
YAADA

Software Toolkit to Analyze Single-Particle Mass Spectral Data

Reference Manual

Version 1.0

December 31, 2001

Jonathan O. Allen

Chemical & Materials Engineering

Civil & Environmental Engineering

Arizona State University

Tempe, AZ 85287-6006

Copyright ©2001 Arizona Board of Regents

i

Abstract

Researchers are now able to measure the size and composition of single

aerosol particles using instruments like the Aerosol Time-of-Flight Mass Spec-

trometry (ATOFMS) instruments developed by Prof. Kimberly Prather and her

research group at the University of California. Complete mass spectra are col-

lected on individual particles at a rate of approximately one per second. Thus

very large data sets can be collected during a multi-day, multi-instrument ex-

periment. These data sets are too large for ad hoc data analysis techniques.

YAADA is a package of data management and analysis functions written for

Matlab which are designed to process these large data sets. YAADA is avail-

able as free software. Users can write Matlab functions to extend YAADA in

order to develop novel analyses of ATOFMS data.

YAADA includes functions to import, query, plot, and quantitatively ana-

lyze ATOFMS data. The import module rapidly converts data from the com-

mon ATOFMS data acquisition software and performs quality control checks

on the data. ATOFMS data in YAADA are organized in a hierarchical object-

oriented database with objects to uniquely identify each instrument, parti-

cle, spectrum, and spectral peak. The search module implements a query

language to find sets of particles based on their size and composition. For

example, to find particles with aerodynamic diameter (Da) between 1.0 and

1.8 microns which also have mass spectral peaks near m/z = 23, one would

use the query "Da = [1.0 1.8] AND PeakMZ = [22.5 23.5]". The plotting pro-

grams include differential concentration versus differential Da and digital

mass spectral plots. The quantification module includes functions to scale

up ATOFMS data for missing times, instrument busy time, and particle detec-

tion efficiency.

ii

Copyright Notices

YAADA

Software Toolkit to Analyze Single-Particle Mass Spectral Data

Copyright (c) 1999-2000 California Institute of Technology.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the Institute nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ‘‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

iii

YAADA

Software Toolkit to Analyze Single-Particle Mass Spectral Data

Copyright (c) 2001-2002 Arizona Board of Regents.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of Arizona State University nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

iv

Acknowledgements

The development of YAADA has been part of a very rewarding research collaboration between

Prof. Cass’s and Prather’s research groups. This work has been encouraged by Prof. Glen

R. Cass at the California Institute of Technology and later at the Georgia Institute of Tech-

nology. Prof. Kimberly A. Prather at the University of California, Riverside, and subsequently at

the University of California, San Diego, supported the testing and use of YAADA in her research

group. Particular thanks are owed to David P. Fergenson, Sylvia H. Pastor, Prakash V. Bhave, and

Lara S. Hughes who made important contributions to the development and testing of YAADA.

David championed the initial development of YAADA; he contributed to the initial design then

tested and debugged the rough beta versions of YAADA. Sylvia systematically tested beta ver-

sions and trained her colleagues in its use. Prakash spotted more bugs and made many useful

suggestions on the evolution of YAADA. Lara codeveloped and tested the xhatch plotting rou-

tines.

Finally, I thank Glen Cass who supported the initial development of YAADA. His energy,

vision, and wisdom are sorely missed.

v

Typographic Conventions

Function and variable names are shown in sanserif font as VariableName. Variable text and

text to be entered by the user are shown in slanted sanserif font as Type me.

Release Notes for v 1.00a (15 Dec 01)

1. This version will work on databases generated with version 0.93. However to reimport

data in version 1.00a, the .inst must be updated for the column name changes listed below.

2. The INST columns ExperimentName, ExperimentDesc, StudyID, and StudyName have been

replaced with ExpName and ExpDesc. The column OpCode has been replaced with Op-

Name and OpDesc.

3. The performance of many functions has been significantly improved due to improvements

in low-level functions find_chunk and intersect.

4. The performance of run_query for the SPEC and PEAK tables has been greatly improved.

The performance of get_children also has been improved.

5. The aggregation operators count, mean, median, sum, min, and max treat spectra with

none of the requested peaks as zero.

6. The get_spectrum function can return selected columns from PEAK. The former behavior,

returning data from all the default columns, is the default behavior.

7. The function get_int_spectrum replaces get_area_table. The new function is more efficient

and offers more control over the data returned. A get_area_table function is provided that

calls get_int_spectrum; this function may be discontinued in a future version.

8. The union and intersect functions for the identification objects now can operate on more

than two sets of identifiers.

9. A new function combine creates inclusive and exclusive combinations of object sets.

10. A new function xlabel_timedate provides more control over temporal x-axis legends.

11. The msview plot is slightly smaller to display better on XGA screens.

12. The import routines now create chunks of sizes between 1 and 32 MB. The init function

requests the chunk size in megabytes.

vi

13. The import routines now create InstIDs for each unique InstCode-OpName-ExpName com-

bination.

14. The check_part function now checks for unique particles only within each chunk; the

revised function can be run on large datasets without generating an ’OUT OF MEMORY’

error.

15. The Da to Dp and Dp to Da conversion programs had truncated trailing NaNs in a vector.

This is fixed.

16. Floating point data in the default data tables are stored as double not single since double

and single data appear to take the same storage space in Matlab 6.

17. Relative searches like sum(Area{23}) > sum(Area{38.5 40.5}) are not yet implemented.

18. The quantification package, which will include functions to scale up ATOFMS data for

missing times, instrument busy time, and particle detection efficiency, is not included in

this release.

CONTENTS vii

Contents

1 Introduction 1

1.1 ATOFMS Instrument Operation . 1

2 Getting Started Tutorial 3

2.1 Import Data . 3

2.2 Find Particle Types . 5

2.3 Use Identifier Objects . 7

2.4 Plot Data . 8

3 Data Objects 10

3.1 Identifier Object Classes . 10

3.2 Column Object Class . 11

3.3 Table Object Class . 12

4 Database Structure 12

4.1 Data Definition Table (DATADEF) . 13

4.2 Instrument Table (INST) . 13

4.3 Particle Table (PART) . 13

4.4 Spectrum Table (SPEC) . 15

4.5 Peak Table (PEAK) . 15

4.6 Virtual Tables and Chunk Lists . 16

4.7 Changing the Database Structure . 16

5 Data Import 17

5.1 PK2 Creation . 18

5.1.1 TasWare . 18

5.1.2 TSI Data Acquisition Software . 19

5.2 PK2 Digestion . 19

6 Query Language 20

6.1 Query Elements . 20

CONTENTS viii

6.1.1 Column Names . 20

6.1.2 Aggregation Operators . 21

6.1.3 Relative Operators . 21

6.1.4 Values . 22

6.1.5 Set Operators . 22

6.2 Returned Identifiers . 22

6.3 Query Optimization . 23

A Installation 27

B Function Reference 28

B.1 Identifier Object Methods . 28

B.1.1 Object Creation . 28

B.1.2 Type Conversion . 29

B.1.3 Find Related Objects . 30

B.1.4 Set Operations . 30

B.1.5 Relational Operations . 31

B.1.6 Arithmetic Operations . 31

B.1.7 Display . 32

B.1.8 Sorting and Combining . 32

B.1.9 Subscript Referencing . 32

B.2 Column Methods . 33

B.2.1 Column Creation . 33

B.2.2 Display . 33

B.2.3 Sorting and Combining . 34

B.2.4 Subscripted Referencing . 34

B.3 Table Methods . 35

B.3.1 Table Creation . 35

B.3.2 Display . 35

B.3.3 Sorting and Combining . 36

B.3.4 Subscripted Referencing . 36

CONTENTS ix

B.4 Aerosol Calculations . 37

B.4.1 Particle Size Calibration . 37

B.4.2 Particle Size Conversion . 38

B.5 Database Structure and Import . 39

B.5.1 Database Definition . 39

B.5.2 Conversion of Raw Data to PK2 Format . 39

B.5.3 Data Importation and Verification . 40

B.5.4 Data Integrity Checks . 42

B.6 Chunk Handling . 42

B.7 Query Processing . 43

B.8 Data Retrieval . 44

B.9 Plot Formats . 46

B.9.1 Plots . 46

B.9.2 Crosshatching . 47

B.9.3 Plot Formatting . 47

B.10 Quantitative Comparison . 47

B.10.1 Instrument Busy Time . 47

B.11 General Functions . 48

B.11.1 Search . 48

B.11.2 Row-wise Matrix Comparison . 48

B.11.3 String Operations . 48

B.11.4 NaN Operations . 49

B.11.5 Type Identification . 49

B.11.6 Type and Object Operations . 50

B.11.7 Miscellany . 51

C Data File Formats 53

C.1 Instrument Data File Format . 53

C.2 PK2 Data File Format . 53

D YAADA Programming Guidelines 57

CONTENTS x

D.1 File Locations . 57

D.2 Variable Names . 57

D.3 Program Names . 57

D.4 Abbreviations . 57

D.5 Program Help . 57

LIST OF FIGURES xi

List of Figures

1 Schematic diagram of Aerosol Time-of-Flight Mass Spectrometry instrument . . . 2

2 Mass Spectral Viewer showing “Organic/Nitrate” particles. 6

3 Detection Rate for Hit and Missed Particles. 9

4 Digital Mass Spectrum of “Marine” Particles . 10

LIST OF TABLES xii

List of Tables

1 Identifier Objects . 11

2 Column Object Structure . 11

3 Column Data Types . 12

4 Data Tables . 12

5 Data Definition Table . 13

6 Default Instrument Table. 14

7 Default Particle Table . 14

8 Default Spectrum Table . 15

9 Default Peak Table . 15

10 Chunk List Structure . 17

11 Aggregation Operators . 21

12 Relative Operators . 22

13 Set Operators . 23

14 Table Object Structure . 35

15 Preprocessed data files . 39

16 PK2 Data File Line Types . 54

1 INTRODUCTION 1

1 Introduction

One long-standing goal of atmospheric aerosol science has been to simultaneously measure the

size and composition of individual airborne particles. Prof. Kimberly Prather and her research

group developed the aerosol time-of-flight mass spectrometry (ATOFMS) instruments which

measure the size and composition of individual airborne particles [1, 2, 3]. In 1996 the Prather

group and Prof. Glen Cass’s group at the California Institute of Technology conducted the first

field study with the ATOFMS instruments and colocated reference samplers [4, 5, 6, 7]. During

this study, three ATOFMS instruments measured the size of approximately 3 × 106 particles

and the composition of 3× 105 particles. YAADA was developed to manage and analyze this

and other large data sets as part of the research collaboration between the Prather and Cass

groups.

ATOFMS data in YAADA are organized in a hierarchical object-oriented database with ob-

jects to uniquely identify each instrument, particle, spectrum, and spectral peak. The YAADA

software includes functions to import, query, plot, and quantitatively analyze these data.

YAADA is written in the Matlab programming language and is available as free software. Users

can extend and automate analyses in YAADA by modifying or creating functions in the Mat-

lab programming language. YAADA is provided as free software by the California Institute of

Technology and Arizona Board of Regents. Users are requested to cite [8] in works for which

YAADA was used.

This manual documents the data organization, data management functions, and data anal-

ysis functions in YAADA. Some familiarity with Matlab is assumed. Matlab is available from

the Mathworks (Natick, MA, www.mathworks.com). In addition to the complete Matlab docu-

mentation, excellent third-party texts on Matlab are available [9, 10].

1.1 ATOFMS Instrument Operation

ATOFMS instruments operate by sampling aerosol at atmospheric pressure and directing the

flow through an expansion nozzle and skimmers (see Figure 1) [1, 2]. During the expansion,

particles are accelerated to a velocity characteristic of their aerodynamic size, with the smallest

particles traveling at the highest speeds. After the last skimmer, velocities (hence aerodynamic

size) of individual particles are measured in the sizing chamber by detecting scattered light

from two timing lasers positioned a known distance apart.

The rarefied aerosol is subsequently directed into the particle ablation/ionization chamber

of the ATOFMS instrument. The arrival time of a specific particle is predicted based on the ve-

locity measured in the sizing chamber and an ablation/ionization laser is fired to intercept the

http://www.mathworks.com

1 INTRODUCTION 2

Ball Valve

Lifting Mechanism

Light Scattering
Light Horn

PMT

Nd:YAG Laser

Elliptical Mirror

Reflectron
Adjustment Rod

MSP Detectors
Flight Tube

Reflectron

Linear MSP
DetectorIon Source

Figure 1: Schematic diagram of Aerosol Time-of-Flight Mass Spectrometry instrument de-
veloped by Prof. Prather and her research group [1].

moving particle. Ionized fragments from the particle are directed to positive and negative po-

larity time-of-flight mass spectrometers. The particle size and, if present, mass spectra are then

recorded on a data acquisition computer. Particles which are detected by both timing lasers are

said to have been sized ; those which are also ablated and ionized by the third laser to produce

mass spectra are said to have been hit. The ATOFMS instruments detect approximately 2 par-

ticles per second and hit approximately 15% of these particles. Thus, an ATOFMS instrument

can collect size data on 200,000 particles and composition data on 25,000 of these particles in

24 hours. The total quantity of data collected during a multi-day, multi-instrument experiment

is therefore too large for ad hoc data analysis techniques. YAADA provides a framework and

tools to analyze these large datasets.

