           |
| (psia cuft / (b-mol-deg R)):         10.73           Liquid Bulk Temperature (deg. R):         526.865           Tank Paint Solar Absorptance (Shell):         0.170           Daily Total Solar Insulation         1,567.181           Factor (Btu/sqft day):         1,567.181           Vapor Space Expansion Factor         0.180           Daily Vapor Temperature Range (deg. R):         0.647           Daily Vapor Temperature Range (deg. R):         0.664           Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.060           Vapor Pressure at Daily Mverage Liquid         5.486           Vapor Pressure at Daily Maximum Liquid         5.486           Vapor Pressure at Daily Maximum Liquid         5.22590           Daily Max, Liquid Surface Temp, (deg R):         522.590           Daily Max, Liquid Surface Temp, (deg R):         52.040           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         57.054                                                                                           | Daily Average Ambient Temp. (deg. F):    | 65.966    |
| Liquid Bulk Temperature (deg. R):         525.656           Tank Paint Solar Absorptance (Shell):         0.170           Daily Total Solar Absorptance (Shell):         0.170           Daily Total Solar Absorptance (Shell):         0.170           Daily Total Solar Absorptance (Shell):         1,567.181           Vapor Space Expansion Factor         0.168           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.060           Vapor Pressure at Daily Varerage Liquid         Surface Temperature (psia):         6.051           Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         5.486           Vapor Pressure at Daily Maximum Liquid         Daily Vapor Hesser et amp. (deg R):         522.590           Daily Max. Liquid Surface Temp. (deg R):         522.590         Daily Max. Liquid Surface Temp. (deg R):         532.914           Daily Max. Liquid Surface Temp. (deg R):         522.590         Daily Max. Liquid Surface Temp. (deg R):         522.590           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vapor Saturation Factor         0.609         Vapor Saturation Factor:         0.600           Vapor Offessure at Daily Average Liquid                  | Ideal Gas Constant R                     |           |
| Tank Paint Solar Absorptance (Shell):         0.170           Daily Total Solar Insulation         1,567.181           Vapor Space Expansion Factor         0.180           Vapor Space Expansion Factor:         0.168           Daily Yotal Solar Insulation         1,567.181           Vapor Space Expansion Factor:         0.168           Daily Yotal Solar Insulation         20.647           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Pressure Range (psia):         1.175           Breather Ven Press. Setting Range(psia):         0.060           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.486           Surface Temperature (psia):         5.486         527.752           Daily Max. Liquid Surface Temp. (deg R):         522.914         523.914           Daily Max. Liquid Surface Temp. (deg R):         523.914         523.914           Daily Max. Liquid Surface Temp. (deg R):         523.914         531           Vaper Oressure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.000           Vapor Molecular Weight (lb/lb-mole):         60.000         600           Vapor Molecular Weight (lb/lb-mole):         60.                                                                     | (psia cuft / (lb-mol-deg R)):            | 10.73     |
| Daily Total Solar Insulation           Factor (Btu/sqft day):         1,567.181           Vapor Space Expansion Factor:         0.168           Daily Vapor Temperature Range (egi, R):         20.647           Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.060           Vapor Space Expansion Factor:         0.168           Vapor Pressure at Daily Vayerage Liquid         0.060           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Vayerage Liquid         5.486           Surface Temperature (psia):         6.461           Daily Aya, Liquid Surface Temp, (deg R):         522.752           Daily Max. Liquid Surface Temp. (deg R):         522.532           Daily Max. Liquid Surface Temp. (deg R):         523.914           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):           Vapor Max. Liquid Surface Temp. (deg R):         52.050           Daily Max. Liquid Surface Temp. (deg R):         52.040           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.651           Vapor Meesure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vapor Meecular Weight (Ib/Ib-mole):         66.000         60.000                                                                                 | Liquid Bulk Temperature (deg. R):        | 525.656   |
| Daily Total Solar Insulation           Factor (Btu/sqft day):         1,567.181           Vapor Space Expansion Factor:         0.168           Daily Vapor Temperature Range (egi, R):         20.647           Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.060           Vapor Space Expansion Factor:         0.168           Vapor Pressure at Daily Vayerage Liquid         0.060           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Vayerage Liquid         5.486           Surface Temperature (psia):         6.461           Daily Aya, Liquid Surface Temp, (deg R):         522.752           Daily Max. Liquid Surface Temp. (deg R):         522.532           Daily Max. Liquid Surface Temp. (deg R):         523.914           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):           Vapor Max. Liquid Surface Temp. (deg R):         52.050           Daily Max. Liquid Surface Temp. (deg R):         52.040           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.651           Vapor Meesure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vapor Meecular Weight (Ib/Ib-mole):         66.000         60.000                                                                                 | Tank Paint Solar Absorptance (Shell):    | 0.170     |
| Vapor Space Expansion Factor         Vapor Space Expansion Factor:       0.168         Daily Vapor Temperature Range (deg. R):       20.647         Daily Vapor Pressure Range (psia):       1.175         Breather Vent Press. Setting Range(psia):       0.060         Vapor Pressure at Daily Vaverage Liquid       0.060         Surface Temperature (psia):       6.051         Vapor Pressure at Daily Vaverage Liquid       5.486         Vapor Pressure at Daily MaxImum Liquid       5.486         Surface Temperature (psia):       6.661         Daily May. Liquid Surface Temp. (deg R):       52.2590         Daily Max. Liquid Surface Temp. (deg R):       52.2590         Vapor Pressure at Daily Average Liquid       Surface Temperature (psia):         Vapor Mescura at Daily Average Liquid       Surface Temperature (psia):         Surface Temperature (psia):       6.051         Vapor Melecular Weight (Ib/Ib-mole):                                                                                            |                                          |           |
| Vapor Space Expansion Factor:         0.168           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.060           Vapor Pressure at Daily Average Liquid         0.060           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Maximum Liquid         5.466           Surface Temperature (psia):         5.466           Vapor Pressure at Daily Maximum Liquid         5.4752           Daily May, Liquid Surface Temp, (deg R):         522.590           Daily Max, Liquid Surface Temp, (deg R):         532.914           Daily Max, Liquid Surface Temp, (deg R):         532.914           Daily Max, Liquid Surface Temp, (deg R):         8.316           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):           Vapor Pressure at Daily Average Liquid         6.000           Vapor Pressure at Daily Average Liquid         6.051           Vapor Pressure at Daily Average Liquid         6.051           Vapor Pressure at Daily Average Liquid                                                                        | Factor (Btu/sqft day):                   | 1,567.181 |
| Vapor Space Expansion Factor:         0.168           Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.060           Vapor Pressure at Daily Average Liquid         0.060           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Maximum Liquid         5.466           Surface Temperature (psia):         5.466           Vapor Pressure at Daily Maximum Liquid         5.4752           Daily May, Liquid Surface Temp, (deg R):         522.590           Daily Max, Liquid Surface Temp, (deg R):         532.914           Daily Max, Liquid Surface Temp, (deg R):         532.914           Daily Max, Liquid Surface Temp, (deg R):         8.316           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):           Vapor Pressure at Daily Average Liquid         6.000           Vapor Pressure at Daily Average Liquid         6.051           Vapor Pressure at Daily Average Liquid         6.051           Vapor Pressure at Daily Average Liquid                                                                        | Vapor Space Expansion Factor             |           |
| Daily Vapor Temperature Range (deg. R):         20.647           Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press         Range (psia):         0.060           Vapor Pressure at Daily Average (lquid         0.060         0.060           Surface Temperature (psia):         6.051         0.060           Vapor Pressure at Daily Minimum Liquid         0.060         0.060           Surface Temperature (psia):         5.486         0.061           Surface Temperature (psia):         5.486         0.661           Daily Avg. Liquid Surface Temp. (deg R):         52.755         0.661           Daily Max. Liquid Surface Temp. (deg R):         532.940         0.32.940           Daily Max. Liquid Surface Temp. (deg R):         532.940         0.309           Daily Max. Liquid Surface Temp. (deg R):         532.940         0.609           Vapor Saturation Factor:         0.609         Vapor Saturation Factor:         0.609           Vapor Aflessure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vapor Melecular Weight (lb/lb-mole):         66.000         0.600           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.000.000           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia): </td <td></td> <td>0.168</td>                                  |                                          | 0.168     |
| Daily Vapor Pressure Range (psia):         1.175           Breather Vent Press. Setting Range(psia):         0.060           Vapor Pressure at Daily Average Liquid         0.060           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Average Liquid         6.051           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Maximum Liquid         5.466           Surface Temperature (psia):         5.466           Outp' Avgu Liquid Surface Temp, (deg R):         522.7752           Daily Max. Liquid Surface Temp, (deg R):         522.90           Daily Max. Liquid Surface Temp, (deg R):         522.91           Daily Max. Liquid Surface Temp, (deg R):         522.91           Daily Max. Liquid Surface Temp, (deg R):         522.91           Daily Max. Liquid Surface Temp, (deg R):         52.914           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.06100           Vapor Melecular Weight (lb/lb-mole):         60.0000         6.00000           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.06.000           Surface Temperatu                                                           |                                          |           |
| Breather Vent Press: Setting Range(psia):         0.060           Vapor Pressure at Daily Average Liquid         5000           Surface Temperature (psia):         6.051           Vapor Pressure at Daily Average Liquid         5486           Surface Temperature (psia):         5.486           Vapor Pressure at Daily Maximum Liquid         527.752           Surface Temperature (psia):         6.661           Daily Avg. Liquid Surface Temp. (deg R):         522.752           Daily Max. Liquid Surface Temp. (deg R):         532.914           Vapor Pressure at Daily Average Liquid         5000           Vapor Pressure at Daily Average Liquid         5000           Vapor Pressure at Daily Average Liquid         57.054           Vapor Pressure at Daily Average Liquid         6.051           Vapor Pressure at Daily Average Liquid         6.051           Surface Temperature (psia):         6.0000           Vapor Pressure at Daily Average Liquid         6.051           Surface Temperature (psia):         6.000.000           Annual Net Throughput (gailyr.):         6.000.000                                                                                                   |                                          |           |
| Vapor Pressure at Dally Average Liquid         6.051           Surface Temperature (psia):         6.051           Vapor Pressure at Dally Minimum Liquid         5.466           Surface Temperature (psia):         5.466           Vapor Pressure at Dally Maximum Liquid         5.4762           Surface Temperature (psia):         6.651           Dally Avg. Liquid Surface Temp. (deg R):         522.590           Daily Max. Liquid Surface Temp. (deg R):         532.914           Dally Max. Liquid Surface Temp. (deg R):         522.590           Daily Max. Liquid Surface Temp. (deg R):         522.590           Daily Max. Liquid Surface Temp. (deg R):         522.590           Daily Max. Liquid Surface Temp. (deg R):         522.590           Vented Vapor Saturation Factor:         0.609           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Dally Average Liquid         Surface Temperature (psia):         6.051           Vapor Melecular Weight (lb/b-mole):         66.000         66.000           Vapor Pressure at Dally Average Liquid         Surface Temperature (psia):         6.051           Annual Net Throughput (gallyr.):         6.000.000         6.000.000           Annual Turnovers:         12.000         12.000                                                                                                                         |                                          |           |
