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ABSTRACT 

This report explores how climate change will influence air quality in California through 
changes to meteorology and emissions.  The report addresses the challenging nature of 
the high spatial resolution needed to represent California’s air basins and the long 
analysis periods needed to capture El-Nino Southern Oscillation (ENSO) meteorological 
cycles. Previous studies have not adequately addressed these issues for California. 
 
Three study methods were employed: (i) model perturbations (O3 and PM), (ii) statistical 
downscaling (O3), and (iii) dynamic downscaling (PM).  Model perturbation studies for 
historical ozone episodes suggest that concentrations increase when maximum daytime 
temperatures increase, and that the climate change penalty will offset much of the benefit 
from future emissions control programs.  Perturbation studies also suggest that ozone 
concentrations are relatively insensitive to changes in nighttime temperatures.  Nighttime 
temperatures in California have increased more than daytime temperatures over the past 
several decades, but the majority of GCMs predict that daytime temperatures will 
increase in the future in California.  For example, daytime temperatures at a height of 
~1.5 km (T850) over the San Joaquin Valley (SJV) and South Coast Air Basin (SoCAB) 
are predicted to increase according simulations performed with the Geophysical Fluid 
Dynamics Laboratory (GFDL) model developed at Princeton.  The statistical relationship 
between the 1-hr maximum measured ozone concentrations and historical daytime 
maximum T850 values combined with the GFDL predictions suggest that by the year 
2050 California would experience an additional 22-30 days year-1 and 6-13 days year-1 
with ozone concentrations ≥90 ppb under the IPCC A2 and B1 emissions scenarios, 
assuming criteria pollutant emissions in California remain at 1990-2004 levels.   
 
Climate impacts on ground level airborne particulate matter (PM) concentrations were 
analyzed by dynamic downscaling of global models.  The air quality simulations were 
carried out with a resolution of 8 km for the entire state of California for the years 2000-
06 (present climate) and 2047-53 (future climate).  Each period was evaluated using 
emissions for the year 2000 and for the year 2050.  Predictions from over 4000 
simulation days suggest that the ENSO signal causes inter-annual variability that is 
greater than the average shift in PM concentrations between present and future climate 
conditions.  Statistically significant decreases in annual-average PM2.5 concentrations 
(0.5-1.0 µg m-3) over coastal regions of California were predicted due to increased future 
wind speed during the winter season.  Changes to the summer sea breeze system did not 
have a major impact on coastal PM concentrations.  The dynamic downscaling further 
predicted that extreme 99th percentile PM concentrations will increase (10-20 µg m-3) in 
the Sacramento Valley (SV) and SJV due to stronger stagnation conditions.   
 
Climate change reduced annual-average population-weighted concentrations of PM0.1, 
PM2.5, and PM10 in the SoCAB using either year 2000 or year 2050 emissions.  
Conversely, climate change increased extreme 99th percentile primary PM0.1, PM2.5, and 
PM10 concentrations in the SV and SJV.  Emissions controls such as diesel particle filters 
or bans on residential wood combustion are effective methods to offset the climate 
penalty for PM2.5 during extreme pollution events. 
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EXECUTIVE SUMMARY 

 
Background: California has persistent air quality problems that affect the health of 
millions of residents.  Global climate change will modify long-term weather patterns in 
California with direct consequences to air quality and public health.  California’s diverse 
emissions sources located inside air basins bordered by mountain ranges require analysis 
at fine spatial resolution (<10km) while at the same time the long-term El-Nino Southern 
Oscillation (ENSO) patterns require 7-8 year analysis periods for meaningful analysis.  
Rigorous evaluations that address both of these issues are needed to accurately assess 
climate impacts on air quality in California.   
 
Jacob and Winner [1] recently reviewed studies seeking to quantify climate change 
impacts on regional air quality.  They identify three major classes of study methods: (i) 
statistical downscaling, (ii) model perturbations, and (iii) dynamic downscaling.  
Statistical downscaling uses historical relationships between meteorology and air quality 
to predict future changes in ozone (O3) and airborne particulate matter (PM) 
concentrations based on changes to meteorology alone.  Model perturbation studies alter 
the meteorological inputs used in regional air quality models in a manner that is 
consistent with future climate change.  Full dynamic downscaling uses Global Climate 
Model (GCM) predictions as initial/boundary conditions for regional weather models that 
are then coupled to air quality models to more accurately balance the simultaneous 
modifications to meteorological variables that are likely to occur because of climate 
change.  Each of these study designs has strengths and weaknesses for ozone and PM 
analysis in California.   
Methods: The three study methods identified by Jacob and Winner [1] were employed to 
analyze climate change impacts on ground-level O3 and PM concentrations in California 
(see Table 1). 
 
Table 1: Summary of methods employed to study climate impacts on California air 
quality and the chapters documenting results. 

 Pollutant 
Study Method O3 PM 

Statistical Downscaling Chapter 4 Not Applicable 
Perturbation Studies Chapters 2,3 Chapter 2 
Dynamic Downscaling Not Applicable Chapters 5-10 
 
Statistical downscaling studies for PM concentrations could not be carried out because 
robust linear relationships between meteorological variables and PM concentrations do 
not exist for California’s air basins.  Dynamic downscaling studies for O3 could not be 
carried out because summertime wind speed was over-predicted by the downscaling 
methods, leading to excess ventilation and under-predicted basecase O3 concentrations.  
This issue does not severely impact annual-average PM predictions because summer-time 
PM concentrations are typically much lower than concentrations in other seasons.   
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Model perturbation studies based on changing the meteorology during historical episodes 
were feasible for both O3 and PM and so these studies were used for a preliminary 
analysis of climate effects on air quality in California.  Statistical downscaling was then 
used to transform results from the GFDL Global Climate Model into an O3 assessment 
between the years 2000 – 2100.  The foundation for this analysis was the strong 
correlations between surface ozone concentrations and the air temperature at a height of 
850 millibars (T850).  Dynamic downscaling of the PCM Global Climate Model using 
the Weather Research Forecast (WRF) meteorological model, the 
UCD/CARB/SCAQMD emissions system, and the UCD air quality model was then used 
for the future PM assessment.  Climate-induced changes to PM concentrations were 
calculated regionally and using population-weighted concentrations.  The uncertainty of 
the comparison between current and future climate was quantified using the inter-annual 
variability within the same climate periods.   
 
Ozone Results: Perturbation studies for historical O3 episodes suggest that 
concentrations increase when maximum daytime temperatures increase.  Since the 
majority of Global Climate Models predict that future climate will be warmer than 
current climate in California, a “climate penalty” exists for ground level O3 
concentrations as summarized in Figure 1 for the South Coast Air Basin (SoCAB).   
 

 
Figure 1: Average weekday ozone (ppb) at 1500 h LT (local time) for a SoCAB episode 
in 2005: base case levels and differences between specified run and base case. 
 
Both statistical downscaling and model perturbation studies confirm that the magnitude 
of the climate penalty for O3 depends on the base emissions year used for the evaluation, 
with larger penalties calculated for more reactive emissions (older episodes) and smaller 
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penalties for less reactive emissions (newer episodes) as shown in Figure 2 for the 
SoCAB.  
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Figure 2: Evolution of the O3 climate penalty over time due to changes in the emissions 
inventory in the South Coast Air Basin (SoCAB).  
 

Perturbation studies also show that O3 concentrations are insensitive to changes in 
nighttime temperatures.  Nighttime temperatures in California have increased more than 
daytime temperatures over the past several decades, but future changes may not follow 

this pattern.  Maximum daytime temperatures at a height of ~1.5 km (T850) over the San 
Joaquin Valley (SJV) and South Coast Air Basin (SoCAB) are predicted to increase 

according to most Global Climate Models, including the Geophysical Fluid Dynamics 
Laboratory (GFDL) model developed at Princeton.  The correlation slope between 

surface O3 concentrations and T850 is robust under fixed emissions conditions.  
Statistical downscaling suggests that by the year 2050 California would experience an 
additional 22-30 days year-1 and 6-13 days year-1 with ozone concentrations ≥90 ppb 

under the IPCC A2 and B1 emissions scenarios (assuming emissions of criteria pollutants 
in California remained at 1990-2004 levels).  Note that ENSO cycles introduce inter-

annual variability in these results, but the upward trend over several decades is 
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unmistakable.
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Figure 3: The number of days per year conducive to forming 1-hr maximum ozone of 90 
ppb or more at Upland, CA under the Intergovernmental Panel on Climate Change 
(IPCC) emissions scenarios: A2 (top panel) and B1 (bottom panel).  Note that the 
underlying assumption for this prediction is that the criteria emissions in CA remain at 
the 1990-2004 level.  Uncertainty bars represent the third and the first quartiles of the 
predicted number of days. 
 
PM Results: Model perturbation studies for PM concentrations in California were 
inconclusive.  Increasing temperature increases the production rate of semi-volatile 
reaction products but decreases partitioning to the condensed phase.  Increased humidity 
and ozone concentrations generally promote increased condensation of ammonium nitrate 
but increased precipitation events quickly scavenge airborne particulate matter.   These 
competing trends clearly point out the need for full dynamic downscaling of model 
predictions.   
 
Dynamic downscaling of PCM global results to 4 km resolution over California predicts 
that average surface air temperatures over California will increase by 1-2K between 
2047-53 and 2000-06 (p<0.05).  Average wind speeds are predicted to increase during the 
winter in coastal regions of California (p<0.1) but change little in other seasons or 
locations.  The strength of the atmospheric stagnation events is predicted to increase in 
the future during all seasons except for spring. 
 
Model predictions for PM2.5 mass and component concentrations between the years 2000-
06 were biased ~30% lower than measurements because the wind speeds predicted by 
WRF were biased high by 2-3 ms-1 during stagnation events.  Positive wind speed bias 
largely results from excessive transfer of momentum into the surface layer, compounded 
by the fact that the predictions cannot be constrained by assimilation of actual 
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measurements (that do not exist for climate simulations).  Overall, the bias introduced by 
the wind speed over-prediction should be consistent between present and future analysis 
periods so that the comparison between periods is meaningful.   
 
Average PM2.5 mass concentrations are predicted to decrease in coastal California but 
increase slightly in the northern SJV between 2000-06 and 2047-53.  A corresponding 
analysis of the inter-annual variability indicates that only the changes in the coastal areas 
are significant at the 95% confidence level, meaning that other regions may experience 
little impact on PM2.5 mass due to climate change.   
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Figure 4: Changes in annual average PM2.5 mass concentrations and corresponding p-
values in CA likely to occur in the future (2047-53) due to climate change from the 
present-day (2000-06).  The p-value quantifies the likelihood that average future 
concentrations are equal to present day concentrations. 
 
The majority of the decreased average PM2.5 concentrations were associated with 
reductions in primary PM constituents (due to increased average ventilation) and 
secondary ammonium nitrate (due to increased ventilation and increased temperature). 
 
Annual-average population-weighted PM2.5 mass differences between 2047-53 and 2000-
06 are small relative to the uncertainty introduced by inter-annual variability.  Individual 
source contributions to PM mass do respond to climate in a statistically significant 
manner (95% CI does not overlap zero). Future population-weighted annual-average 
primary PM2.5 from shipping and combustion of high sulfur fuel both decrease by ~6% in 
response to climate change.   
 
Extreme PM2.5 mass concentrations (predicted on the 1% of days with the highest overall 
concentrations) are predicted to increase by 7-20 µg m-3 in the SJV between 2000-06 and 
2047-53 due to the increased strength of future stagnation events.  The inter-annual 
variability of the PM2.5 mass during extreme events is large, leading to broad confidence 
intervals on the climate signal for total PM mass.  Once again, climate signals are more 
evident for primary source contributions that contribute to overall mass.  Extreme 99th 
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percentile population-weighted PM2.5 primary source contributions from diesel engines 
increase by 28% response to future climate change.  Emissions controls such as diesel 
particle filters or bans on residential wood combustion are effective methods to offset the 
climate penalty for PM2.5 during extreme pollution events. 
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Figure 5:  Future (2047-53) minus present (2000-06) change in population-weighted 
PM2.5 total mass, components, and primary source categories for (a) annual averages and 
(b) 99th percentile extreme pollution events.  Results are averaged across the entire state 
of California.  The error bars represent the 95% confidence interval. 
 
Conclusions: Statistical downscaling and model perturbation studies for ozone 
consistently indicate that climate change will produce conditions more conducive to 
ozone production in California.  The magnitude of the “climate penalty” for ozone is 
decreasing over time due to the changes occurring in the criteria pollutant emissions 
inventory.  Additional emissions controls are currently needed to offset the climate 
“penalty”.  The magnitude of the additional emissions controls needed in the future 
depends on our progress towards achieving air quality standards. 
 
Dynamic downscaling techniques indicate that the effect of climate change on PM 
concentrations is likely to be smaller than the inter-annual variability experienced during 
any seven year analysis window. Longer analysis times are needed to quantify a climate 
signal different from zero with 95% confidence across a broad array of PM metrics.   
 
Evidence from over 4000 simulated days in the current study suggests that climate 
change will reduce annual-average primary PM10 / PM2.5 / PM0.1 concentrations but 
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increase extreme 99th percentile primary PM10 / PM2.5 / PM0.1 concentrations in the state 
of California. 
   
 
Future Work:  The economic consequences of known climate impacts in California are 
estimated to be $31-57B [2], with another $8B of estimated costs needed to offset 
potential air quality impacts [2].  The model perturbation analysis for ozone that is 
summarized in this final report provides part of the foundation for this latter estimate, but 
significant uncertainty remains about the economic costs associated with changes to 
extreme PM concentrations.  Future studies should quantify the economic impacts 
associated with extreme concentration events in California.   
 
The 7 year analysis periods for dynamic downscaling exercises should be expanded to 
~10 years to reduce the uncertainty bounds of the climate signal on PM concentrations in 
California.  Furthermore, an ensemble of simulations should be conducted using different 
models to fully quantify the uncertainty in the calculation (which is larger than the inter-
annual variability predicted by a single modeling system).   
 
The shortcomings in the meteorological models that prevent accurate downscaling during 
winter months without data assimilation should be corrected so that dynamic 
downscaling studies can be carried out for ozone concentrations in California.   
 
Future studies should incorporate emissions reductions associated with California 
Assembly Bill 32 (AB32) into the future inventories and take care to properly scale 
power generation, chemical processing, and goods movement sources as a function of 
economic condition. 
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1.0 INTRODUCTION  
 
1.1 Motivation 
 
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report 
(AR4) (2007) projected that the global mean surface air temperature is likely to increase 
between 1.8 °C and 4 °C in 2090 – 2099 relative to 1980 – 1999 under the IPCC Special 
Report on Emissions Scenarios (SRES) B1 (lowest) and A2FI (highest) emissions 
scenarios, respectively.  At the regional scale, the annual mean surface air temperature in 
North America is estimated to increase between 3.7 °C (25% quartile) and 5.2 °C (75% 
quartile) in 2080 – 2099 relative to 1980 – 1999 under the A1B SRES emissions scenario 
([3]).  Because of this climate warming, the frequency, duration, and intensity of 
conditions conducive to forming air pollution events are also likely to increase ([4]).  It is 
widely recognized that maintaining safe atmospheric levels of various pollutants such as 
ozone (O3), carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and 
other toxic chemicals depends on both emissions and meteorological conditions ([5]).   
 
Previous studies have shown that there is an association between high concentrations of 
surface ozone and adverse public health (see for example,[6], [7], [8]).  Exposure to 
elevated concentrations of airborne particles with aerodynamic diameter less than 2.5 µm 
(PM2.5) also has serious health consequences (see for example, [9], [10], [11]).  Climate 
change may affect exposure to these pollutants by modifying weather, anthropogenic 
emissions, and biogenic emissions ([12]).     
 
California has two of the most polluted air basins in the United States that consistently 
violate the National Ambient Air Quality Standards (NAAQS): the San Joaquin Valley 
air basin (SJV) with a population of ~3 million, and the South Coast Air basin (SoCAB) 
with a population of ~15 million.  California has a complex topography that includes 
mountains, valleys, deserts and ocean.  These features combine with typical weather 
conditions to create a persistent air quality problem in California despite stringent control 
measures implemented over the previous decades.  Climate change is expected to alter 
the long-term meteorological patterns in California, with unknown consequences for air 
quality and human health.   
 
1.2 Previous Analysis for Climate Effects on Air Quality in California 

The relationship between climate and air quality has been studied using General 
Circulation Models (GCMs) coupled to chemistry calculations (see for example [13-16]).  
These calculations typically use grid cells that are larger than 1o (>100 km at mid 
latitudes), making them most appropriate for regional pollutants (such as O3) in locations 
that do not have complex terrain (such as the eastern United States).  Wu et al [17] 
summarized a list of 11 studies that examined how climate change will affect global 
tropospheric background ozone.  Most of the summarized studies predict that climate 
change will reduce global tropospheric ozone concentrations due to increasing 
concentrations of water vapor leading to reduced ozone lifetimes in low-NOx 
environments.  In contrast, Prather et al [13] noted that increasing global emissions of 
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methane and other greenhouse gases are causing net increases in global tropospheric 
ozone concentrations, with a 2-7 ppb increase in surface ozone over much of the northern 
hemisphere by 2030.  Thus, the same global emissions that cause climate change are also 
causing increased background concentrations of ozone in North America.  The changing 
climate somewhat mitigates this concentration increase, but the common link to global 
anthropogenic emissions cannot be ignored and the system must be treated as a whole.   
California is likely to experience higher background ozone concentrations in the future.  
This background ozone will combine with local ozone production during the summer 
months and contribute to secondary particulate matter formation during the winter 
months.  The present study incorporates increasing concentrations of tropospheric 
background ozone into the boundary conditions during the analysis for California air 
quality. 
 
Climate-induced changes to ozone at the regional level can be studied using statistical 
downscaling, perturbations of chemical transport models, or full dynamic downscaling of 
global through regional models.  Jacob and Winner [1] recently reviewed results from 
each type of study, finding a consistent pattern of increased peak surface ozone 
concentrations in polluted regions in response to climate change.  The magnitude of this 
“climate penalty” was found to be 1-10 ppb depending on the specific study region and 
the methods employed.  The published versions of several chapters in the current report 
were incorporated into the Jacob and Winner review and so the results are inherently 
consistent with their meta analysis. 
 
Dynamic downscaling from global to regional models represents the most comprehensive 
approach to study climate effects on regional air quality, but it can be difficult to carry 
out these types of studies in California.  Sharp spatial gradients in California’s extreme 
topography require high spatial resolution while proper accounting of ENSO cycles 
simultaneously require long analysis periods.  The standard regional meteorology models 
used for downscaling also over-predict wind speed during summer months in California, 
resulting in an under-prediction of ozone concentrations.  Jacob and Winner [1] identified 
14 dynamic downscaling studies for ozone that were focused on domains ranging from 
the entire globe to continental scales.  The majority of these studies employed +36 km 
horizontal resolution, and none of them represented California with spatial resolution on 
the order of < 10 km (the current standard for air quality modeling in California).  The 
dynamic downscaling results for ozone are therefore inconclusive for California’s major 
air basins at this time.  Dynamic downscaling for ozone was not attempted in the current 
project. 
 
Fewer studies have addressed the relationship between climate and PM2.5, and those 
studies that did incorporate PM2.5 into their analysis were unable to identify consistent 
results.  Statistical downscaling studies generally find little correlation between elevated 
PM2.5 concentrations and meteorological variables other than the observation that 
stagnation is generally a requirement for high concentrations.  Perturbation studies 
identify competing trends with increased temperatures simultaneously promoting the gas-
phase oxidation of precursor compounds and the evaporation of semi-volatile PM 
components.  Increased humidity and ozone concentrations generally promote increased 
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condensation of ammonium nitrate but increased precipitation events quickly scavenge 
airborne particulate matter.   These competing trends clearly point out the need for full 
dynamic downscaling of model predictions, but the time and spatial scales inherent in 
California once again make this difficult to accomplish.  Jacob and Winner [1] 
summarize a total of 9 dynamic downscaling studies for PM carried out by coupling 
global and regional models.  None of these studies simultaneously addressed spatial and 
time resolution needed to properly represent California’s air basins. Tagaris et al. ([18]) 
used a downscaling system consisting of the GISS, MM5, CMAQ and BenMAP models 
to investigate the potential impact of climate change on PM2.5 related health effects for 
the United States.  Spatial resolution was relatively coarse (36km) and only one annual 
average year was simulated.  According to their analysis, annual average PM2.5 
concentrations across the United States will decrease due to climate change, and 
California is likely to experience an average decrease of 186 cases of premature death 
with decreasing trends also in other PM2.5-related health issues including chronic and 
acute bronchitis, asthma, hospital admissions, and respiratory diseases in the future.  
Avise et al. [19] used a downscaling system consisting of PCM, MM5, and CMAQ to 
predict climate impacts on July PM2.5 concentrations across the United States.  Future 
July PM2.5 concentrations in EPA’s Region 9 (encompassing California) were predicted 
to decrease by 0.5 µg m-3 in response to climate change, but once again this time period 
does not adequately represent peak PM seasons in California.  Jacobson [19] used the 
GATOR GCM-RCM to directly examine the effects of CO-2-induced climate change on 
PM2.5 concentrations across the United States using +50 km spatial resolution.  The July-
November mean PM2.5 concentration was reported to increase by 0.065 µg m-3 but the 
analysis time period does not correspond to the peak PM concentrations in California and 
the details of the basecase simulation do not appear to match measured concentration 
patterns in California.  More recently, Jacobson [20] evaluated the direct impact of CO2 
concentrations domes around major cities on PM2.5 concentrations, finding slight 
concentrations increases.  This study addresses the local effects of CO2 emissions on air 
quality but it does not address the effects of global climate change on pollutant 
concentrations.   
 
Each of the previous studies described above has significant analysis gaps that must be 
addressed to properly consider climate impacts on air quality in California.  The present 
study attempts to address these shortcomings to better quantify the climate impact on 
ground-level ozone and PM concentrations in California’s major air basins. 
 