ATOFMS instruments collect data on time of acquisition, delay between light scattering

events, and mass spectrometer signal versus time data for both the positive and negative ions.

These raw data are analyzed and converted into terminal velocities and mass spectral peak data

by proprietary software specific to the instrument hardware. The resulting data is referred to

as preprocessed. These preprocessed data are stored as text files. YAADA includes programs

to convert some preprocessed data file formats into the standard PK2 format.

2 GETTING STARTED TUTORIAL 3

2 Getting Started Tutorial

This section describes how to start using YAADA with a small set of demonstration data. A

brief tutorial follows which demonstrates how to search for particles with characteristic mass

spectra and plot data for these particles.

In order to run YAADA, you need Matlab (version 5.3 or later) and Perl (version 5.6 or

later) programs installed on your computer. Details are available in Appendix A. This sec-

tion assumes that you have a basic familiarity with Matlab, including the concepts of scripts,

functions, and variables which are explained in the Getting Started with Matlab manual. In addi-

tion to the complete Matlab documentation, excellent third-party texts on Matlab are available

[9, 10]. No familiarity with Perl is needed to run YAADA.

2.1 Import Data

To begin, start Matlab then move to the directory where YAADA was installed in your computer

with the cd command.

Approximately 15 minutes of demonstration data provided by the Prather group are dis-

tributed with YAADA. The demonstration data are in three text files in the PK2 format in the

demo/pk2 directory. Note that these data are not representative of actual ambient aerosol

measurements and are provided for demonstration only.

There are four steps to create a new database and import data into it, they are

1. Convert data generated by an ATOFMS instrument into PK2 files

2. Set up the database structure

3. Convert data from PK2 files to the YAADA data format

4. Set up the Matlab workspace

The first step, creation of PK2 files, has been done for the demonstration data. Each of the

remaining steps are automated in programs. The init program sets up the database structure;

this function will request information about where files are located with the prompts

Study name? [demo]

Main YAADA directory? [c:/yaada/v100a]

Perl program directory? [c:/perl/bin]

User program directory? [c:/yaada/v100a/user]

2 GETTING STARTED TUTORIAL 4

Processed data directory? [c:/yaada/v100a/demo/final]

Temporary file directory? [c:/temp]

Clear database in c:/yaada_100a/demo/final? (y/n)

Chunk size (MB)? [5.000000]

For each prompt, enter a value or return to accept the default value shown in square brackets.

You should create the requested directories before running init. Now run init for the demo

study; be sure to clear the database and set Chunk Size to 5.

Next use the make_demo program to convert data from PK2 files to the YAADA internal

data format. This will take a few minutes, during which YAADA will display messages to mark

progress in loading and verifying the data; for example

Digesting c:\yaada\demo\pk2\demo1.pk2

Digesting c:\yaada\demo\pk2\demo2.pk2

Digesting c:\yaada\demo\pk2\demo3.pk2

Loading c:\yaada\demo\final\P000001.mat

Loading c:\yaada\demo\final\S000001.mat

Loading c:\yaada\demo\final\K000001.mat

CHUNK_CHECK for CL_PART finished

CHUNK_CHECK for CL_SPEC finished

CHUNK_CHECK for CL_PEAK finished

Found 2963 unique PartID in chunk P000001, 0 duplicates

Found 744 unique SpecID in chunk S000001, 0 duplicates

Found 91109 unique PeakID in chunk K000001, 0 duplicates

Found 2958 unique physical particles in database

List of 5 duplicates written to c:\temp\check_part.log

A small number (<1%) of duplicates in c:\temp\check_part.log is normal

Next run the startup script to set up the Matlab workspace for YAADA as

>> startup

— Copyright Display —

Study name? demo

Startup loads the first data files and reports

2 GETTING STARTED TUTORIAL 5

Loading d:\yaada\demo\final\P000001.mat

Loading d:\yaada\demo\final\S000001.mat

Loading d:\yaada\demo\final\K000001.mat

Congratulations, you have created the demonstration database! List the files in your study

directory with the command

dir(YAAADA.StudyDir)

The study directory should contain files like these:

. P000001.mat datadef.mat

.. S000001.mat inst.mat

K000001.mat chunklist.mat pk2list.mat

Files starting with K contain chunks of mass spectral peak data. YAADA stores large data tables

as a group of chunks; the demo data set is small enough that all the peak data fit in a single

chunk. Files starting with P and S contain chunks of particle and spectral data, respectively.

Information about these chunks is stored in chunklist. The remaining files (datadef, inst, pk2list,

and yaada) store the database structure and instrument data.

After you have successfully created the demonstration database, you can quit Matlab at any

time with

>> quit

When you restart Matlab, move to the main YAADA directory then run the startup script to

access the demonstration database again.

2.2 Find Particle Types

Once you have created a YAADA database, you can search to find particles based on their size

and composition. In this section we demonstrate YAADA’s query functions and find sets of

particles based on their composition using the criteria developed by Noble and Prather [2]. No-

ble and Prather call the most common particle type for Southern California “Organic/Nitrate”.

These are most likely particles originally emitted by combustion sources on which ammonium

nitrate has condensed. These particles have peaks at m/z equal to 12 (C+), 18 (NH+4), 24 (C+2),

30 (NO+), and 36 (C+3). To find this type of particle in the demonstration data use (enter the

command on one line):

2 GETTING STARTED TUTORIAL 6

Figure 2: Mass Spectral Viewer showing “Organic/Nitrate” particles.

>> OrganicNitrate1 = run_query(’mz = 12 and mz = 24 and mz = 36 and

mz = 18 and mz = 30’);

YAADA will find 40 particles that match this criterion. You can view the particles and their

mass spectra with the msview program. Note that msview requires a screen resolution of at

least 1024 by 768 pixels. To run msview

>> msview

The sets of particles in the Matlab workspace are shown in a pull-down menu in the upper left

corner of the YAADA MS Viewer figure. Select OrganicNitrate and the particles will be listed in

the left-hand column. The particles are listed in the left-hand column ordered by the three letter

instrument code, date, time, and aerodynamic diameter in µm. Click on one of these particles

to view its mass spectra (see Figure 2). The mass spectra are shown as lines at integral mass-to-

charge ratios. Some particles have both positive and negative mass spectra, others have only

one mass spectrum.

You can zoom and annotate spectra using the Matlab figure tools. To activate these select

from the menu View/Figure Toolbar. Click on the tool of interest to edit the spectra. To zoom

in on portions of the spectra, select the magnifier tool then drag the cursor over the area of

interest. To return to the original magnification double click on the spectra.

2 GETTING STARTED TUTORIAL 7

Search criteria can also specify the mass spectral response, “area”, for each peak. A more

complex search for Organic particles is

>> OrganicNitrate2 = run_query(’Area{12} > 50 and Area{24} > 75 and

Area{36} > 50 and Area{18} > 50 and

Area{30} > 75’);

Here Area{12} > 200 finds those spectra which have peaks in the mass-to-charge range 11.5 to

12.5 Daltons that have a total response greater than 200. Only 12 particles in the demonstration

data set match this criterion. To view these with msview select from the menu MSViewer/Refresh

PartID List, then select OrganicNitrate2.

Another common class of compounds identified by Noble and Prather is the “Marine” parti-

cle class identified by ion peaks atm/z = 23, 39, 81, and 83 Da, representing Na+, K+, Na2
35Cl+

and Na2
37Cl+, respectively. Search for these with the command

>> Marine = run_query(’Area{23} > 1000 and Area{39} > 200 and

Area{81} > 50 and Area{83} > 50’);

This demonstration of searching in YAADA used only the basic query syntax and a small

part of the data available in YAADA; these are discussed in detail in Sections 4 and 6.

2.3 Use Identifier Objects

YAADA creates unique identifier objects for instruments, particles, spectra, and peaks. Sets

of particles, for example, are identified by partid objects. These objects are the basis for data

management and analysis in YAADA; using them you can create novel and sophisticated data

analysis procedures. Here is a brief introduction to partid objects.

Identifier objects behave similarly to numeric variables in Matlab. To display an object, type

its name at the Matlab prompt without a trailing semicolon; for example display the Organic-

Nitrate2 partid objects as

>> OrganicNitrate2

00001 00000 00118

00001 00000 00356

00001 00000 00383

00001 00000 00588

00001 00000 00831

00001 00000 00992

2 GETTING STARTED TUTORIAL 8

00001 00000 01729

00001 00000 01817

00001 00000 02329

00001 00000 02475

00001 00000 02648

00001 00000 02813

The partid objects are displayed as 3 integers. Note arbitrary unique numbers are assigned as

identifiers by YAADA; the numbers may not exactly match those in your demonstration data

set. Subsets of partid objects can be selected using indices. For example display the first two

partid in OrganicNitrate2

>> OrganicNitrate2(1:2)

00001 00000 00118

00001 00000 00356

Sets of identifier objects can be combined using the Matlab set functions. To find parti-

cle that are either marine or organic/nitrate, combine the Marine and OrganicNitrate2 sets of

particles

>> MarineOrOrganicNitrate = union(Marine,OrganicNitrate2);

To find particle that are marine particles with an organic/nitrate coating, find particles with

both marine and organic/nitrate signatures as

>> MixedMarine = intersect(Marine,OrganicNitrate2);

For these small sets you can verify the logical operations by displaying the partids.

2.4 Plot Data

A few basic plotting programs are included in this version of YAADA. It is expected that users

will develop (and contribute) their own plots using the Matlab plotting functions and Handle

Graphics. Examples of publication quality plots generated with Matlab can be found in [6, 7].

A useful overview of an ATOFMS data set is obtained by plotting the frequency of hit and

missed particles. To make this plot for the demonstration period (comments follow “%”; you do

not need to type these).

>> figure; % open a new figure

2 GETTING STARTED TUTORIAL 9

06 12 18
0

1

2

3

4

5

6

01−Apr

P
ar

tic
le

 D
et

ec
tio

n
R

at
e

(H
z)

01−Apr

Hits (x 10)
Misses

Figure 3: Detection Rate for Hit and Missed Particles.

>> clf; % clear the new figure

>> plot_hit_miss(’TST’, 01-Apr-92 06:00, 01-Apr-92 18:00, 144)

This plots the frequency of hit and missed particles for instrument TST during April 1, 1992.

The first date is the start of the period, the second is the end of the period. The last parameter,

144, is the number of bins into which the time period is divided; in this case, 5 minute intervals.

The hit and missed particle plot shows that the demonstration data cover only a short

time in the morning (see Figure 3). The detection rate of missed particles is approximately

2 Hz and 25% of the particles are hit. A similar plot for a larger data set would reveal particle

concentrations and instrument performance.

To analyze many mass spectra, it is useful to aggregate the mass spectra and plot the

aggregate. The digital mass spectrum aggregates mass spectra by collecting for each integral

m/z value the fraction of spectra that have a peak [11]. Plot digital mass spectrum of the Marine

particles to see the aggregate mass spectrum as

>> figure; % open new figure

>> clf; % clear figure

>> digital_ms(Marine,1,200);

The peaks in the selection criterion, m/z = 23, 39, 81, and 83 Da, are present in nearly all the

3 DATA OBJECTS 10

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mass to Charge Ratio

F
re

qu
en

cy

Figure 4: Digital Mass Spectrum of “Marine” Particles

spectra as expected. The digital mass spectrum shows that many of the spectra also contain

distinctive peaks, for example Na2NO+3 (m/z = 108) and Na3SO+4 (m/z = 165).

This concludes the tutorial. The remaining chapters of this manual cover Data Objects,

Database Structure, Importing Data, and the Query Language. You should skim the chapters

on Data Objects and Database Structure since a basic understanding of these is need to effec-

tively use YAADA. You can skip the Importing Data chapter if you are working with an existing

database. The Query Language chapter is essential for the effective use of YAADA.

3 Data Objects

3.1 Identifier Object Classes

The identifier objects, instid, partid, specid, and peakid, uniquely identify elements of the

ATOFMS data. These objects have an inherent hierarchy which establishes relations between

the data elements. The identifier objects are composed of fields as shown in Table 1.

A single identifier object contains identifiers for one or more thing, i.e. a partid object

generally refers to a set of particles. We have already seen how run_query returns a set of

partids that match a search criterion. Identifier objects can also have null or empty values.