| Surface Temperature (psia):         6.051           Vapor Pressure at Daily Minimum Liquid         Surface Temperature (psia):         5.486           Vapor Pressure at Daily Maximum Liquid         Surface Temperature (psia):         6.661           Daily Avg. Liquid Surface Temp. (deg R):         52.752           Daily Max. Liquid Surface Temp. (deg R):         52.2590           Vapor Pressure at Daily Average Liquid         0.609           Vapor Pressure at Daily Average Liquid         0.609           Vapor Mescular Weight (lb/lb-mole):         60.000           Vapor Pressure at Daily Average Liquid         57.054           Vapor Melecular Weight (lb/lb-mole):         60.00000           Vapor Pressure at Daily Average Liquid         50.000.000           Vapor Pressure at Daily Average Liquid         6.051           Surface Temperature (psia):         6.000.000           Vapor Melecular Weight (lb/lb-mole):         6.000.000           Vapor Melecular Weight (lb/lb-mole):         6.000.000           Surface Temperature (psia):         6.000.000 <td></td> <td>0.000</td>                            |                                          | 0.000     |
| Vapor Pressure at Daily Minimum Liquid<br>Surface Temperature (psia):         5.486           Vapor Pressure at Daily Maximum Liquid<br>Surface Temperature (psia):         6.661           Daily Aya; Liquid Surface Temp, (deg R):         527.752           Daily Min, Liquid Surface Temp, (deg R):         522.590           Daily Min, Liquid Surface Temp, (deg R):         532.914           Daily Max, Liquid Surface Temp, (deg R):         532.914           Daily Max, Liquid Surface Temp, (deg R):         532.914           Vented Vapor Saturation Factor:         0.609           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         50000           Surface Temperature (psia):         6.001           Vapor Melecular Weight (Ib/Ib-mole):         66.000           Vapor Pressure at Daily Average Liquid         5000000           Surface Temperature (psia):         6.051           Annual Net Throughput (gallyr.):         6,000.000           Annual Turnovers:         12.000                                                                                                                                                                                                                                                                                                                                                                       |                                          | 6.051     |
| Surface Temperature (psia):         5.486           Vapor Pressure at Daily Maximum Liquid         6.661           Daily Avg. Liquid Surface Temp. (deg R):         527.752           Daily Ma. Liquid Surface Temp. (deg R):         522.590           Daily Max. Liquid Surface Temp. (deg R):         532.914           Daily Max. Liquid Surface Temp. (deg R):         532.914           Daily Max. Liquid Surface Temp. (deg R):         18.316           Vented Vapor Saturation Factor:         0.609           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):           Vapor Melecular Weight (Ib/Ib-mole):         66.000           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):           Surface Temperature (psia):         6.051           Surface Temperature (psia):         6.051           Surface Temperature (psia):         6.051           Surface Temperature (psia):         6.000.000           Annual Net Throughput (gal/yr.):         6.000.000           Annual Net Throughput (gal/yr.):         1.000                                                                                                                                                                                                                                                                              |                                          | 0.051     |
| Vapor Pressure at Daily Maximum Liquid<br>Surface Temperature (psia):         6.661           Daily Avg. Liquid Surface Temp. (deg R):         527.752           Daily Min. Liquid Surface Temp. (deg R):         522.590           Daily Min. Liquid Surface Temp. (deg R):         522.592           Daily Max. Liquid Surface Temp. (deg R):         522.592           Daily Max. Liquid Surface Temp. (deg R):         522.914           Daily Ambient Temp. Range (deg. R):         52.2914           Vented Vapor Saturation Factor         0.609           Vapor Pressure at Daily Average Liquid         500           Surface Temperature (psia):         6.051           Vapor Molecular Weight (Ib/Ib-mole):         66.000           Vapor Molecular Weight (Ib/Ib-mole):         66.000           Vapor Molecular Weight (Ib/Ib-mole):         6.051           Surface Temperature (psia):         6.051           Surface Temperature (psia):         6.000           Vapor Molecular Weight (Ib/Ib-mole):         60.000           Annual Net Throughput (gal/yr.):         6.000.000           Annual Turnovers:         1.000                                                                                                                                                                                                                                                                                       |                                          |           |
| Surface Temperature (psia):         6.661           Daily Avg. Liquid Surface Temp. (deg R):         522.752           Daily Max. Liquid Surface Temp. (deg R):         522.900           Daily Max. Liquid Surface Temp. (deg R):         522.910           Daily Max. Liquid Surface Temp. (deg R):         522.910           Daily Max. Liquid Surface Temp. (deg R):         522.914           Daily Ambient Temp. Range (deg. R):         18.316           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vapor Space Outage (ft):         2.000           Vapor Melecular Weight (lb/lb-mole):         66.000           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.051           Surface Temperature (psia):         6.051         6.000.000           Vapor Melecular Weight (lb/lb-mole):         6.000.000         6.000.000           Annual Net Throughput (gal/yr.):         6.000.000         6.001.000           Annual Net Trooghput (gal/yr.):         1.000         1.000                                                                                                                                                                                                                                                                                     |                                          | 5.486     |
| Daily Avg. Liquid Surface Temp. (deg R):         527.752           Daily M. Liquid Surface Temp. (deg R):         522.590           Daily Max. Liquid Surface Temp. (deg R):         532.914           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         500           Surface Temperature (psia):         6.051           Vapor Melecular Weight (Ib/Ib-mole):         66.000           Vapor Pressure at Daily Average Liquid         51.064           Surface Temperature (psia):         6.051           Annual Net Throughput (gali/yr.):         6.000.000           Annual Turnovers:         10.000           Turnover Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |           |
| Daily Min. Liquid Surface Temp. (deg R):         522.500           Daily Max. Liquid Surface Temp. (deg R):         532.914           Daily Max. Liquid Surface Temp. (deg R):         18.316           Vented Vapor Saturation Factor:         0.609           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         Surface Temperature (psia):         6.051           Vapor Space Outage (ft):         2.000           Working Losses (lb):         57.054           Vapor Melecular Weight (lb/lb-mole):         66.000           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |           |
| Daily Max. Liquid Surface Temp. (deg R):         532.914           Daily Ambient Temp. Range (deg. R):         18.316           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         3000           Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         5000           Vapor Saturation Factor:         2.000           Vapor Saturation Factor:         2.000           Vapor Saturation Factor:         2.000           Vapor Meccular Weight (Ib/Ib-mole):         66.000           Vapor Pressure at Daily Average Liquid         57.054           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6.000.000           Annual Turnovers:         12.000           Turnover Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |           |
| Daily Ambient Temp, Range (deg. R):         18.316           Vented Vapor Saturation Factor         0.609           Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         50.000           Surface Temperature (psia):         6.051           Vapor Space Outage (ft):         2.000           Working Losses (lb):         57.054           Vapor Melecular Weight (lb/lb-mole):         66.000           Surface Temperature (psia):         6.051           Surface Temperature (psia):         6.001           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Daily Min. Liquid Surface Temp. (deg R): | 522.590   |
| Vented Vapor Saturation Factor       0.609         Vapor Pressure at Daily Average Liquid       0.601         Surface Temperature (psia):       6.051         Vapor Pressure at Daily Average Liquid       0.002         Working Losses (lb):       57.054         Vapor Pressure at Daily Average Liquid       57.054         Surface Temperature (psia):       60.010         Vapor Pressure at Daily Average Liquid       6.051         Surface Temperature (psia):       6.000.000         Annual Net Throughput (gal/yr.):       6.000.000         Annual Turnovers:       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Daily Max. Liquid Surface Temp. (deg R): | 532.914   |
| Vented Vapor Saturation Factor:         0.609           Vapor Pressure at Daily Average Liquid         0.009           Surface Temperature (psia):         6.051           Vapor Space Outage (ft):         2.000           Working Losses (lb):         57.054           Vapor Molecular Weight (lb/lb-mole):         66.000           Vapor Pressure at Daily Average Liquid         50.050           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 18.316    |
| Vapor Pressure at Daily Average Liquid<br>Surface Temperature (psia):         6.051           Vapor Space Outage (t):         2.000           Working Losses (tb):         57.054           Vapor Melecular Weight (lb/lb-mole):         66.000           Vapor Pressure at Daily Average Liquid         6.051           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 0.600     |
| Surface Temperature (psia):         6.051           Vapor Space Outage (ft):         2.000           Working Losses (lb):         57.054           Vapor Molecular Weight (lb/lb-mole):         66.000           Vapor Pressure at Daily Average Liquid         50.051           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | 0.009     |
| Vapor Space Outage (ft):         2.000           Working Losses (lb):         57.054           Vapor Melecular Weight (lb/lb-mole):         66.000           Vapor Pressure at Daily Average Liquid         Surface Temperature (pisa):           Surface Temperature (pisa):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |           |
| Working Losses (lb):         57.054           Vapor Molecular Weight (lb/lb-mole):         66.000           Vapor Pressure at Daily Average Liquid         57.054           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000           Turnover Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |           |
| Vapor Melecular Weight (Ib/Ib-mole):         66.000           Vapor Pressure at Daily Average Liquid         60.001           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000           Turnover Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vapor Space Outage (ft):                 | 2.000     |
| Vapor Melecular Weight (Ib/Ib-mole):         66.000           Vapor Pressure at Daily Average Liquid         60.001           Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000           Turnover Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marking Langer (Ib):                     | E7 054    |
| Vapor Pressure at Daily Äverage Liquid           Surface Temperature (pisa):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000           Turnover Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |           |
| Surface Temperature (psia):         6.051           Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000           Turnover Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 66.000    |
| Annual Net Throughput (gal/yr.):         6,000.000           Annual Turnovers:         12.000           Turnover Factor:         1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |           |
| Annual Turnovers: 12.000<br>Turnover Factor: 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |           |
| Turnover Factor: 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 6,000.000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Approx Turney eres                       | 12.000    |
| Tank Diameter (ft): 4.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 1.000     |