 
 
1.3 Research Objectives 
 
The overall objective of this research was to quantify and understand the impact of global 
climate change on regional air quality, especially on ozone and particulate matter (PM) 
concentrations in California.  Special attention will be given to the spatial and temporal 
scales needed to fully characterize climate – air quality interactions in California.  The 
research also analyzes the probable impact of climate change on health by quantifying 
population-weighted concentrations of PM.  These objectives were achieved by analyzing 



 

 32

historical measurement data (1984-2004), simulating air quality for both the present-day 
(2000-06) and future (2047-2053) periods, and analyzing population-weighted 
concentrations over multiple years and during extreme events.   
 
This report is comprised of 11 chapters, including introduction (Chapter 1) and 
conclusions (Chapter 11).  Chapter 2 provides a preliminary assessment of climate 
impacts on air quality in California using a perturbation analysis during regional air 
pollution events.   
 
Authors note: The work in chapter 2 has been published in the journal Climatic Change 
and may be cited in any future studies as “Kleeman, M.J. (2008), A preliminary 
assessment of the sensitivity of air quality in California to Global Change, Climatic 
Change 87 (Suppl1) p 273-292. 
 
Chapter 3 provides an assessment of climate impacts on photochemical (ozone) pollution 
in Southern California by imposing climate-related forcing onto meteorological 
conditions experienced during a summer 2005 high-ozone time period. 
 
Authors note: The work in chapter 3 has been published in the journal Atmospheric 
Chemistry and Physics and may be cited in any future studies as “Millstein, D.E. and 
R.A. Harley (2009) Impact of climate change on photochemical air pollution in Southern 
California, Atmospheric Chemistry and Physics, 9(11), p 3745-3754” 
 
 
Chapter 4 presents a statistical down-scaling technique to quantify the impact of global 
climate change on daily 1-hr maximum ozone concentrations in California including a 
rigorous uncertainty analysis.   
 
Authors note:  The work in chapter 4 has been published in the Journal of Geophysical 
Research and may be cited in any further studies as “Mahmud, A., M. Tyree, D. Cayan, 
N. Motallebi, and M. J. Kleeman (2008), Statistical downscaling of climate change 
impacts on ozone concentrations in California, J. Geophys. Res., 113, D21103, 
doi:10.1029/2007JD009534” 
 
Chapter 5 summarizes tests conducted with the Weather Research Forecast (WRF) model 
to determine the optimal configuration for dynamic climate downscaling exercises in 
California. 
 
Authors note: The work of chapter 5 will be submitted to the journal Climate Change for 
publication and may be cited as “Zhao, Z. et al., The Impact of Climate Change on Air 
Quality Related Meteorological Conditions in California – Part I: Present Time 
Simulation Analysis, Climate Change, submitted” until accepted and published.   
 
Chapter 6 summarizes the comparison between dynamic climate downscaling exercises 
in California between the years 2000-06 and 2047-53. 
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Authors note: The work of chapter 6 will be submitted to the journal Climate Change for 
publication and may be cited as “Zhao, Z. et al., The Impact of Climate Change on Air 
Quality Related Meteorological Conditions in California – Part II: Present versus Future 
Time Simulation Analysis, Climate Change, submitted” until accepted and published.   
 
Chapter 7 contains the results of a dynamic down-scaling exercise of regional climate and 
air quality modeling for airborne fine particulate matter.  The specific objective of this 
chapter was to quantify the climate impact on annual average fine particles (PM2.5) using 
seven-year data for both present-day (2000-06) and future (2047-2053).  The uncertainty 
associated with the prediction was estimated as well as the significance of the climate 
impact on annual mean results. Validation of the air quality model results was also part of 
the analysis.   
 
Authors note: The work in chapter 7 has been published but not peer reviewed in 
Atmospheric Chemistry and Physics Discussions (ACPD) journal and is currently under 
review for publication in Atmospheric Chemistry and Physics (ACP).  The work may be 
cited in any further studies as “A. Mahmud, M. Hixson, J. Hu, Z. Zhao, S. Chen and M. J. 
Kleeman, Climate impact on airborne particulate matter concentrations in California 
using seven year analysis periods, Atmospheric Chemistry and Physics Discussions, 10, 
2985-3020, 2010” until published in ACP. 
 
Chapter 8 includes an analysis of population-weighted particulate matter concentrations.  
The specific objective of this chapter was to understand the future climate change impact 
on public health through population-weighted annual average and extreme event 
concentrations of particles for California and three air basins: the Sacramento Valley air 
basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin 
(SoCAB).    
 
Authors note: The work of chapter 8 will be submitted to Environmental Science and 
Technology (ES&T) journal for publication and may be cited as “Mahmud, A., Hixson, 
M., and Kleeman, M., J. 2010, Environmental Science and Technology, submitted” until 
accepted and published.   
 
Chapter 9 repeats the analysis conducted in Chapters 7 and 8 using the emissions 
projected for the year 2050 instead of emissions for the year 2000.  The results of this 
chapter determine if any non-linear chemical transformations influence the conclusions 
from the previous chapters. 
 
Chapter 10 compares the effects of climate change and emissions changes between the 
years 2000-06 and 2047-53.   
 
1.4 Scope of the Current Study 
 
The computational burden associated with dynamic downscaling for analysis of air 
pollution concentrations is significant.  Several simplifying assumptions are commonly 
applied by researchers studying climate-air quality interactions.  Climate feedback effects 
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from the air pollution system on local meteorology (rain shadows, modified temperature 
structure, modified wind structure, etc) were not considered.  Climate feedback effects 
from the air pollution system on cloud cover were not considered.  Climate feedback 
effects from the air pollution system on land-cover (amount and type of vegetation) were 
not considered.  The possible increase in random events such as wildfires due to climate 
change was not considered.  Feedback effects between the capacity of transportation 
facilities and land-use policies that influence the growth of cities were not fully 
considered when allocating the spatial distribution of future emissions growth in 
California.  An ensemble of GCM/RCM/CTM (chemical transport models) to fully 
quantify the uncertainty in the calculations was not considered.   
 
Each of the feedback effects described above adds complexity and computation burden to 
the problem.  While several models have attempted to address one or two of these issues, 
no modeling system to date has systematically demonstrated the ability to 
comprehensively simulate all feedback effects with comparison to measurements as 
validation.  Furthermore, such models are prohibitively burdensome and could not be 
used to analyze ENSO periods in the current and future climate with a reasonable amount 
of computational resources.  All of the simplifying assumptions listed above were used in 
the current study to enable a climate-air quality analysis at high spatial resolution needed 
for California’s extreme topography spanning the multi-year periods needed to fully 
analyze ENSO signals.   
 
Future studies funded by CARB and other agencies should continue to address inter-
annual variability while at the same time considering feedback effects, especially as 
computational power continues to increase and new measurements provide reasonable 
datasets that can be used to evaluate model performance on feedback simulation. 
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2.0 A PRELIMINARY ASSESSMENT OF THE SENSITVITY OF AIR QUALITY 
IN CALIFORNIA TO GLOBAL CHANGE 
 

2.1 Introduction  

California’s combination of large urban populations situated in confined air basins that 
are subject to severe air pollution events causes significant public health concerns. Ozone 
(O3) and airborne particles with diameter smaller than 2.5 µm (PM2.5) are two of the main 
ingredients of the photochemical “smog” that can form when atmospheric mixing is low, 
causing pollutants to be trapped near the earth’s surface.  The South Coast Air Basin and 
the San Joaquin Valley in California are the two air basins with the highest “smog” 
concentrations in the United States and they have a combined population greater than 
15M.  The adverse health effects of O3 and PM2.5 are widely acknowledged, and reducing 
the concentrations of these pollutants is an important objective for the State of California.   
 
Changes in global population, economic development, energy consumption, and 
technology can have consequences for air quality in California.  It is generally 
acknowledged that global consumption of fossil fuels has changed the earth’s atmosphere 
in a way that will lead to sustained changes in regional meteorological patterns (ie. 
Climate Change) [22].  The severity of air pollution events in California is largely 
determined by the strength of atmospheric stagnation events that are driven by these 
regional-scale meteorological patterns.  Thus, global change can influence air quality in 
California.  As a second effect, atmospheric pollutants can be directly transported 
between countries and even between continents [23, 24] leading to increased 
“background” concentrations for both O3 and PM2.5.  Background concentrations 
currently account for approximately 33% of the National Ambient Air Quality Standard 
(NAAQS) for O3 [24] and 25% of the annual-average NAAQS for PM2.5 in California 
[25].  Future changes in meteorology and background concentrations will influence the 
local actions that must be taken in California to reduce the concentration of O3 and PM2.5 
to acceptable levels. 
 
The purpose of this study was to investigate the sensitivity of present-day air quality in 
California to changes in meteorological conditions and background pollutant 
concentrations.  Three air quality episodes were studied that span the full range of 
pollution conditions that commonly occur in California.  The individual effect of each 
variable on O3 and PM2.5 concentrations was identified, and preliminary conclusions were 
made about the likely effect of global change on air quality in California. 
 
2.2 Background 

The relationship between climate and air quality can be studied using General Circulation 
Models (GCMs) coupled to chemistry calculations (see for example [13-16]).  These 
calculations use grid cells that are larger than 1o (>100 km at mid latitudes), making them 
most appropriate for regional pollutants (such as O3) in locations that do not have 
complex terrain (such as the eastern United States).  The majority of these studies predict 
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that O3 concentrations will increase in the future due to a combination of factors related 
to climate and emissions [13].  Finer spatial scales can be resolved by dynamically 
downscaling meteorology and coupling to a regional air quality model.  Calculations for 
the eastern United States [26] and Europe [27] generally show that climate change will 
have a strong influence on surface O3 concentrations.     
 
Simulating the relationship between climate and PM2.5 + O3 in the western United States 
is difficult because the complex topography in this region results in sharper spatial 
gradients.  A few studies have been performed to dynamically downscale meteorological 
predictions [28, 29] but these results have not yet been combined with chemical transport 
models.  Perturbation studies can be used to identify the mechanistic response of 
pollutant concentrations to meteorological variables even when the full dynamics of the 
system are not completely known.  Previous studies have examined the effect of 
temperature change on tropospheric O3 concentrations in the eastern U.S. [30, 31], soil 
moisture change on O3 and PM2.5 concentrations in the western U.S.[32], and temperature 
change on O3 and PM2.5 concentrations in the western U.S. [33].  The present study will 
build on this previous work by conducting a rigorous sensitivity analysis of three separate 
air quality episodes that span the full range of conditions experienced in California. 
 
2.3 Model Description 

The UCD-CIT air quality model is a reactive chemical transport model that predicts the 
concentration of primary and secondary pollutants in the gas and particle phase in the 
presence of emissions, transport, deposition, chemical reaction, and phase change.  Model 
calculations are initialized with measured concentrations and then allowed to evolve 
according to the governing equations for the system while enforcing boundary conditions 
at the edges of the model domain.  Table 2-1 summarizes the lateral boundary conditions 
used during the current study.  Previous studies [34-37] have described the formulation of 
the UCD/CIT source-oriented air quality model, and so only those aspects that differ for 
the current project are discussed here.   
 
SJV Simulations 
The gas-phase chemical mechanism used to model episodes in the SJV is based on the 
SAPRC90 [38] mechanism with extensions to predict the formation of 10 semi-volatile 
organic compounds [39].  The partitioning of semi-volatile organic species to the particle 
phase is calculated using an absorption model calibrated using surrogate species that have 
representative properties for the 10 lumped model compounds [40].  The temperature 
dependence of the surrogate species is estimated using the Classius Clapyron equation 
based on a literature survey of available thermodynamic data [33].   
 
SoCAB Simulations 
The Caltech Atmospheric Chemistry Model (CACM) [41, 42] was integrated into the 
UCD/CIT framework with several modifications.  Ethane was tracked as an individual 
species so that an appropriate rate constant could be specified for reaction with hydroxyl 
radical.  The thermodynamic data describing the equilibrium concentration of semi-
volatile reaction products above the condensed aqueous phase [42, 43] was adapted to 
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work with the dynamic (non-equilibrium) treatment used in the UCD/CIT air quality 
model.  A single subroutine was created to dynamically partition inorganic and organic 
species between the gas and particle phases.  The method of Kusik and Meissner [44] was 
used to predict activity coefficients for inorganic species while the UNIFAC model [45] 
was used to predict activity coefficients for organic species.  The vapor pressure of water 
above the particle surface was adjusted to account for organic and inorganic solutes.  
Water exchange between the gas and liquid phases was calculated as a dynamic process 
using equations described by Kleeman et al. [46]. 
 
Table 2-1: Lateral boundary conditions used during model simulations. 

Pollutant Lateral Boundary Concentration Notes 
CO 200 ppb Interpolated value from 

measurements used in surface cells 
CO2 332 ppb  
SO2 1 ppb  
NO2 1 ppb 0 ppb used on North boundary 

during Sept 7-9, 1993 simulation 
NO 1 ppb 0 ppb used on North boundary 

during Sept 7-9, 1993 simulation 
O3 30 ppb 0 ppb used on North boundary 

during Sept 7-9, 1993 simulation 
RHC 7 ppb 0 ppb used on North boundary 

during Sept 7-9, 1993 simulation 
HCHO / 

CCHO / 
RCHO 

0 – 5 ppb Exact value depends on 
measurements during episode 

HNO3 / 
HCl / NH3 

 Interpolated from measurements 
during episode 

PM 
Species 

 Interpolated from measurements 
during episode 

 
 
2.4 Model Application  

Calculations were performed for the air pollution episodes that occurred in the South 
Coast Air Basin (SoCAB) on September 7-9, 1993, in the SoCAB on September 23-25, 
1996, and in the San Joaquin Valley (SJV) on January 4-6, 1996.  The extensive 
meteorological, emissions, and air quality information needed to support detailed 
modeling of each episode has been assembled previously, and base-case modeling studies 
have validated the performance of air quality models used to simulate the formation of 
pollutant concentrations [34-37, 47-51].  Table 2-2 summarizes the focus pollutants used 
in each episode and the published studies describing those episodes.  Table 2-3 
summarizes the total emissions of oxides of nitrogen (NOx), volatile organic compounds 
(VOC), and particles with diameter smaller than 10 µm (PM10) within the SoCAB and 
SJV during each air pollution episode.   
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Table 2-2: Air quality episodes to be studied with sensitivity analysis. 

  Location 
SoCAB SJV 

Fo
cu

s 
Po

llu
ta

n t
 

O3 Date: September 7-9, 1993 
References: [47, 48]  

Footnote a. 

PM Date: September 23-25, 1996 
References: [34, 37, 52] 

Date: January 3-5, 
1996 

References: [35, 36, 50, 51] 
 
a. Sensitivity analysis of O3 response to climate change in the SJV is being conducted as part of a separate 
project funded by the US EPA at UC Berkeley.   
 
SoCAB September 7-9, 1993: Daytime surface temperatures exceeded 35oC at inland 
locations and a strong elevated temperature inversion formed.  Light surface winds 
followed the land-sea breeze pattern with onshore flow during the day and stagnation at 
night.  Upper level winds originated from the north – north west of the modeling domain 
(over land).  Measured O3 concentrations exceeded 250 ppb, while 3-hr average PM2.5 
concentrations reached 90 µg m-3.    
 
SoCAB Septembr 23-25, 1996: Temperatures at inland locations were moderate with 
peak daytime values reaching 25oC.  Winds were light onshore during the day and 
stagnant during the evening.  The total time required for air parcels to traverse the study 
region from west to east was calculated to be greater than 3 days.  Peak O3 concentrations 
were generally less than 100 ppb while PM2.5 concentrations measured at Riverside 
between the hours of 1400-1700 PST exceeded 75 µg m-3.  
 
SJV January 4-6, 1996: Temperatures ranged between 0oC at night to 10-15oC during 
the day.  O3 concentrations were less than 40 ppb, reflecting the low photochemical 
activity during winter pollution events in the SJV.  Regional particulate nitrate 
concentrations built up to high levels during the stagnation event.  Local emissions of 
carbonaceous aerosol also develop around urban areas.  Measured PM10 concentrations 
during the episode reached 150 µg m-3 during the evening hours, with the majority of that 
material in the PM2.5 size range.   
 
Table 2-3: Emissions summary for the air quality episodes described in Table 2-2. 
 

 NOx  
(tons day-1) 

VOC 
(tons day-1) 

PM10 
(tons day-1) 

SoCAB Sept 7, 1993 1066 1828 529 
SoCAB Sept 23, 1996 929 1219 381 
SJV, Jan 6, 1996 526 447 187 
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Perturbations:  Temperature perturbations +2K and +5K were considered during the 
sensitivity analysis (air temperature only, ground temperature and sea surface 
temperature are not used in the simulation).  These values span the range of IPCC 
projections for global mean surface temperature rise over the next 100 years.  Humidity 
perturbations were coordinated with temperature to avoid artificially specifying an 
atmosphere with RH>100%.  Each temperature perturbation was evaluated once with no 
change to absolute humidity and once with no change to relative humidity.  Perturbations 
in mixing depth considered in this study were chosen to be +50%.  Mixing depth 
perturbations were carried out without changes to air temperature even though this is a 
highly artificial case.  The sensitivity to mixing depth by itself reveals the effect of 
dilution separately from the effect of temperature on reaction rates. 
 
Perturbations to wind speed were not considered in the present study.  Although wind 
speed is expected to change in concert with other meteorological parameters, the 
appropriate direction and level of perturbation is not obvious.  One recent study suggests 
that higher soil moisture content leads to decreased wind speed in Los Angeles[32], but 
future trends in soil moisture are also not known. 
 
Long term trends in O3 concentrations are currently being studied by many researchers.  
The weight of preliminary evidence suggests that background O3 concentrations will 
increase from approximately 30 ppb to 60 ppb in the next 50 to 100 years [24].  In the 
current study, perturbations of background O3 concentrations were chosen to simulate a 
doubling of global background O3 concentrations to approximately 60 ppb.     
 
2.5 Results 

Figure 2-1 (a) shows the predicted regional pattern of 1hr-average O3 concentrations on 
September 9, 1993 at 1500 PST.  A band of high O3 concentrations occurs along a line 
connecting Claremont, Riverside, and Perris, with the highest predicted concentrations 
reaching 290 ppb at Perris.  Regional concentrations of O3 over the entire modeling 
domain are large during the episode, approaching 90 ppb.  Predicted O3 concentrations in 
the region immediately downwind of Central Los Angeles are slightly lower than the 
regional average because they are suppressed by emissions of fresh NOX.   
 
Figures 2-1 (b) and (c) show the predicted increase in regional O3 concentrations at 1500 
PST on September 9, 1993 when temperature is uniformly perturbed at all times and 
locations by +5 K and +2 K, respectively.  O3 concentrations along the line connecting 
Claremont, Riverside, and Perris increase by approximately 18 – 40 ppb in response to 
this change.  Regional O3 concentrations at other locations increase by 4 - 14 ppb.  Small 
regions with a ~1 - 3 ppb decrease are also observed, but these effects are minor 
compared to increases at other locations.   
 
The underlying cause for the increase in O3 concentrations at hotter temperatures can be 
diagnosed by looking at the speciation of nitrogen compounds.  Table 2-4 shows the 
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relative change to the concentration of O3, hydroxyl radical (OH), total reactive nitrogen 
(RN), and various forms of reactive nitrogen at locations in the SoCAB at 1500 PST on 
September 9, 1993 in response to a +5 K temperature perturbation. O3 concentrations at 
these locations increase by 3-22% in response to the temperature change.  The locations 
with the largest increase in O3 concentrations (in the eastern end of the SoCAB) also 
have significant increases in hydroxyl radical (OH) concentrations.  OH reacts with NO 
to form HONO.  HONO further reacts with OH to form NO2 or it can decomposes in the 
presence of sunlight to yield 90% NO and 10% NO2.  The net decrease in HONO 
concentrations evident in Table 2-4 suggests that the reaction with OH is more 
significant.  Under either scenario, the enhanced OH concentrations convert NO to NO2 
leading to increased O3 concentrations.   
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Table 2-4: Relative change in composition for O3, hydroxyl radical (OH), total reactive nitrogen (RN), and various forms of reactive 
nitrogen at 1500 PST on September 9, 1993 caused by a +5 K temperature perturbation.  PN is particulate nitrate.   
 

 O3 OH RN NO NO2 NO3 N2O5 HONO HNO3 HNO4 PAN PN 

LGBH 1.04 0.96 0.99 0.93 1.02 1.3 0.71 0.87 1.01 0.53 0.36 0.65 

CELA 1.03 0.99 1.00 0.94 1.03 1.27 0.76 0.92 0.99 0.58 0.42 0.34 

AZUS 1.22 1.20 0.97 0.79 1.01 1.80 0.86 0.93 1.04 0.84 0.76 0.38 

CLAR 1.15 1.16 0.96 0.81 0.99 1.58 0.98 0.93 1.02 0.76 0.72 0.36 

PERI 1.12 1.08 0.94 0.91 1.07 1.43 0.88 1.00 0.95 0.69 0.66 0.47 

 
Table 2-5: Relative change in composition for O3, hydroxyl radical (OH), total reactive nitrogen (RN), and various forms of reactive 
nitrogen at 1500 PST on September 25, 1996 caused by a +5K temperature perturbation.  PN is particulate nitrate.   
 

 O3 OH RN NO NO2 NO3 N2O5 HONO HNO3 HNO4 PAN PN 
LGBH 1.03 0.89 0.99 0.94 1.02 1.25 0.68 0.87 1.07 0.47 0.31 0.78 
CELA 1.03 1.03 0.98 0.91 1.01 1.29 0.69 0.92 1.13 0.57 0.47 0.64 
AZUS 1.06 1.09 1.00 0.91 1.02 1.36 0.75 0.96 1.15 0.64 0.57 0.28 
CLAR 1.06 1.11 1.02 0.92 1.03 1.36 0.75 0.98 1.20 0.65 0.61 0.26 

 
Table 2-6: Relative change in composition for O3, hydroxyl radical (OH), total reactive nitrogen (RN), and various forms of reactive 
nitrogen at 1500 PST on January 6, 1996 caused by a +5K temperature perturbation.  PN is particulate nitrate.   
 