Null objects have fields set to 0; these should be used as place holders. Empty objects do not

3 DATA OBJECTS 11

Table 1: Identifier Objects

Object Parent Field
instid — instrument serial number (0–65535)
partid instid particle serial number (0–4,294,967,295)
specid partid polarity (0–1)
peakid specid peak serial number (0–65535)

Table 2: Column Object Structure

column.name name of column data
.desc description of column data
.units units of column data
.type type of data
.sorted true if data are sorted
.makeindex true if data are to be indexed
.renewindex true if index is out of date
.data column data
.index index to sorted column data

contain any data.

YAADA includes a suite of functions to create and manipulate the identifier objects; these

functions are called methods (see Section B.1). Objects lower in the hierarchy, called children,

inherit information from their parent object, e.g. each partid inherits its parent’s instid. Iden-

tifier object methods can be called with different object types, in this case, child objects are

promoted to match their parent object. Thus, if a set of particles and peaks are intersected, the

peakids are promoted to their parent partids, then the two sets of partids are intersected. This

intersection would return the set of particles from the original particle set which also contain

a peak in the peak set.

3.2 Column Object Class

Column objects contain one type of data, for example the aerodynamic diameter a particle. We

have already used column names like Da and Area to create search criteria. The column object

contains its own description and optional sorted index (see Table 2). Data stored in a column

can be of one of the types listed in Table 3. Time data are stored in the Matlab date format in

which dates are the number of days since 01-Jan-0000 (try help datenum for more explanation).

Integer date numbers correspond to midnight on that day. User-written objects, including the

identifier objects, are also valid data types.

4 DATABASE STRUCTURE 12

Table 3: Column Data Types

Data Type Description

time days since 01 Jan 0000, stored as double
single single precision floating point number
double double precision floating point number
boolean true (1) or false (0)
word character string without spaces, stored as a cell vec-

tor
text character string with spaces, stored as a cell vector
cell Matlab cell

Table 4: Data Tables

DATADEF Columns that make up the database structure
INST Data on instrument sampling conditions
PART Data on particles
SPEC Data on spectra
PEAK Data on peaks which make up spectra
CL_PART Chunk list for PART virtual table
CL_SPEC Chunk list for SPEC virtual table
CL_PEAK Chunk list for PEAK virtual table

3.3 Table Object Class

Data in YAADA are stored in tables which are organized into columns and rows. Each column

corresponds to a type of data, e.g. the aerodynamic diameter of particles; each row corresponds

to a single element in the database, e.g. a particle. Tables contain a column which uniquely

identifies each row; this is called a primary key. The primary keys are a convenient way to

extract data from tables. For the default data structure, the identifier objects are primary keys

of the respective tables.

4 Database Structure

Data in YAADA are stored as table objects. The default data structure contains eight tables

which are created by DATA_DEF and filled with imported data (see Table 4). These tables are

stored global variables, that is the information in these variables is available to any program.

4 DATABASE STRUCTURE 13

Table 5: Data Definition Table

Column Type Description

Table Word Name of table
Column Word Name of column
Desc Text Description of column data
Units Text Units of column data
Type Word Type of data
Sorted Boolean True if column is sorted
MakeIndex Boolean True if column is indexed
PrimaryKey Boolean True if column is table’s primary key

4.1 Data Definition Table (DATADEF)

A description of the database structure is stored in the DATADEF table. This table is saved in

the datadef.mat file in the study directory. Each study must have exactly one data definition.

The data definition can only be altered before the study data files are built.

4.2 Instrument Table (INST)

Instrument data describe the instrument conditions during a study or portion of a study (see

Table 6). Unique instrument operating conditions are assigned unique identifiers, instid. Phys-

ical instruments are designated with an InstCode, a code of three uppercase letters; only letters

(A–Z) are valid. Required columns are shown in bold. Columns generated by YAADA are shown

in bold italics. DaCalibFunction names a function to calculate aerodynamic diameter (Da) in

µm as a function of velocity (v) in m/s. The calibration functions distributed with YAADA are

described in Section B.4.1. The BusyTimeFunction names a function to calculate instrument

busy time, and hence actual on-line time (see Section B.10.1).

4.3 Particle Table (PART)

Many particles are detected by an instrument in an experiment, thus there is a many-to-one

relationship between particles and the instrument. The particle table includes data on all sized

particles, both hit and missed particles. Data on particles include their detection times and

terminal velocities (see Table 7). Required columns are shown in bold. Particles are uniquely

identified by partids which are assigned during data import. The maximum number of particles

for an instrument and operation mode is approximately 4× 109 (232 − 1).

4 DATABASE STRUCTURE 14

Table 6: Default Instrument Table.

Column Type Description

InstID Object Identifier for instrument operating condition
InstCode Word Three uppercase letter code for instrument
InstName Word Instrument name
InstDesc Text Instrument description. Include version, important adjust-

ments or changes to instrument
OpName Word Name of instrument operating condition
OpDesc Text Description of instrument operating condition
ExpName Word Experiment name
ExpDesc Text Experiment description
AvgLaserPower Double Average ionization laser power
DaCalibFunction Word Function to calculate Da from velocity
DaCalibParam Cell Parameters for Da calibration function
BusyTimeFunction Word Function to calculate time to process particle data
BusyTimeParam Cell Parameters for busy time function
SampleFlow Double Sample flow rate (m3s−1)
MinHeight Double Minimum signal height for peak identification
MinArea Double Minimum signal area for peak identification
PosDefaultZero Double Default zero level for positive mass spectra
NegDefaultZero Double Default zero level for negative mass spectra
PosDefaultVoltage Double Default voltage level for positive mass spectra
NegDefaultVoltage Double Default voltage level for negative mass spectra
PreprocDate Time Date of preprocessing
PreprocDesc Text Description of data preprocessing
LastPartID Object Last PartID written for instrument

Table 7: Default Particle Table

Column Type Description

PartID Object Particle identifier
Time Time Particle detection time
Velocity Double Particle velocity (m s−1)
Da Double Particle aerodynamic diameter (µm)
PositionInFolder Double Order in which particle spectrum saved
FastScatter Boolean True particle detected in fast scatter mode
Hit Boolean True if particle has an associated mass spectrum

4 DATABASE STRUCTURE 15

Table 8: Default Spectrum Table

Column Type Description

SpecID Object Spectrum identifier
Polarity Boolean True if positive spectrum
FileNameLength Double Length of file name in which spectra originally stored
AreaIntegral Double Area of all peaks in this spectrum
Noise Double Average noise of spectrum
BaseLine Double Baseline for TOFMS signal
FitVoltage Double Voltage level for TOFMS
FitZero Double Zero level for TOFMS

Table 9: Default Peak Table

Column Type Description

PeakID Object Peak identifier
MZ Double Mass to charge ratio at peak (Daltons)
Area Double Area of peak (arbitrary units)
RelArea Double Relative area of peak
Height Double Height of peak (arbitrary units)
Width Double Width of peak at half height (arbitrary units)
BlowScale Boolean True if peak exceed instrument dynamic range

4.4 Spectrum Table (SPEC)

Mass spectra are recorded for the hit particles. ATOFMS instruments can record both positive

and negative spectra for particles, thus a particle can have 0, 1 or 2 associated spectra. Spectra

are uniquely identified by specids. The spectrum table stores data that apply to a whole mass

spectrum (see Table 8). Required columns are shown in bold. These include how the data were

originally stored (FileNameLength), overall spectral data (AreaIntegral, Noise, BaseLine), and

how the spectral data were processed (FitVoltage, FitZero).

4.5 Peak Table (PEAK)

Each mass spectrum is composed of many peaks. The peak data include the mass/charge ratio,

area, width, and height (see Table 9). Required columns are shown in bold. Peaks are uniquely

identified by peakids which are assigned during data import. The maximum number of peaks

that can be assigned in a spectrum is 65535.

4 DATABASE STRUCTURE 16

4.6 Virtual Tables and Chunk Lists

Matlab is very efficient at processing objects that are stored in physical memory. However,

Matlab was not designed to store objects which are larger than a computer’s physical memory,

and cannot handle large data sets. Once physical memory is full Matlab uses virtual memory,

also known as disk swap space, and its performance deteriorates dramatically. Once physical

and virtual memory are full, Matlab aborts with an OUT OF MEMORY error.

YAADA stores large data tables as virtual tables which can be as large as a computer’s

available disk space. Virtual tables are split into chunks which are stored as separate files and

loaded into memory as needed. Only one chunk at a time is loaded for each virtual table. Like

ordinary tables, virtual tables are sorted on their primary key, e.g. particle identifiers. A chunk

must contain contiguous rows of a virtual table so that YAADA can locate and load the chunk

that contains data for a specific primary key. Since identifier objects for the same instrument

are assigned in order of acquisition time, the virtual tables and chunks are also sorted by time.

During normal use of YAADA, you need not worry about chunks and virtual tables since

functions like run_query, get_column, and get_spectrum load the necessary chunks as needed.

However, if you want to write programs that access chunks directly, you need to understand

the rest of this section.

YAADA contains three virtual tables PART, SPEC, and PEAK, each of which is typically 1 GB

or larger for a single study. The global variables PART, SPEC, and PEAK contain only the current

chunk of the larger virtual table. Thus a command like idx = find(PART(:,’Da’) > 2) finds only

particles larger than 2 µm in the current chunk. To find particles in the entire virtual table use

the run_query function discussed below.

Functions like run_query are optimized to load only chunks as needed. Programs that

access chunks directly should first call find_chunk to get a list of chunks that contain certain

identifier objects, or cover a time period. Next these functions should load each chunk, in turn

with load_chunk and process each chunk attempting to minimize the reloading of chunks.

Information about the chunks is stored in chunk lists tables. CL_PART, CL_SPEC, and CL_PEAK

are the chunk lists for their respective virtual tables. Chunk lists record the range of identifier

objects and acquisition times stored in each chunk (see Table 10).

4.7 Changing the Database Structure

This section has described the default YAADA database structure in detail. One can modify the

content of these tables by editing the data_def program before the study data files are built.

In this program, columns are defined with code that fills cells with information about each

5 DATA IMPORT 17

Table 10: Chunk List Structure

Column Description

First First identifier object in chunk
Last Last identifier object in chunk
Start Acquisition time of first identifier object in

chunk
Stop Acquisition time of last identifier object in

chunk
ChunkName Name of chunk file in study directory

column like

i = i + 1;

Table{i} = ’PART’;

Column{i} = ’Da’;

Desc{i} = ’Particle Aerodynamic Diameter’;

Units{i} = ’um’;

Type{i} = ’Double’;

Sorted{i} = 0;

MakeIndex(i) = 1;

PrimaryKey{i} = 0;

New columns can be added to the existing tables as needed. The YAADA import and query

packages expect some columns in the database; these are shown in bold in Tables 6, 7, 8,

and 9. Changes to or removal of these columns will require reprogramming of portions of

these packages. New tables can be added to store user data using the table class creation

methods. For example, the quant package creates new tables to store busy time data.

5 Data Import

This chapter describes the creation of a YAADA database from text files created by ATOFMS

instrument data acquisition software. If you have been given data in the PK2 format, skip to

Section 5.2. You can skip this chapter if you have been given a YAADA database stored in

Matlab (*.mat) data files.

Users can import data into YAADA from a number of text file formats. These preliminary

steps are common to all input data file formats:

5 DATA IMPORT 18

1. Create an empty directory where the database will be stored; make subdirectories for the

preprocessed, PK2, and final data files.

2. Initialize the database using the init script.

3. Create the PK2 files from the preprocessed data.

4. Create the final data from the PK2 files.

The last two steps can be automated using a program modeled on the make_demo script.

5.1 PK2 Creation

ATOFMS data are initially recorded by a data acquisition program. These raw data are then

analyzed to identify mass spectral peaks and otherwise process the data. There are a number

of data acquisition and preprocessing programs that are specific to ATOFMS instrument de-

signs. These programs write data in a number of different formats. The data acquisition and

preprocessing programs are not part of YAADA.

The preprocessed data are converted to the PK2 format using Matlab and Perl programs

included in YAADA. The PK2 format is a flexible data format from which YAADA reads data.

This file format is designed as a human-readable archival format which includes metadata to

describe the data in the file. The PK2 format is defined in Appendix C.2.

YAADA can create PK2 formatted data files from data files created by

• TasWare (1997 and 2000 versions), a data preprocesing program developed by Tas Dienes

• TSI data preprocesing programs

These data formats are briefly described below.

5.1.1 TasWare

TasWare is a data preprocesing program developed by Tas Dienes in Prof. Kim Prather’s group

at the University of California, Riverside. Hit particle data and their spectra are recorded in

files with the extension pkl. Missed particle data are recorded in file with the extensions sem

and sef. The formats of these files are described in pkl2pk2.pl.