7/6/2006 2:07:39 PM

Page 3 APP-150

## TANKS 4.0 Emissions Report - Detail Format Detail Calculations (AP-42)- (Continued)

Working Loss Product Factor:

1.0000

Total Losses (Ib):

162.7984

Page 4 APP-151

## TANKS 4.0 Emissions Report - Detail Format Individual Tank Emission Totals

Annual Emissions Report

|                   |              | Losses(lbs)    |                 |
|-------------------|--------------|----------------|-----------------|
| Components        | Working Loss | Breathing Loss | Total Emissions |
| Gasoline (RVP 10) | 57.05        | 105.74         | 162.80          |

Page 5

# APPENDTX G

## EMTSSTON FACTOR DERTVATTON AND OFFROAD2006 OUTPUT FOR TRUS AND REEFER CARS

Emission Factors for Transport Refrigeration Units and Refrigerated Railcars Los Angeles Transportation Center, Los Angeles, CA

| TRU       | Average           |      |       |             |      |          | VOC Eva                | aporative      |
|-----------|-------------------|------|-------|-------------|------|----------|------------------------|----------------|
| Equip     | Rating            |      | Emiss | ion Factors |      | Emission | Factors <sup>2,3</sup> |                |
| Туре      | (hp) <sup>1</sup> | HC   | CO    | NOx         | DPM  | SOx      | Part 1 (lb/hr)         | Part 2 (lb/yr) |
| Container | 28.56             | 2.85 | 6.78  | 6.43        | 0.71 | 0.07     | -                      | -              |
| Railcar   | 34                | 3.23 | 7.49  | 6.71        | 0.79 | 0.07     | -                      | -              |
| Total     |                   |      |       |             |      |          |                        |                |

Notes:

- 1. Based on the average horsepower distribution in the OFFROAD 2006 model.
- 2. Emission factors from OFFROAD 2006 model.
- 3. Evaporative emissions are negligible.

| CY   | Season | AvgDays | Code     | Equipment                     | Fuel | MaxHP | Class                         | C/R | Pre |
|------|--------|---------|----------|-------------------------------|------|-------|-------------------------------|-----|-----|
| 2005 | Annual | Mon-Sun | 2.27E+09 | Transport Refrigeration Units | D    | 15    | Transport Refrigeration Units | U   | N   |
| 2005 | Annual | Mon-Sun | 2.27E+09 | Transport Refrigeration Units | D    | 25    | Transport Refrigeration Units | U   | N   |
| 2005 | Annual | Mon-Sun | 2.27E+09 | Transport Refrigeration Units | D    | 50    | Transport Refrigeration Units | U   | Ν   |