 O3 RN NO NO2 NO3 N2O5 HONO HNO3 HNO4 PAN PN 
FEI 1.19 1.00 0.83 1.05 1.73 0.96 0.87 1.59 0.73 0.62 0.23 
KWR 1.19 1.01 0.96 1.23 1.75 1.17 1.09 3.64 0.75 0.72 0.88 
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Large relative increases are observed in the concentration of nitrate radical (NO3) at 
hotter temperatures, but NO3 constitutes only a minor fraction of total reactive nitrogen.  
The concentration of nitric acid (HNO3) is also enhanced at several locations when 
temperature is increased partially due to the reaction of increased OH concentrations with 
NO2 and partly due to the evaporation of particulate nitrate (PN).  All the reactive 
nitrogen species that undergo thermal decomposition reactions (N2O5, HNO4, PAN, PN) 
have reduced concentrations at hotter temperatures as shown in Table 2-4.  PAN 
concentrations summarize the net effect of all PAN-like species in the calculation.  Many 
of these compounds decompose to form NO2, but the resulting increase in NO2 
concentrations (-1 to + 7%) is smaller than the decrease in NO concentrations (-6 to -
21%) suggesting that the effect of increased hydroxyl radical concentrations is more 
significant than the thermal decomposition of various reactive nitrogen compounds.  
Total reactive nitrogen concentrations change by up to 6% because the different forms of 
reactive nitrogen have different loss rates. 
 
Figure 2-1 (d) shows the change in predicted regional O3 concentrations at 1500 PST on 
September 9, 1993 when temperature is uniformly perturbed by +5 K with no change to 
relative humidity.  Basecase inland absolute humidity concentrations at 1500 PST are on 
the order of 15-20 ppth (parts per thousand) yielding relative humidity that ranges from 
30-70%.  When temperature is increased without adjusting absolute humidity, the relative 
humidity decreases.  Given the proximity of the SoCAB to the Pacific Ocean, relative 
humidity may stay constant as temperature increases, leading to an effective increase in 
absolute humidity.  The results in Figure 2-1 (d) can be compared to Figure 2-1 (b) which 
applied a +5 K temperature perturbation with no change to absolute humidity.  The 
spatial distribution of increased O3 concentrations shown in Figure 2-1 (d) matches that 
shown in Figure 2-1 (b), but the magnitude of the predicted concentration increase is 67 
ppb (vs. 40 ppb for the case with lower humidity).  The increase in O3 concentrations 
associated with higher concentrations of water vapor is caused by the production of 
hydroxyl radical from H2O. 
 
Figure 2-1 (e) shows the change in predicted regional O3 concentrations at 1500 PST on 
September 9, 1993 in response to a uniform increase in mixing depths of +50%.  The 
increased mixing depth leads to an increase in predicted O3 concentrations in the western 
portion of the model domain by 75 ppb and a decrease in predicted O3 concentrations in 
the eastern portion of the model domain by 36 ppb.  Increased mixing depth reduces the 
concentration of primary pollutants such as oxides of nitrogen (NOx).  Reduced NOx 
concentrations can promote higher O3 concentrations in regions where there is an over 
abundance of NOx.  The location of the maximum concentration increase differs slightly 
from the location of the predicted O3 maximum in the base-case simulation, and so the 
net effect of the increased mixing depth is to slightly increase the maximum O3 
concentrations predicted during the episode and to increase the size of the region 
experiencing those maximum concentrations.  The relationship between increased mixing 
depth and higher O3 concentrations during severe photochemical episodes in the SoCAB 
has been noted previously during simulations of the Southern California Air Quality 
Study (SCAQS) [39].   
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Figure 2-1 (f) shows the change in predicted regional O3 concentrations at 1500 PST on 
September 9, 1993 in response to a +5 K temperature perturbation with no changes to 
relative humidity when background O3 concentrations are increased from 30 ppb to 60 
ppb.  This result can be directly compared to Figure 2-1 (d) to view the effect of 
increased background O3 concentrations.  The additional 30 ppb of background O3 
increases regional O3 concentrations by approximately 30 ppb but maximum O3 
concentrations are increased by approximately 46 ppb.   

 
Figure 2-1: Basecase O3 concentration at 1500 PST on September 9, 1993 (panel a) and 
sensitivity of O3 concentration to (b) +5 K temperature change with constant absolute 

humidity, (c) +2 K temperature change with constant absolute humidity, (d) +5 K 
temperature change with constant relative humidity, (e) +50% increase in mixing depth, 

and (f) + 5K temperature change with constant relative humidity and increase in 
background O3 from 30 ppb to 60 ppb. 

 
Figure 2-2 (a) shows the predicted regional pattern of 24-hr average PM2.5 
concentrations on September 9, 1993.  The largest PM2.5 concentration of 194 µg m-3 is 
predicted to occur in the region west of Riverside where ammonia concentrations are 
very large leading to enhanced formation of particulate ammonium nitrate.  The predicted 
concentration of PM2.5 at most other locations in the inland portion of the modeling 
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domain is 70-90 µg m-3.  The hot base-case temperatures during the current episode 
suppress the formation of large regions of particulate nitrate, since increasing temperature 
encourages nitrate evaporation [15]. 
 
Figures 2-2 (b) and (c) show the predicted change in regional PM2.5 concentrations on 
September, 1993 when temperature is uniformly perturbed by +5 K and +2 K, 
respectively, at all times and locations.  PM2.5 concentrations in the region east of 
Riverside decrease by 14 to 31 µg m-3 in response to this change.  The majority of this 
reduction is associated with the volatilization of particulate ammonium nitrate as 
temperature increases.  The location west of Riverside with the highest base-case 
concentration of particulate nitrate (see Figure 2-2a) does not experience the largest 
reduction in PM2.5 concentrations because regions with higher excess gas-phase 
ammonia concentrations respond less strongly to increased temperature than regions with 
lower excess gas-phase ammonia [15].  Figures 2-2 (b) and (c) also show that regional 
average PM2.5 concentrations are predicted to decrease by 3 to 15 µg m-3 in response to 
the +2 K and +5 K temperature perturbations.  Once again, this change is caused by the 
partitioning of semi-volatile species to the gas phase at hotter temperatures, with 
particulate ammonium nitrate being the largest contributor to this effect.  The region 
around the Long Beach harbor experiences a 0.2 µg m-3 increase in PM2.5 
concentrations in response to a +2 K temperature perturbation.  Increased temperature 
promotes the oxidation of SO2 emissions in this region to form sulfuric acid.  Sulfur acid 
is essentially non-volatile at all ambient temperatures, and so this species partitions to the 
particle phase regardless of temperature perturbation. 
 
Figure 2-2 (d) shows the change in predicted regional PM2.5 concentrations on 
September 9, 1993 when temperature is uniformly perturbed by +5 K with no changes to 
relative humidity.  This figure can be compared to Figure 2-2 (b) which applied a +5 K 
temperature perturbation with no changes to absolute humidity.  Maintaining relative 
humidity will maintain the amount of particle-phase water, leading to enhanced 
partitioning of water-soluble semi-volatile species.  The reductions in particulate matter 
mass apparent in Figure 2-2 (b) are caused by the combined effect of increased 
temperature and reduced particle water content while the reductions in particulate matter 
mass shown in Figure 2-2 (d) are only caused by temperature.  The region immediately 
west of Riverside experiences no decrease in PM2.5 concentrations when temperature is 
increased by +5 K with no change to relative humidity, and one grid cell (5km*5km area) 
even experiences a 2 µg m-3 increase PM2.5 concentrations.  The effect of temperature 
on particulate ammonium nitrate evaporation is moderated in regions with extremely high 
ammonia concentrations [15].  The area east of Riverside still experiences a decrease of 
PM2.5 concentrations by approximately 19 µg m-3, but this is moderated from the 
decrease of 36 µg m-3 predicted in the case with lower humidity.  The reduction in 
regional average PM2.5 concentrations in response to a +5 K increase in temperature is 
also moderated when relative humidity is maintained.  Most inland regions experience a 
decrease in predicted PM2.5 concentrations of 1 to 7 µg m-3, with slight increases 
predicted in the region around the Long Beach Harbor, and the Los Angeles International 
Airport.  The regional increases in PM2.5 at these locations are once again associated 
with the enhanced production of sulfate aerosol from SO2 emissions. 
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Figure 2-2 (e) shows the change in predicted regional PM2.5 concentrations on 
September 9, 1993 in response to a uniform increase in mixing depth of +50%.  The 
maximum increase in PM2.5 concentrations in response to this change is 5 µg m-3 in the 
region that experienced the largest increase in O3 concentrations (see Figure 2-1e).   
Predicted PM2.5 concentrations in the region to the east of Riverside are reduced by 9 µg 
m-3 as the plume of enhanced nitrate is diluted by the increased mixing depth. 
 
Figure 2-2 (f) shows the change in predicted PM2.5 concentrations on September 9, 1993 
in response to a +5 K temperature perturbation with no change to relative humidity when 
background O3 concentrations are increased from 30 ppb to 60 ppb.  This result can be 
directly compared to Figure 2-2 (d) to view the effect of increased background O3 
concentrations.  Increased background O3 concentrations lead to increased PM2.5 
concentrations through the production of additional particulate nitrate via the formation 
of N2O5 at night.  The results illustrated in figure 2-2 (f) show that a 30 ppb increase in 
background O3 concentrations in the presence of a +5 K uniform temperature 
perturbation with no change to relative humidity leads to +5 to +8 µg m-3 increase in 
PM2.5 concentrations near the Long Beach harbor and a +10 to +21 µg m-3 increase in 
PM2.5 concentrations west of Riverside.  Concentrations in other parts of the domain still 
decrease by -3 to -13 µg m-3 in the presence of the +5 K temperature perturbation 
(despite the increased background O3).   
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Figure 2-2: Basecase PM2.5 concentration on September 9, 1993 (panel a) and sensitivity 
of PM2.5 concentration to (b) +5 K temperature change with constant absolute humidity, 

(c) +2 K temperature change with constant absolute humidity, (d) +5 K temperature 
change with constant relative humidity, (e) +50% increase in mixing depth, and (f) + 5K 
temperature change with constant relative humidity and increase in background O3 from 

30 ppb to 60 ppb. 
 

Figures 2-3 and 2-4 illustrate the predicted effect of temperature, humidity, and mixing 
depth perturbations on O3 and PM2.5 concentrations in the SoCAB on September 25, 
1996.  The format used in Figures 2-3 and 2-4 is identical to the format of Figures 2-1 
and 2-2.  Figure 2-3(a) shows that the highest predicted 1hr-average O3 concentration on 
September 25, 1996 at 1500 PST is 120 ppb in the northeast corner of the domain that is 
downwind of the major emissions sources during this event.  Concentrations immediately 
downwind of central Los Angeles are once again slightly lower than the regional average 
because they are suppressed by emissions of fresh NOx.  Maximum predicted O3 
concentrations in this region are 70-80 ppb.  Figure 2-4(a) shows that the largest basecase 
24-hr average PM2.5 concentrations of 125 µg m-3 are predicted to occur in the region 
west and northeast of Riverside where ammonia concentrations are very large leading to 
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enhanced formation of particulate ammonium nitrate.  The predicted concentration of 
PM2.5 at most other locations in the inland portion of the modeling domain is 40-80 µg 
m-3 on September 25, 1996.  The moderate base-case temperatures during the current 
episode allow for the formation of significant quantities of particulate ammonium nitrate 
throughout the study region.   
 

 
Figure 2-3: Basecase O3 concentration at 1500 PST on September 25, 1996 (panel a) and 

sensitivity of O3 concentration to (b) +5 K temperature change with constant absolute 
humidity, (c) +2 K temperature change with constant absolute humidity, (d) +5 K 

temperature change with constant relative humidity, (e) +50% increase in mixing depth, 
and (f) + 5K temperature change with constant relative humidity and increase in 

background O3 from 30 ppb to 60 ppb. 
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Figure 2-4: Basecase PM2.5 concentration on September 25, 1996 (panel a) and sensitivity 
of PM2.5 concentration to (b) +5 K temperature change with constant absolute humidity, 

(c) +2 K temperature change with constant absolute humidity, (d) +5 K temperature 
change with constant relative humidity, (e) +50% increase in mixing depth, and (f) + 5K 
temperature change with constant relative humidity and increase in background O3 from 

30 ppb to 60 ppb. 
 



 

 49

 
Figure 2-5: Basecase O3 concentration at 1500 PST on January 6, 1996 (panel a) and 
sensitivity of O3 concentration to (b) +5 K temperature change with constant absolute 

humidity, (c) +2 K temperature change with constant absolute humidity, (d) +5 K 
temperature change with constant relative humidity, (e) +50% increase in mixing depth, 

and (f) + 5K temperature change with constant relative humidity and increase in 
background O3 from 30 ppb to 60 ppb. 
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The predicted changes in O3 and PM2.5 concentrations in response to changes in 
meteorological variables and background O3 is shown in Figures 2-3 (b-f) and 2-4(b-f) 
for September 25, 1996.  In all cases, the qualitative behavior of O3 and PM2.5 on 
September 9, 1993 (Figures 2-1 and 2-2) and September 25, 1996 (Figures 2-3 and 2-4) 
are similar.  Increased temperature results in higher predicted peak O3 concentrations and 
lower predicted peak PM2.5 concentrations (Figures 2-3b,c; Figures 2-4b,c).  Increased 
humidity below the saturation threshold results in higher predicted peak O3 and PM2.5 
concentrations (Figure 2-3d; Figure 2-4d).  The magnitude of the positive humidity effect 
on PM2.5 concentrations was generally smaller than the negative temperature effect.  
Increased mixing depth produced mixed results: O3 and secondary PM22.5 increased in 
regions with excess NO while primary PM2.5 and O3 in regions without excess NO 
decreased (Figure 2-3e; Figure 2-4e).  The magnitude of the effect caused by mixing 
depth was smaller on September 25, 1996 than September 9, 1993 because basecase 
mixing depths were larger during the 1996 episode.  Increased background O3 produced 
higher peak concentrations of O3 and PM2.5 inside the SoCAB (Figure 2-3f; Figure 2-
4f).  The magnitude of the positive effect on PM2.5 caused by background O3 was 
greater than the negative effect caused by a +5K temperature perturbation. 
 
Table 2-5 shows the relative change in O3, hydroxyl radical (OH), total reactive nitrogen 
(RN), and various forms of reactive nitrogen in response to a +5 K temperature 
perturbation on September 25, 1996.  The trends illustrated in Table 2-5 (September 
1996) are similar to those shown in Table 2-4 (September 1993) but the magnitude of the 
changes are smaller.  O3 concentrations increase by 3-6%, largely due to a decrease in 
the concentration of NO by 6-9%.  The apparent cause for the decrease in NO 
concentrations is an increase in OH that favors the production of NO2 and HNO3. 
 
Figure 2-5 (a) shows the regional distribution of 1hr-average O3 concentrations in the 
SJV at 1500 PST on January 6, 1996.  Peak O3 concentrations are 41 ppb across a wide 
portion of the study domain except in regions with large NOx emissions where the O3 
concentrations are titrated to very low values.  The O3 suppression associated with the 
Highway 99 transportation corridor connecting Fresno, Visalia, and Bakersfield is clearly 
visible in this plot.  Previous studies have noted that the excess NOx in the emissions 
inventory around Bakersfield appear to contradict measured concentrations in the region 
[18, 40].  Results in the area around Bakersfield are likely incorrect, but results for the 
remainder of the domain agree well with measurements and should be accurate.  Figure 
2-6 (a) shows the regional distribution of 24-hr average PM2.5 concentrations in the SJV 
on January 6, 1996.  Peak PM2.5 values reach 95 µg m-3 around the urban locations of 
Fresno and Bakersfield due to the accumulation of wood smoke and other combustion 
particles combined with a regional background of ammonium nitrate particles peaking 
close to Visalia [18, 37]. 
 
Figures 2-5(b-f) illustrate the predicted change in O3 concentrations in the SJV on 
January 6, 1996 in response to changes in meteorological parameters.  The qualitative 
behavior of the SJV system shown in Figures 2-5 matches the predicted behavior of the 
SoCAB illustrated in Figures 2-1 and 2-3.  Hotter temperatures enhance predicted local 
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O3 formation (Figure 2-5b,c) as does increased humidity below the saturation threshold 
(Figure 2-5d).  Increased mixing depths produces higher O3 concentrations in regions 
with transportation corridors that have an excess of fresh NO emissions (Figure 2-5e).  
Higher concentrations of background O3 directly increased the O3 concentrations within 
the SJV (Figure 2-5f).   
 
Figures 2-6(b-f) illustrate the predicted change in PM2.5 concentrations in the SJV on 
January 6, 1996 when meteorology is perturbed.  Once again, the qualitative behavior of 
the SJV system is similar to that observed in the SoCAB (compare Figure 2-6 with 
Figures 2-2 and 2-4).  Hotter temperatures reduce predicted PM2.5 concentrations due to 
the evaporation of NH4NO3 (Figure 2-6b,c)  The region immediately south of Visalia 
does not experience a large decrease in PM2.5 concentrations because NH3 emissions in 
this region are very large, reducing the sensitivity of NH4NO3 to temperature.  Increased 
humidity acted in the opposite direction as temperature because higher humidity 
increased the liquid water content of airborne particles which in turn promoted particulate 
NH4NO3 formation.  Maintaining RH in the presence of a +5K temperature perturbation 
produced increased PM2.5 concentrations in the region with the highest NH3 emissions 
(Figure 2-6d).  In the region immediately south of Visalia, an 8 µg m-3 increase in PM2.5 
concentrations is predicted to occur when relative humidity is constant and temperature 
increases by 5 K.  The base temperature is low in the winter conditions during the current 
study, reducing the sensitivity of ammonium nitrate to temperature increases.  The 
increase of temperature south of Visalia increases the formation rate of nitric acid faster 
than it increases the volatility of ammonium nitrate aerosol, leading to higher predicted 
PM2.5 concentrations.  It should be noted that the location of the maximum increase is 
slightly south of the maximum base-case concentrations.  The net effect of this 
temperature increase is to expand the region of maximum PM2.5 concentrations during 
the current study.  Other locations in the SJV with lower amounts of excess gas-phase 
ammonia experience a decrease in PM2.5 concentrations of 4.6 µg m-3 in response to a 
+5 K temperature perturbation even when relative humidity remains constant.   
 
Table 2-6 shows the relative change in O3, hydroxyl radical (OH), total reactive nitrogen 
(RN), and various forms of reactive nitrogen in response to a +5 K temperature 
perturbation on January 6, 1996.  Once again, the increased temperature changes the 
speciation of reactive nitrogen, leading to decreased concentrations of NO and increased 
concentrations of NO2.  O3 concentrations at Fresno (FEI) and Kern Wildlife Refuge 
(KWR) both increase by 19%, but at Fresno the change is largely driven by a decrease in 
NO while at Kern Wildlife Refuge the change is largely driven by an increase in NO2 
concentrations.  This difference in behavior is likely caused by the fact that Fresno is an 
urban city while Kern Wildlife Refuge is a remote location.  The fresh emissions at the 
urban location result in behavior that matches the trends observed in the South Coast Air 
Basin (see Tables 2-4 and 2-5). 
 
Figure 2-6 (e) shows the change in predicted regional PM2.5 concentrations on January 
6, 1996 in response to a uniform increase in mixing depths of +50%.  Predicted PM2.5 
concentrations immediately north of Bakersfield increase by +4.6 µg m-3 in response to 
the increased mixing depth because the diluted NOx concentrations form more nitric acid 
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which interacts with the ammonia plume just north of that location.  As noted previously, 
the high NOx emissions in the Bakersfield region are an artifact of the emissions 
inventory used in the current study, and so this increase in concentrations is likely also an 
artifact.  PM2.5 concentrations at locations farther north in the domain are predicted to 
undergo slight decreases or increases associated with the enhanced mixing of pollutants 
aloft to the surface.  
 
Figure 2-6 (f) shows the change in predicted regional PM2.5 concentrations on January 6, 
1996 when background O3 concentrations are increased from 30 ppb to 60 ppb while 
temperature is uniformly increased by 5 K with no changes in relative humidity.  The 
formation of particulate nitrate via the nighttime reaction of N2O5 is particularly 
important during winter SJV episodes, and so the PM2.5 concentrations respond strongly 
to background O3.  The entire central portion of the study domain is predicted to 
experience a +5 to +20 µg m-3 increase in PM2.5 concentrations under these conditions.  
The largest increase occurs near Visalia where ammonia concentrations are large. 
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Figure 2-6: Basecase PM2.5 concentration on January 6, 1996 (panel a) and sensitivity of 
PM2.5 concentration to (b) +5 K temperature change with constant absolute humidity, (c) 
+2 K temperature change with constant absolute humidity, (d) +5 K temperature change 

with constant relative humidity, (e) +50% increase in mixing depth, and (f) + 5K 
temperature change with constant relative humidity and increase in background O3 from 

30 ppb to 60 ppb. 
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2.6 Discussion 

Figure 2-7 summarizes the range of changes in predicted O3 and PM2.5 concentrations 
resulting from all the meteorological perturbations considered in the current study when 
background O3 concentrations are set equal to 60 ppb (approximately double present-day 
conditions).  The bars shown in Figure 2-7 illustrate the largest change in pollutant 
concentrations predicted anywhere in the domain, while the circles illustrate the change 
in the maximum concentrations.  When the circles are located close to the extreme values 
of the bars, it shows that the greatest change in concentration occurs at the location of 
maximum concentration. 
 
Figure 2-7 shows that increasing temperature with no change in absolute humidity 
generally increases peak O3 concentrations in all the episodes studied.  PM2.5 
concentrations decrease in some parts of the study domain, but peak concentrations 
generally increase during all of the episodes studies, largely because the the temperature 
effect (reducing PM2.5 formation) is overwhelmed by the effect of background O3 
(promoting PM2.5 formation).  Increasing temperature with no change to relative 
humidity increases predicted O3 concentrations even further due to the enhanced 
production of hydroxyl radical.  The increased humidity also mitigates the reduction in 
PM2.5 concentrations leading to greater increases, especially in the SJV in regions with 
large excesses of gas-phase ammonia and cooler basecase temperatures. 
 