The TasWare data files do not record instrument operating conditions, so the first step

to import TasWare data into YAADA is to create instrument data files. For each *.pkl file or

directory containing *.pkl files, create a text file with the extension .inst to store instrument

5 DATA IMPORT 19

data. These files have comment lines and data lines (see Section C.1). The comment lines begin

with %. There is one data line for each instrument data column in the form ColumnName =

Value. Note that InstID values are assigned by YAADA during import.

Raw data directories can contain one instrument file for the entire directory, or one instru-

ment file for each PKL file. If there is one instrument file in a directory, these data are copied

to every PK2 file and the base file name is arbitrary. If there one instrument file for each .pkl,

the base file name must match the PKL base file name.

Next, create a program to digest the raw data files with a program modeled after the

make_demo script in the main directory. Modify the program as described in the comments.

This program calls digest_tw97 or digest_tw00 which reads TasWare data files and writes PK2

files. It is convenient to keep TasWare files segregated in subdirectories by experiment. Di-

gest_* programs halt if an error is found in the raw data files. In this case fix the errors, and

restart the make_study program starting with the directory which contained the bad file. Some-

times make_study cannot be restarted, then redigest the data from the beginning by running

startup followed by make_study .

5.1.2 TSI Data Acquisition Software

Similar to TasWare. Use the program digest_tsi00 to digest the preprocessed data.

5.2 PK2 Digestion

The last step in database creation is to digest PK2 format data files. Create a program modeled

after the make_demo script in the main directory. Modify the program as described in the

comments and run the program. The make_study program creates data table chunks from

PK2 data files where Pk2Dir is the directory containing PK2 files. All files in Pk2Dir and its

subdirectories will be processed.

It is common for a few PK2 files to have errors which prevent incorporation of the data. Di-

gest_pk2 is designed so that these errors do not require that the entire database be redigested.

Digest_pk2 saves its important data to a file after each PK2 file is successfully digested. If an

error, typically an error during file loading, occurs, the user can fix the problematic PK2 file

and start the digestion process where it left off by calling digest_pk2 again. To discard inter-

mediate results and restart the digestion process, reinitialize the database with the init script,

then rerun make_study .

Once all the PK2 files are digested, run check_all to update and check the data. The updates

include calculation of the Da, Hit, AreaIntegral, and RelArea columns. The data checks verify

6 QUERY LANGUAGE 20

that identifiers are unique, chunks are contiguous, and that physical particles are unique in the

entire database. “Physical particles” are those with a unique combination of InstCode—Time—

Velocity. A small number of duplicate InstCode—Time—Velocity combinations are expected

since time and velocity data are discretized. Duplicate combinations of InstCode—Time—

Velocity can be ignored if they are not continuous and are less than 1% of the particles in

the database. Duplicate particle information is written to check_part.log in the temporary di-

rectory.

6 Query Language

6.1 Query Elements

You can find sets of instruments, particles, spectra, or peaks which match search criteria with

YAADA. The columns to search, search conditions, and combinations are written in the YAADA

query language. The elements of the language are column names, aggregation operators, rela-

tive operators, values, and set operators which users combine to define a query. An elementary

query is a column name, relative operator, and value. Every query must contain at least one

elementary query. For example, to find particles with aerodynamic diameter (Da) less than 1.0

µm, use the elementary query

Da < 1.0

where Da is the column name, < is the relative operator, and 1.0 is the value. The results of

elementary queries can be combined using set operators and parentheses. For example, to find

particles with Da less than 1.0 µm which also have mass spectral peaks near 23, use the query

Da < 1.0 and MZ = [22.5 23.5]

The remainder of this section discusses the query elements in detail.

6.1.1 Column Names

Most of the columns in the database are searchable directly. The exceptions are text, cell, and

object columns which are not searchable. Columns with single, double, and time type data can

be queried for relative and range matches. NaN, “not a number”, values in numeric columns

are ignored during query execution. Columns with word and logical data can be queried for

exact matches.

6 QUERY LANGUAGE 21

Table 11: Aggregation Operators

Operator Description

Count Number of rows matching m/z condition
Mean Mean of rows matching m/z condition
Median Median of rows matching m/z condition
Sum Sum of rows matching m/z condition
Min Minimum of rows matching m/z condition
Max Maximum of rows matching m/z condition

Columns in the PEAK table can also be queried using m/z conditions. The m/z condition is

given inside curly braces to further limit the search. For example Area{23} > 1000 finds any

peaks with both MZ in the range 22.5 to 23.5 and Area greater than 1000. Note that this is

equivalent to running the query mz = 23 and Area > 1000 to return peakids.

6.1.2 Aggregation Operators

Conditions in curly braces can match multiple rows in the PEAK table. With aggregation op-

erators you can collect peak data over a spectrum as part of a query. Aggregation operators

specify how to collect data in these rows into a single value for the parent spectrum. The

aggregated data are then compared with the search criterion (see Table 11). A common use

of the aggregation operators is to query spectral composition. For example, sum(Area{23}) >

1000 finds spectra with a large aggregate response in the range m/z = 22.5–23.5. This is a

more reliable way of querying spectral composition than the previous example because mass

spectral signals are occasionally split among multiple peaks with similar MZ values. For spectra

without any peaks of the selected m/z, the aggregated data are zeros.

6.1.3 Relative Operators

Relative operators connect the column and value in a search condition (see Table 12). All the

relative operators can be used for columns with time, single, or double type data. All the

relative operators also can be used for identifier object columns. Columns with boolean and

word data can only be queried using the == operator. Note that double equals sign requires an

exact match; there will likely be few if any matches to an exact query for floating point numbers

like Da == 1.00001.

Some relative operators are range operators like =[). Range operators expect two-element

vector values so that X =[) [A B] means “find particles with X between A and B”. This is equivalent

6 QUERY LANGUAGE 22

Table 12: Relative Operators

Operator Description

== Exact match
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
= [] X =[] [A B] is equivalent to X >= A and X <= B
= [) X =[) [A B] is equivalent to X >= A and X < B
= X = [A B] is equivalent to X >= A and X < B
= (] X =(] [A B] is equivalent to X > A and X <= B
= () X =() [A B] is equivalent to X > A and X < B

to X >= A AND X < B. MZ ranges may have one value so that MZ = A finds particles with MZ >=

A - 0.5 and MZ < A + 0.5. For MZ range criteria, the range is given by YAADA.DeltaMZ which

has a default value of 0.5.

6.1.4 Values

Values are generally numbers. Time values can be entered as numbers in Matlab time format or

as text. Time text can have the form DD-MMM-YYYY HH:MM:SS or DD-MMM-YY HH:MM:SS. For

example to search for particles detected in the morning of September 24, 1996, use the query

Time = [24-Sep-96 06:00:00 24-Sep-96 12:00:00]. This is equivalent to Time = [729292.25

729292.5]. False boolean values are entered as 0 or a word starting with “F” or “N”; all other

values are interpreted as true.

6.1.5 Set Operators

Elementary queries find sets of particles, these sets can be combined with set operators (see

Table 13). Set Operators are evaluated from left to right unless parentheses alter the operator

precedence.

6.2 Returned Identifiers

A table name can be given for the run_query function to specify the type of identifier returned.

The returned identifier objects are the primary key for the table, e.g. peakids are returned if

the table name is PEAK. If no table name is given, run_query returns partids.

6 QUERY LANGUAGE 23

Table 13: Set Operators

Operator Definition Description

and Intersection Objects in both sets
or Union Objects in either set
xor Exclusive Or Objects in either set, but not both sets
andnot Set Difference Objects in the first set that are not in the second set

YAADA converts the primary key of the searched table to the returned identifier objects.

For example, a search for partids based on data in the PEAK table would select peakids then

promote them to partids. For a search for peakids based on data in the PART table, run_query

selects partids then finds the child peakids. Note that promotion is a fast operation while

get_children is slow.

6.3 Query Optimization

There are often many ways to specify a query, some of which are significantly faster than

others. YAADA executes queries by loading each chunk into memory then finding the matches

for that chunk; this process is repeated for all the applicable chunks in a study. Loading chunks

consumes most of the time it takes to execute a query, so fast queries minimize the number of

chunks read into memory. For example, the following searches can be expressed equivalently

as

pid = run_query(’A > 1 and B > 2’);

or

pid1 = run_query(’A > 1’);

pid2 = run_query(’B > 2’);

pid = intersect(pid1,pid2);

These yield the same result. Execution of the more complex search is generally faster since

for the elementary queries, YAADA loads many of the same chunks for both queries. This

results in longer search times. Therefore, unless intermediate results of less complex queries

are useful, queries should be complex to reduce execution times. The main exception to this

recommendation is discussed next.

Recall that chunks contain data for one instid and that the data are sorted by time. Thus

YAADA will minimize the number of chunks loaded if the query includes an overall InstCode

6 QUERY LANGUAGE 24

and/or Time condition. The convention is to place the InstCode and Time conditions first in a

query like

InstCode == BST and Time = [23-Sep-96 12:00:00 23-Sep-96 16:00:00]

and Area{23} > 1000

For this query, YAADA will likely load only one PART chunk and one PEAK chunk to execute the

query. This substantially improves query execution times.

Note that the InstCode and Time conditions must apply to the entire query. If we replace

the second and in the previous query with or, then YAADA will have to load all of the PART

and PEAK chunks to execute

InstCode == BST and Time = [23-Sep-96 12:00:00 23-Sep-96 16:00:00]

or Area{23} > 1000

Similarly YAADA will load all the PART and PEAK chunks to execute

(InstCode == BST and Time = [23-Sep-96 12:00:00 23-Sep-96

16:00:00] and Area{23} > 1000) or \\

(InstCode == BST and Time = [23-Sep-96 16:00:00 23-Sep-96

20:00:00] and Area{23} > 1000)

This is because the InstCode and Time conditions only apply to part of the query. This query

will execute much faster if split it is into two queries and the results are combined with a union

operation.

REFERENCES 25

References

[1] E. E. Gard, J. E. Mayer, B. D. Morrical, T. Dienes, D. P. Fergenson, and K. A. Prather. Real-

time analysis of individual atmospheric aerosol-particles - design and performance of a

portable ATOFMS. Anal. Chem., 69:4083–4091, 1997.

[2] C. A. Noble and K. A. Prather. Real-time measurement of correlated size and composition

profiles of individual atmospheric aerosol particles. Environ. Sci. Technol., 30(9):2667–

2680, 1996.

[3] K. Salt, C. A. Noble, and K. A. Prather. Aerodynamic particle sizing versus light-scattering

intensity measurement as methods for real-time particle sizing coupled with time-of-flight

mass spectrometry. Anal. Chem., 68:230–234, 1996.

[4] E. E. Gard, M. J. Kleeman, D. S. Gross, L. S. Hughes, J. O. Allen, B. D. Morrical, D. P. Fergenson,

T. Dienes, M. E. Gälli, R. J. Johnson, G. R. Cass, and K. A. Prather. Direct observation of

heterogeneous chemistry in the atmosphere. Science, 279:1184–1187, 1998.

[5] L. S. Hughes, J. O. Allen, M. J. Kleeman, R. J. Johnson, G. R. Cass, E. E. Gard, D. S. Gross,

M. E. Gälli, B. D. Morrical, D. P. Fergenson, T. Dienes, C. A. Noble, D.-Y. Liu, P. J. Silva, and

K. A. Prather. The size and composition distribution of atmospheric particles in Southern

California. Environ. Sci. Technol., 33:3506–3515, 1999.

[6] L. S. Hughes, J. O. Allen, P. V. Bhave, M. J. Kleeman, G. R. Cass, D. Y. Liu, D. P. Fergenson,

B. D. Morrical, and K. A. Prather. Evolution of atmospheric particles along trajectories

crossing the Los Angeles basin. Environ. Sci. Technol., 34:3058–3068, 2000.

[7] J. O. Allen, D. P. Fergenson, E. E. Gard, B. D. Morrical, L. S. Hughes, M. J. Kleeman, D. S.

Gross, M. E. Gälli, K. A. Prather, and G. R. Cass. Particle detection efficiencies of aerosol time

of flight mass spectrometers under ambient sampling conditions. Environ. Sci. Technol.,

34:211–217, 2000.

[8] J. O. Allen, D. P. Fergenson, S. H. Pastor, L. S. Hughes, and K. A. Prather. Analysis and visu-

alization of single-particle mass spectral data using YAADA, an object-oriented software

toolkit. In preparation.

[9] N. J. Higham and D. J. Higham. Matlab Guide. Society for Industrial & Applied Mathematics,

2000.

[10] S. J. Chapman. MATLAB Programming for Engineers. Brooks/Cole, second edition, 2001.