| Hand | Port | County      | Air Basin | Air Dist. | Population | Activity  | Consumption | ROG Exhaust | CO Exhaust  | NOX Exhaust |
|------|------|-------------|-----------|-----------|------------|-----------|-------------|-------------|-------------|-------------|
| NHH  | NP   | Los Angeles | SC        | SC        | 1.15E+03   | 3.27E+03  | 1.20E+03    | 2.07E-02    | 8.80E-02    | 1.44E-01    |
| NHH  | NP   | Los Angeles | SC        | SC        | 4.49E+02   | 1.28E+03  | 7.96E+02    | 1.32E-02    | 4.58E-02    | 8.56E-02    |
| NHH  | NP   | Los Angeles | SC        | SC        | 8.18E+03   | 3.29E+04  | 3.98E+04    | 2.11E+00    | 4.89E+00    | 4.38E+00    |
|      |      |             |           |           |            |           |             | ROG Exhaust | CO Exhaust  | NOX Exhaust |
|      |      |             |           |           |            | 0-15      | lb/hr       | 1.26E-02    | 5.38E-02    | 8.79E-02    |
|      |      |             |           |           |            | 15-25     | lb/hr       | 2.06E-02    | 7.16E-02    | 1.34E-01    |
|      |      |             |           |           |            | 25-50     | lb/hr       | 1.28E-01    | 2.97E-01    | 2.67E-01    |
|      |      |             |           |           |            |           |             |             |             |             |
|      |      |             |           |           |            | container | lb/hr       | 0.100144986 | 0.237934225 | 0.225580552 |
|      |      |             |           |           |            | rail      | lb/hr       | 0.128462617 | 0.297410608 | 0.266558642 |
|      |      |             |           |           |            | container | lb/hp-hr    | 0.006289645 | 0.014943552 | 0.014167675 |
|      |      |             |           |           |            |           | •           |             |             |             |
|      |      |             |           |           |            | rail      | lb/hp-hr    | 0.007128891 | 0.010504473 | 0.014792377 |
|      |      |             |           |           |            | 0-15      | lb/hp-hr    | 0.001974637 | 0.008409021 | 0.013736294 |
|      |      |             |           |           |            | 15-25     | lb/hp-hr    | 0.001895241 | 0.006580025 | 0.012312135 |
|      |      |             |           |           |            | 25-50     | lb/hp-hr    | 0.007128891 | 0.016504473 | 0.014792377 |

| C02 Exhaust | S02 Exhaust | PM Exhaust  | N20 Exhaust | CH4 Exhaust |           |
|-------------|-------------|-------------|-------------|-------------|-----------|
| 1.31E+01    | 1.42E-03    | 9.22E-03    | 0.00E+00    | 1.86E-03    |           |
| 8.71E+00    | 9.47E-04    | 5.41E-03    | 0.00E+00    | 1.19E-03    |           |
| 4.26E+02    | 4.71E-02    | 5.13E-01    | 0.00E+00    | 1.90E-01    |           |
| C02 Exhaust | S02 Exhaust | PM Exhaust  | load        | avg hp      | container |
| 8.02E+00    | 8.71E-04    | 5.64E-03    | 0.64        | 10          | 0.17      |
| 1.36E+01    | 1.48E-03    | 8.46E-03    | 0.64        | 17          | 0.08      |
| 2.59E+01    | 2.87E-03    | 3.12E-02    | 0.53        | 34          | 0.75      |
|             |             |             |             |             |           |
| 21.87652896 | 0.002417326 | 0.025063786 | 0.5575      | 28.56       |           |
| 25.89716742 | 0.002867557 | 0.031237629 | 0.53        | 34          |           |
|             |             |             |             |             |           |
| 1.37396396  | 0.000151821 | 0.001574141 |             |             |           |
| 1.437134707 | 0.000159132 | 0.001733498 |             |             |           |
|             |             |             |             |             |           |
| 1.252887439 | 0.000136161 | 0.000881526 |             |             |           |
| 1.252885877 | 0.000136161 | 0.000777189 |             |             |           |
| 1.437134707 | 0.000159132 | 0.001733498 |             |             |           |

APP-157

APPENDIX H

DETAILED EMISSION CALCULATIONS

Summary of Diesel Particulate Matter Emissions Los Angeles Transportation Center, Los Angeles, CA

|                                | DPM Emissions |
|--------------------------------|---------------|
| Source                         | (tpy)         |
| Locomotives                    | 3.190         |
| Light Heavy Duty Diesel Trucks | 0.001         |
| Heavy-Heavy Duty Diesel Trucks | 0.995         |
| Cargo Handling Equipment       | 2.094         |
| Heavy Equipment                | 0.167         |
| TRUs and Refrigerated Railcars | 0.457         |
| Total                          | 6.903         |

Summary of Diesel Particulate Emissions from Locomotives Los Angeles Transportation Center, Los Angeles, CA

|                                    | DPM Emissions |
|------------------------------------|---------------|
| Source                             | (tpy)         |
| Through Trains and Power Moves     | 0.20          |
| Arriving and Departing Trains      | 0.47          |
| Arriving and Departing Power Moves | 0.06          |
| Yard Operations                    | 2.46          |
| Total                              | 3.19          |

Summary of Emissions from Light Duty Diesel-Fueled Trucks Los Angeles Transportation Center, Los Angeles, CA

#### **Running Exhaust Emissions**

| Equipment | Equip. | Vehicle |       |       |      | Annual |      | Emissi | on Factors | s (g/mi) |      |       | En    | nissions (t | py)    |       |
|-----------|--------|---------|-------|-------|------|--------|------|--------|------------|----------|------|-------|-------|-------------|--------|-------|
| Туре      | ID     | Class   | Make  | Model | Year | VMT    | ROG  | СО     | NOx        | DPM      | SOx  | ROG   | СО    | NOx         | DPM    | SOx   |
| Pickup    | 3518   | LHDD    | Dodge | 2500  | 2003 | 5,000  | 0.32 | 1.65   | 6.69       | 0.08     | 0.05 | 0.002 | 0.009 | 0.037       | 0.0005 | 0.000 |

#### **Idling Exhaust Emissions**

| Equip. | Vehicle |       |       |      | Idl       | ing     |       | Emissi | on Factors | s (g/hr) |       |       | En    | nissions (t | py)    |       |
|--------|---------|-------|-------|------|-----------|---------|-------|--------|------------|----------|-------|-------|-------|-------------|--------|-------|
| ID     | Class   | Make  | Model | Year | (min/day) | (hr/yr) | ROG   | СО     | NOx        | DPM      | SOx   | ROG   | СО    | NOx         | DPM    | SOx   |
| 3518   | LHDD    | Dodge | 2500  | 2003 | 15        | 91      | 3.173 | 26.300 | 75.051     | 0.753    | 0.357 | 0.000 | 0.003 | 0.008       | 0.0001 | 0.000 |
|        |         |       |       |      |           |         |       |        |            |          |       |       |       |             |        |       |

Notes:

1. Annual VMT provided by Tony Madrigal of PARSEC.

2. Emission factor calculations assumed an average speed of 15 mph.

3. Running exhaust emission factors calculated using the EMFAC-WD 2006 model with the BURDEN output option.

4. Idling exhaust emission factors for LHDT1 vehicles calculated using the EMFAC-WD 2006 model with the EMFAC output option.

#### CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

APP-161

Summary of Emissions from Heavy-Heavy Duty Diesel-Fueled Trucks Los Angeles Transportation Center, Los Angeles, CA

#### **Running Exhaust Emissions**

| Number of   | VMT per | VMT per    |      | Emiss | ion Factors | (g/mi) |      |      | Ei   | missions (tp | by)  |      |
|-------------|---------|------------|------|-------|-------------|--------|------|------|------|--------------|------|------|
| Truck Trips | Trip    | Year       | ROG  | CO    | NOx         | DPM    | SOx  | ROG  | CO   | NOx          | DPM  | SOx  |
| 186,771     | 1.5     | 280,156.88 | 5.73 | 15.40 | 27.41       | 2.27   | 0.24 | 1.77 | 4.76 | 8.46         | 0.70 | 0.08 |

#### **Idling Exhaust Emissions**

| Number of   | Id         | ling      |       | Emiss | ion Factors | (g/hr) |       |      | E    | missions (tp | y)   |      |
|-------------|------------|-----------|-------|-------|-------------|--------|-------|------|------|--------------|------|------|
| Truck Trips | (min/trip) | (hr/yr)   | ROG   | СО    | NOx         | DPM    | SOx   | ROG  | CO   | NOx          | DPM  | SOx  |
| 186,771     | 30         | 93,385.63 | 16.16 | 52.99 | 100.38      | 2.85   | 0.550 | 1.66 | 5.45 | 10.34        | 0.29 | 0.06 |

Notes:

1. Number of truck trips calculated from UPRR provided gate counts. The total gate counts were increased by 25% to account for bobtail trucks (trucks without a chassis or trailer and trucks with an empty chassis).