Figure 2-7 generally shows that increasing mixing depths usually increases surface O3 
concentrations because the extra volume allows for increased dilution of fresh NOx 
emissions, reducing the titration of surface O3 concentrations.  This effect may not be 
significant at the location of maximum O3 concentration.  The increased mixing depth 
also usually reduces primary PM2.5 concentrations through increased dilution.  
Secondary PM2.5 can increase as mixing depth rises due to the same chemistry that 
enhances O3 formation under these conditions.  The effect of mixing depth on PM2.5 
concentrations is generally smaller than the effect of background O3, which promotes 
enhanced PM2.5 concentrations. 
 
Emissions of NOx, VOC, and particulate matter in California have been reduced over the 
last several decades in an attempt to control ambient O3 and airborne particulate matter 
concentrations to protect public health.  The emissions totals summarized in Table 2-3 for 
the SoCAB reflect the predicted effects of emissions control programs between 1993 and 
1996.  Similar downward emissions trends are predicted for the SJV.  The effectiveness 
of future emissions control programs will be determined by the competition between 
projected increases in population vs. improved efficiency or other technological advances 
that reduce emissions per unit of activity.  Even if emissions are reduced to levels that 
achieve the National Ambient Air Quality Standards (NAAQS), meteorology will still 
affect air pollutant concentrations in California.  The SJV already has significantly lower 
emissions than the SoCAB and the predicted response of O3 and PM2.5 to changes in 
temperature, humidity, and mixing depth in the SJV are qualitatively similar to those in 
the SoCAB.  The results of the present analysis suggest that meteorological conditions 
that enhance the formation of O3 and PM2.5 will require stricter emissions control 
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programs than would otherwise have been required to achieve the NAAQS.  Further 
research is needed to quantify the magnitude of this effect. 
 

 
 
Figure 2-7: Summary of pollutant response to meteorological perturbations when 
background O3 concentrations are 60ppb during pollution episodes that occurred in (a) 
Southern California September 9, 1993, (b) Southern California September 25, 1996, and 
(c) the San Joaquin Valley January 6, 1996.  The bars represent the range of 
concentration change at any location in the modeling domain in response to the indicated 
perturbation.  The circles represent the concentration change at the location of the 
maximum concentration for each pollutant.  AH is absolute humidity and RH is relative 
humidity. 
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2.7 Conclusions 

The trends illustrated in the previous section show that air pollution problems in 
California are sensitive to temperature, humidity, mixing depth, and background 
concentrations.  Future trends for temperature, humidity, mixing depth, and background 
concentrations are not exactly known at this time, but the weight of scientific evidence 
suggests that background O3 concentrations and temperature are likely to rise.  The 
results of the current study suggest that these changes will lead to increased O3 
concentrations in California.   
 
The PM2.5 response to global change is more complicated to diagnose because some of 
the likely trends act in opposite directions.  Increased temperature discourages the 
formation of particulate ammonium nitrate, but rising concentrations of background O3 
encourages the formation of this same species.  PM2.5 concentrations increased in all of 
the episodes currently studied under the limiting scenario of a +5 K temperature increase 
with no change in absolute humidity and a +30 ppb increase in background O3.  The 
effect of increased background O3 was especially important during episodes with lower 
basecase temperatures.  PM2.5 events in the San Joaquin Valley usually occur during the 
winter months, and so increased background O3 concentrations have a strong positive 
effect on PM2.5 concentrations in this location.  These results suggest that global change 
will increase PM2.5 concentrations in California, but more research is needed to verify 
this result. 
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3.0 IMPACT OF CLIMATE CHANGE ON PHOTOCHEMICAL AIR 
POLLUTION IN SOUTHERN CALIFORNIA  
 
3.1 Introduction 

Ozone air quality varies depending on meteorological conditions. A positive correlation 
between ozone levels and temperature is a well-known aspect of this relationship [33, 53-
55]. Air quality management plans may be affected if an increase in emission control 
requirements is needed to offset changes in climate that increase the severity and/or 
frequency of air pollution episodes.  
 
Global analyses [16, 56-59] simulate future meteorology and air quality under different 
climate scenarios. With climate change these studies report ozone decreases in remote 
areas as destruction of ozone by water vapor increases with higher temperatures. The 
global models do not provide a consistent picture of the response of urban ozone levels to 
climate change. 
 
Regional air quality models have been used to assess local air quality effects while 
incorporating global-scale changes. Racherla and Adams [60] reported longer future 
ozone seasons and increases in summertime ozone levels in the eastern U.S. using a 
“unified” model that allowed them to incorporate air quality impacts from climate change 
that occur outside their U.S. study region. Jacobson [19] used a global model with a 
nested regional U.S. grid and found adverse effects on public health relating to climate 
change-induced air quality changes.  
 
High-resolution air quality models are needed to study local effects on air quality, such as 
complex terrain, spatially resolved emissions, and fine-scale patterns of expected 
population growth. Studies such as Aw and Kleeman [33], Steiner et al. [5], and Kleeman 
[61] refine the scale of interest to focus on air quality in urban areas. These studies 
incorporate predictions of future temperature changes and various feedbacks that may 
result. Effects on ozone varied strongly by location across each air basin, highlighting the 
importance of using a fine-scale grid for this type of analysis.  
 
Other studies have examined the effects on air quality of changing the frequency of 
stagnation events. Mickley et al. [14] report that changes in weather patterns (specifically 
the frequency of low-pressure systems passing through) lead to a lengthening of 
stagnation events across the eastern and mid-western U.S., creating longer and more 
severe ozone air pollution episodes. Similarly, Leung and Gustafson [62] find evidence of 
increasing stagnation in southern California during the fall, also leading to adverse effects 
on ozone air quality.  
 
Duffy et al. [63] discuss increases in observed surface temperatures for California over 
the last 50 years, pointing out that increases in temperature have been higher during the 
nighttime than daytime. They argue that global climate models do not represent 
accurately the seasonal or diurnal changes in the observed temperature record in 
California since 1950. Duffy et al. [63] show that unmodeled forcings due to changes in 
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land-use and irrigation affect trends in daily maximum temperatures. Bonfils and Lobell 
[64] and Lobell and Bonfils [65] show that increases in irrigation have had a cooling 
effect on daytime temperatures during summer. Ongoing work by Lebassi et al., [66], 
indicate the potential for stronger sea breezes associated with climate change to cause 
summer daytime cooling while average seasonal temperatures continue to increase. These 
daytime cooling effects may have mitigated some effects of climate change on ozone air 
quality.  
 
The objective of this research is to predict potential effects of future changes in climate, 
population, and emissions on ozone air quality in southern California. Outcomes at 
different locations throughout the Los Angeles area are evaluated to assess interactions 
among the above factors.  
 
3.2 Methods 

The effects on ozone air quality of changes in five different factors (temperature, 
humidity, biogenic emissions, inflow boundary conditions, anthropogenic emissions) are 
evaluated in southern California. Each of these factors is considered individually. In 
addition, the combined air quality effects of changes in temperature, biogenic emissions, 
and humidity represent an aggregate climate-related effect on air quality. The combined 
effects on air quality of future changes in anthropogenic emissions and inflow boundary 
conditions reflect effects of population growth and technology change, occurring locally 
in southern California and globally. Each of these effects on air quality is evaluated 
relative to a base case high-ozone episode from summer 2005. 
 
Air pollution formation and transport is modeled for a base case period of 14-19 July 
2005, when observed ozone concentrations peaked at over 100 ppb at many inland 
locations in southern California. This time period has been used to support control 
strategy design in the 2007 Air Quality Management Plan for the Los Angeles area [67]. 
The model domain (110×74 grid cells with 5 km horizontal resolution) is centered over 
downtown Los Angeles, extending west over the Pacific Ocean past the Channel Islands, 
and east over the Mojave Desert. The domain extends from northern Mexico to the south 
end of San Joaquin Valley as shown in Fig. 3-1. The vertical dimension is divided into 25 
layers extending to ~15 km above sea level, with a telescoping vertical grid starting at 36 
m layer thickness at ground level and increasing to 6.5 km near the tropopause. 
 
The Community Multiscale Air Quality model (CMAQ; Byun and Schere, 2006[68]) 
version 4.6 is used to predict base case and future air quality. The SAPRC99 chemical 
mechanism [69], containing 77 model species (including lumped VOC categories) and 
216 reactions, is used to describe relevant atmospheric chemistry. Boundary conditions 
similar to Steiner et al. [5] were used here except that the NO and NO2 inflow (western) 
boundary conditions were reduced from 1 ppb each to 0.01 and 0.03 ppb, respectively, 
based on Nowak et al. [70]. Meteorological fields were developed by the South Coast Air 
Quality Management District [71] using the National Center for Atmospheric Research 
Mesoscale Meteorological model (MM5) version 3.6.1. Three two-way nested domains 
were used with spatial resolution of 45, 15, and 5 km. Only the innermost 5 km 
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meteorological fields were used in the present study to drive air quality model 
calculations. SCAQMD evaluated meteorological model predictions over the 14-19 July 
2005 episode, in general finding small differences between modeled and observed 
temperature, wind speed, and humidity. For example, the daily average bias in wind 
speed ranged from –0.03 to 0.23 m/s. For temperature, most days had smaller than a -
0.5°C bias compared to observation, the largest temperature bias was for July 19th, of –
1.2°C. The largest bias of humidity was -5%, also for July 19th.  
  
The base case emission inventory used here was provided by the California Air 
Resources Board [72]. Separate hourly and day-specific gridded estimates of mobile, 
point, and area source emissions were combined with biogenic emission estimates 
developed using the BEIGIS model [73]. Table 3-1 shows domain-wide emission totals 
for NOx, non-methane organic compounds (NMOC), and CO, for each category of 
emissions. Table 3-1 highlights the importance of both on-road mobile emissions as well 
as off-road/area emission as important sources. A high degree of emission control has 
been achieved on large point sources such as power plants in southern California, so 
these sources are of relatively minor importance here. 
 
Table 3-1: Domain-wide emission totals (tons/day) 
Source Weekday Emissions (tons/day) Weekend Emissions (tons/day) 

 NOx NMOC CO NOx NMOC CO 

Area/off-road mobile 720 707 1498 612 738 2163 

On-road mobile 775 353 3408 445 283 2806 

Point 142 76 171 128 44 147 

Biogenic  713   719  

 
Perturbations to the base case air quality model were developed and applied using results 
from a global and regional climate modeling study by Snyder et al. [74]. A doubling of 
pre-industrial global background CO2 levels from 280 to 560 ppm was the basis for future 
climate calculations. The domain used in the regional climate model was centered on 
California with a horizontal resolution of 40 km. This fine resolution is needed to capture 
the wide variety of elevations, land cover types, and microclimates that are found within 
California. The regional climate model was forced using global-scale predictions from 
the NCAR parallel climate model for the 2× CO2 scenario. See Snyder et al. [74] for 
further details. Predicted temperature increases in southern California for July range from 
1.6 to 3.5°C, with larger increases predicted to occur further inland, as shown in the first 
panel of Fig. 3-2. Temperature changes from Snyder et al. [74] are monthly average 
values based on 5-year long regional scenarios and are applied evenly across all times of 
day and week except when otherwise specified. 
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Perturbations to the base case were considered separately to isolate the effects of 
individual variables. Temperature changes affect chemical reaction rates in the model, 
but these changes were not linked to other variables such as wind speed or planetary 
boundary layer height, which remained the same as in the base case. Temperature 
changes were mapped directly from the regional climate model to the air quality domain. 
Both climate and mesoscale meteorological models used a Lambert conformal map 
projection which facilitated superposition of regional climate model-derived temperature 
perturbations on the MM5-derived meteorological fields.  
 
The effect of increased temperatures on biogenic emissions of volatile organic 
compounds was modeled as a separate effect. Biogenic emissions of isoprene and 
methyl-butenol are sensitive to temperature and light, whereas terpenes are sensitive to 
temperature but not light. For the future temperature scenario, emissions of isoprene and 
terpenes were scaled using algorithms described by Guenther et al. [75]. Methyl-butenol 
emissions were adjusted following Harley et al. [76]. These algorithms show all 
emissions increasing exponentially with temperature increases, but note isoprene and 
methyl-butenol emissions saturate at temperatures above 40°C. In this scenario, biogenic 
emissions were calculated for the higher temperature regime while atmospheric chemistry 
proceeded at temperature-dependent rates equal to those of the base case. This isolated 
the effects of biogenic emission changes on air quality.  
 
Assuming relative humidity remains constant in the future climate scenario, absolute 
humidity was adjusted given the new (higher) temperatures. This calculation adjusts the 
ratio of (g water)/(kg air) to maintain the same relative humidity under future temperature 
conditions. Note that in the “humidity only” scenario relative and absolute humidity both 
increase, while temperature is held constant. For the combined climate case, relative 
humidity is unchanged between future and base case scenarios, as both absolute humidity 
and temperature increase. 
 
Future anthropogenic emissions were estimated from current emissions, scaled to account 
for population growth and technology change. Population growth in California through 
2050 has been forecast at the county level [77]. We assumed that improved technologies 
and increased regulation of air pollution sources will reduce VOC, CO, and NOx 
emission factors by 80% below present-day (circa 2000, already controlled) levels.   
Following Steiner et al. [5], growth in NOx emissions is estimated as double VOC growth 
because of expected continuing increases in the freight-transport sector. Table 3-2 shows 
anthropogenic and biogenic VOC and NOx emission totals by county for Thursday, July 
14th, for future conditions and base case conditions. Included are the growth factors for 
each county. Future domain-wide NOx emissions decrease from the base case by 31% 
while anthropogenic VOC emissions decrease by roughly double this amount. This future 
emission scenario is based on past trends in California and does not reflect current 
greenhouse gas regulatory efforts that may also influence the trajectory of NOx and VOC 
emission reductions.  
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Table 3-2: AVOC, BVOC and NOx, base case and future emissions by county. Emissions 
are reported in tons/day for Thursday July 14th. 

County 

Pop. 

Growth 

Base 

Case 

NOx 

Future 

NOx 

% 

chg 

Base 

Case 

AVOC 

Future 

AVOC 

% 

chg 

Base 

Case 

BVOC1 

Future 

BVOC1 % chg 

Imperial 2.3 34.8 32.4 -7% 53.1 24.7 -53% 6.3 7.8 +25% 

Kern 2.7 181.5 198.9 +10 90.4 49.6 -45 52.0 59.1 +14 

Los Angeles 1.3 524.8 272.9 -48 377.8 98.2 -74 34.4 35.6 +3 

Orange 1.3 143.8 75.4 -48 136.2 35.7 -74 7.5 6.8 -9 

Riverside 2.5 145.6 145.0 -0.4 107.9 53.7 -50 25.4 30.3 +19 

San Bernardino 1.9 210.3 158.1 -25 110.5 41.5 -62 20.6 27.6 +34 

San Diego 1.5 162.5 96.9 -40 163.7 48.8 -70 53.1 55.3 +4 

San Louis Obispo 1.4 20.9 11.8 -44 21.1 6.0 -72 26.5 25.3 -4 

Santa Barbara 1.3 34.1 17.4 -49 37.1 9.5 -74 43.6 40.9 -6 

Ventura 1.5 53.4 32.5 -39 46.2 14.1 -70 27.0 29.4 +9 

Non-County 1.6 115.6 74.9 -35 37.5 12.2 -68 0.2 0.2 -6 

Total  1627 1116 -31 1181 394 -67 296 318 +7 

1 Reported in this column are biogenic emissions of terpenes, isoprene, and methyl-
butenol. Future emissions of these compounds were changed based on future temperature 
predictions. 
 
 
Future inflow boundary conditions were adjusted following Steiner et al. [5], using 
increased concentrations of CO, ozone, and methane in response to emission increases in 
the A1B scenario between 2000 and 2050 [78]. In order to highlight the potential effects 
from increasing emissions in Asia, ozone concentrations were increased by roughly 
double the amount predicted in the A1B scenario, a scenario that predicts economic 
growth with market based approaches to limiting greenhouse gas emissions and assumes 
no single energy generation technology is dominant. Parrish et al., [79, 80], and Jaffe et 
al., [81] describe observed increases in ozone levels in Pacific Ocean inflow to the 
western United States, raising concerns about disproportionately higher impacts for 
ozone. Therefore in this study at the western inflow boundary, CO was increased by 30%, 
methane was increased by 40%, and ozone was increased by 30%. 
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Figure 3-1: Map of southern California study domain used for air quality modeling in the 
present study. Locations highlighted from left to right: Central Los Angeles, Anaheim, 
Pomona, Riverside, and Palm Springs. 
 

3.3 Results and Discussion 

3.3.1 Base Case Model Evaluation 

Ozone predictions were compared to observations at 83 surface sites. Comparing all 
ozone observations above 40 ppb with model predictions, a normalized bias of +3% and a 
normalized error of 30% were found. The spatial distribution of ozone in the model 
matches that seen in the observations, with the best agreement found in the urbanized 
areas around Los Angeles. A comparison of model output to observations at five 
representative locations is presented in Fig. 3-2. The modeling domain is well-suited to 
studying photochemical air pollution in the South Coast air basin. In contrast, both San 
Diego and the southern San Joaquin Valley lie at the edges of the study area used here 
and as such are subject to larger uncertainties due to their proximity to northern and 
southern boundaries of the modeling domain. 



 

 63

 

 

Figure 3-2: Comparison of base case model output (blue)  to ozone measurements (red) at 
five sites. 
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3.3.2 Effects of Climate Change 

A series of model runs was conducted to determine the sensitivity of air quality in 
southern California to future changes in emissions and climate. Figures 3-3, 3-4, and 3-5 
show differences in input data and resulting changes in ozone air quality between various 
modeled perturbations and the summer 2005 base case. The spatial patterns of ozone 
changes are shown at 3 PM, which is a high-ozone time of day. Time series plots 
showing ozone changes at all times of day are discussed later. 
 
The effect of increased temperatures on chemical reaction rates is to increase peak ozone 
levels across the domain. Figure 3-3 shows the change in temperature and corresponding 
peak ozone response. Inland areas that experience larger future temperature increases and 
are close enough to Los Angeles to be strongly influenced by its emissions showed the 
strongest ozone response to temperature changes. 
 

 
Figure 3-3: Difference between future and base case temperatures, and resulting changes 
in weekday-average ozone concentrations at 1500 h LT. The locations shown are from 
left to right, Central Los Angeles, Pomona/Claremont, and Riverside. 
 
Figure 3-4 shows changes in biogenic emissions and the corresponding peak ozone 
response. Similar to the results shown in Fig. 3-3, Fig. 3-4 shows little change in ozone 
for the coastal areas of Orange and Los Angeles Counties and larger ozone increases 
further inland. The effects of biogenic emission increases are mitigated to some extent by 
the spatial distribution of these emissions, which occur mostly in the surrounding 
mountains rather than within urbanized areas. Increased biogenic emissions had the 
largest effects on ozone in areas north and east of Los Angeles. Over much of the 
domain, biogenic emissions increased by 20-35% compared to the base case as a result of 
higher temperatures.  
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Figure 3-4: Difference between future and base case biogenic emissions, and resulting 
changes in weekday-average ozone concentrations at 1500 h LT. The locations shown are 
from left to right, Central Los Angeles, Pomona/Claremont, and Riverside. 

 
Figure 3-5: Differences between future and base case O3 concentrations on weekdays at 
1500 h LT. The locations shown are from left to right, Central Los Angeles, 
Pomona/Claremont, and Riverside. (a) Future inflow boundary condition scenario, (b) 
Future anthropogenic emissions, (c) Future climate perturbations (increased temperature, 
absolute humidity, biogenic emissions), (d) all perturbations (a-c) combined together. 
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The response of peak ozone to increased humidity is positive in most urbanized areas, 
and can be seen in Fig. 3-6. The increase in water vapor leads to greater production of 
HOx as a result of ozone photolysis, and thus increased atmospheric processing of 
pollutants such as NOx and VOC. For example, in response to humidity changes, 
modeled afternoon NOx concentrations in and around Pomona and Riverside decrease by 
an average of 3 and 6%, respectively. In these NOx saturated regions, modeled ozone 
levels increase as a result. Further east, a smaller NOx decrease is seen, for example 2% 
at Palm Springs, but this area is more remote and NOx limited thus ozone concentrations 
decrease in response. 
 

 

Figure 3-6: Difference between future and base case absolute humidity and ozone 
concentrations on weekdays at 1500. 
 
3.3.3 Effects of Emission and Inflow Boundary Condition Changes 

Increased pollutant concentrations at the western inflow boundary increase peak ozone 
levels consistently across all sites except Palm Springs (see Fig. 3-5a). There are large 
relative increases in ozone near the coast where base case ozone levels were generally 
lower compared to inland locations. 
 
Under the future emission scenario, emissions of NOx, VOC and CO decrease across the 
domain. Coastal areas see reductions of 35-50% in NOx emissions and even larger 
reductions in VOC. The resulting effects on ozone were mixed, due to spatial differences 
in ozone sensitivity to VOC versus NOx emissions as well as differences in predicted 
growth rates between the counties. In central Los Angeles future emissions and inflow 
create an increase in peak ozone levels of up to 9 ppb, whereas Riverside sees a similar 
sized decrease. The effects of future changes in inflow BC and local emissions taken 
together are shown in Fig. 3-5b (combined anthropogenic effects scenario).  
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3.3.4 Combined Effects 

Figure 3-5c shows the ozone air quality impact of a combined climate forcing case, 
incorporating changes to temperatures, absolute humidity, and biogenic emissions. 
Increases in peak ozone are seen across the domain, ranging from 3-15 ppb, with the 
largest increases occurring inland near Riverside. The combined anthropogenic effects 
and climate change scenario shows increases in peak ozone at most locations with 
decreases seen only far inland (Fig. 3-5d).  
 
Table 3-3 summarizes changes in peak 1-h ozone between each future scenario and the 
base case. Combined scenarios 6-8 are not linear combinations of individual scenarios 1-
5, but instead represent results of additional model runs incorporating various 
combinations of the individual perturbations as noted in Table 3-3. Table 3-4 shows 
changes in peak 8-h ozone for each scenario, with results that follow closely those of the 
1-h ozone changes in Table 3-3. 
 