REFERENCES 26

[11] D.-Y. Liu, R. J. Wenzel, and K. A. Prather. Aerosol time-of-flight mass spectrometry mea-

surements during the atlanta supersite experiment: Part 1. Submitted for publication in

J. Geophys. Res.

A INSTALLATION 27

A Installation

In order to run YAADA, you need Matlab (version 5.3 or later) and Perl (version 5.6 or later) pro-
grams installed on your computer. Matlab is available from the Mathworks (www.mathworks.com).
You can determine your version of Matlab with the command

>> ver

Perl is Open Source software available at (www.perl.com). You should also test the Perl
installation by running Perl at the Matlab prompt as

>> ! c:/perl/bin/perl -v

where c:/perl/bin is the Perl installation directory. If Perl is correctly installed, a message like

This is perl, v5.6.1 built for cygwin
(with 1 registered patch, see perl -V for more detail)

Copyright 1987-2000, Larry Wall

will be displayed.

1. Create a YAADA home directory (X :/yaada).

2. Unzip YAADA.zip in the home YAADA directory. These subdirectories will be created

X :/yaada/aerosol
X :/yaada/class
X :/yaada/contrib
X :/yaada/demo
X :/yaada/general
X :/yaada/import
X :/yaada/plot
X :/yaada/quant
X :/yaada/query
X :/yaada/user

Program files will be placed in the directory structure as documented in manifest.txt.

3. Initialize, make, and start the demo or other dataset as described in Section 2.1.

Patches are revised programs to fix bugs and extend the features of YAADA. To install
patches, replace obsolete program files with their new versions, The patch files, if any, are
located in the download site as separate files with the extension m. Be sure to copy the patch
files to the correct subdirectory (see manifest.txt).

http://www.mathworks.com
http://www.perl.com

B FUNCTION REFERENCE 28

B Function Reference

This Appendix describes the functions in the standard YAADA packages. Each function is listed
in its calling syntax followed by a description.

In this section, place holders are used for variables of different types; these are

bool boolean variable
col column object
id any identifier object
idx index to vector elements, column rows, or table rows
iid instrument identifier object
kid peak identifier object
num numeric variable
ph patch handle
pid particle identifier object
S structure for subscripted reference
sid spectrum identifier object
str string variable
tbl table object
x any type variable

B.1 Identifier Object Methods

The identifier objects, instid, partid, specid, and peakid, uniquely identify data elements. These
objects also have an inherent hierarchy which establish relations between data elements. The
identifier objects are composed of fields as:

Object Parent Field
instid — instrument serial number (0–65535)
partid instid particle serial number (0–4,294,967,295)
specid partid polarity (0–1)
peakid specid peak serial number (0–65535)

Most of the methods in this section are available for all the identifier objects. The main excep-
tions are the methods which create identifier objects; these are named instid, partid, specid,
peakid.

B.1.1 Object Creation

[iid] = instid (num)
[pid] = partid (iid,num)
[sid] = specid (pid,num)
[kid] = peakid (sid,num)

The preferred method to create an object or set of objects is to input the parent object and a

B FUNCTION REFERENCE 29

numeric vector. The numeric vector is the serial number or polarity of the new child object. N
children are created from the same parent object if one parent object and a vector of length N
are input.

The creation functions return a null object if called without parameters, e.g. partid. They return
an empty object if called with empty input, e.g. partid([]).

[iid] = instid (str)
[pid] = partid (str)
[sid] = specid (str)
[kid] = peakid (str)

Objects also can be created from character matrices which are 1, 3, 4, or 5 columns wide for
instid, partid, specid, and peakid, respectively. These formats are the same as those returned
by the char methods described below.

[iid] = instid (num)
[pid] = partid (num)
[sid] = specid (num)
[kid] = peakid (num)

Objects also can be created from numeric matrices which have 1, 2, 3, or 4 columns for instid,
partid, specid, and peakid, respectively. These formats are the same as those returned by the
double methods described below.

[iid] = instid (pid|sid|kid)
[pid] = partid (sid|kid)
[sid] = specid (kid)

Another way to create an object is to promote a child object to its parent object. This is the
preferred method to create an object from its children.

B.1.2 Type Conversion

[str] = char (id)

The char methods return a matrix of characters which are 1, 3, 4, or 5 columns wide for instid,
partid, specid, and peakid, respectively. The character representation of instid is one column of
instrument serial numbers. In the character representation of partid, the first column lists the
instrument serial numbers, the second and third columns list the particle serial numbers. The
particle serial numbers are the second column times 216 plus the third column. In the character
representation of specid, the first three columns are like those for partid and the fourth column
lists the polarities. In the character representation of peakid, the first four columns are like
those for specid and the fifth lists the peak serial numbers.

The character representations of identifier objects often include unprintable characters which
produce odd behavior, for example bell ringing, when displayed on a terminal. The character
representations can be thought of as 16 bit unsigned integer (uint16) representations. Charac-

B FUNCTION REFERENCE 30

ters are used instead of uint16 data because Matlab offers more built-in functions for character
data than uint16 data.

[num] = double (id)

The double methods return a matrix of numbers 1, 2, 3, or 4 columns wide for instid, partid,
specid, and peakid, respectively. The double representation of instid is a column vector of
instrument serial numbers. The double representation of partid is a matrix in which the first
column lists instrument serial numbers, and the second column lists the particle serial num-
bers. In the double representation of specid, the first two columns are like those for partid,
and the third column lists the polarities. In the double representation of peakid, the first three
columns are like those for specid, and the fourth lists the peak serial numbers.

B.1.3 Find Related Objects

[iid] = pid2iid (pid)
[iid] = sid2iid (sid)
[pid] = sid2pid (sid)
[iid] = kid2iid (kid)
[pid] = kid2pid (kid)
[sid] = kid2sid (kid)

These promotion methods convert an object to its parent object. Use of the creation methods,
instid, partid, and specid, is preferred over these methods since creation methods work with
any the child object type.

[id] = get_children (id,ChildType)

Finds all the objects of type ChildType that are related to a set of parent identifier objects.
Get_children searches the data tables for related objects since the identity of children is not
stored in objects. Therefore, this can be a much slower operation than the promotion methods,
especially for a parent object with a large number of children.

B.1.4 Set Operations

[id,idx,idx] = intersect (id,id,...)
[id,idx] = setdiff (id,id)
[id,idx,idx] = setxor (id,id)
[id,idx,idx] = union (id,id,...)
[idx] = ismember (id,id)

The set operations combine sets of identifier objects like the built-in Matlab functions. See the
Matlab functions of the same name for explanations of the returned indices. The intersect and
union methods can operate on more than 2 sets of identifier objects. In this case, the indices
are not meaningful and are not returned.

Different identifier object types can be combined with set operations. In this case, the child

B FUNCTION REFERENCE 31

object is promoted and the set operation returns a parent object.

[OutID,OutName] = combine (InID,InName,bool)

Combine creates combinations of identifier objects The input InID and InName are cell vectors
of set ids and names. Names must be unique. If InName is omitted, the sets are named ’A’
through ’Z’. The boolean variable is true for an exclusive combination; this defaults to true.

OutID is a nested cell vector of combined identifier objects. The first nested vector, OutID{1},
contain uncombined data sets. OutID{1}{1} contains the uncombined first data set (’A’). The
second nested vector, OutID{2} contains combinations of 2 data sets so that OutID{2}{1} contains
the combination of the first two data sets (’A-B’). Note that the vector lengths vary. OutName
contains names for the output sets in the same order as OutID. For exclusive combinations,
names are concatenated with ’-’; single data sets are given a suffix ’-’; examples are ’A-B-C’, ’A-’.
For inclusive combinations, names are concatenated with ’+’; single data sets are given a suffix
’+’; examples are ’A+B+C’, ’A+’.

B.1.5 Relational Operations

Function Definition Symbolic Equivalent
[bool] = eq (id,id) id == id
[bool] = ge (id,id) id >= id
[bool] = gt (id,id) id > id
[bool] = le (id,id) id <= id
[bool] = lt (id,id) id < id
[bool] = ne (id,id) id = id

Relational operator methods compare two identifier objects and return a boolean vector. These
operators are commonly called symbolically, e.g. pid1 >= pid2 is equivalent to ge(pid1,pid2).

Comparisons are made first between parent objects. Thus, a comparison of two peakids tests
the instrument serial numbers, particle serial numbers, polarities, then peak serial numbers in
sequence.

Sets of objects can be compared; in this case the compared objects must either have the same
length, or one of the objects must have unit length. The returned boolean vector has the same
length as the the longest object.

Different identifier object types can be compared. In this case, the child object is promoted
before comparison.

B.1.6 Arithmetic Operations

Function Definition Symbolic Equivalent
[id] = plus (id,num) id = id + num
[id] = minus (id,num) id = id − num

Arithmetic operator methods add (subtract) integers to (from) the serial numbers in identifier

B FUNCTION REFERENCE 32

objects. Overflow (underflow) operations generate warnings and the serial number is set to the
maximum value (zero). These operators are commonly called symbolically, e.g. pid2 = pid1 +
N.

Arithmetic operations are not defined for specid since addition to (subtraction from) polarity
is not meaningful.

B.1.7 Display

display (id)

Display shows identifier objects as columns of 16 bit unsigned integers.

[num] = length (id)

Length returns the number of objects in a set.

[num] = end (id)

End returns the number of objects in a set as part of an indexed reference. For example pid1
= pid1(2:end) removes the first object from pid1.

B.1.8 Sorting and Combining

[id,idx] = sort (id)
[id,idx,idx] = unique (id)

Sort returns identifier objects in ascending order; objects are sorted in parent–child order.
Unique returns identifier objects in ascending order with no repetitions. The original indices
of the sorted sets are returned. See the Matlab functions of the same name for explanations of
the returned indices.

[id] = clone (id,num)

Clone creates num duplicate objects from one identifier.

[id] = merge (id,id)

Merge combines objects. The merged object is not sorted and may contain duplicates.

B.1.9 Subscript Referencing

[x] = subsref (id,S)

Subscript reference methods return object data using a format similar to that used to retrieve
structure elements in Matlab. For example pid1(1:5) returns the first five particle identifiers in
the set. The parameter S specifies how the object is referenced and is created by Matlab (see
Matlab documentation on object methods for details on S).

B FUNCTION REFERENCE 33

Identifier objects can be referenced by subscripts in three ways:

• id2 = id1(idx)

• id2 = id1(idx).ParentName

• num = id1(idx).SerialName

In the first case, objects of the original type are returned for the matching indices. In the second
case parent objects are returned for the matching indices. In the third case serial numbers or
polarity values are returned for the matching indices.

[id] = subsasgn (id,S,x)

Identifier objects also can be assigned by subscripts in three ways:

• id2(idx) = id1

• id2(idx).ParentName = id1

• id2(idx).SerialName = num

In the first case, assigned objects are of the original type. In the second case parent objects are
assigned. In the third case serial numbers or polarity values are assigned.

B.2 Column Methods

Column objects contain one type of data, for example the aerodynamic size of particles. The
column object contains its own description and optional sorting index. Column objects have
the structure shown in Table 2. Data can be of one of the types shown in Table 3. User-written
objects, including the identifier objects, are also valid data types.

B.2.1 Column Creation

[col] = column (ColumnName,Description,Units,Type,MakeIndex,Data)

Creates a column object with the given name, description, units, and type. ColumnName and
Type are words. Description and Units are text. MakeIndex is a boolean; it is true if the column
will be indexed. Data is a vector of data.

B.2.2 Display

display (col)

Displays a summary of column contents in the form

B FUNCTION REFERENCE 34

Column: ColumnName, Description (Units)
Type: Type
Rows: num

[num] = numrow (col)

Returns the number of rows of data in the column.

B.2.3 Sorting and Combining

[col] = sort (col)

Sort returns the column with its index updated if MakeIndex is true.

[col] = merge (col,col)

Combines two columns into one. The merged data are concatenated from the first and second
input columns, with data from the first input column coming first. The names, descriptions,
units, types of the input columns must match.

[col] = split (col,idx)

Returns a column with data from the the referenced rows of the original column. Note that
split returns a column object while subsref (see B.2.4) returns data from the column.

B.2.4 Subscripted Referencing

[x] = subsref (col,S)

Subscript reference methods return column data using a format similar to that used to retrieve
structure elements in Matlab. The parameter S specifies how the object is referenced and is
created by Matlab (see Matlab documentation on object methods for details on S).

Column objects can be referenced by subscripts in two ways:

• x = col.FieldName

• x = col(idx)

Use the first form to retrieve any of the non-data fields like units. Use the second form to
retrieve a range of data given by the row indices. Note that the second form returns data from
the column, not a column object.