2. VMT and idling time per trip estimated based on personal observation.

3. Running exhaust emission factors from EMFAC-WD 2006 with the BURDEN output option.

4. Idling exhaust emission factors from EMFAC-Wd 2006 with the EMFAC output option.

5. Emission factor calculations assumed an average speed of 15 mph.

#### CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

APP-162

Summary of Emissions from Cargo Handling Equipment Los Angeles Transfer Center, Los Angeles, CA

| Equipment    | Equipment |         |             |      | Rating | No of | Annual Hours | Load   |        | Emission | Factors (g/ | bhp-hr) |        |       | Emis   | sion Factors | (tpy) |       |
|--------------|-----------|---------|-------------|------|--------|-------|--------------|--------|--------|----------|-------------|---------|--------|-------|--------|--------------|-------|-------|
| Туре         | ID        | Make    | Model       | Year | (hp)   | Units | of Operation | Factor | THC    | CO       | NOx         | DPM     | SOx    | THC   | CO     | NOx          | DPM   | SOx   |
| Fork Lift    | 60003     | Taylor  | THD200S     | 2000 | 154    | 1     | 260          | 0.30   | 0.5307 | 2.8296   | 6.8159      | 0.3536  | 0.0597 | 0.007 | 0.037  | 0.090        | 0.005 | 0.001 |
| RTG          | 90403     | Mi Jack | 1000RC      | 2004 | 300    | 2     | 2,920        | 0.43   | 0.0906 | 0.9456   | 4.1618      | 0.0972  | 0.0521 | 0.075 | 0.785  | 3.456        | 0.081 | 0.043 |
| RTG          | 98462     | Mi Jack | 1000R       | 1984 | 300    | 1     | 2,920        | 0.43   | 0.9965 | 5.4833   | 12.8557     | 0.7230  | 0.0521 | 0.414 | 2.277  | 5.338        | 0.300 | 0.022 |
| RTG          | 98463     | Mi Jack | 1000R       | 1984 | 300    | 1     | 0            | 0.43   | 0.9965 | 5.4833   | 12.8557     | 0.7230  | 0.0521 | 0.000 | 0.000  | 0.000        | 0.000 | 0.000 |
| RTG          | 98464     | Mi Jack | 1000R       | 1984 | 300    | 1     | 0            | 0.43   | 0.9965 | 5.4833   | 12.8557     | 0.7230  | 0.0521 | 0.000 | 0.000  | 0.000        | 0.000 | 0.000 |
| Top Pick     | 89879     | Taylor  | TEC 155H    | 1998 | 150    | 1     | 1,040        | 0.59   | 0.5505 | 2.8920   | 6.9482      | 0.3734  | 0.0597 | 0.056 | 0.293  | 0.705        | 0.038 | 0.006 |
| Top Pick     | 89066     | Mi Jack | MJ9090      | 1990 | 335    | 1     | 60           | 0.59   | 0.6811 | 3.3000   | 9.0164      | 0.4547  | 0.0597 | 0.009 | 0.043  | 0.118        | 0.006 | 0.001 |
| Yard Hostler | 32008     | Ottawa  | Commando 30 | 2003 | 150    | 3     | 8,000        | 0.55   | 0.2501 | 2.7810   | 5.1174      | 0.2136  | 0.0597 | 0.546 | 6.070  | 11.169       | 0.466 | 0.130 |
| Yard Hostler | 42041     | Ottawa  | Commando 30 | 2004 | 150    | 10    | 8,000        | 0.55   | 0.1639 | 2.7540   | 4.5529      | 0.1648  | 0.0597 | 1.193 | 20.036 | 33.123       | 1.199 | 0.435 |
| Totals       |           |         |             |      |        |       |              |        |        |          |             |         |        | 2.299 | 29.542 | 54.000       | 2.094 | 0.638 |

Notes:

1. Annual hours of operation estimates provided by Ton Madrigal of PARSEC and Raul Perez of UPRR.

2. Emission factors and load factors from CARB's Cargo Handling Equipment Emission Calculation Spreadsheet.

CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

# Summary of Emissions from Heavy Equi ment Los Angeles Trans ortation Center, Los Angeles, CA

| Equi ment | Equi ment |        |           |      | Rating | o of  | Annual Hours | Load   | E aus  | st Crank ase | Emissions | g r    |        | C Eva orati | ive Emissions |       | Emiss | ion Fa tors t | y     |       |
|-----------|-----------|--------|-----------|------|--------|-------|--------------|--------|--------|--------------|-----------|--------|--------|-------------|---------------|-------|-------|---------------|-------|-------|
| Ty e      | a         | ake    | odel      | oear |        | Gnits | of eration   | Fa tor | R      | С            |           |        | S      | art 11r     | art 21 yr     | R     | С     |               |       | S     |
| Crane     |           | rove   | RT650E    | 2003 | 275    | 1     | 2,190        | 0.43   | 0.2332 | 0.2332       | 0.2332    | 0.1053 | 0.0478 |             |               | 0.067 | 0.067 | 0.067         | 0.030 | 0.014 |
| Fork Lift | 80402     | Lull   | Jo n eere | 2004 | 150    | 1     | 8,000        | 0.30   | 0.3500 | 0.3500       | 0.3500    | 0.1861 | 0.0548 |             |               | 0.139 | 0.139 | 0.139         | 0.074 | 0.022 |
| Fork Lift |           | Toyota |           | 1999 | 150    | 1     | 2,190        | 0.30   | 0.3500 | 0.3500       | 0.3500    | 0.5778 | 0.0548 |             |               | 0.038 | 0.038 | 0.038         | 0.063 | 0.006 |
| Totals    |           |        |           |      |        | -     |              |        |        |              |           |        |        |             |               | 0.243 | 0.243 | 0.243         | 0.167 | 0.041 |

otes: 1. Annual ours of o eration estimates rovided y Ton adrigal of ARSEC and Raul erez of G . 2. Emission fa tors and load fa tors from CARB's FFR A 2006model. 3. Eva orative emissions are negligi le.

CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

|        |                           | Organic  | Emissions |
|--------|---------------------------|----------|-----------|
| CAS    | Chemical Name             | Fraction | (tpy)     |
| 540841 | 2,2,4-trimethylpentane    | 0.0129   | 0.0011    |
| 71432  | benzene                   | 0.0036   | 0.0003    |
| 110827 | cyclohexane               | 0.0103   | 0.0008    |
| 100414 | ethylbenzene              | 0.0012   | 0.0001    |
| 78784  | isopentane                | 0.3734   | 0.0304    |
| 98828  | isopropylbenzene (cumene) | 0.0001   | 0.0000    |
| 108383 | m-xylene                  | 0.0034   | 0.0003    |
| 110543 | n-hexane                  | 0.0154   | 0.0013    |
| 95476  | o-xylene                  | 0.0013   | 0.0001    |
| 106423 | p-xylene                  | 0.0011   | 0.0001    |
| 108883 | toluene                   | 0.0170   | 0.0014    |
| Total  |                           | 0.44     | 0.0358    |

Toxic Air Contaminant Emissions from the Gasoline Storage Tank Los Angeles Transfer Center, Los Angeles, CA

Notes:

- 1. Organic fraction from ARBs SPECIATE database. Data is from "Headspace vapors 1996 SSD etoh 2.0% (MTBE phaseout)" option.
- 2. Emissions were calculated for only chemicals that were in both the speciation profile database and the AB2588 list.