The locations shown in Table 3-3 were chosen to span future air quality outcomes in 
populated areas near Los Angeles. Figure 3-1 shows a map of the study area including the 
locations of these 5 sites. Anaheim is located in Orange County, south of Los Angeles. 
The Central Los Angeles site is located near downtown, approximately 20 km from the 
coast. Pomona, Riverside, and Palm Springs are located progressively further east of Los 
Angeles. Pomona is ~40 km east of Los Angeles and Riverside is ~40 km east of 
Pomona. Although the terrain becomes more complex traveling east from Los Angeles to 
Riverside, no major mountains are located between these locations. Palm Springs and the 
Mojave Desert are separated from Riverside by mountain ranges. 
 
Overall there are large changes in peak ozone due to changes in both climate and 
emissions. Ozone increases across the greater Los Angeles area, and decreases east of 
Riverside. The changes in peak ozone range over ±17.5 ppb. More detailed forecasts of 
future emissions are needed, and air quality management plans may need to be adjusted 
to account for ozone increases that may occur due to climate change. 
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Table 3-3: Average weekday ozone (ppb) at 1500 h LT (local time): base case levels and 
differences between specified run and base case 
 
  Anaheim Central L.A. Pomona Riverside Palm Springs

Base case O3 44.6 39.9 51.2 82.3 91.5 

1) Temperature +1.3 +1.6 +1.5 +3.3 +2.2 

2) Biogenic VOC +0.6 +1.0 +2.8 +2.9 +0.9 

3) Humidity +0.1 +0.9 +3.4 +4.4 -1.1 

4) 2050 Emissions +1.4 +4.3 +2.5 -13.5 -7.9 

5) Inflow BC +4.3 +4.3 +5.5 +5.4 +1.0 

6) Combined 1-3 +2.2 +3.5 +8.5 +11.3 +2.1 

7) Combined 4-5 +6.1 +8.8 +8.3 -8.2 -6.9 

8) Combined 1-5 +7.9 +11.2 +16.0 -0.3 -5.6 

 
Table 3-4: Average weekday 8-h ozone (ppb) at 1000 h – 1800 h LT (local time): base 
case levels and differences between specified run and base case. 

  Anaheim Central L.A. Pomona Riverside Palm Springs

Base case O3 
40.5 31.2 48.6 79.3 91.0 

1) Temperature +1.1 +0.8 +1.3 +2.4 +1.9 

2) Biogenic VOC +0.6 +0.9 +2.4 +3.3 +0.9 

3) Humidity +0.3 +0.7 +2.6 +4.2 -0.6 

4) 2050 Emissions +2.5 +6.3 +1.9 -12.9 -7.3 

5) Inflow BC +4.3 +3.9 +4.3 +5.0 +1.0 

6) Combined 1-3 +2.2 +2.5 +6.8 +10.4 +2.3 

7) Combined 4-5 +7.2 +10.8 +6.6 -8.4 -6.2 

8) Combined 1-5 +9.1 +13.0 +12.9 -1.7 -4.3 

 
 
A sensitivity analysis of the combined future emissions and climate scenario shows that 
urban areas from downtown Los Angeles east to Riverside remain NOx saturated (see  
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Fig. 3-7). This may seem counter-intuitive as the isolated future emissions scenario 
showed ozone decreases in the Riverside area. However, high growth is predicted in 
Riverside, canceling out predicted improvements in emissions control in this scenario. 
Thus the isolated future emission scenario shows reduced ozone in Riverside occurring 
because of emission reductions elsewhere while maintaining steady emissions locally. 
The sensitivity analysis measures the ozone response to a uniform percentage change 
across the domain. The sensitivity response indicates that future NOx control would need 
to be much stronger than estimated in this work in order to shift populated regions from 
NOx saturated to NOx limited regimes. Secondly, since urban areas from Los Angeles to 
Riverside remain NOx saturated, ozone response to emission and climate changes in 
between the modeled year 2050 and present can be expected to maintain the same sign as 
and fall below changes predicted by the combined emission and climate scenario. 
 

 
Figure 3-7: Peak ozone semi-normalized sensitivity to NOx (left) and VOC (right). 
 
3.3.5 Temporal Patterns of Ozone Change 

Riverside lies near the interface between positive and negative ozone outcomes under the 
combined scenario of future climate, emissions, and inflow boundary conditions. The 
magnitude and even the sign of the change in ozone concentrations at Riverside are time-
dependent. The ozone response differs both by time of day, and for weekdays versus the 
weekend. Figure 3-8 shows predicted difference between base case and future scenario 
ozone concentrations by time of day at five locations. 
 
Future ozone is closest to base case predictions around noon, although the sign of the 
change varies from day to day at Riverside. At other sites, such as Pomona and central 
Los Angeles, future ozone concentrations are consistently higher than in the base case. 
This is due to a combination of air quality penalties due to climate change and higher 
inflow boundary conditions, and a local effect of lower NOx emissions on ozone in 
upwind areas, where the system is NOx-saturated. Added model uncertainty exists for 
nighttime conditions when the observed partitioning of odd oxygen between NO2 and O3 
in the nocturnal boundary layer is difficult to reproduce. 
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Figure 3-8: Difference between base case and future ozone concentrations (ppb) by time 
at five locations. (All perturbations scenario). 



 

 71

3.3.6 Future Temperature Change 

Temperature perturbations applied here so far do not consider possible time-of-day 
dependence. Historically (i.e., from 1950 to present day) however, observed temperature 
increases during summer months have been largest at nighttime hours in many areas of 
California, and little increase in daytime maximum temperatures has been reported in the 
observed record [82]. To evaluate the effect of a diurnally-varying rather than uniform 
temperature increase on atmospheric chemistry and biogenic VOC emissions, an alternate 
form of the temperature perturbation was developed. Future temperatures were 
recalculated as a function of time of day: 
 

T(t) = T0(t) + ∆T 1+ 0.8cos 2πt
24

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥          (1) 

 
Where T0 is the original temperature in the base case scenario, t is time in hours past 
midnight, and ∆T is the 24-h average increase in temperature predicted by Snyder et al. 
[74]  for the month of the July. The amplitude of the oscillatory component (0.8) is 
arbitrary, but was chosen so that most but not all of the temperature increase occurs at 
night. Applying the past record of summer daytime cooling due to increased irrigation of 
0.14 to 0.25°C per decade in California [64] to the 2050 temperature predictions by 
Snyder et al. removes most but not all of the daytime temperature increases and is 
consistent with Eq. (1).  
 

 

Figure 3-9: Difference between future and base case ozone concentrations on weekdays 
at 0300 h LT (left panels) and 1500 h LT (right panels). Compare right panel here vs. 
Figure 3-2 where T increase was applied uniformly throughout the day instead of most 
mostly at night. The locations shown are from left to right, Central Los Angeles, 
Pomona/Claremont, and Riverside. 
 
The increase in peak ozone predicted above with a uniform temperature increase mostly 
disappears when the temperature increase occurs predominantly at night. Figure 3-9 
shows the effects on ozone of increased temperature using a diurnally-varying 
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temperature change (Eq. 1) relative to the base case at 0300 and 1500 h LT on weekdays. 
More generally, ozone concentrations show little change at any time of day relative to the 
base case when temperature increases occur mostly at nighttime hours (see Fig. 3-10). 
 
 

 

 

Figure 3-10: Difference between base case and future ozone concentrations (ppb) by time 
at five locations. (Future temperature scenario with future temperature change adjusted 
by time of day). 
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Similar results were found when biogenic emissions were recalculated using diurnally- 
varying temperature changes. Emissions of isoprene and methyl-butenol are both 
temperature and light-sensitive, and emissions of these compounds are zero at night. 
Nighttime temperature increases do increase terpene emissions, but the absolute effect of 
temperature increases on terpene emissions is reduced because baseline temperatures are 
lower at night. Ozone concentrations do not increase nearly as much as when 
temperatures were increased uniformly throughout the day. Changes in ozone at 0300 and 
1500 h LT due to revised estimates of biogenic VOC emission increases are shown in  
Fig. 3-11. 
 

 

Figure 3-11: Difference between future and base case biogenic emissions and ozone 
concentrations on weekdays at 300 (top panels) and 1500 (bottom panels). Biogenic 
emissions in the scenario are based on temperature changes that have been adjusted by 
time of day. 
 
The diurnal pattern of future temperature changes is important to assessments of climate 
change impacts on ozone air quality. Nighttime temperature increases have less effect on 
ozone production than similar temperature increases that occur at midday. However, the 
historical record of temperature increases is not necessarily a good predictor of future 
warming. Irrigation, which increased over the last century in California, is unlikely to 
continue to increase in the same manner in future years. Loss of agricultural lands to 
urbanization and scarcity of water may slow or reverse the expansion in irrigated lands. 
In fact the amount of irrigated land in California has remained relatively stable since the 
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1980s [64]. Thus, any past mitigating effect of increased irrigation on daytime warming 
is unlikely to be repeated over the next 50 years.  
 
Other mechanisms for a diurnal pattern of future temperature change have been proposed 
by Lebassi et al., [66], who observed an increase in on-shore sea breezes that may have 
mitigated summer daytime warming relative to surrounding areas that are sheltered from 
these breezes. Both changes to irrigation and to sea breeze patterns have the potential to 
affect humidity levels as well as future diurnal temperature changes. Further research is 
needed to understand these effects and their interactions with air quality.   
 
3.4 Summary and Recommendations 

This study investigated ozone air quality effects of future climate change, inflow 
pollutant boundary conditions, and anthropogenic emissions on ozone air quality in 
southern California. Future temperature changes were predicted at high spatial resolution 
in California for a scenario of 2× pre-industrial CO2 levels. Future emissions were 
predicted starting from a baseline emission inventory, factoring in expected population 
growth and likely advances in emission control technologies.  
 
Globally-driven climate changes led to ozone increases throughout the study domain. In 
this study, climate change affected ozone levels through three mechanisms: increased 
temperature, increased humidity, and increased biogenic VOC emissions. These effects 
contribute to a climate change penalty for air quality management: additional controls on 
anthropogenic emissions will be needed to offset undesired effects of climate change on 
ozone. Likewise, future increases in pollutants, especially ozone, entering southern 
Calfornia via inflow from the Pacific Ocean will lead to increased mainland ozone levels, 
with coastal areas being especially vulnerable to this effect. The response of ozone air 
quality to future emission changes varied by location, with ozone increases predicted in 
upwind areas, and ozone decreases further downwind. 
 
Recent commitments to control greenhouse gas emissions in California may also affect 
criteria pollutant emissions, and this issue requires further study. As noted above, the 
diurnal pattern of temperature change is important in assessing climate change effects on 
ozone air quality. More detailed information is needed on anticipated temperature 
changes as a function of time of day.  
 
While this work focuses on how climate and future emissions influence the severity of a 
particular ozone episode, other investigations study factors that influence the frequency 
of these events. For example, Leung and Gustafson [62] consider effects such as changes 
in the number of stagnation events and the length of the high-ozone season. Other issues 
to consider include climate change effects on fine particulate matter levels, [61], and 
changes to other meteorological variables, such as precipitation, wind patterns, mixing 
and cloud cover. Finally, changes in forest fires may be an important aspect of the 
response to changing climate [83], with potentially serious effects on air quality. 
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4.0 STATISTICAL DOWNSCALING OF CLIMATE CHANGE IMPACTS ON 
OZONE CONCENTRATIONS IN CALIFORNIA 
 
4.1 Introduction 
 
Peak 1-hr average ozone concentrations in California have declined from 375 ppb during 
1985 to 175 ppb in 2004 [84] due to the adoption of a long list of emissions controls.  
Health-based ambient air quality standards for ozone concentrations are 90 ppb 
(California 1-hr standard) or 85 ppb (federal 8-hr standard revised to 75 ppb in 2008) 
indicating that further progress is needed to protect public health.  As of 2007, 35 out of 
California’s 58 counties are designated non-attainment areas for the federal 8-hour ozone 
standard, affecting the health of ~30 million residents.   
 
California has one of the largest economies in the world with correspondingly high 
emissions of air pollutants.  The persistence of California’s ozone problem is associated 
with warm sunny days and stagnant atmospheric conditions that trap emissions close to 
the surface where they have ample opportunity to undergo photochemical reactions.  
Climate change is expected to alter long-term meteorological patterns in California, with 
potential negative consequences for air quality.  Surface ozone is particularly sensitive to 
climate change because the chemical reactions that form ozone are temperature 
dependent, with higher levels of ozone produced during warmer time periods [33, 55, 85]  
In addition, biogenic emissions and anthropogenic evaporative emissions of volatile 
organic compounds (VOCs), which are precursors to ozone formation, will also increase 
with rising temperature [4, 86-88].   
 
Quantitative analysis of climate impacts on future ozone concentrations can be 
accomplished by dynamically downscaling Global Climate Model (GCM) results to 
regional scales using meso-scale meteorological models and regional air quality models 
(see for example, [5, 26, 89]).  The dynamic approach incorporates a mechanistic 
description of atmospheric processes allowing it to extrapolate outside historical 
conditions.  Unfortunately, the dynamic approach is also very computationally expensive 
in regions with severe topography such as California, so may not yield accurate results if 
the description of the relevant atmospheric processes is incomplete.   
 
The statistical downscaling approach originally developed for hydrologic variables [90] 
provides a promising alternative technique to evaluate climate effects on ozone 
concentrations.  The statistical downscaling method relates coarse scale meteorological 
variables that are available directly from GCM simulations to fine scale outcomes.  The 
statistical approach is computationally efficient and guaranteed to capture the behavior of 
the historical atmospheric conditions.  The disadvantage of the statistical downscaling 
approach is that future conditions may not follow the historical pattern due to changes in 
emissions, and separate statistical relationships need to be identified for each air basin of 
interest.  Dynamic and statistical downscaling techniques are complementary and both 
methods should be used to evaluate future ozone trends in California. 
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The purpose of this chapter is to develop a statistical downscaling approach for climate 
effects on surface ozone concentrations in two major air basins in California: the South 
Coast Air Basin (SoCAB) and the San Joaquin Valley Air basin (SJVAB).  Based on an 
extensive review of all meteorological data, the upper-air temperature at 850 millibar 
pressure (T850) (~1.5km altitude) will be used as the independent variable for the 
analysis.  The variability in the measured ozone concentration at a fixed value of T850 
will be explored using a perturbation analysis conducted with a mechanistic 
photochemical trajectory model.  The verified statistical downscaling techniques will be 
used to evaluate climate effects on future ozone formation potential for the years between 
2001 – 2100 using the output from the Geophysical Fluid Dynamics Laboratory (GFDL) 
coupled Climate Model (CM2.1).   
 
4.2 Data and Methods  
 
The daily maximum upper air temperatures at 850 millibars (T850) for the period 1980 – 
2004 were obtained from the National Center for Environmental Prediction (NCEP) / 
National Center for Atmospheric Research (NCAR) Reanalysis1 [91] at two grid points 
near - (1) Upland in the South Coast Air Basin (SoCAB) and (2) Parlier in the San 
Joaquin Valley Air Basin (SJVAB).  The NCEP/NCAR reanalysis assimilates historical 
measurements using the spectral statistical interpolation (SSI) scheme for the entire globe 
with a grid-cell size of 2.5°(longitude) x 2.5°(latitude).  The resulting gridded data are 
saved at the beginning of each 6-hour interval (4 values saved each day).  In the current 
project, the maximum of the 4 daily T850 values was used as the independent variable for 
correlation with ozone concentrations.  Upper air temperature is considered to be among 
the most reliable data in the reanalysis dataset (class A) because it is strongly constrained 
by direct observations [92].    
 
Projections of daily maximum T850 values for the period 2001 – 2100 were obtained 
from the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model 
(CM2.1) [93].  The daily model output was available with a grid cell size of 2.5o 
(longitude) x 4o (latitude) in 6-hour intervals.  Simulated climate from GFDL CM2.1 
were used in the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change (IPCC).  GFDL CM2.1 T850 simulated under the Special Reports on Emission 
Scenarios (SRES) categories A2 and B1 were also of particular importance for the first 
assessment of climate impacts in California [92, 94], and hence these T850 predictions 
were used in the current study.   
 
Daily 1-hr maximum ozone concentrations were provided by the California Air 
Resources Board (CARB) for two monitoring sites at: (1) Upland in the South Coast Air 
Basin (SoCAB) and (2) Parlier in the San Joaquin Valley Air Basin (SJVAB).  The site at 
Upland (ARB ID: 36175, Lat: 34°6′14″, Lon: 117°37′35″, Elevation: 379 meters) is 
situated in a dense residential area east (downwind) of central Los Angeles.  Ozone has 
been monitored continuously at Upland since January 01, 1973, and measurements for 
the period 1980 – 2004 were used in the current study.  The site at Parlier (ARB ID: 
10230, Lat: 36°35′50″, Lon: 119°30′15″, Elevation: 96 meters) is situated in an 
agricultural region southeast (downwind) of Fresno (the largest and urban center in the 
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SJVAB).  Although Parlier is located in a relatively remote area, it experiences major air 
pollution events with emission signatures from the greater Fresno area.  Continuous 
ozone measurements are available since January 01, 1983 at Parlier, and data for the 
period 1990 – 2004 were used in the current study.   
 
Ozone concentrations at Upland and Parlier were measured with one of three possible 
instruments during the study period: a Dasibi 1003, and Dasibi 1008-AH, or an Advanced 
Pollution Instruments (API) 400.  All monitors were regularly calibrated following a 
Standard Operating Procedure (SOP) so that the measurements remained accurate [SOP 
delivers ± 3-10% bias] and consistent over a long period of time.  A test was performed 
in the current study to verify that the apparent relationship between upper air temperature 
and ozone concentrations was stable across transition periods when monitors were 
changed.  As expected, the use of different ozone analyzers did not significantly change 
the relationship between temperature and ozone.   
 
The variability in the relationship between ozone concentrations and T850 was explored 
in the current project using a 2-D Lagrangian (trajectory) form of the UCD/CIT 
photochemical airshed model [46, 52, 95-97].  The model tracks a 5km x 5km air parcel 
(5 vertical levels with a column height of 1100 meters) as it advects across the domain of 
interest.  Diagnostic meteorological fields and boundary (initial) concentrations are 
interpolated from measurements during the current study.  The model tracks the 
emissions of pollutants from natural and anthropogenic sources, the vertical mixing of 
pollutants due to turbulent diffusion, the reaction of pollutants due to photochemical 
processing, the condensation / evaporation of semi-volatile pollutants on primary 
particles, and deposition of pollutants to the surface of the earth.  The Caltech 
Atmospheric Chemical Mechanism (CACM) [41, 48] was used in the 2-D Lagrangian 
model to predict the formation of ozone and other photochemical products. Previous 
studies have shown that CACM predictions for ozone and ozone precursors reproduce 
measured concentration trends at most sites in the SoCAB [98] 
 
4.3 Results 
 
Figure 4-1a shows the measured daily maximum 1-hr average ozone concentration as a 
function of the daily maximum T850 for the months May-October over the period 1980-
2004 at Upland.  Spring and fall months are included in the analysis even though they are 
outside the months that traditionally experience high ozone concentrations because 
climate change may increase the length of future “ozone seasons”.  The scatter plot 
shows that the maximum observed ozone concentrations generally increased at higher 
temperatures, but there was significant variation at each T850 value, particularly between 
281 K and 304 K.  A linear correlation between ozone concentrations and the 
corresponding T850 is not obvious in Figure 4-1a due to the large variability in measured 
ozone concentrations at any given value of T850.  Wind speed, wind direction, humidity, 
∆T (elevated – surface) were also investigated as possible explanatory variables but they 
were not included in the final analysis because they did not significantly improve the 
regression statistics.  Further study showed that the distribution of ozone concentrations 
at each T850 value was similar in shape but the median ozone concentration (second 
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quartile; Q2) increases with T850.  Likewise, the first (Q1) and third (Q3) quartile ozone 
concentrations also increase with T850.  Figure 4-1b shows linear regressions between 
the quartiles (Q3, Q2-median and Q1) of the measured ozone concentrations and T850.  
The high R2 values (>0.80) and the good agreement over a broad range of temperatures 
suggest that the correlation between quartile ozone concentrations and T850 holds true at 
all relevant temperatures in the South Coast Air Basin (SoCAB).  This relationship 
reflects the positive influence that temperature has on ozone concentrations, even though 
other factors may also influence ozone concentrations.  Figure 4-1b also reveals that the 
relationship between ozone and T850 flattens out below T850 values of 282 K.  Ozone 
concentrations in this range are dominated by the background value of ~30-40 ppb that is 
advected into the South Coast Air Basin (SoCAB). 
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Figure 4-1:  (a) Observed daily 1-hr max ozone versus the corresponding temperature at 
850 mbar (T850), and (b) linear correlation between the ozone quartile boundaries and 
the corresponding daily max T850 at Upland, CA for the months May-October over the 

period 1980-2004. 
 