[x] = subsasgn (col,S,x)

Column objects can be assigned by subscripts in two ways:

• col.FieldName = x

B FUNCTION REFERENCE 35

Table 14: Table Object Structure

table.name name of table
.rowsize size of a row in bytes
.collist list of column names in cell vector of words
.primarykey name of primary key column
.column cell vector of column objects

• col(idx) = x

Use the first form to assign any of the non-data fields. Use the second form to assign a range
of data given by the row indices. The assigned data must have the same number of elements
as there are row indices; or have one element, in which case that element is assigned to all the
rows.

[idx] = search (ColumnName,RelOp,Limit)

Search finds data in column which match a condition. RelOp is a relative or range operator
(see Table 12). Limit is the limit (range) to search for. Limit should be a scalar for relative
operator searches; a 2 element vector for range searches. Search uses the sorted column index
if available.

B.3 Table Methods

Table objects contain complex data in rows and columns. Table objects are composed of a num-
ber of column objects which have the same number of rows. Table objects have the structure
shown in Table 14.

B.3.1 Table Creation

[tbl] = table (TableName)
[tbl] = table (TableName,Column1,Column2,...)

A new table is created with TableName optionally followed by column objects.

[tbl] = table (tbl,Column1,Column2,...)

Call table with a table object followed by one or more column objects to add columns to an
existing table.

B.3.2 Display

display (tbl)

Displays a summary of table contents in the form

B FUNCTION REFERENCE 36

Table TableName, num rows
ColumnName1
ColumnName2
...
ColumnNameN

[num] = numrow (tbl)

Returns the number of rows of data in the table.

[num] = fieldcount (tbl)

Fieldcount returns the number of fields including column objects in the table object.

B.3.3 Sorting and Combining

[tbl] = sort (tbl)

Data in all columns are sorted by the primary key. Sort indices are updated for other columns
if the column’s MakeIndex is true.

[tbl] = merge (tbl,tbl)

Combines two tables into one. The merged data are concatenated from the first and second
input tables, with data from the first input table coming first. The row size, primary key, and
column objects of the input tables must match. The output table inherits the name from the
first input table.

[tbl] = split (tbl,idx)

Returns a table with data from the the referenced rows of the original table. Note that split
returns a table object with the same structure as the input table.

B.3.4 Subscripted Referencing

[x] = subsref (tbl,S)

Subscript reference methods return table data using a format similar to that used to retrieve
structure elements in Matlab. The parameter S specifies how the object is referenced and is
created by Matlab (see Matlab documentation on object methods for details on S).

Table objects can be referenced by subscripts in these ways:

• x = Table.FieldName

• tbl = Table({’ColumnName1’,’ColumnName2’ ...})

• tbl = Table(idx,{’ColumnName1’,’ColumnName2’ ...})

• col = Table.ColumnName

B FUNCTION REFERENCE 37

• col = Table(’ColumnName’)

• x = Table(idx).ColumnName

• x = Table(idx,’ColumnName’)

Use the first form to retrieve any of the non-data fields like collist. For the other forms, the
type of object returned depends on what was specified. The returned object types are:

Table object is returned when multiple columns are specified. The returned table contains
only the rows and columns specified. If rows were not specified, all rows of the original
table are included. The new table’s name is temp.

Column object is returned when a single column is specified and no rows are specified.

Data vector is returned when a single column and a row range are specified.

[x] = subsasgn (tbl,S,x)

Table objects also can be assigned by subscripts in these ways:

• Table.FieldName = x

• Table(idx).ColumnName = x

• Table(idx,’ColumnName’) = x

Use the first form to assign any of the non-data fields like collist. Use the other forms to assign
a data vector to rows in a column.

B.4 Aerosol Calculations

B.4.1 Particle Size Calibration

[Da] = da_log (Coef,Velocity)

Calculates aerodynamic diameter from measured velocity using a logarithmic calibration func-
tion. Coef is a vector of logarithmic coefficients and calibration limits in the form

Coef = [a b Min Max] .

Velocity is a vector of particle velocities in m/s. Da is a vector of particle aerodynamic diameters
in µm. Da is calculated as

Da = a∗ exp(b ∗ Velocity)

for Min <= Velocity < Max . Da is set to NaN if Velocity is outside of the calibration range.

[Da] = da_noz (Coef,Velocity)

B FUNCTION REFERENCE 38

Calculates aerodynamic diameter from measured velocity using a mixed logarithmic and poly-
nomial calibration function. Coef is a vector of coefficients and calibration limits in the form

Coef = [C(1) C(2) …C(N+1) C(N+2) C(N+3) Min Max]

where N is the order of the polynomial. Velocity is a vector of particle velocities in m/s. Da is
a vector of particle aerodynamic diameters in µm. Da is calculated as

Da = C(1)+ C(2)∗ v + C(3)∗ v2...+ C(N + 1)∗ vN + C(N + 2)∗ exp(C(N + 3)∗ v)

for Min <= Velocity < Max . Da is set to NaN if Velocity is outside of the calibration range.

[Da] = da_poly (Coef,Velocity)

Calculates aerodynamic diameter from measured velocity using a polynomial calibration func-
tion. Coef is a vector of coefficients and calibration limits in the form

Coef = [C(1) C(2) …C(N+1) Min Max]

where N is the order of the polynomial. Velocity is a vector of particle velocities in m/s. Da is
a vector of particle aerodynamic diameters in µm. Da is calculated as

Da = C(1)∗ vN + C(2)∗ v(N−1) + ...C(N + 1)

for Min <= Velocity <Max . Da is set to NaN if Velocity is outside of the calibration range. Note
that the order of coefficients in da_noz and da_poly are reversed.

B.4.2 Particle Size Conversion

[Dp] = da2dp (Da,SpecGrav,Lambda)

Converts aerodynamic to physical diameter. Da is particle aerodynamic diameter in µm. Spec-
Grav is the specific gravity. Lambda is the mean free path in µm. Dp is the physical diameter
in µm. This function assumes spherically shaped particles. Lambda is optional and defaults to
the value for air at standard temperature and pressure, 0.0651 µm.

[Dp] = da2dp_lookup (Da,SpecGrav,Lambda)

Converts aerodynamic to physical diameter using a lookup table. Variables are the same as
those in da2dp. This function uses a lookup table with interpolation in Da and SpecGrav . Dp
values are accurate to better than 10−5 relative to the precisely calculated values. The function
is more efficient than da2dp and should be used for a large number of inputs. The lookup table
is created when this function is first called and stored in YAADA.YAADADir as da2dptable.mat.

[Da] = dp2da (Dp,SpecGrav,Lambda)

Converts physical to aerodynamic diameter. Dp is particle physical diameter in µm. SpecGrav
is the specific gravity. Lambda is the mean free path in µm. Da is the aerodynamic diameter
in µm. This function assumes spherically shaped particles. Lambda is optional and defaults to

B FUNCTION REFERENCE 39

Table 15: Preprocessed data files
File Extension Content
.inst instrument operating conditions
.pkl hit particle size and mass spectral data
.sem missed particle size data
.sef particle size data acquired during fast scatter mode

the value for air at STP, 0.0651 µm.

[Da] = dp2da_lookup (Dp,SpecGrav,Lambda)

Converts physical to aerodynamic diameter using a lookup table. Variables are the same as
those in dp2da. This function uses a lookup table with interpolation in Dp and SpecGrav .
Da values are accurate to better than 10−5 relative to the precisely calculated values. The
function is more efficient than dp2da and should be used for a large number of inputs. The
lookup table is is created when this function is first called and stored in YAADA.YAADADir as
dp2datable.mat.

B.5 Database Structure and Import

B.5.1 Database Definition

data_def

Creates an empty database from a data definition. Each study must have exactly one data
definition. The data definition can only be altered before the study data files are built.

The data definition is stored in the table (DATADEF) which describes itself and the other tables
(see Table 5). Empty tables in the database are generated from the descriptions in DATADEF by
data_def. DATADEF and the empty data tables are stored in datadef.mat in the current study
directory (YAADA.StudyDir).

B.5.2 Conversion of Raw Data to PK2 Format

digest_tw97 (PklDir,Pk2Dir)
digest_tw00 (PklDir,Pk2Dir)
digest_tsi00 (PklDir,Pk2Dir)

Converts preprocessed data files created by the data acquisition software. Digest_tw97 and
digest_tw00 processes data files generated by UCR data acquisition software by Tas Dienes
(TasWare) to the PK2 format. digest_tsi00 processes data files generated by the the 2000 version
of TSI, Inc., data acquisition software (see Table 15).

All files in PklDir directory and its subdirectories are processed. Raw data directories can
contain one instrument file for the entire directory, or one instrument file for each .pkl file. If
there is one instrument file in a directory, these data are copied to every .pk2 file and the base

B FUNCTION REFERENCE 40

file name is arbitrary. If there is one instrument file for each .pkl, the base file name (prefix)
must match the .pkl base file name.

PK2 format files are written in the Pk2Dir directory. These files are named in the form IIIYYYYM-
MDDHHMMSS.pk2 where the first three letters are the instrument code and the remainder is
the time of the first particle in the PK2 file.

The bulk of the data manipulation for these programs are done by the Perl scripts tw97.pl,
tw00.pl, and tsi00.pl.

B.5.3 Data Importation and Verification

digest_pk2 (Pk2Dir)

Creates data table chunks from PK2 data files where Pk2Dir is the directory containing PK2
files. All files in Pk2Dir and its subdirectories will be processed.

It is common for a few PK2 files to have errors which prevent incorporation of the data. Di-
gest_pk2 is designed so that these errors do not require that the entire database be redigested.
Digest_pk2 saves its important data to a file after each PK2 file is successfully digested. If an
error, typically an error during file loading, occurs, the user can fix the problematic PK2 file
and restart the digestion process where it left off by calling digest_pk2 again. To discard the
intermediate results and restart the digestion process, reinitialize the database with init, then
run digest_pk2.

Digest_pk2 calls the Perl script pk2split.pl to split PK2 format data files to smaller files which
are conveniently read by Matlab. The PK2 file is split into these files in the temporary directory

File Name Content
table.tmp data format
inst.tmp instrument data
part.tmp particle data
spec.tmp spectral data
peak.tmp peak data

The table.tmp and inst.tmp files have lines with the same format as the PK2 file. The part.tmp,
spec.tmp, and peak.tmp files are matrices of numbers which Matlab reads quickly. The tempo-
rary files are deleted when digest_pk2 exits.

[DataDef] = parse_table (TableFile)

Reads text file of table data (TableFile) which has 2 types of lines

• comments that start with %

• table definition lines with the form TableName: ColumnName1 ... ColumnNameN

DataDef is a cell matrix with rows in the form {TableName {Column1Name, Column2Name
...}}. Note that DataDef is a cell matrix and DATADEF is a table object; these contain similar
information in different forms.

B FUNCTION REFERENCE 41

[[iid,bool]] = parse_inst (DataDef,InstFile)

Reads text file of instrument data and updates the instrument table (INST). DataDef is a cell
matrix output by parse_table; this is currently ignored. InstFile is a text file with instrument
data; it has 2 types of lines

• comments that start with %

• data lines with the form Column = Value

Every PK2 file has instrument data; since many PK2 files have the same instrument data, a new
instrument is added only when data in the InstFile differs from the last instrument. Parse_inst
returns the current instid and true if a new instrument was added.

parse_part (DataDef,PartFile,SpecFile,PeakFile,iid)

Reads data in the format of the DataDef cell matrix from files with particle (PartFile), spectral
(SpecFile), and peak (PeakFile) data. The data files are uncommented tables of numbers which
can be read into Matlab quickly. The PartFile columns are in the order given by DataDef with
these additions:

• the lines start with the particle serial number

• times are expanded into separate columns for year, month, day, hour, minute, and second

The SpecFile columns are in the order given by DataDef with the addition that lines start with
the particle serial number. The PeakFile columns are in the order given by DataDef with the
addition that lines start with the particle serial number.

Parse_part adds new data to the PART, SPEC, PEAK tables in memory. It then calls split_chunk
to save parts of these tables to chunk files.

split_chunk (CloseChunk)

Splits tables into chunks and saves them to files. New chunks are created when the table
in memory exceeds the recommended chunk size (YAADA.ChunkSize). New chunks are also
created for new instruments. SPEC and PEAK chunks are split so that data for a single particle
are not split between two chunks. If CloseChunk is true then all data in the tables in memory
are written as chunks, including remainders of tables that are smaller than YAADA.ChunkSize.

resort (tbl)

Sorts all tables in a chunk list table (tbl).

update_da

Calculates Da from Velocity data for all PART chunks.

update_hit

B FUNCTION REFERENCE 42

Determines if particles were hit from spectral data and updates the Hit column. This is done
for all PART chunks.

update_area

Calculates AreaIntegral in all SPEC chunks. Also calculates RelArea in all PEAK chunks.