Summary of Emissions from Transport Refrigeration Units and Refrigerated Railcars Los Angeles Transportation Center, Los Angeles, CA

| TRU       | Average |        | Average              |           |                      |                     |      |      |              |            |      | VOC Eva        | aporative      |      |      |              |       |      |
|-----------|---------|--------|----------------------|-----------|----------------------|---------------------|------|------|--------------|------------|------|----------------|----------------|------|------|--------------|-------|------|
| Equip     | Rating  | Fuel   | No. Units            | Hours of  | Operation            | Load                |      | Emis | sion Factors | (g/hp-hr)6 |      | Emission       | Factors6, 7    |      | Eı   | missions (tp | y)    |      |
| Туре      | (hp)1   | Туре   | in Yard <sup>2</sup> | (hr/day)3 | (hr/yr) <sup>4</sup> | Factor <sup>5</sup> | HC   | CO   | NOx          | DPM        | SOx  | Part 1 (lb/hr) | Part 2 (lb/yr) | HC   | CO   | NOx          | DPM   | SOx  |
| Container | 28.56   | Diesel | 20                   | 4         | 1,460                | 0.56                | 2.85 | 6.78 | 6.43         | 0.71       | 0.07 | -              | -              | 1.46 | 3.47 | 3.29         | 0.366 | 0.04 |
| Railcar   | 34      | Diesel | 4                    | 4         | 1,460                | 0.53                | 3.23 | 7.49 | 6.71         | 0.79       | 0.07 | -              | -              | 0.38 | 0.87 | 0.78         | 0.091 | 0.01 |
| Total     |         |        | 24                   |           | 2,920                |                     |      |      |              |            |      |                |                | 1.84 | 4.34 | 4.07         | 0.457 | 0.04 |

Notes:

1. Based on the average horsepower distribution in the OFFROAD 2006 model.

2. UPRR staff estimate that there are 8-10 TRUs and 0-2 reefer cars and in the Yard at any given time. To be conservative, these estimates were increased by 100%.

3. From CARB's Staff Report: ISOR, ATCM for TRUs, Section V.a.2.

4. It was assumed that the number of units and the annual hours of operations remains constant, with individual units cycling in and out of the yard.

5. Load factors are the default factors from the OFFROAD 2006 model.

6. Emission factors from OFFROAD 2006 model.

7. Evaporative emissions are negligible.

CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

Equipment Specifications for Portable Welders Los Angeles Transfer Center, Los Angeles, CA

|                        |                        |            |           | Rating |
|------------------------|------------------------|------------|-----------|--------|
| Location               | Make                   | Serial No. | Fuel Type | (hp)   |
| RIP Track              | Miller Blue Stars 6000 | LC507236   | Gasoline  | 9      |
| RIP Track              | Miller Blue Stars 6000 | LC248313   | Gasoline  | 9      |
| Crane Maintenance Area | Miller Bobcat 225      | KH393622   | Gasoline  | 16     |

Notes:

- 1. Welding equipment and operations are exempt from SCAQMD permitting requirements per Rule 219(f)(8).
- 2. IC engines meet the exempt requirements of SCAQMD Rule 219(b)(1).

## Equipment Specifications for Miscellaneous Combustion Sources Los Angeles Transfer Center, Los Angeles, CA

| Location     | Equipment Type | Make               | Serial No.   | Fuel Type | Rating<br>(hp) |
|--------------|----------------|--------------------|--------------|-----------|----------------|
| RIP Track    | Air Compressor | Ingersoll-Rand     | 82825 L-6 TH | Gasoline  | 49             |
| RIP Track    | Air Compressor | Briggs and Straton | 33106906M221 | Diesel    | 45             |
| Admin. Bldg. | Light Tower    | Coleman            | Unknown      | Diesel    | 18             |
| Admin. Bldg. | Light Tower    | Dyna               | 17840181     | Diesel    | 10.7           |

Notes:

- 1. Per David Hawthorne, one of the light towers has been removed and the other hasn't been used.
- 2. All equipment is exempt from SCAQMD permitting requirements, per Rule 219(b)(1).

APPENDIX I

DETAILED RISK SCREENING CALCULATIONS

Summary of Risk Index Values Los Angeles Transportation Center, Los Angeles, CA

|                            | Risk Index Value | % of Total  | Risk Index Value | % of Total   |
|----------------------------|------------------|-------------|------------------|--------------|
| Source                     | Cancer           | Cancer Risk | Chronic          | Chronic Risk |
| Locomotives                | 9.57E-04         | 46.21       | 1.60E+01         | 36.04        |
| LHD Diesel Trucks          | 1.61E-07         | 0.01        | 2.69E-03         | 0.01         |
| HHD Diesel Trucks          | 2.98E-04         | 14.41       | 4.97E+00         | 11.24        |
| Cargo Handling Equipment   | 6.28E-04         | 30.34       | 1.05E+01         | 23.66        |
| Heavy Equipment            | 5.00E-05         | 2.41        | 8.33E-01         | 1.88         |
| Tanks                      | 8.50E-09         | 0.00        | 9.74E+00         | 22.00        |
| TRUs and Reefer Cars       | 1.37E-04         | 6.62        | 2.29E+00         | 5.17         |
|                            |                  |             |                  |              |
| Total                      | 2.07E-03         | 100.00      | 4.43E+01         | 100.00       |
| De Minimis Sources (% of 7 | Fotal)           | 2.42        |                  | 1.89         |

Calculation of Risk Index Values for Diesel-Fueled Sources Los Angeles Transportation Center, Los Angeles, CA

|                          | <b>DPM</b> Emissions | Unit Risk Factor | Cancer Risk | Unit Risk Factor | Chronic Risk |
|--------------------------|----------------------|------------------|-------------|------------------|--------------|
| Source                   | (tpy)                | Cancer           | Index Value | Chronic          | Index Value  |
| Locomotives              | 3.190                | 3.00E-04         | 9.57E-04    | 5.00E+00         | 1.60E+01     |
| LHD Diesel Trucks        | 0.001                | 3.00E-04         | 1.61E-07    | 5.00E+00         | 2.69E-03     |
| HHD Diesel Trucks        | 0.995                | 3.00E-04         | 2.98E-04    | 5.00E+00         | 4.97E+00     |
| Cargo Handling Equipment | 2.094                | 3.00E-04         | 6.28E-04    | 5.00E+00         | 1.05E+01     |
| Heavy Equipment          | 0.167                | 3.00E-04         | 5.00E-05    | 5.00E+00         | 8.33E-01     |
| TRUs and Reefer Cars     | 0.457                | 3.00E-04         | 1.37E-04    | 5.00E+00         | 2.29E+00     |
|                          |                      |                  |             |                  |              |
| Total                    | 6.903                |                  | 2.07E-03    |                  | 3.45E+01     |

Notes:

1. Unit risk factor from Consolidated Table of OEHHA/ARB Approved Risk Assessment Health Values, April 25, 2005. Cancer inhalation risk used.

Summary of Toxic Air Contaminant Emissions Los Angeles Transportation Center, Los Angeles, CA

|         |                           | Emissions (tpy) | Unit Risk Factor | Unit Risk Factor | Cancer Risk | Chronic Risk |
|---------|---------------------------|-----------------|------------------|------------------|-------------|--------------|
| CAS     | Chemical Name             | Gasoline Tank   | Cancer           | Chronic          | Index Value | Index Value  |
| 540841  | 2,2,4-trimethylpentane    | 0.0011          |                  |                  |             |              |
| 71432   | Benzene                   | 0.0003          | 2.90E-05         | 6.00E+01         | 8.50E-09    | 1.76E-02     |
| 110827  | Cyclohexane               | 0.0008          |                  |                  | 0.00E+00    | 0.00E+00     |
| 100414  | Ethylbenzene              | 0.0001          |                  | 2.00E+03         | 0.00E+00    | 1.92E-01     |
| 78784   | isopentane                | 0.0304          |                  |                  | 0.00E+00    | 0.00E+00     |
| 98828   | Isopropylbenzene (cumene) | 0.0000          |                  |                  | 0.00E+00    | 0.00E+00     |
| 108383  | m-xylene                  | 0.0003          |                  | 7.00E+02         | 0.00E+00    | 1.95E-01     |
| 110543  | n-hexane                  | 0.0013          |                  | 7.00E+03         | 0.00E+00    | 8.78E+00     |
| 95476   | o-xylene                  | 0.0001          |                  | 7.00E+02         | 0.00E+00    | 7.29E-02     |
| 106423  | p-xylene                  | 0.0001          |                  | 7.00E+02         | 0.00E+00    | 6.10E-02     |
| 108883  | Toluene                   | 0.0014          |                  | 3.00E+02         | 0.00E+00    | 4.16E-01     |
| 1330207 | Xylene (total)            | 0.0000          |                  | 7.00E+02         | 0.00E+00    | 0.00E+00     |
| Total   |                           | 0.0358          |                  |                  | 8.50E-09    | 9.74E+00     |