Figure 4-2a shows the frequency distribution of maximum 1-hr average ozone 
concentrations measured at Upland when T850 was 302 K between May – October 
during the period 1980 – 2004.   The distribution of ozone concentrations at this 
temperature was taken from the dashed rectangle shown in Figure 4-1a. Each ozone “bin” 
illustrated in Figure 4-2a shows the total number of days when maximum 1-hr average 
ozone concentrations reached the level indicated on the horizontal axis divided by the 
total number of days with T850 = 302K.  Figure 4-2 therefore shows the probability 
distribution of ozone concentrations at this location for this meteorological condition.  
The probability distribution is approximately normal with a mean ozone concentration of 
172 ppb, a standard deviation of 67 ppb, and slight skewness (0.65) toward higher values 

a 

b 



 

 80

of the ozone distribution.  Similar probability distributions are associated with other 
values of T850.  Figure 4-2b illustrates the probability distribution of ozone for T850 = 
284K.  As shown in Figure 4-1b, the median concentration of each distribution is 
positively correlated with temperature.  The variance of the probability distribution 
reflects the degree to which variables other than temperature influence ozone 
concentrations.  
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Figure 4-2: The frequency distributions of the observed daily 1-hr max ozone 

corresponding to T850 of 302 K (a) and 284 K (b) at Upland, CA, between May-October 
over the time period from 1980 to 2004. 
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One of the key objectives of this work was to identify the dominant sources of variability 
in the ozone frequency distribution that occurs at a given T850.  The UCD/CIT air quality 
model that represents all major ozone formation processes was applied to study this 
question.  The 2D Lagrangian form of the model was used in a Monte-Carlo simulation at 
Claremont, CA, on September 9, 1993 in order to understand the dominant sources that 
contribute to the variability of ozone concentrations at a given T850.  Claremont was 
chosen as the receptor site because it is located in the eastern portion of the SoCAB 
where ozone concentrations are highest (similar to Upland) and numerous previous 
studies have been conducted at Claremont to validate the relevant meteorology databases 
and emissions inventories [95, 98, 99].  Three-day back trajectory routes for air parcel 
arriving at Claremont were calculated for each hour on September 9, 1993.  The base 
case trajectory routes were then perturbed by adding stochastic bias to the wind-field [52, 
100].  This method implicitly modifies dispersion coefficients, since dispersion is a 
function of wind speed.  A total of 62 trajectory routes, including the base route were 
calculated for each hour of the day.  Figure 4-3 shows the three-day back trajectory routes 
of air parcel arriving at Claremont at 3 pm on September 9, 1993, as an example.   
 
 
 
 
 
 
 
 

 

 

 

Figure 4-3: Three-day back trajectories for air parcel arriving at 3:00 pm on September 
09, 1993 at Claremont, CA.  Each trajectory path reflects random variations in wind 

speed and direction. 
 
The Lagrangian form of the UCD/CIT air quality model was applied to each of the 
(5kmx5km) air parcels trajectories ending at Claremont.  Perturbations (summarized in 
Table 1) were introduced to the meteorological parameters, initial conditions (global 
background concentrations), and emissions to simulate variability that could occur in the 
real atmosphere.  The magnitude of the temperature, mixing height and relative humidity 
perturbations was calculated using the measured distribution of historical values in the 
vicinity of Claremont.  The magnitude of the emissions perturbations were chosen as an 
extreme case to estimate the maximum sensitivity associated with this variable [97].  All 
perturbations were normally distributed with a mean value of zero.  In addition to the 
emissions perturbations shown in Table 1, the base biogenic and evaporative emissions 
were scaled in response to changes in the perturbed temperature field.  Biogenic 
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emissions were adjusted using an exponential relationship between temperature and 
emissions rates developed by [101].  Evaporative emissions from mobile sources were 
adjusted using a linear relationship between temperature and emissions rates (evaporative 
emissions scaling factor = 1 + (T-Tref)*1.34 where Tref=20oC).  This approximate 
equation was determined by running the Emission FACtor (EMFAC) model under 
different temperature scenarios and then taking the average response for the entire air 
basin [102].  Background ozone concentrations were taken to be random values normally 
distributed with a mean value of 45 ppb and a standard deviation of 5 ppb.  The 
background (initial and boundary) concentrations for volatile organic compounds (VOC), 
oxides of nitrogen (NOX) and carbon monoxide (CO) were 18 ppb, 2 ppb and 200 ppb, 
respectively, at all model heights.  The background value of methane (CH4) was set to 
zero as CH4 has no or little effect on regional-scale photochemical ozone production.  To 
account for seasonal changes to the intensity of ultra violate (UV) radiation, the date was 
randomly selected between May 1 and October 31.   
 
Table 4-1: Variables that were perturbed during the Monte Carlo simulations of ozone 
formation. 
 

Variable  Variation  amount 
Temperature  ±5 °C 
Mixing height ±20% 
Relative humidity  ±10% 
Overall emissions  ±30% 
Initial conditions for VOCs ±30% 
Initial condition for background ozone Between ±5 ppb 
Biogenic and evaporative emissions Temperature dependent scaling

 
Figure 4-4 illustrates the frequency distribution and relevant statistical properties of the 
predicted ozone concentrations resulting from all of the Monte Carlo simulations 
summarized in Table 1.  Figure 4-4a shows the distribution based on the emission 
inventory appropriate for 1993 [41, 98].  The modeled standard deviation (44 ppb) for 
this level of base emissions was less than that of the observed data (67 ppb) appropriate 
for T850=302K.  The larger variance in the observed ozone concentrations may result 
from the long time period over which measurements were made (1980-2004).  The 
emissions inventory in the South Coast Air Basin (SoCAB) has changed significantly 
over the last three decades, but the model predictions summarized in Figure 4-4a were 
based exclusively on an emissions inventory appropriate for 1993.  In order to partially 
account for the variability introduced by long-term emissions trends, the stochastic 
modeling summarized in Figure 4-4a was repeated for the same scenarios at Claremont 
but using a base emission inventory appropriate for 1987 [95, 99].  VOC emissions were 
projected to be 32% higher in 1987 than in 1993, while emissions of NOx were projected 
to be 7% lower.  These changes are less than or equal to the size of the random 
perturbations introduced during Monte Carlo simulations, but they are applied to all 
emissions records uniformly.  In contrast, the Monte Carlo simulations perturbed 
individual emissions records by ±30%, but the total emissions experienced by each air 
parcel from hundreds of different sources were close to the base-case values.  Figure 4-4b 
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illustrates that when base case emissions are used from 1987, the median predicted ozone 
concentrations and the variance of predicted ozone concentrations are both larger than the 
observed statistics between 1980-2004.  Figure 4-4c shows the average of cases described 
in Figures 4-4a and 4-4b.  These results clearly indicate that the absolute value of ozone 
formation potential was more sensitive to the perturbations summarized in Table 1 under 
the emissions conditions encountered in 1987 than those in 1993.  The modeling 
exercises conducted in the current study clearly identify long-term emissions trends as the 
dominant source of variability in the long term ozone record at Upland, CA. 
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Figure 4-4:  Predicted frequency distribution of the daily 1-hr maximum ozone 
concentration corresponding to a T850 of 302 K at Claremont, CA.  Different ozone 

values were generated by random perturbations in the input meteorological parameters, 
emissions, and initial conditions as summarized in Table 1.  Panel (a) corresponds to a 
base emission inventory appropriate for 1993, panel (b) corresponds to base emission 

inventory appropriate for 1987, and panel (c) represents the sum of (a) and (b). 
 
Figure 4-5 illustrates the measured reduction in quartile ozone concentrations in the 
SoCAB during summer months (May-October) between the 1990’s and 1980’s.  The 

a 

c 
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measured reduction in the median ozone concentration was 32%.  Figure 4-5 also 
illustrates the reduction in predicted quartile ozone concentrations based on changes to 
the emissions inventory using the meteorological perturbations discussed above (Figure 
4-4a vs. Figure 4-4b).  The predicted reduction in median ozone concentrations due to 
changes in the emissions inventory was 37%, showing excellent agreement with 
measured values.  This comparison once again emphasizes that long term emissions 
trends are the dominant source of variability in the long term ozone record at Upland, 
CA.  Further mechanistic analysis of ozone sensitivity to meteorological variables and 
background concentrations in California is provided by [5, 33, 103]. 
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Figure 4-5: Comparison of observed and predicted reductions in ozone concentrations in 
1990’s relative to 1980’s for the South Coast Air Basin (SoCAB) based on changes to the 

emissions inventory. 
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The effects of long-term emissions trends and seasonal variations on measured ozone 
concentrations were further investigated by separately analyzing different time segments 
of the measured ozone data record.  The complete data record was segregated into three 
time periods: 1980-1989, 1990-1999 and 2000-2004, and into separate months between 
May-October.  The variability in the long-term ozone records is shown in Figure 4-6 as 
the correlation between the median ozone concentration and the corresponding T850 at 
Upland for the three different decades.  The correlation slope (sensitivity) decreases from 
8.6 ppb K-1 for the period 1980-1989, to 6 ppb K-1 for the period 1990-1999, and 3.2 ppb 
K-1 for the period 2000-2004.  The trend for 1990-1999 is in excellent agreement with the 
results from mechanistic modeling studies for 1993 and 1996 that predicted an ozone 
response to surface temperature of 2-9 ppb K-1 depending on location in the SoCAB 
[103].  The results in Figures 4-5 and 4-6 confirm the ability of the mechanistic model to 
capture climate effects on air quality and re-enforce the conclusion that long-term 
changes to the emissions inventory have decreased the sensitivity of absolute ozone 
concentrations to meteorological perturbations.   
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Figure 4-6: The linear correlation between the median of the observed daily 1-hr 
maximum ozone and the corresponding daily maximum T850 at Upland, CA, as a 

function of decade. 
 
The sensitivity of relative ozone concentrations to T850 changes as a function of the 
absolute ozone concentration (since the absolute sensitivity is linear over a range of 
ozone values).  The relative sensitivity (% K-1) at a fixed temperature can be calculated 
by dividing the constant value of the absolute sensitivity (ppb K-1) by the ozone 
concentration (ppb) at the temperature of interest.  Analysis of the data shown in Figure 
4-6 reveals that the sensitivity of relative ozone formation at T850≥300K is 
approximately constant at ~4.3 % K-1 across each of the time periods that were studied.  
When T850<300K the calculated relative ozone sensitivity is influenced more strongly 
by the ~30-40ppb of background ozone that is transported into the air basin.  Averaged 
across the entire range of temperatures illustrated in Figure 4-6, the relative sensitivity of 
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ozone to temperature decreased from 6% K-1 in 1980-89 to 5.5% K-1 in 1990-99 and 
4.3% K-1 in 2000-04.  Overall, the sensitivity of relative ozone formation appears to be 
constant at hotter temperatures and decreasing at cooler temperatures across the different 
time periods and emissions conditions studied. 
 
Ozone precursor emissions have decreased from 1980-1989 levels due to improved 
technology and stringent emission control measures, producing a decreasing trend in 
observed ozone concentrations [84].  Future emissions changes may continue this 
downward trend, or they may rebound as population growth overtakes the effects of 
increased efficiency.  In either case, emissions will be considered to be static at 1990-
2004 levels for the remainder of the current study to allow for a direct analysis of climate 
change on ozone formation potential.   
 
Figure 4-7 shows the linear regression between ozone concentrations and reanalysis T850 
separately for different summer months during the period 1990-2004 at Upland.  The 
equations presented in the panels of Figure 4-7 represent the linear models based on the 
quartile ozone data.  In each panel, the solid line represents the correlation based on the 
median ozone concentration and the upper and lower dashed lines indicate the correlation 
based on Q3 and Q1, respectively.  The R2 values (>0.75) indicate that the aggregated 
statistics of the ozone concentration distribution and T850 are well correlated.  
Importantly, different slopes are observed during different seasons.  These reveal that 
ozone responds less strongly to temperature during the early spring (May – June) and late 
summer (September – October) months.  Ozone concentrations respond most strongly to 
temperature during the middle of summer (July – August).  The seasonal ozone response 
to T850 at Upland was also reanalyzed with a subset of the data points that have T850 
between 291K-301K.  Values of T850 in this range were measured in all months June-
September within the historical dataset, and so this analysis removes any potential bias 
associated with temperature extremes experienced in one month but not other months.  
The ozone response within the common temperature range at Upland was still stronger in 
July-August vs. June or September, suggesting that some other seasonal factor besides 
temperature is influencing the results.  Monthly average mixing height measured between 
1984-1991 at Oakland, CA (at the coast upwind of the SJVAB) varied from 660 ± 80m 
(June), 550 ± 75m (July), 620 ± 74m (August), and 660 ± 150m (September).  Mixing 
depth can influence ozone production [103], but the inclusion of the best-available 
mixing depth information in the current study did not add skill to the statistical model.  
Another possible seasonal factor is trends in biogenic emissions as vegetation follows a 
seasonal growth cycle (see for example [104]). 
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Figure 4-7: Seasonal correlation between 1-hr maximum ozone and 1-hr maximum T850 
at Upland, CA, for the years between 1990 and 2004.  Diamonds correspond to quartile 3 

(Q3), squares correspond to quartile 2 (median; Q2), triangles correspond to quartile 1 
(Q1). 

 
Figure 4-8 shows the linear regression of quartile ozone concentrations from Reanalysis 
T850 at Parlier in the SJVAB for each month between May – October.  Ozone trends in 
the SJVAB are qualitatively similar to those in the SoCAB, but the magnitude of the 
change induced by temperature is different because the underlying emissions inventories 
for the two air basins are not the same.  Increased temperature still enhances ozone 
concentrations in the SJVAB, but the magnitude of the change is smaller than that 
observed in the SoCAB.  As exhibited by the Upland analyses, July and August had the 
largest values of the regression slopes between ozone and T850 compared to other 
months.   
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Figure 4-8: Seasonal correlation between 1-hr maximum ozone and 1-hr maximum T850 
at Parlier, CA, for the years between 1990 and 2004.  Diamonds correspond to quartile 3 
(Q3), squares correspond to quartile 2 (median; Q2), triangles correspond to quartile 1 

(Q1). 
 
Future trends in upper air temperature are simulated by Global Climate Models (GCMs) 
in response to global change.  There are several climate models currently available in the 
scientific community including the National Center for Atmospheric Research Parallel 
Climate Model version 1 (NCAR-PCM1), the NCAR-Community Climate System Model 
version 3 (NCAR-CCSM3), the Geophysical Fluid Dynamics Coupled Model version 2.1 
(GFDL CM2.1), the Centre National de Recherches Meteorologiques Climate Model 
version 3 (CNRM-CM3) (French climate model), the Max Planck Institute for 
Meteorology ECHAM version 5 (MPI-ECHAM5) (German climate model), and the 
Model for Interdisciplinary Research on Climate version 3.2 (MIROC3.2) (medium 
resolution) (Japanese climate model).  In the current study, the GFDL CM2.1 model was 
used to provide simulated T850 over a global domain, including California, for the years 
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2001 – 2100 based on several IPCC greenhouse gas emissions scenarios.  Table 2 
summarizes the temperature (T850) increase in California over the period 2070-2099 
relative to 1961-1990 predicted by all of the GCMs described above.  Decadal average 
results for all models are similar with a temperature increase of 4-5oC (A2 highest 
emission scenario) or 3-4oC (B1 lowest emissions scenario) during the summer ozone 
season in both the SJVAB and the SoCAB.  The daily GFDL CM2.1 values of T850 
simulated at coarse scale from model locations over the SoCAB and the SJVAB under 
the A2 and the B1 scenarios were used to estimate the potential for ozone formation in 
California.  Ozone concentrations at Upland and Parlier were calculated based on the 
projected values of T850 for each day and the monthly statistical relationships between 
ozone and T850 illustrated in Figures 4-7 and 4-8 for the period 1990 - 2004.  The 
median (Q2) ozone-T850 relationship in Figures 4-7 and 4-8 were used to obtain a 
baseline estimate, while Q1 and Q3 were used to obtain upper and lower bounds.  In 
addition to the summer months (May – Oct), the correlations found in May and October 
were applied to each month of the periods February – April, and November – January, 
respectively.  After calculating the daily 1-hr max quartile (Q1, Q2 and Q3) ozone 
concentrations with the projected temperature values for each year, the number of days 
with 90 ppb or more ozone was calculated for each month and an aggregate yearly result 
was derived under the assumption that emissions remained at 1990-2004 levels.  The 
constant emissions reference of ozone precursors point was chosen to separately identify 
the projected effect of climate change on ozone concentrations.   
 

Table 4-2: Temperature (T850) increase (oC) in 2070-2099 relative to 1961-1990 
projected for the SoCAB and SJAB by various climate models under the IPCC A2 and 

B1 emissions scenario. 
 

 SoCAB SJVAB 
 Jan-Mar Jul–Sep Jan-Mar Jul-Sep 
Model A2 B1 A2 B1 A2 B1 A2 B1 
GFDL CM2.1 4 2 5 3 3 2 5 3 
CNRM CM3 3 2 4 2 3 2 4 2 
MIROC3.2 (med) 4 3 7 4 4 3 7 4 
MPI ECHAM5 3 3 4 3 4 3 4 3 
NCAR CCSM3 3 2 5 2 3 2 4 3 
NCAR PCM1 2 2 2 1 2 2 3 2 

 
Figures 4-9 and 4-10 show the number of days in each year that would be likely to 
exceed the 90 ppb threshold of the daily maximum 1-hr average ozone concentrations at 
Upland and Parlier respectively, if emissions remained at the 1990-2004 level.  The circle 
represents the number of days based on the median ozone estimate, and the top and 
bottom bars represent the number of days based on the Q3 and Q1 correlations, 
respectively.  As can be seen in these figures, the upper and lower bars represent the 
breadth of the distribution of the number of days likely to exceed the daily ozone 
threshold of 90 pbb for each year due to increasing temperature effects.  Data are 
presented for years between 2001 – 2100.  In both the SoCAB and the SJVAB, future 
values of T850 are projected to increase under both the IPCC A2 and B1 emissions 



 

 91

scenarios, leading to more days each year when ozone concentrations would exceed 90 
ppb (under the assumption that emissions remain at 1990-2004 level).  The rate of 
increase is higher (0.5-0.7 days yr-1) for the A2 emissions scenario than the B1 emissions 
scenario (0.2-0.3 days yr-1) because greater temperature increases are predicted under the 
A2 emissions scenario.   
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Figure 4-9: The number of days per year conducive to forming 1-hr maximum ozone of 
90 ppb or more at Upland, CA under the Intergovernmental Panel of Climate Change 

(IPCC) emissions scenarios: A2 (top panel) and B1 (bottom panel).  Note that the 
underlying assumption for this prediction is that the emissions in CA remain at the 1990-

2004 level.  Uncertainty bars represent the third and the first quartiles of the predicted 
number of days. 
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Figure 4-10: The number of days per year conducive to forming 1-hr maximum ozone of 

90 ppb or more at Parlier, CA under the Intergovernmental Panel of Climate Change 
(IPCC) emissions scenarios: A2 (top panel) and B1 (bottom panel).  Note that the 

underlying assumption for this prediction is that the emissions in CA remain at the 1990-
2004 level.  Uncertainty bars represent the third and the first quartiles of the predicted 

number of days. 
 
The rate of increase for the number of days exceeding the 90 ppb ozone threshold at 
Parlier (SJVAB) is greater than at Upland (SoCAB) despite the fact that historical ozone 
concentrations are less sensitive to temperature at Parlier during all months but October 
(compare Figure 4-7 to Figure 4-8).  These apparently contradictory trends can be 
explained by examining the total number of days exceeding 90 ppb of ozone during each 
month of the years 2046-2055 and 2091-2100 assuming emissions remained at 1990-
2004 levels.  Figure 4-11 illustrates that the months of July and August become 
“saturated” after ~2050 with continued increases occurring mainly in May-June and 
September-October.  The annual growth at Parlier (SJVAB) is greater than Upland 
(SoCAB) primarily due to increases during the month of October.  These trends reflect 
the greater lengthening of the “ozone season” in the SJVAB compared to the SoCAB 
assuming emissions remained constant at 1990-2004 levels.    
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Figure 4-11: Number of days per decade conducive to the formation of daily 1-hr max 

ozone ≥90 ppb for 2046 – 2055 and 2091 – 2100 at Upland (SoCAB) and Parlier 
(SJVAB).  Note that the underlying assumption for this prediction is that the emissions in 

CA remain at the 1990-2004 level. 
 
Table 3 illustrates the predicted seasonal (May – October) median daily 1-hr ozone 
concentration for each decade over the period 2001 – 2100 at Upland (SoCAB) and 
Parlier (SJVAB) under the IPCC A2 and B1 emissions scenarios.  Generally, the 
predicted median ozone increases in both the SoCAB and SJVAB over time.  The 
seasonal median daily 1-hr ozone concentration would exceed 90 ppb as early as in 2031-
2040 under the warming induced by the A2 global emissions scenario assuming 
emissions in California remain at the 1990-2004 level.  Global Climate Models are not 
expected to accurately represent the weather during any given year but they should 
capture the meteorology over a period of decades.  The GFDL CM2.1 model results were 
obtained for the period 1990–2000 and the T850 values were used to predict ozone 
concentrations based on the correlations derived in the current study.  The average value 
of the 1-hr maximum daily ozone concentration was 84 ppb (predicted) vs. 97 ppb 
(measured) in the SoCAB and 83 ppb (predicted) vs. 85 ppb (measured) in the SJVAB 
for this period indicating that the statistical downscaling method developed in this study 
can effectively be used to project ozone concentrations in the future for a given air basin.   
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Table 4-3:  Summary of predicted decadal median daily 1-hr maximum ozone 
concentrations under IPCC A2 and B1 global emissions scenarios at Upland (SoCAB) 

and Parlier (SJVAB).  Note that the underlying assumption for this prediction is that the 
emissions in CA remain at the 1990-2004 level. 

 
 Median ozone concentration (ppb) 
 Upland (SoCAB) Parlier (SJVAB) 
Decade A2 B1 A2 B1 
2001-2010 84 84 86 87 
2011-2020 84 87 87 87 
2021-2030 86 86 88 86 
2031-2040 92 87 90 89 
2041-2050 90 87 90 89 
2051-2060 92 87 92 88 
2061-2070 97 89 93 91 
2071-2080 100 91 96 90 
2081-2090 105 92 97 91 
2091-2100 111 91 101 92 
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4.4 Conclusion 
 
The daily maximum upper air temperature at an altitude of 850 millibar pressure (T850) 
taken from coarse scale global model locations nearest to California’s two most polluted 
air basins can be used to model daily 1-hr maximum surface ozone concentrations in 
those air basins.  Other explanatory variables including wind speed, wind direction, 
humidity, and mixing depth did not add skills to the statistical model.  There is not a one-
to-one correlation between ozone and T850 extracted from the global Reanalysis dataset, 
but the value of T850 can be used to predict the statistical properties of the possible range 
of ozone concentrations.  These ozone concentration distributions are approximately 
normal and their 25%, 50% and 75% quartile concentrations are linearly correlated with 
temperature.  By constructing separate linear regression models for each month of the 
year, the effects of seasonal changes on the ozone – T850 relationship can be represented.  
The response of ozone to T850 is strongest in July and August and weaker in spring, 
early summer and fall.  The sensitivity of absolute ozone concentrations to T850 has 
decreased over the past several decades because of changes in anthropogenic emissions.  
Future anthropogenic emissions trends in California will depend on the balance between 
population growth vs. energy conservation and the further development of efficient 
technologies.   
 