B.5.4 Data Integrity Checks

check_all

Runs check_chunk, check_id, and check_part to check the integrity of the entire database.

check_chunk (tbl)

Checks the contents of chunk list table (tbl) pointers and reports these errors:

• Overlapping primary keys in a chunk list entry

• Overlapping primary keys between chunk list entries

• Mismatched primary keys between a chunk list entry and related chunk

• Mismatched times between a chunk list entry and related chunk

check_id (tbl)

Checks that identifier objects are unique within each chunk. Running the combination of
check_chunk and then check_id tests if identifier objects are unique in the entire database.

check_part

Checks that physical particles are unique in the entire database. “Physical particles” are those
with a unique combination of InstCode—Time—Velocity. A small number of duplicate InstCode—
Time—Velocity combinations are expected since time and velocity data are discretized. Dupli-
cate combinations of InstCode—Time—Velocity can be ignored if they are not continuous and
are less than 1% of the particles in the database.

B.6 Chunk Handling

[ChunkName] = find_chunk (TableName,id)
[ChunkName] = find_chunk (TableName,InstCode,Start,Stop)

Finds chunks for a virtual table that contain specific data. Chunk names are returned as a cell
vector. The first form returns chunk names for the virtual table TableName and are related
to the identifier objects in id. The second form returns chunk names related to an instrument
code (InstCode) and time range (Start and Stop). Time limits can be omitted or given as NaN to
ignore a limit.

B FUNCTION REFERENCE 43

load_chunk (ChunkName,TableName)

Reads a chunk of data from a file (ChunkName) and stores it in global variables. If a TableName
is given, the chunk is loaded into the table global variable (PART, SPEC, or PEAK). The chunk is
not loaded from disk if it is already in the table variable. If the chunk is loaded from disk, the
chunk is also stored in CHUNK.

If a TableName is not given, the chunk is loaded into the CHUNK global variable. The chunk
is not loaded from disk if it is already in CHUNK. CHUNK is a generic “register” to hold the
latest loaded chunk. Functions which do not know or care about the table which owns a chunk
should call load_chunk without a table name.

The currently opened chunks are stored in YAADA.OpenChunk. Load_chunk reads and updates
this information. For this reason chunks should not be loaded with the Matlab load function.

B.7 Query Processing

[id] = run_query (QueryText,TableName,Verbose)

Finds identifiers which match a query. QueryText is the search criteria which is parsed by
parse_query; see parse_query for a description of query syntax. TableName is the table whose
primary key id objects are returned. TableName is optional and defaults to PART. If Verbose
is set, the elapsed time and number of matches are shown after the query has been executed.
Verbose defaults to YAADA.Verbose if omitted.

[QueryCell] = parse_query (Query,TableName)

Parses a query and returns a nested cell. Queries are text strings with elementary queries joined
by set operators. The elementary queries are made of

• Column Name

• Relational or Range Operator

• Value

Column Names specify the type of data to search, valid column names are listed in DATADEF.
Valid relational operators are:

== Equal to
<, > Less than, greater than
<=, >= Less than or equal to, greater than or equal to

Valid Range Operators are:

=[] Min <= X <= Max
= Min <= X < Max
=[) Min <= X < Max
=(] Min < X <= Max
=() Min < X < Max

B FUNCTION REFERENCE 44

Note that = is shorthand for =[). Values are scalars for relational operators and two element
vectors for range operators.

Set operators are used to combine elementary searches. Valid set operators are

and intersection
andnot set difference
or union
xor exclusive or

Set operators are evaluated from left to right unless parentheses alter the operator precedence.

Additional search criteria are available to search for peak data within a spectrum. These are
described in parse_column.

[AggOp,ColumnName,RowCond] = parse_column (ColumnQuery)

Parses a complex column in a query. Columns can include optional aggregation operations and
conditions in one of these forms

• ColumnName

• ColumnName {RowCondition}

• AggOp(ColumnName)

• AggOp(ColumnName {RowCondition})

Row conditions and aggregation operations are applicable only for peak data within a spectrum.
These are

• Mass-to charge (m/z) conditions

• Aggregation operators

• Relative comparisons

Peak m/z conditions are given in curly braces directly after the column name, e.g. Area{23} >
100 searches for peaks at m/z = 23 with areas greater than 100. The m/z criterion may be
a range of two numbers or a single number. In the case of a single number, the range is the
number +/- YAADA.DeltaMZ. The default value of YAADA.DeltaMZ is 0.5.

Aggregation operations condense data from multiple rows into one value (see Table 11).

[QueryText] = disp_query (QueryCell)

Displays a parsed query in the order the query will be run.

B.8 Data Retrieval

[ColData1,ColData2...] = get_column (id,ColName1,ColName2...)

B FUNCTION REFERENCE 45

Returns data from a virtual table for a set of identifier objects, id , which are the primary keys
for a table. Data from columns in the table, ColName1,ColName2..., are returned in vectors
ColData1,ColData2.... The columns must all be in a table which has id as its primary key.
Get_column returns NaN for identifier objects not found in the data table.

[Spectrum] = get_spectrum (pid,Polarity,ColList)

Returns spectra for particles in the pid set. Spectrum is a cell vector with one element for each
particle, i , in this format:

Spectrum{i,1} PeakID
Spectrum{i,2} MZ

Additional columns contain data from columns in ColList. ColList is optional and defaults to
{’Area’,’RelArea’,’Height’,’Width’, ’BlowScale’}. So the default cell matrix has the form

Spectrum{i,1} PeakID
Spectrum{i,2} MZ
Spectrum{i,3} Area
Spectrum{i,4} RelArea
Spectrum{i,5} Height
Spectrum{i,6} Width
Spectrum{i,7} BlowScale

The contents of each element are vectors with one element for each peak in the spectrum. The
vectors are empty for particles which do not have a spectrum of Polarity . Note that the lengths
of these vectors differ among the particles.

[NegResponse,PosResponse] = get_int_spectrum (pid,MaxMZ,ResponseType,Polarity,AggOp)

Returns table of responses at integral m/z for particle identifiers. NegArea and PosArea are
matrices of peak areas aggregated using AggOp for integral negative and positive m/z values.
MaxMZ is the upper (lower) limit of m/z range; the PosResponse columns span m/z = 1 to
MaxMZ , the NegResponse columns span m/z = -1 to -MaxMZ . MaxMZ is optional and defaults
to 350. ResponseType can be any column in PEAK; this is optional and defaults to Area. Polarity
specifies the spectrum polarity as

0 negative spectra
1 positive spectra
2 negative and positive spectra (default)

AggOp specifies how to combine multiple peaks with the same integral m/z value. Valid Ag-
gOps are COUNT, MEAN, MEDIAN, SUM , MIN, MAX. AggOp is optional and defaults to SUM.

The rows of NegResponse and PosResponse match the particles in pid . For example Response-
Type Area and AggOp SUM, PosResponse(1,23) is the sum of areas of peaks withm/z = 22.5-23.5
for the first particle in pid . All the rows of the area tables are zeros for missed particles.

[OutID,OutIDIdx,IDCount,BinCut,BinMid] = bin_on_column (InID, ColumnName,Start,Stop,NumBin,Scale)

Bins set of identifiers based on column data. InID is a set of identifier objects. ColumnName is

B FUNCTION REFERENCE 46

the name of the column on which to bin the InID set. The column must be from a table whose
primary key is the same type as InID. Data are collected into NumBin bins which begin at Start
and end at Stop. The bins have uniform widths on a linear or logarithmic scale, specified with
Scale as lin or log. Scale is optional and defaults to linear. Bin_on_column can also be called
with a vector of column bin divisions given specifically in Start; in this case Stop, NumBin, and
Scale are ignored.

OutID is a cell array, each cell contains the IDs for a bin. OutIDIdx is a cell array, each cell
contains pointers from the binned identifier objects to the original InID set. IDCount is a vector
of identifier object counts in each bin. BinCut is a vector of bin divisions. Note, there are N+1
bin divisions. BinMid is a vector of bin midpoints.

B.9 Plot Formats

Abbreviated documentation of the plotting programs are presented here. Use help Function-
Name to view more complete documentation online.

B.9.1 Plots

digital_ms (PartID,Polarity,MinPeakArea,PeakMZRange,ResponseType)

Digital_ms draws a digital mass spectrum.

[lh,eh] = lundgren (DaCut,conc,err,linestyle,limits)

Lundgren plots aerosol distribution versus log(Da).

[lh] = lundlog (DaCut,conc,linestyle,limits)

Lundlong plots log aerosol distribution versus log(Da).

[ph] = Lundstack (DaCut,conc,color,style,numlines,limit)

Lundstack plots data in stacked Lundgren plot.

msview

Interactively displays particles and mass spectra.

plot_hit_miss

Plots frequency of hit and missed particles versus time.

[ph] = timestack (Start,Stop,Conc,Color,Style,NumLines,Limit)

Plots stacked time series data.

B FUNCTION REFERENCE 47

B.9.2 Crosshatching

[ph] = xhatch (xx,yy,pattern,numlines)

Draws a black and white pattern of lines or dots in a rectangle.

[xh] = xhatch_bar (xx,style,numlines)

Plots a stacked bar graph with patches instead of colors.

[lh] = xhatch_legend (pattern,numlines,desc,pos)

Makes legend for xhatch plots.

B.9.3 Plot Formatting

set_font

Sets default font and font size for plots.

[th] = text_rel (relx,rely,words)

Places text on current axes at a relative position.

[th] = xlabel_timedate (NewLim, ShowDates, Offset, FontName, FontSize)

Labels current figure x axis with dates and times.

B.10 Quantitative Comparison

The quantitative comparison package is under development. Only the instrument busy time
function is included in this release.

B.10.1 Instrument Busy Time

[BusyTime] = busy_time (InstID,Start,Stop,NumBin)

Busy_time calculates instrument busy time in days from NumSized, the number of particles
sized in a period, NumHit, the number of particles hit in a period, and AvgPosInFolder, the av-
erage PositionInFolder for the hit particles. Note that hit particles are counted in both NumSized
and NumHit.

BusyTime = a∗ NumSized+ b ∗ NumHit+ c ∗ NumHit∗ AvgPosInFolder

B FUNCTION REFERENCE 48

B.11 General Functions

B.11.1 Search

[Idx] = binary_search (X,RelOp,Limit)

Finds rows in sorted array which match a condition. X can be a matrix of numbers, a vector
of id objects, or a column vector sorted in ascending order. If X is a matrix, comparisons are
made on rows. RelOp is a relational operator <, <=, >, >=, ==. Limit is the minimum (maximum)
value to search for.

[Idx] = search (X,RelOp,Limit)

Finds elements in a vector which match a condition. X can be a vector of numbers or id objects.
RelOp can be a valid relative or range operator (see Table 12). Limit is the limit (range) to
search for. Limit should be a scalar for relative operator searches; a 2 element vector for range
searches.

[Idx] = range_search (X,RangeOp,Limit)

Finds rows in sorted array which match a range condition. X can be a matrix of numbers, a
vector of id objects, or a column vector sorted in ascending order. If X is a matrix, comparisons
are made on rows. RangeOp is a valid range operator (see Table 12). Limit is a 2 element vector
with the minimum and maximum values to search for.

B.11.2 Row-wise Matrix Comparison

[Truth] = eqrow (A,B)
[Truth] = nerow (A,B)
[Truth] = gerow (A,B)
[Truth] = gtrow (A,B)
[Truth] = lerow (A,B)
[Truth] = ltrow (A,B)

These functions compare the rows of matrices A and B. A and B must have the same number
of columns. A and B must have an equal number of rows, or one must have only one row.
Leftmost columns are the most significant in the comparison, so for

A = [1 2; 3 4; 5 6; 7 8]
B = [1 2; 4 3; 5 7; 7 7]
Truth = ltrow(A,B);

returns Truth = [0; 1; 1; 0]. Truth is a vector with the same number of rows as A and B.

B.11.3 String Operations

[Pos] = findword (String,Word)

B FUNCTION REFERENCE 49

Finds a whole word within a string. Words are bounded by white space or the beginning and
ending of the string. Pos is the position of the start of the word in the string.

[PartCell] = get_part_str (pid)

Create a cell vector describing a set of partids. PartCell is a cell vector of strings, one for each
particle in the form

III DD-MMM-YYYY HH:MM:SS DD.DD

where III is the InstCode, DD-MMM-YYYY is the date, HH:MM:SS is the time, and DD.DD is the
aerodynamic diameter in µm.

[String] = trim (String)

Removes leading and trailing blanks from a string.

B.11.4 NaN Operations

[x] = maxnan (x)
[x] = meannan (x)
[x] = mediannan (x)
[x] = minnan (x)
[x] = sortnan (x)
[x] = sumnan (x)

These functions perform operations on vectors ignoring NaN values. Note that similar functions
with names like nanmax are available in the Matlab Statistics Toolkit.