CONFIDENTIAL BUSINESS INFORMATION/TRADE SECRET

# APPENDIX J

# SOURCE TREATMENT AND ASSUMPTIONS FOR AIR DISPERSION MODELING FOR NON-LOCOMOTIVE SOURCES

## Appendix J

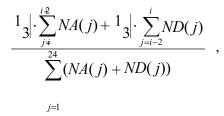
## Source Treatment and Assumptions for Air Dispersion Modeling for Non-Locomotive Sources

As shown in Figure 3 emissions were allocated spatially throughout the Yard in the areas where each source type operates or is most likely to operate. Emissions from mobile sources, low-level cargo handling equipment, heavy equipment, and moving locomotives were simulated as a series of volume sources along their corresponding travel routes and work areas. Yard hostlers, heavy duty trucks, and other low-level emission sources are first allocated to the areas of the yard where their activity occurs, and are then allocated uniformly to a series of sources within the defined areas. Depending on their magnitude and proximity to yard boundaries, idling emissions for heavy duty trucks may be treated as point sources rather than being included in the non-idling volume sources used to characterize moving vehicles. Idling of locomotives and elevated cargo handling equipment (cranes) were simulated as a series of point sources within the areas where these events occur. Large sources such as RTGs and cranes that are stationary or slow moving are treated as point sources with appropriate stack parameters

Emissions from stationary sources, such as fuel tanks, were simulated as a point source corresponding to the actual equipment location with in the Yard. Assumptions used spatially to allocate emissions for each source group are shown in the Table below. See Figure 3 for the source locations. See Appendix A-4 for assumptions regarding the spatial allocation of locomotive emissions.

| Source Treatment and Assumptions for Air Dispersion Modeling for Non-Locomotive Sources<br>Los Angeles Transportation Center |                     |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Source                                                                                                                       | Source<br>Treatment | Assumptions for Spatial Allocation of Emissions                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Gasoline Storage Tank                                                                                                        | Point               | Assumed all emissions occurred at the storage tank location.                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| HHDDiesel-Fueled Trucks - Intermodal<br>Trucks (idling)                                                                      | Volume              | Assumed 1/3 of the total HHD truck idling occurred at the intermodal gate and the remainder occurred in the trailer parking area.                                                                                                                                                                                                                                             |  |  |  |  |
| HHD Diesel-Fueled Trucks -(traveling)                                                                                        | Volume              | Assumed that all of the emissions from HHD truck traveling occurred in<br>the trailer parking area. Emissions were evenly split between the North<br>and South trailer parking areas.                                                                                                                                                                                         |  |  |  |  |
| Cargo Handling Equipment (low level)                                                                                         | Volume              | <u>Yard Hostlers</u> - assumed all of the emissions occurred in the trailer<br>parking areas. Emissions were evenly allocated between the North and<br>South trailer parking areas.<br><u>Top Picks (2) and Taylor Forklift</u> - allocated all emissions the trailer<br>parking areas. Emissions were evenly allocated between the North and<br>South trailer parking areas. |  |  |  |  |
| Cargo Handling Equipment (RTGs)                                                                                              | Point               | Assumed 10% of the total emissions from RTGs occurred at the crane<br>pad and the remaining emission occurred in the areas around the<br>unloading tracks.                                                                                                                                                                                                                    |  |  |  |  |
| Heavy Equipment (idling and traveling)                                                                                       | Volume              | Emissions from all heavy equipment were assumed to occur in and around the car shop.                                                                                                                                                                                                                                                                                          |  |  |  |  |

APPENDIX K


SEASONAL AND DIURNAL ACTIVITY PROFILES

#### Appendix K

#### Development of Temporal Activity Profiles for the UPRR LATC Facility

Locomotive activity can vary by time of day and season. For each yard, the number of trains arriving and departing from the yard in each month and each hour of the day was tabulated and used to develop temporal activity profiles for modeling. The number of locomotives released from service facilities in each month was also tabulated. The AERMOD EMISFACT SEASHR option was used to adjust emission rates by season and hour of the day, and the EMISFACT SEASON option was used where only seasonal adjustments were applied. Where hour of day adjustments (but not seasonal) were applied, the EMISFACT HROFDY option was used.

Time of day profiles for train idling activity were developed assuming that departure events involved locomotive idling during the hour of departure and the two preceding hours, and that arrival events involved locomotive idling during the hour of arrival and the two hours following. Thus, the hourly activity adjustment factor for hour i is given by



where NA(j) and ND(j) are respectively the number of arriving and departing trains in hour *j*. These factors were applied to both idling on arriving and departing trains and idling in the service area (if applicable).

Similarly, time of day profiles for road power movements in the yard (arrivals, departures, and power moves) were developed without including arrivals in preceding hours and departures in subsequent hours. In this case, the hourly activity adjustment factor for hour *i* is given by

$$\frac{NA(i) + ND(i)}{\sum_{j=1}^{24} (NA(j) + ND(j))}$$

Seasonal adjustment factors are calculated as the sum of trains arriving and departing in each three month season, divided by the total number of arrivals and departures for the year. The hourly adjustment factors for each season are simply the product of the seasonal adjustment factor and the 24 hourly adjustment factors.

For yards with heavy duty truck and cargo handling activities related to rail traffic, seasonal train activity adjustments were applied, but not hour of day adjustments. Temporal profiles for yard switching operations were based on hourly (but not seasonal) factors developed from the operating shifts for the individual yard switching jobs. In some cases, locomotive load testing diurnal profiles were developed based on the specific times of day when load testing is conducted.

Table K-1 lists the hourly activity factors derived for train movements, train idling, and yard operations at the UPRR LATC Facility. Separate temporal profiles are listed for day and night moving emissions as different volume source parameters are used for day and night. Table K-2 lists the seasonal activity factors for train activity.

| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                | Movements                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Switching                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Switching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Train Idling                          | (Daytime)                                                                                                                                                                                                      | (Nighttime)                                           | Idling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Daytime)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Nighttime)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.890                                 | 0.000                                                                                                                                                                                                          | 0.779                                                 | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.869                                 | 0.000                                                                                                                                                                                                          | 0.754                                                 | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.931                                 | 0.000                                                                                                                                                                                                          | 2.412                                                 | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.964                                 | 0.000                                                                                                                                                                                                          | 1.116                                                 | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.053                                 | 0.000                                                                                                                                                                                                          | 1.140                                                 | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.124                                 | 0.000                                                                                                                                                                                                          | 1.814                                                 | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.109                                 | 0.947                                                                                                                                                                                                          | 0.000                                                 | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.056                                 | 0.947                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.949                                 | 1.035                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.959                                 | 1.253                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.964                                 | 0.704                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.027                                 | 0.517                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.080                                 | 0.735                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.148                                 | 0.829                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.111                                 | 0.891                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.061                                 | 1.165                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.003                                 | 0.810                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.999                                 | 0.816                                                                                                                                                                                                          | 0.000                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.970                                 | 0.000                                                                                                                                                                                                          | 0.823                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.971                                 | 0.000                                                                                                                                                                                                          | 0.735                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.995                                 | 0.000                                                                                                                                                                                                          | 0.904                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.968                                 | 0.000                                                                                                                                                                                                          | 1.035                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.936                                 | 0.000                                                                                                                                                                                                          | 0.960                                                 | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.865                                 | 0.000                                                                                                                                                                                                          | 0.879                                                 | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | $\begin{array}{r} 0.869\\ 0.931\\ 0.964\\ 1.053\\ 1.124\\ 1.109\\ 1.056\\ 0.949\\ 0.959\\ 0.964\\ 1.027\\ 1.080\\ 1.148\\ 1.111\\ 1.061\\ 1.003\\ 0.999\\ 0.970\\ 0.971\\ 0.995\\ 0.968\\ 0.936\\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Movements<br>(Daytime)Movements<br>(Nighttime) $Train Idling$ (Daytime)(Nighttime) $0.890$ $0.000$ $0.779$ $0.869$ $0.000$ $0.754$ $0.931$ $0.000$ $2.412$ $0.964$ $0.000$ $1.116$ $1.053$ $0.000$ $1.140$ $1.124$ $0.000$ $1.814$ $1.109$ $0.947$ $0.000$ $1.056$ $0.947$ $0.000$ $0.949$ $1.035$ $0.000$ $0.959$ $1.253$ $0.000$ $0.964$ $0.704$ $0.000$ $1.027$ $0.517$ $0.000$ $1.080$ $0.735$ $0.000$ $1.111$ $0.891$ $0.000$ $1.061$ $1.165$ $0.000$ $1.003$ $0.810$ $0.000$ $0.970$ $0.000$ $0.823$ $0.971$ $0.000$ $0.735$ $0.995$ $0.000$ $1.035$ $0.936$ $0.000$ $0.960$ | Movements<br>(Daytime)Movements<br>(Nighttime)Switching<br>Idling0.8900.0000.7791.2860.8690.0000.7541.2860.9310.0002.4121.2860.9640.0001.1161.2861.0530.0001.1401.2861.1240.0001.8141.2861.1090.9470.0001.8141.0560.9470.0000.8570.9491.0350.0000.8570.9591.2530.0000.8571.0270.5170.0000.8571.0800.7350.0000.8571.1480.8290.0000.8571.0611.1650.0000.8571.0030.8100.0000.8570.9700.0000.8230.8570.9710.0000.8230.8570.9680.0001.0350.8570.9360.0000.9600.857 | Movements<br>Train Idling<br>(Daytime)Movements<br>(Nighttime)Switching<br>Idling<br>(Daytime)0.8900.0000.7791.2860.0000.8690.0000.7541.2860.0000.9310.0002.4121.2860.0000.9640.0001.1161.2860.0001.0530.0001.1401.2860.0001.1240.0001.8141.2860.0001.1090.9470.0001.8570.8570.9491.0350.0000.8570.8570.9491.0350.0000.8570.8570.9591.2530.0000.8570.8571.0270.5170.0000.8570.8571.0800.7350.0000.8570.8571.1480.8290.0000.8570.8571.0611.1650.0000.8570.8571.0030.8100.0000.8570.8570.9990.8160.0000.8570.8570.9700.0000.8230.8570.0000.9710.0000.7350.8570.0000.9950.0000.9600.8570.0000.9360.0000.9600.8570.000 |