The statistical relationship between coarse-scale T850 and fine scale ozone 
concentrations provides an efficient technique to downscale global model circulation 
structure to local air basin ozone concentrations.  The effect of climate on future ozone 
concentrations can be evaluated using average emissions levels between 1990 – 2004 as a 
constant reference point.  Projections of future temperature made by the GFDL CM2.1 
global climate model combined with the historical ozone trends suggest that, by the year 
2050, the number of days with conditions likely to encourage ozone concentrations 
greater than 90 ppb would increase by 22 - 30 days yr-1 under the IPCC SRES A2 
emissions scenario and 6 - 13 days yr-1 under the B1 emissions scenario.  Warmer future 
temperatures will require the implementation of additional emissions controls in 
California to offset this climate ‘penalty’.   
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5.0 THE IMPACT OF CLIMATE CHANGE ON AIR QUALITY RELATED 
METEOROLOGICAL CONDITIONS IN CALIFORNIA – PART I: PRESENT 
TIME SIMULATION ANALYSIS 
  
5.1 Introduction 

California (CA) is more vulnerable to climate change than other areas in the United 
States due to its geographical location, complex topography, diverse ecosystems, intricate 
meso-scale meteorological features, and significant pre-existing air pollution problems 
([74]; [62]). CA has been working to overcome serious summer ozone and winter 
particulate matter (PM) problems for multiple decades, especially in the San Joaquin 
Valley (SJV) and the South Coast Air Basin (SoCAB). The mountains surrounding the 
SJV and the SoCAB make these air basins vulnerable to air pollution problems when 
atmospheric conditions inhibit mixing.  Atmospheric stagnation events, featuring a 
shallow mixing layer and low surface wind, occur in the SJV during winter and summer 
seasons associated with the Great Basin High Pressure (GBHP) system.  The 
development of the atmospheric boundary layer in the SJV is also suppressed by the 
subsiding air associated with the valley wind during summer.  In the SoCAB, a marine 
atmospheric boundary layer (MABL) inversion often forms due to the heated subsiding 
air associated with Pacific Subtropical High (PSH) and the upwelling near the coast.  
Each of these meteorological conditions acts to reduce atmospheric mixing, leading to 
stagnant conditions that trap pollutants close to the surface where they cause serious air 
pollution problems. 
 
It is important to explore the future meteorology and air quality conditions in CA in order 
to assess the possible public health threat posed by climate change. By downscaling 
Global Climate Model (GCM) simulations to high-resolution outputs, previous studies 
have shown that climate change could induce changes in temperature, humidity, 
precipitation, boundary layer mixing depth, etc. on regional scales that consequently 
could alter regional air quality. 
 
Mahmud et al. [103] applied statistical downscaling methods as an efficient technique to 
study climate impacts on ozone concentration in CA. Statistical downscaling methods 
([90]) translate GCM variables directly to finer resolution outcomes with much higher 
efficiency than dynamically downscaling.  The statistical techniques require a robust 
relationship between the coarse-scale variables that can be obtained directly from GCM 
simulations and the fine-scale variable of interest.  A suitable statistical correlation 
between temperature at 850 millibars (T850) and surface level ozone was identified by 
[103]but no such relationship could be identified for PM.  A full analysis of climate 
effects on PM must therefore be carried out using dynamic downscaling techniques.   
 
Caldwell et al. [105] used the Weather Research and Forecasting (WRF) model to 
dynamically downscale Community Climate System Model ver. 3 (CCSM3) data to 
12km horizontal resolution for a 40 year current period in CA with fixed greenhouse gas 
concentrations. Their analyses focused on precipitation, surface temperature, and 
snowpack, and the results show that the WRF model has an internal problem with 
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accurately predicting precipitation in this region, but the surface temperature predictions 
match the observations well. Both Bell et al. [106] and Leung and Ghan [107] studied the 
regional climate change in CA corresponding to double CO2 concentration. The former 
study indicated a precipitation decrease in CA (and the latter study focused on 
temperature and precipitation extremes) and predicted more (less) frequent hot (cold) 
days. Duffy et al. [29] compared downscaling results from four combinations of Regional 
Climate Models (RCMs) and GCMs for the western US, and found that the spatial 
distribution of the meteorological variables can vary substantially among different RCMs 
due to different physics processes and surface forcing. All these studies showed that 
downscaled biases are largely inherited from the driving GCM. California has 
particularly complex topography which interacts with large-, meso-, and micro-scale flow 
patterns. Therefore, it is relatively difficult to capture such comprehensive meso-scale 
features with a regional climate model (RCM) with such coarse resolutions (i.e. greater 
than 12km). In order to improve the RCM downscaling results in this region, simulations 
with finer spatial resolution are required.  
 
In this study, the WRF model was applied to dynamically downscale PCM ([108]) 
outputs under a Business As Usual (BAU) emissions scenario to 4km resolution in CA. 
To the best of our knowledge, there are no other dynamical downscaling studies using the 
WRF model with such a fine resolution to explore the climate change impacts in this 
region. Two seven year periods (2000-2006 and 2047-2053) were chosen to study the 
influence of climate change projections. It has been reported that PCM has low sensitivity 
to increased atmospheric CO2 ([109], [29]). Thus a time interval of approximately 50 
years was set between the current and future simulations in this study. The ultimate goal 
of this study is to investigate future air quality in CA, thus the analyses are focused on air 
quality related variables, such as wind, temperature, relative humidity, mixing layer 
depth, stagnation events, etc. As mentioned previously, the error of the RCM 
downscaling results partially succeed from GCM bias. To assess the effect of PCM data 
bias on the WRF downscaling results, a counterpart of the present simulations (2000-
2006) is conducted with the same model configuration but driven by Global Forecast 
System (GFS) reanalysis data. This chapter focuses on the analysis of the current 7-year 
climate (2000-2006) and statistics, inter-comparisons between GFS and PCM data, and 
their downscaling results for the highly-polluted SoCAB and SJV. During the analysis, it 
was noticed that the summertime PBLH is exceptionally shallow in the SJV. This 
phenomenon was studied and the possible reasons were explored. Consistent with 
previous studies, the analysis of the present years’ simulations show that the downscaling 
results inherit the biases of the driving GCMs through the lateral boundary conditions. In 
order to improve the performance of WRF downscaling, an ensemble of GCMs (CCSM3 
and HadCM3, for instance) or PCM bias corrections are required which we leave for 
future work. The present versus future simulations driven by PCM data will be analyzed, 
and the climate change impacts on the air quality related meteorological conditions, 
including land-sea breeze, in CA will be investigated in chapter 6 of this report.  
 
The present chapter is organized as follows: the methodology and numerical models are 
described in Section 5.3.2. The numerical simulations, run with six different suites of 
physics schemes in order to choose the best combination for the regions of interests, are 



 

 98

presented in Section 5.3.3. Section 5.3.4 contains the comparison of the present years’ 
simulation results driven by PCM and GFS data, together with the investigation of 
summertime low PBLH phenomenon in SJV. Finally, conclusions and remarks are 
addressed in the end. 
 
5.2 Methodology and Model Description 

5.2.1 Methodology  

Dynamical downscaling refers to a method of using an RCM to obtain regional-scale, 
fine-resolution climate change information from a coarse-resolution GCM (i.e., GCM 
data provide the initial and lateral boundary conditions for the RCM). This method  
retains the large-scale features of the climate projection from the GCM with a more 
detailed depiction of meso-scale features ([110]). Dynamic downscaling is one way to 
investigate the climate change impacts on meteorology and air quality in specific areas. 
In this study, the Weather Research and Forecasting (WRF) model ([111]), a community 
meso-scale meteorology model, is applied to dynamically downscale PCM data under the 
Business As Usual (BAU) scenario (IPCC Emissions Scenario, 2000) to investigate the 
meteorological conditions in CA, especially in the SJV and SoCAB. As described in the 
introduction, the air quality in SJV and SoCAB are largely influenced by meso-scale 
systems (i.e. valley wind, stagnation events, and MABL etc.), which could not be 
resolved in PCM due to the coarse spatial (2.8°x2.8°) and temporal resolution (6 hourly). 
The WRF simulations with much finer resolution add substantive meso-scale details to 
the driving PCM, which are crucial to study the air quality conditions in the SJV and 
SoCAB. Hourly averaged WRF outputs were calculated within the model and saved 
every hour for three-dimensional (3D) meteorological variables needed for air pollution 
calculations, such as wind, temperature, and humidity, and two-dimensional variables, 
such as the mixing layer height, precipitation, etc. These hourly averaged variables were 
used to evaluate WRF performance, as most observation data are hourly averaged from 
field experiments, and they were used as the meteorological inputs for air quality 
calculations. Two seven-year periods, 2000-2006 and 2047-2053, were chosen to include 
approximately one El Niño cycle for present and future conditions. The dynamical 
downscaling approach is computationally expensive and it is not necessary to simulate 
every day of the seven-year period to capture the essence of the El-Nino Southern 
Oscillation (ENSO) signal. In the current study, the computation burden was reduced by 
simulating two weeks out of every six weeks (as shown in Table 1) within the 21 years 
that were studied (e.g., 14 years with PCM data and 7 years with GFS data). A three day 
“spin-up” period was requested for air quality analysis to minimize the impact of initial 
conditions on final results, and so each simulation period was expanded to 17 rather than 
14 days. Due to the fact that PCM only has 28 days’ simulation for February in leap 
years, there is a one day shift between the cases for normal years and leap years to avoid 
February 29th in leap years.  
 
GFS reanalysis data have been widely used for meso-scale meteorology simulations and 
are available every six hours with a horizontal resolution of 1°x1°.  The data set 
assimilated many observations, including satellite data and, in general, is good quality. 
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Therefore, identical simulations were carried out using GFS reanalysis data for 2000-
2006 to compare results produced by GCM initial / boundary conditions and actual initial 
/ boundary conditions.  By comparing the downscaling results between simulations 
driven by PCM data and GFS data, as well as the climatology from these two global 
datasets, the PCM data bias can be estimated and the degree to which the GCM data bias 
is passed to the downscaling results can be identified. 
 

Table 5-1:  Simulation cases for normal and leap years. 
 

 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 

Normal 
years 

01/01- 
01/18 

02/12-
03/ 01 

03/26-
04/12 

05/07- 
05/24 

06/18- 
07/05 

07/30-
08/16 

09/10-
09/27 

10/22-
11/08 

12/03-
12/20 

Leap 
years 

01/01- 
01/18 

02/11-
02/28 

03/25-
04/11 

05/06-
05/23 

06/17-
07/04 

07/29-
08/15 

09/09-
09/26 

10/21-
11/07 

12/02-
12/19 

 
5.2.2 PCM model 

PCM is a fully coupled GCM.  It is comprised of the NCAR Community Climate Model 
version 3 (CCM3), the Los Alamos National Laboratory Parallel Ocean Program (POP), 
the sea ice model from the Naval Postgraduate School, and the land surface biophysics 
model ([112]; [108]). The atmosphere component of PCM has a T42 horizontal 
resolution, which is approximately 2.8 degree in latitude and longitude, and 18 vertical 
hybrid sigma-pressure levels. The ocean component of PCM has a higher resolution than 
most other GCMs near the equator, which leads to stronger El Niño signal and inter-
annual tropical climate variability ([108]). PCM simulations have been conducted under 
different greenhouse gas scenarios. In this study, the atmospheric component of the BAU 
B06.44 simulation, which spans the period of 1995-2099 with CO2 increasing by 1% per 
year, were used to provide initial and boundary conditions for WRF downscaling.  
 
5.2.3 WRF model and the interface between WPS and PCM 

WRF is a community meso-scale meteorology model, which is suitable for both 
operational forecasting and atmospheric research needs. The development of WRF has 
been a collaborative work among several research institutes. The Advanced Research 
WRF core (ARW) version 2.2 ([111]; [113]) was adopted in this study. The fluid in WRF 
ARW is treated as fully compressible and non-hydrostatic. WRF uses terrain following 
vertical coordinates and the variables are horizontally staggered on an Arakawa C-grid. 
The governing equations are written in flux form so that mass and dry entropy are 
conserved. The third order Runge-Kutta scheme with time splitting technique is used for 
temporal integration, and the 3rd and 5th order advection schemes were chosen for the 
vertical and horizontal directions, respectively.  
 
The WRF Preprocessing System (WPS), which reads in the global data and interpolates 
information to the WRF simulation grid, could not process PCM output data directly. 
Therefore, an interface program was developed to bridge PCM and WPS. The 3D 
variables, such as wind and temperature, were interpolated to twenty one fixed pressure 
levels; 2-m temperature and humidity, and 10-m wind were attained by vertically 
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interpolating the corresponding surface and the lowest level of 3D variables. For snow 
and soil related variables, daily data were available only from PCM and were used to 
derive 6-hourly data for WRF simulations.  
 
5.2.4 WRF basic configuration 

Three domains with two-way nesting were configured for the WRF simulations. The 
horizontal resolutions for domains 1-3 were 36 km, 12 km and 4 km (Figure 5-1), 
respectively, and the vertical direction had 31 stretched sigma levels. The time step for 
domain 1 was 180 seconds. The finest resolution (4km) domain (i.e., domain 3), which 
encompasses the entire state of CA, increases the model’s capability to capture meso-
scale features under complex topography and intricate flow patterns in this area. In order 
to choose the most suitable physics parameters for this study, simulations for year 2000 
with six different suites of physics schemes were examined and compared with 
observations, which will be described in the next section. To avoid the drifting of larger 
scale features after long-term integration, Four Dimensional Data Assimilation (FDDA) 
was applied to domain 1 using the driving global data (PCM or GFS) during the 17 days’ 
integration. The sea surface temperature (SST) was updated every two days for domain 1. 
 

 
Figure 5-1: Nested domains for WRF simulations. The black dot shows the location of 
the observation station ’VIS’. The line in domain 3 (d3) crossing ‘VIS’ indicates the 

location of the vertical cross session in Figure 5-14.  
 
 

d1

d2

d3

 VIS 



 

 101

5.3 Tests of different physics schemes in WRF 

5.3.1 Numerical experiments design 

The various physics schemes available in WRF perform differently depending on the 
domain topography and the overall meteorological conditions being simulated.  In this 
section, six suites of physics schemes (Table 2), in combination with various planetary 
boundary layer (PBL) parameterization, cumulus parameterization, and microphysics, 
were tested for the whole year 2000 driven by GFS data. The temperature and moisture 
flux profiles in the boundary layer are primarily determined by the PBL parameterization, 
thus this physics component is crucial for the simulation of air pollution within the 
boundary layer.  Precipitation, which is mainly handled by cumulus parameterization and 
microphysics, is another main factor affecting the regional air quality as rainfall can 
scavenge air-borne pollutants and potentially modify low-level meteorology conditions 
due to changes in soil moisture.  
 
GFS reanalysis data, instead of PCM data, were used for these simulations because GFS 
data more closely represents conditions in California due to the assimilation of measured 
meteorological parameters.  As a result, the best model configurations selected from the 
simulations driven by GFS data are more reliable and more likely to reflect the actual 
WRF performance for our focus regions.  
 
The PBL parameterizations studied included the Yonsei University (YSU) scheme 
([114]) and the Mellor-Yamada-Janjic TKE scheme (MYJ) ([115]; [116]); the cumulus 
parameterizations compared included the Kain- Fritsch (KF) ([117]) scheme and the 
Grell-Devenyi ([118]) scheme; and the microphysics parameterizations studied included 
the Thompson scheme ([119]) and WRF single-momentum 6-class scheme (WSM6) 
([120]). There was no cumulus parameterization for the 3rd domain due to its fine 
resolution. All simulations used the Rapid Radiation Transfer Model (RRTM) long-wave 
([121]) and the Dudhia short-wave radiation scheme ([122]). Other model configurations 
were described in Section 5.2.  
 
GFS - WRF simulations were carried out for each day of the year 2000, with each month 
split into two runs. The first run included the first 15 days of the month, and the second 
run included the rest of the month. No aforementioned extra 3 days were added into the 
integration period in these simulations since the results were only used to select the 
optimum configuration for WRF, not to drive air quality simulations. 
 

Table 5-2. Six suites of physics schemes for WRF simulations 
 

 Suite 1 Suite 2 Suite 3 Suite 4 Suite 5 Suite 6 
PBL YSU YSU MYJ MYJ YSU MYJ 

Cumu. KF Grell KF Grell Grell Grell 
Micro. Thomp. Thomp. Thomp. Thomp. WSM6 WSM6 
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5.3.2 Results analysis 

The GFS – WRF simulation results from the 3rd domain were compared with hourly 
observations collected from the stations operated by the California Air Resource Board 
(CARB) during the year 2000 to evaluate WRF performance with the six physics suites. 
The number of observation stations varies depending on the variable of interest; there 
were approximately forty stations for surface temperature and humidity, and ten stations 
for surface wind. Figure 5-2 shows the state-wide averaged seasonal Root Mean Square 
Error (RMSE) of WRF simulated results (10-m x-component wind (U10), 10-m y-
component wind (V10), 2-m temperature (T2), and 2-m relative humidity (RH2)) 
compared with measurements. In general, the wind error in summertime is larger than 
that in wintertime, while the thermodynamic fields (e.g., temperature and moisture) show 
the opposite trend. It is noticed that with the YSU PBL scheme (suite1, 2 and 5), the 
model performs better for the surface wind and relative humidity in terms of RMSE. 
Suite 5 performs the best for simulated winter surface temperature, but not for the other 
three seasons.  

             
The results were further evaluated using another method, which is named “persistent 
score”: For each observed variable (e.g., 2-m T), the suite with the best performance at 
each station, for each time point was identified and given one point, while all other suites 
were given zero. The suites’ final scores for each variable were divided by the total 
number of comparisons (i.e., the total number of records for each variable), which gives 
the percentage of the persistent significance for each suite, ranging from 0 to 1, as shown 
in Figure 5-3. The persistent score helps confirm the relative performance (station-wise 
and time-wise) of the six suites. It was seen that WRF with suite 5 physics schemes 
systematically performed better for the relative humidity and surface wind, which are 
important to air pollution studies; however, results for T2 were not superior to others 
when evaluated by either method. It is interesting to see that results from suites 1 and 2 
were not better than those from suites 3, 4, and 6, while the RMSEs were much better. 
This might be due to a relatively small portion of excellent results (i.e., extremely small 
errors for those data) that brought down the total RMSE (Figure 5-2), but the simulations 
were not consistently better all the time (Figure 5-3).  
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Figure 5-2: Seasonal RMSE of model simulated U10, V10, T2 and RH2 with the six 
suites of physics schemes compared to observation data averaged over all stations in CA. 

The six suites are listed in order in the plots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3: Persistent scores: percentage with which each suite performed the best with 
respect to RH2, T2, U10 and V10. The total counts for T2, RH2, and wind component 

comparisons are 55833, 45837 and 14883, respectively. 
 
Both RMSE and the persistent score suggest that suite 5 is the best physics combination 
for the CA area. Results from simulated upper-air data, such as 500mb winds and height, 
850mb temperature and water vapor mixing ratio, were compared to the GFS reanalysis 
using both comparison methods as well (plots not shown), and the same conclusion was 
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obtained. Therefore, the physics schemes in suite 5 were applied to the later simulations 
in this study. 
 
5.4 Downscaling Results Analysis 

5.4.1 Downscaling results driven by PCM vs. GFS data 

After ten years spin-up time and fifty years adjustment period, the fully coupled PCM 
integrated for ~100 years to establish the B06.44 BAU emissions scenario data, which 
was used to drive WRF simulations in this study. There was no adjustment to 
observations during the hundred years’ PCM simulation. The difference between PCM 
data and NCEP’s GFS reanalysis data can be significant.  Likewise, the downscaling 
results driven by these two different types of global data can also vary substantially. GFS 
data are treated as unbiased in this subsection, so that the PCM data and the downscaling 
results can be evaluated by comparison with their GFS counterparts.  The analysis further 
assumes that systematic WRF errors (i.e., biases) are consistent between both 
downscaling runs.  
 
T2, 10-m wind speed (wsp10) and PBLH of the downscaling results were averaged over 
seven years (2000-2006) for summer (=simulation cases 5 & 6; see Table 1) and winter 
(=simulation cases1, 2 & 9). The differences of the seasonal means between PCM-WRF 
and GFS-WRF results were calculated and are shown in Figure 5-4. The analyses focused 
on summer and winter since these seasons account for the majority of the ozone and PM 
episodes in CA.  
 
Figure 5-4a shows that surface temperature from the PCM-WRF downscaling results 
were overestimated over the Pacific Ocean, the coastal region (especially southern CA), 
and most of the San Francisco Bay Area, whereas surface temperature was 
underestimated inland. The under prediction is slightly smaller in the Central Valley than 
other areas in CA. Land-sea temperature contrast is the most important factor for the 
formation of land-sea breeze, which is an evident phenomenon along the CA coastline 
that plays a major role in weather and air quality, especially during the summer. The 
disparity in T2 difference between the coast region of CA and the adjacent ocean shown 
in Figure 5-4a suggests that these two sets of simulations predict dissimilar land-sea 
breezes. The summertime wsp10 differences along the coastline, as shown in Figure 5-4c, 
also indicate a difference in the land-sea breeze. More details of land-sea breeze in CA 
and its future changes will be explored in chapter 4. During winter, PCM-WRF 
simulations underestimated T2 for almost the entire analysis domain, except for the 
adjacent Pacific Ocean of Southern CA and Mexico. The negative bias increased with 
distance inland and was as great as -4° to -5° in some regions. The underestimation of 
surface temperature overland was opposite from what was found from the WRF 
simulation for the present time period in [105], which was proven to be inherited from the 
driving CCSM3.  
 