B.11.5 Type Identification

[x] = isdigit (bool)

True if x is a digit (0-9).

[bool] = isid (x)

True if x is an identifier object.

[bool] = isinteger (x)

True if x is an array of integers.

[bool] = ispunct (x)

True if x is a punctuation mark.

[bool] = isscalar (x)

True if x is a scalar.

B FUNCTION REFERENCE 50

[bool] = istablename (x,TableType)

True if x is a table in the current database. TableType is an optional table type like

all any table (default)
data only data tables (DATADEF, ChunkLists excluded)
chunklist only chunklist tables

[bool] = isvector (x)

True if x is a scalar or vector.

[bool] = isword (x)

True if x is a character string without spaces.

B.11.6 Type and Object Operations

[bool] = bool2num (x)

Converts logical values to binary values. Bool2num makes these conversions:

x bool
non-zero number 1
words starting with “f”,”F’,”n”, or “N” 0
all other words 1

Groups of words should be input as a cell vector; groups of numbers as a vector.

[Compare] = cmp_id_class (id1,id2)

Compares classes of ID objects. Compare is 0 if the id1 and id2 are objects of the same class;
-1 if the class of id1 is inferior to id2; +1 if the class of id1 is superior to id2. Id1 and id2 can
be identifier objects or names of identifier object classes.

[x] = empty_type (Type)

Returns an empty variable of Type.

[TableName] = list_table (TableType)

Returns a list of tables in current database as a string. Tables in the string are selected with
TableType as

TableType Returned Tables
all all tables (default)
data only data tables (DATADEF and ChunkLists excluded)
chunklist only chunklist tables

Table names are returned as capitalized words separated with spaces. A common use of
list_table is to make tables accessible as global variables. To do this:

eval([’global ’ list_table(TableType))]);

B FUNCTION REFERENCE 51

[TableName] = list_table2 (TableType)

Returns a list of tables in current database as capitalized words in a cell vector. Tables in the
cell are selected with TableType (see list_table).

[x] = null_type (Type)

Returns a null variable of Type.

[B] = promote_id (A,IDType)

Promotes an identifier object A to a parent object type, IDType. Output objects are unique and
sorted.

B.11.7 Miscellany

[num] = datenum2 (str)

Calls Matlab function datenum, but in case of bad date string, displays a warning and returns
0.

[C,IA,IB] = intersect (A,B,Flag)

Finds values C common to sets A and B. Index vectors IA and IB are returned such that C =
A(IA) and C = B(IB), or for matrices C = A(IA,:) and C = B(IB,:).

Calling as intersect(A,B,’rows’) where A are B are matrices with the same number of columns
returns the rows common to A and B.

Calling as intersect(A,B,’sorted’) returns the elements common to both the sorted arrays A and
B. Intersection of sorted arrays is much faster than the normal intersect function. A and B must
be sorted. Unlike the Matlab intersect row vectors are not recast to column vectors.

[old] = obsolete (DependentFile, File1, File2, …FileN)

Determines whether a file is older than any files in a list. Returns 1 if DependentFile is older
than any file in file list or if DependentFile does not exist. Returns 0 if DependentFile is newer
than all files in file list. Returns -1 in case of error. File names can be full path names or relative
path names in UNIX style.

[x,KeyIdx] = sortstruct (SortedX,SortIdx)

Sortstruct sorts structure using a key field. KeyIdx is the key field index, the default is 1.

[BinCut,BinMid] = split_bin (Start,Stop,NumBin,Scale)

Calculates bin divisions for NumBin bins which begin at Start and end at Stop. The bins have
uniform widths on a linear or logarithmic scale, specified by setting Scale to lin or log. Scale is
optional and defaults to linear. BinCut is a vector of bin divisions. Note, there are NumBin+1
bin divisions. BinMid is a vector of bin midpoints.

Can also be called with specific bin divisions as a vector in Start . In this case Stop, NumBin,

B FUNCTION REFERENCE 52

and Scale are ignored.

[Truth] = type_match (Type,x)

True if x has type Type.

C DATA FILE FORMATS 53

C Data File Formats

C.1 Instrument Data File Format

The .inst files are plain text files that contain the instrument conditions. ATFOMS data can be
archived in these self-contained, self-documenting, human readable, and platform independent
files. The file is made up of two types of lines, comment lines which start with “%” and data
lines in the form Field = Value. The first lines of a PK2 file should be comments which identify
the instrument and author. Each column of instrument data is given on a separate line. The
names and descriptions of these fields are given in the data definition table. Vectors should be
entered on the same line separated by white space.

% This is an example .inst data file

% Instrument Table Data

AvgLaserPower = 1.0
BusyTimeFunction = busy_scale
BusyTimeParam = [0.13 0.504 0.000167]
DaCalibFunction = da_noz
DaCalibParam = [0 0 0 0 0 0 0 7.658206E+01 -1.140446E-02 200 600]
InstCode = TST
InstName = Testmeister
InstDesc = Testmeister in Schonau
SampleFlow = 3.334e-7
ExpName = Synthetic
ExpDesc = Synthetic data creation exercise
PreProcDesc = by Sylvia W. Pastor, David P. Fergenson, Jonathan O. Allen
PreProcDate = 01-Jan-1999
MinHeight = 10
MinArea = 12
OpName = t1
OpDesc = Normal Operation
PosDefaultZero = 0
NegDefaultZero = 0
PosDefaultVoltage = 0
NegDefaultVoltage = 0

% end of example

C.2 PK2 Data File Format

YAADA imports ATOFMS data from data files in the PK2 format described in this section.
The PK2 files are plain text files that contain all the instrument condition, particle, and mass
spectral data for a sampling period. ATFOMS data can be archived in these self-contained,
self-documenting, human readable, and platform independent files.

PK2 files contain data on a single instrument-sampling study combination. PK2 files written

C DATA FILE FORMATS 54

Table 16: PK2 Data File Line Types

First Word Line Type

% Comment
Table: List of tables in database
TableName: List of columns in table
ColumnName Instrument data
Date Particle data
> Spectrum data
>> Peak data

by YAADA are named in the format IIIYYYYMMDDHHMMSS.PK2, where III is the instrument
identifier, YYYYMMDD and HHMMSS give the date and time of the first particle acquired. The
file is made up of seven types of lines identified by the first word (see Table 16).

The first lines of a PK2 file should be comments which identify the data source and any prepro-
cessing. The next lines describe the database structure. The first line begins with Table: and
lists the table names separated by whitespace. Subsequent lines list the table name, a colon,
and column names separated by whitespace for each table.

Instrument data come after the database structure. Each column of instrument data is given
on a separate line. The names and descriptions of these fields are given in the data definition
table. Vectors should be entered on the same line separated by white space. The instrument
conditions must be the same for all the data in a PK2 file.

Data for each particle are given on a separate line with the columns printed in the same order
as listed on the Particle: line. For the default database, particle data lines have the format:

Time Velocity PositionInFolder FastScatter

Time has the format DD-MMM-YYYY_HH:MM:SS. Velocity is a floating point number in m/s.
PositionInFolder is an integer. FastScatter is a boolean values, 0 or 1.

Mass spectra data are given on separate lines after the data for the parent hit particle. Lines of
spectrum data start with “>”. For the default database, spectrum data lines have the format:

> Polarity FileNameLength AreaIntegral Noise BaseLine FitVoltage FitZero

Peak data are given on separate lines immediately after the data for the parent spectrum. Lines
of peak data start with “>>”. For the default database, peak data lines have the format:

>> MZ Area Height Width BlowScale

MZ, Area, Width, and Height are floating point numbers. BlowScale is a boolean value, 0 or 1.

C DATA FILE FORMATS 55

% Demonstration data set for YAADA. These data are _synthetic_
% and do not represent actual aerosol sampling results
%
% Created 05 Jan 00

% Data structure updated
% JOA 24 Dec 01

Table: Inst Part Spec Peak
Inst: AvgLaserPower BusyTimeFunction BusyTimeParam DaCalibFunction DaCalibParam ExpDesc ExpName
Part: Time Velocity PositionInFolder FastScatter
Spec: Polarity FileNameLength
Peak: MZ Area Height BlowScale

% Instrument Table Data

AvgLaserPower = 1.0
BusyTimeFunction = busy_scale
BusyTimeParam = [0.13 0.504 0.000167]
DaCalibFunction = da_noz
DaCalibParam = [0 0 0 0 0 0 0 7.658206E+01 -1.140446E-02 200 600]
InstCode = TST
InstName = Testmeister
InstDesc = Testmeister in Schonau
SampleFlow = 3.334e-7
ExpName = Synthetic
ExpDesc = Synthetic data creation exercise
PreProcDesc = by Sylvia W. Pastor, David P. Fergenson, Jonathan O. Allen
PreProcDate = 01-Jan-1999
MinHeight = 10
MinArea = 12
OpName = t1
OpDesc = Normal Operation
PosDefaultZero = 0
NegDefaultZero = 0
PosDefaultVoltage = 0
NegDefaultVoltage = 0

% Particle Data

01-Apr-1992_10:00:00 290.28 1 0
01-Apr-1992_10:00:01 327.69 2 0
01-Apr-1992_10:00:01 289.58 3 0
01-Apr-1992_10:00:02 295.06 4 0
01-Apr-1992_10:00:03 352.22 1 0
> 1 10
>> +0001.08 113 15 0
>> +0001.18 113 15 0
>> +0022.28 373 62 0
>> +0022.48 150 32 0
>> +0022.62 288 101 0

C DATA FILE FORMATS 56

>> +0023.11 14 14 0
>> +0023.70 26 15 0
>> +0037.95 63 33 0
>> +0053.61 21 21 0
01-Apr-1992_10:00:04 293.61 5 0
01-Apr-1992_10:00:04 277.46 6 0

% end of example

D YAADA PROGRAMMING GUIDELINES 57

D YAADA Programming Guidelines

To improve the readability and portability of YAADA programs, we have adopted these con-
ventions.

D.1 File Locations

Physical locations of Matlab programs and data are set in the startup.m (or similar) file which
sets the path to programs data.

D.2 Variable Names

Long lived variable names have the first letter of each word capitalized. Multiword names are
concatenated, e.g. SamplerCode. Do not use plural form.

Short lived variables are those used for a few lines or within a single loop. These should be all
lower case with concatenation, e.g. sampleidx.

D.3 Program Names

Scripts and functions are named by an action verb followed by the subject with words separated
by "_", e.g. run_query.m. Script and function names are all in lower case.

D.4 Abbreviations

Some common abbreviations are

Col column
Da aerodynamic diameter
desc description
Inst instrument
kid Peak identifier (also PeakID)
MZ mass to charge ratio
num number
Part Particle
pid Particle identifier (also PartID)
ptr Pointer
Spec Spectrum

D.5 Program Help

See the Matlab HELP.M file for instructions on how to add help to program files.

	Introduction
	ATOFMS Instrument Operation

	Getting Started Tutorial
	Import Data
	Find Particle Types
	Use Identifier Objects
	Plot Data

	Data Objects
	Identifier Object Classes
	Column Object Class
	Table Object Class

	Database Structure
	Data Definition Table (DATADEF)
	Instrument Table (INST)
	Particle Table (PART)
	Spectrum Table (SPEC)
	Peak Table (PEAK)
	Virtual Tables and Chunk Lists
	Changing the Database Structure

	Data Import
	PK2 Creation
	TasWare
	TSI Data Acquisition Software

	PK2 Digestion

	Query Language
	Query Elements
	Column Names
	Aggregation Operators
	Relative Operators
	Values
	Set Operators

	Returned Identifiers
	Query Optimization

	Installation
	Function Reference
	Identifier Object Methods
	Object Creation
	Type Conversion
	Find Related Objects
	Set Operations
	Relational Operations
	Arithmetic Operations
	Display
	Sorting and Combining
	Subscript Referencing

	Column Methods
	Column Creation
	Display
	Sorting and Combining
	Subscripted Referencing

	Table Methods
	Table Creation
	Display
	Sorting and Combining
	Subscripted Referencing

	Aerosol Calculations
	Particle Size Calibration
	Particle Size Conversion

	Database Structure and Import
	Database Definition
	Conversion of Raw Data to PK2 Format
	Data Importation and Verification
	Data Integrity Checks

	Chunk Handling
	Query Processing
	Data Retrieval
	Plot Formats
	Plots
	Crosshatching
	Plot Formatting

	Quantitative Comparison
	Instrument Busy Time

	General Functions
	Search
	Row-wise Matrix Comparison
	String Operations
	NaN Operations
	Type Identification
	Type and Object Operations
	Miscellany

	Data File Formats
	Instrument Data File Format
	PK2 Data File Format

	YAADA Programming Guidelines
	File Locations
	Variable Names
	Program Names
	Abbreviations
	Program Help