Table K-1. Hourly Activity Factors for the UPRR LATC Facility

| Activity Type | Winter | Spring | Summer | Fall  |
|---------------|--------|--------|--------|-------|
| Trains        | 1.020  | 1.066  | 1.020  | 0.894 |

## APPENDIX L

## SELECTION OF POPULATION FOR THE URBAN OPTION INPUT IN AERMOD AIR DISPERSION MODELING ANALYSIS

# Appendix L

# Selection of Population for the Urban Option Input in AERMOD Air Dispersion Modeling Analysis

Urban heat islands and the thermal domes generated by them extend over an entire urbanized area<sup>1</sup>. Hot spots within the urban heat island are associated with roads and roofs, which surround each Union Pacific (UP) rail yard in high density. Following guidance cited by the ARB ("*For urban areas adjacent to or near other urban areas, or part of urban corridors, the user should attempt to identify that part of the urban area that will contribute to the urban heat island plume affecting the source.*"), it is the entire metropolitan area that contributes to the urban heat island plume affecting the rail yard. For metropolitan areas containing substantial amounts of open water, the area of water should not be included.

To simulate the effect of the urban heat island on turbulence in the boundary layer, especially at night, when the effect is substantial, AERMOD adjusts the height of the nighttime urban boundary layer for the heat flux emitted into the boundary layer by the urban surface, which is warmer than surrounding rural areas<sup>2,3</sup>. The difference between the urban and rural boundary layer temperatures is proportional to the maximum temperature difference of 12 Celsius degrees observed in a study of several Canadian cities, and directly related to the logarithm of the ratio of the urban population to a reference population of 2,000,000 (i.e., Montreal, the Canadian city with the maximum urban-rural temperature difference)<sup>4</sup>.

The adjusted height of the nocturnal urban boundary layer is proportional to the onefourth power of the ratio of the population of the city of interest to the reference population, based on the observation that the convective boundary layer depth is proportional to the square root of the city size, and city size is roughly proportional to the square root of its population, assuming constant population density<sup>5</sup>. Regardless of wind direction during any specific hour used by AERMOD, it is the entire metropolitan area, minus bodies of water, which moves additional heat flux into the atmosphere and affects its dispersive properties, not just the 400 km<sup>2</sup> area of the air dispersion modeling domain that surrounds the each rail yard, which was chosen purely for modeling convenience.

Continuing to follow the guidance cited by the ARB ("*If this approach results in the identification of clearly defined MSAs, then census data may be used as above to determine the appropriate population for input to AERMOD"*), the population of each Metropolitan Statistical Area is being used in the modeling run for each rail yard.

<sup>&</sup>lt;sup>1</sup>USEPA. *Thermally-Sensed Image of Houston*, <u>http://www.epa.gov/heatisland/pilot/houston\_thermal.htm</u>, included in Heat Island Effect website, <u>http://www.epa.gov/heatisland/about/index.html</u>, accessed November 8, 2006.

<sup>&</sup>lt;sup>2</sup> USEPA. *AERMOD: Description of Model Formulation*, Section 5.8 - Adjustments for the Urban Boundary Layer, pages 66-67, EPA-454/R-03-004, September 2004, accessed at http://www.epa.gov/scram001/7thconf/aermod/aermod mfd.pdf on November 9,

<sup>&</sup>lt;sup>3</sup> Oke, T.R. *City Size and the Urban Heat Island,* Atmospheric Environment, Volume 7, pp. 769-779, 1973. <sup>4</sup> Ibid for References 3 and 4.

<sup>&</sup>lt;sup>5</sup> Ibid.

# APPENDIX M

# DEMOGRAPHIC DATA

## Appendix M

## **Population Shape Files for UPRR Rail Yards**

The accompanying shape files include census boundaries as polygons and the corresponding residential populations from the 2000 U.S. Census. Separate shape files are included at the tract, block group, and block levels. The primary ID for each polygon begins with *sscccttttt*, where *ss* is the FIPS state code (06 for California), *cc* is the county code, and *tttttt* is the tract code. The primary IDs for block groups have a single additional digit which is the block group number within each tract. Those for blocks have four additional digits identifying the block number. The population for each polygon are included as both the secondary ID and as attribute 1. Polygon coordinates are UTM zone 10 (Oakland and Stockton) or 11 (southern California yards), NAD83, in meters. The files contain entire tracts, block groups, or blocks that are completely contained within a specified area. For all yards except Stockton, the area included extends 10 kilometers beyond the 20 x 20 kilometer modeling domains. For Stockton, this area was extended to 20 kilometers beyond the modeling domain boundaries to avoid excluding some very large blocks.

In merging the population data<sup>1</sup> with the corresponding boundaries<sup>2</sup>, it was noted that at all locations, there are defined census areas (primarily blocks, but in some cases block groups and tracts) for which there are no population records listed in the population files. Overlaying these boundaries on georeferenced aerial photos indicates that these are areas that likely have no residential populations (e.g., industrial areas and parks). The defined areas without population data have been excluded from these files. Areas with an identified population of zero have been included. It was also observed that some blocks, block groups and tracts with residential populations cover both residential areas and significant portions of the rail yards themselves. For this reason, any analysis of population exposures based on dispersion modeling should exclude receptors that are within the yard boundaries or within 20 meters of any modeled emission source locations.

To facilitate the exclusion of non-representative receptors, separate shape files have been generated that define the area within 20 meters of the yard boundaries for each yard. These files are also included with the accompanying population files. It should also be noted that the spatial extent of individual polygons can vary widely, even within the same type. For example, single blocks may be as small as 20 meters or as large as 10,000 meters or more in length. To estimate populations contained within specific areas, it may prove most useful to generate populations on a regular grid (e.g., 250 x 250 m cells) rather than attempting to process irregularly shaped polygons.

<sup>&</sup>lt;sup>1</sup>Population data were extracted from the *Census 2000 Summary File l* DVD, issued by the U.S. Department of Commerce, September 2001.

<sup>&</sup>lt;sup>2</sup>Boundaries were extracted from ESRI shapefiles (\*.shp) created from the U.S. Census TIGER Line Files downloaded from ESRI (*http://arcdata.esri.com/data/tiger2000/tiger\_download.cfm*).