In regard to surface wind speed, an obvious overestimation (~3m/s) appeared in the ocean 
area off the coast of northern CA during summer (Figure 5-4c). There were no strong 
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wind speed differences in the Central Valley for summer (Figure 5-4c), while a slight 
overestimation occurred during winter in this region (Figure 5-4d). Evident wind speed 
over prediction appeared in most parts of SoCAB, particularly during winter. Overall, the 
surface wind speed bias from the PCM-WRF simulation was more significant during 
winter than summer for the inland part of the analysis domain, taking into account that 
the surface wind is generally weaker in winter than in summer in CA 
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Figure 5-4: Spatial distribution of differences between 7-year averaged WRF results 

driven by PCM and GFS data (PCM-WRF – GFS-WRF) for T2 (units are in °K) during 
(a) summer and (b) winter; wsp10 (units are in ms-1) during (c) summer and (d) winter; 

and PBLH (units are in m) during (e) summer and (f) winter 
 
For downscaled PBLH, the seven-year averaged value from GFS-WRF simulations was 
around 300-400m in SJV and was even lower in Los Angeles County (LAC) during 
summer (Figure 5-5a). The former is due to the high pressure system and valley wind 
(see discussion in Section 5.4.3), while the latter is due to the existence of a marine 

  (a)     (b)  

(c)    (d) 

  (e)  (f)  
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atmospheric boundary layer inversion ([123]). The wintertime average PBLH from GFS-
WRF simulations was about 200m over SJV and SoCAB (Figure 5-5b). The summertime 
PBLH bias (Figure 5-4e) from PCM-WRF was within 50m in SJV; while for SoCAB, the 
bias in the coast (inland) part was around ±100m. The wintertime PCM-WRF PBLH bias 
(Figure 5-4f) was over 50m for LAC, and relatively small in SJV and other regions of 
SoCAB. Considering the low PBLH present in these regions, the over predictions in LAC 
and SJV during both summer and winter were obvious, and it was more substantial in 
LAC.  
 

   
Figure 5-5: Seven-year averaged PBLH from GFS-WRF simulation during (a) summer 

and (b) winter. Units are in m. 
 

Overall, the downscaling results driven by PCM data underestimated surface temperature 
and overestimated surface wind and PBLH in SJV and SoCAB (more notably in LAC), 
which implies that using these downscaling results as input for air quality models would 
underestimate the air pollution problems in these regions, particularly in LAC.   
 
To investigate the sources of the differences between the GFS-WRF and PCM-WRF 
simulations, the climatology from the original PCM and GFS data for a much larger 
region was analyzed. GFS data were averaged to the horizontal resolution of the PCM 
data to make the comparison easier. Comparing the summertime plots in Figure 5-6 
(including color-filled surface temperature, sea level pressure contours, and surface wind 
vectors), the PSH in PCM (Figure 5-6a) data was stronger and further north. The pressure 
gradient difference between the two global data (i.e., stronger in PCM due to stronger 
PSH) could partially explain the higher wsp10 present off the coast of northern CA in the 
PCM-WRF results (Figure 5-4c). The more northern location of the PSH reduced the 
ability of cold air in Canada to move south in PCM due to the blocking effect of the coast 
mountain range in Canada. Therefore, more cold air intruded south and dominated larger 
areas of inland CA and the adjacent Pacific Ocean in GFS than in PCM data. This 
explains the positive surface temperature difference between the downscaling results 

(a) (b) 



 

 108

driven by PCM and GFS data over the Pacific Ocean during summer (Figure 5-4a). In 
contrast, the under-prediction of inland T2 by PCM-WRF (Figure 5-4a) was not present 
in the original PCM, thus it was generated by the downscaling process. Another feature 
shown in Figure 5-6 is that the North American Thermal Low (NATL) was well 
developed in PCM data during summer but not in GFS (Figure 5-6a vs. 5-6b).  
 
Figure 5-7 shows the averaged 500mb height field from PCM and GFS data in summer. 
There was a trough located right above the west coast in both models. However, the 
pressure gradient upstream of the trough was stronger in PCM data. This might explain 
why the PSH in PCM was stronger and further north (i.e., a stronger wind for a stronger 
negative vorticity advection). Note that the wind vectors shown in Figure 5-6 around the 
PSH do not represent the real wind field. The movement of the PSH causes a substantial 
change of the wind field at a certain point of the domain, and therefore both the wind 
speed and wind direction are cancelled out considerably when the seasonal averages are 
calculated. 
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  (a)                                                         (b) 

 

 

 

 

 

 

(c)                                                        (d) 

 

       

  

 

 

 

(e)                                                        (f) 

 

 

 

 

 

                

Figure 5-6: Spatial distribution of 7- year averaged T2 (shading, units in °K), sea level 
pressure (contour lines, units in mb) and wind vectors of (a) PCM data for summer, (b) 

GFS data for summer, (c) PCM data for winter, (d) GFS data for winter; and T2 
difference between PCM data and GFS data (PCM – GFS) for (e) summer and (f) winter. 
 

 PSH 
 NATL 
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Figure 5-7: Seven year averaged 500mb height field of PCM (left) and GFS (right) data 

during summer. Units are in m. 
 

Comparing Figures 5-4a and 5-6e, the similarity is obvious over the Pacific Ocean 
adjacent to CA, where the biases in 2-m temperature from both PCM data and the 
downscaling results are up to 4-5°. PCM data had a small warm bias (approximately 1-
2°) for inland CA, while the downscaling results had small cold bias (approximately -1°). 
The possible reasons are: 1) the complex topography in CA might introduce extra error 
when interpolating coarse global data to fine resolution WRF simulations close to the 
surface; and 2) the summer means were averaged over case 5 (June 18th - July 05) and 6 
(July 30th - August 16th) for the downscaling results, but the whole three months (June, 
July and August) for PCM data, so some discrepancy between the two is expected.  
 
Compared to summertime, the wintertime climatology patterns from PCM (Figure 5-6c) 
and GFS (Figure 5-6d) data were more similar. This might be due to stronger signals in 
wintertime (e.g., baroclinic zone). However, it is noted that the high pressure system over 
the western US was well formed and elongated northwest-southeastward from PCM.  
This helped transport cold air more efficiently from southern Canada and the northern US 
southward.  As a result, strong cold T2 anomalies between PCM data and GFS occurred 
in Texas and Arizona (Figure 5-6f), and this was carried over to southeastern CA through 
downscaling (Figure 5-4b).   
 
Overall, the strength and position of the PSH, which determines the amount and pattern 
of cold air in Canada intruding south, played an important role in the difference between 
PCM and GFS data in summer. Thermal lows (highs) in summer (winter) over the 
western US also contributed to the difference between these two global models to some 
extent.  PCM bias corrections are needed in order to improve the downscaling results. 
 
5.4.2 Surface comparison between simulation results and observation data 

In order to evaluate the model performance, the simulation results were compared with 
METAR surface weather observation data, which are available at 66 stations in the 
SoCAB and 12 stations in the SJV during the 2000-2006 period. This comparison 
provides a way to explore the simulation error internal to the WRF model for these 
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specific areas with this model configuration. Unsurprisingly, the GFS-WRF predictions 
generally matched the observations better than the PCM-WRF predictions.   
 
Figure 5-8 shows the surface temperature bias of the simulations driven by GFS (dark 
gray) and PCM (light gray) data averaged over seven years and spatially over all stations 
in SoCAB (Figure 5-8a) and SJV (Figure 5-8b). Simulations with GFS data 
overestimated surface temperature for both SoCAB and SJV. WRF performed worse in 
winter than summer, and the wintertime simulation was worse in the SJV than in the 
SoCAB. The possible reason for this trend is that winter temperature inversions are 
typically stronger in the SJV than in the SoCAB. WRF is known to have difficulty 
simulating the conditions within the shallow boundary layer associated with these 
temperature inversions. The surface temperature overestimation from PCM-WRF 
simulations was obvious during fall (cases 7 and 8). The bias comparisons between 
simulations with the two global datasets are consistent with Figures 5-4a and 5-4b, which 
show that the simulations with PCM data predicted lower surface temperature overland 
during summer and winter. The general ± 2° bias for surface temperature from GFS-WRF 
is generally acceptable considering the complex topography and meso-scale flow patterns 
in CA. The downscaling results with PCM data had an exceptionally warm bias for case 
7, which spans September 9th to 26th, in both regions. Figure 5-9 compares the PCM and 
GFS difference during this specific time using the same format employed for Figures 5-
6a and 5-6b. The overall weather patterns for case 7 were similar to those shown in 
Figures 5-6a and 5-6b. The PSH weakened in both of the global datasets during fall. The 
PSH in GFS data helped to bring the cold air from Canada to the western US. In contrast, 
the PSH in PCM data was elongated to the northeast relative to the one shown in Figure 
5-6a, constraining the cold air to latitudes over 45°N. Consequently, the surface 
temperature differences between the two global data as well as between the simulation 
results were quite significant in CA for case 7. 
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Figure 5-8: Seven-year averaged T2 bias over (a) SoCAB and (b) SJV for each 
simulation case driven by GFS and PCM data. 
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   (a)                                                               (b) 

   

Figure 5-9: (a) and (b) are the same as Figures 5-6a and 5-6b, respectively, but during 
case 7. 

 
Figure 5-10 shows the wsp10 bias of each simulation case averaged over the seven year 
study period 2000-06. Both simulations overestimated surface wind for most cases. The 
much greater overestimation from the simulation with PCM data in the SoCAB during 
winter (cases 1, 8 and 9) was also shown in Figure 5-4d. The smaller values of bias in 
SJV could be due to the overall lower wind in the SJV than in the SoCAB. In general, 
WRF had lower wsp10 bias during summer than winter, though both seasons are known 
to have relatively calm wind due to the influence of the PSH moving inland.  Note that 
the seasonal trend of model performance for surface wind are opposite in Figure 5-2 and 
Figure 5-10. The variable shown in Figure 5-2 is RMSE while Figure 5-10 shows bias.  
Figure 5-2 illustrates results for every day of the year 2000 while Figure 5-10 illustrates 
results for 1000 days between the years 2000-06.  The bigger RMSE but smaller bias 
during summer can appear if model simulations have a larger uncertainty and the errors 
are mostly cancelled out due to the opposite signs.  Both Figure 5-2 and Figure 5-10 
show that WRF surface temperature predictions performed better during summer than 
winter. 
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Figure 5-10: Same as Figure 5-8, but for 10-m wind speed. 
 
The magnitudes of the PCM-WRF summertime wsp10 bias were relatively small (less 
than 0.3m/s) in both the SJV and SoCAB.  However, when the WRF results were used as 
input for the UCD/CIT air quality model, none of the historical high ozone episodes that 
happened during summer 2000 in SoCAB and SJV were reproduced (figure not shown). 
The emission inventories and chemical reaction rates employed by the UCD/CIT air 
quality model have been used to reproduce numerous air quality episodes when 
diagnostic meteorological fields are used as model input.   This strongly suggests that the 
ozone under-predictions are largely caused by the driving meteorological conditions 
provided by the WRF simulations. Several air quality model sensitivity tests were 
conducted by perturbing the temperature and PBLH, which are closely related to ozone 
concentrations. After eliminating both of these two factors, the surface wind becomes the 
only possible factor causing under-predictions in simulated ozone concentrations.  
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Generally, high ozone episodes in the SJV and SoCAB occur during stagnant events, 
when winds are very calm. Previous studies have shown that WRF has difficulties in 
capturing the strength of stagnant events and the accompanying low surface wind speed 
([124]; [125]). The possible reason might be that the vertical resolution is not high 
enough within the low boundary layer during the stagnation events to resolve the 
associated wind accurately. To explore the possibility of this problem in our simulations, 
the model bias and RMSE were calculated with respect to the observed surface wind 
speeds. The observed wind speed has discrete values due to the precision of 0.5 ms-1 in 
METAR observation data. Similar results were found both in the SoCAB and SJV, thus 
only the results for SoCAB are shown in Figure 5-11. Note that over 80% of the observed 
wsp10 was under 5ms-1, which is the reason why the range of the errors shown in Figure 
5-10a are quite different from Figure 5-11a. It is obvious that for very calm wind (≤1.5 
ms-1), WRF simulations with both datasets had a relatively large bias and high RMSE. 
Taking into account the small values of the corresponding wind speed observations, these 
biases & RMSEs are even more substantial. PCM-WRF results also had relatively large 
bias (underestimated) and high RMSE during high winds. The linear nature of the trends 
shown in Figure 5-10a suggests that WRF consistently predicts surface wind speeds of 3-
4 ms-1 even when actual conditions vary significantly from this value.  Ozone events 
simply do not occur when wind speed is this high, explaining the failure of the modeling 
system to reproduce summer ozone events. 
 
The difficulty of accurately simulating low surface wind poses a major challenge for the 
WRF model that must be resolved to provide meteorological inputs for air quality 
simulations in regions with extreme topography like CA.  Potential methods of increasing 
the vertical resolution within the boundary layer or increasing the surface roughness have 
been suggested and tested within the WRF community.  Each of these approaches is the 
subject of research beyond the scope of the current project. 
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Figure 5-11: 7-year averaged model (a) bias and (b) RMSE with respect to observed wind 

speed in SoCAB. 
 
The analyses in this section show that GFS-WRF runs overestimated the surface 
temperature. The surface winds were, in general, substantially overestimated for calm 
wind conditions and underestimated in high wind conditions. WRF performance was 
better during summer than other seasons. These patterns very likely represent the WRF 
systemic error (i.e., bias) in this region.  
 
5.4.3. Low PBLH during summer 

As PBLH is one of the most important meteorological inputs to air quality model 
simulations, more investigation was carried out on this variable. It was mentioned in 
section 5.4.1 that the 7-year averaged summer PBLH was about 300-400m in the Central 
Valley, yet at the same latitude in Nevada the PBLH was over 1000m (Figure 5-5a), 
despite the fact that the surface temperature in the Central Valley is higher (over 3° K) 
than that in Nevada at the same latitude (figure not shown). In general, the high 
temperature overland during summer could promote vertical convection, which results in 
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high summer PBLH. The possible reasons for the low summer PBLH in the Central 
Valley are explored in this section.  
 
Figure 5-12 shows the three year (2004-2006) averaged daily maximum PBLH from 
observation data, and PCM-WRF and GFS-WRF simulations at station VIS (the location 
is shown in Figure 5-1) in the SJV. Observations were only available for three years of 
the study period.  The observed PBLH was derived from a vertical temperature profile 
obtained from a Radio Acoustic Sounding System (RASS) located at VIS using the dry 
adiabatic lapse rate for comparison. The observed values of PBLH (pblh_OBS) shown in 
Figure 5-12 are the seven day averaged daily maximum PBLH; the purpose of calculating 
the average is to smooth the small variation in the original observation data and better 
perceive the seasonal pattern. Figure 5-12 illustrates that the PBLH at VIS is shallow 
during the summertime. The WRF results with both global datasets consistently 
overestimated PBLH for most of the year. The PBLH from the GFS-WRF simulations 
was significantly better than that from PCM-WRF during the springtime. Overall, Figure 
5-12 shows that both PCM and GFS-WRF simulations captured the seasonal trend of the 
PBLH over VIS, including the seasonal minimum in summertime PBLH.  
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Figure 5-12: Three year (2004-2006) averaged daily maximum PBLH from observations 
(light gray solid line), PCM-WRF simulations (dark gray dashed line), and GFS-WRF 

simulations (dark gray solid line) at station VIS. 
 
Analysis of stagnation events over the SJV revealed that the PSH moved inland and 
dominated the SJV for the majority of the time during case 6 (July 30th to August 16th) 
during 2004-2006, while it only appeared for six days during 2000. The high pressure 
system over the SJV always results in stagnation events featuring calm surface wind, low 
PBLH, etc. in this region. The comparison of the PBLH (from PCM-WRF simulations) 
averaged over SJV from 2004-2006 and from 2000 is shown in Figure 5-13. It is obvious 
that without the dominance of a high pressure system, the PBLH for case 6 (circled in 
Figure 5-13) in 2000 was much higher. Therefore, the high pressure system is one reason 
for the low summertime PBLH in SJV. 
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 Figure 5-13: Daily maximum PBLH averaged over 2004-2006 (gray solid line) and 
during 2000 (black dashed line). The encircled part is from case 6 simulation. 

 
Even if the persistent high pressure system in 2000 is removed, the PBLH during summer 
was still only about half of that in springtime. The seasonal change of the flow patterns in 
SJV is another factor that affects PBLH. Valleys can have complicated boundary layer 
structures that vary in with time due to the cross-valley flow. The SJV is a relatively wide 
valley, with an average valley floor width of 125km and a depth of about 1km on the 
west and over 3km on the east side; consequently, the flow pattern and the PBL structure 
in SJV can be very different from the conceptual model of the convective boundary layer 
in deep valleys ([126]; [127]; [128]). Figure 5-14 shows the vertical cross-sections of 
vertical wind velocity and potential temperature passing VIS (see Figure 5-1) at 4 PM 
local time on August 7th, 2000 and March 28th, 2000, which were chosen to represent the 
flow patterns that normally appear in the afternoon during summer and spring in SJV, 
when the high pressure system is absent. The time of 4 PM was selected as the WRF 
outputs used to make these plots were only available four times a day (4 AM, 10 AM, 4 
PM and 10 PM Pacific time), among which, 4 PM , when the sun is facing the west side 
of the mountains, is the time with the highest PBLH. Except for valley wind, there was 
upward motion around the center of the SJV due to surface heating (Figure 5-14). In 
summer, the valley wind was strong due to a strong differential heating (Figure 5-14a) 
and the associated downward flow, which appeared most places between the two 
mountain ranges, suppressed vertical convection near the surface and led to a very 
shallow PBLH over the Central Valley. In contrast, during spring, the valley wind signal 
weakened, and the upward motion was much stronger and present at more places between 
the two mountain ranges than during summer. Note that VIS (the dots in Figure 5-14) is 
located almost inside an upward motion area in springtime (Figure 5-14b), and the PBLH 
might be higher than other places in the valley for this particular case (i.e., case 3 in 
2000). Nevertheless, the averaged PBLH in the Central Valley in the summertime was 

   jan     feb    mar   apr    may   jun     jul    aug    sep   oct     nov    dec
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much shallower than that in the springtime, as indicated in the potential temperature field 
in Figure 5-14.  
 

(a)                                                              (b) 

 
 

Figure 5-14: Vertical cross sections of positive w (black solid lines), negative w (black 
dashed lines) and potential temperature (gray solid lines) at 4 PM on (a) August 7, 2000 

and (b) March 28, 2000 passing VIS (shown as black dot on x axis). The plotting range is 
indicated in Figure 5-1. The interval of the potential temperature and negative wind 

velocity in the plots is 1° K and 0.03ms-1, respectively. A contour interval multiplier of 3 

(i.e. 1cms-1, 3cms-1, 9cms-1, etc.) was applied to the positive wind velocity due to the 
strong upward motion in the mountain region. 
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Figure 5-15: SJV averaged 3km vertical velocity at 4 PM during simulation case 6 
(summer) and case 3 (spring). 

 
The vertical wind velocity at an elevation of 3 km averaged over the SJV at 4 PM was 
calculated based on the PCM-WRF simulations for year 2000. Figure 5-15 shows the 
time evolution of the regional averages during case 6 (summer) and case 3 (spring). The 
PBLH was lower than 3 km during these simulations (Figure 5-13). The timing of the 
negative wind speed (w<0) above the PBLH during case 3 matches a time when a high 
pressure system dominated the Central Valley. Upward vertical wind (w>0) was obvious 
for other simulation times due to solar heating over the Central Valley during spring. For 
case 6, weak subsidence occurred in the Central Valley for most of the simulation days 
because the valley wind dominated the system. Figure 5-15 indicates the overall 
summertime (springtime) downward or near zero (upward) motion above the SJV 
boundary layer. Therefore, during the summer, the vertical convection within the 
boundary layer was suppressed by the valley wind above and resulted in low PBLH.  

 
5.5 Conclusions 

This study investigates the climate change impacts on meteorological variables relevant 
to air quality conditions in CA using the WRF model at a spatial resolution of 4 km. As 
the first stage of the study, this chapter focuses on the downscaling results for the present 
climatology (2000-2006) with two different datasets: PCM and GFS data. By comparing 
these two sets of simulations, the error of the downscaling results due to the PCM bias 
can be identified.  In addition, the GFS-WRF simulation results were also evaluated 
against observation data to identify biases inherent in the WRF model itself when 
simulating conditions in California.  
       



 

 122

The spatial distribution analysis of the climatology from the two simulations focused on 
PBLH, surface temperature, and wind speed during summer and winter. The PCM-WRF 
surface temperature was underestimated for almost the whole analysis domain during 
winter, while the underestimation mainly appeared inland during summer. Similar 
patterns were apparent in the surface temperature difference between the climatology of 
the original PCM and GFS data, which indicates that the downscaling biases are inherited 
from PCM. The sign of bias between the original PCM data and the downscaling results 
were opposites during summer for inland CA as a result of the downscaling process. The 
imprecise prediction of the location and strength of the PSH and consequently the pattern 
and amount of cold air intruding to CA from Canada and the northwestern Pacific Ocean 
are the main sources of the PCM data bias. Surface wind speed was overestimated by the 
PCM-WRF simulations in CA and over the neighboring Pacific Ocean. The surface wind 
overestimation was more obvious in the SoCAB, especially during winter. The PBLH 
predicted by the PCM-WRF combination was also overestimated for most regions in CA. 
Surface temperature and wind speed, and PBLH are the three most important 
meteorological factors affecting regional air quality. The bias of the downscaling results 
driven by PCM data imply that using these results as inputs for air quality models would 
underestimate the air pollution problems in CA, particularly in LAC. 
        
The comparison between GFS-WRF downscaling results and surface observations 
indicate that the WRF model has inherent biases for simulations in CA independent of the 
PCM boundary conditions.  The WRF model bias of T2 and wsp10 were averaged over 
SJV and SoCAB for each simulation case. In general, WRF simulated surface 
temperature had a positive bias of less than 2 K. The temperature bias was generally 
smaller in summer vs. winter, and smaller for the SoCAB than for the SJV. These 
statistics averaged over the two geographic regions were consistent with the spatial 
distribution analysis of the two sets of simulations. WRF overestimated surface wind 
speed both the SJV and the SoCAB. The model bias/RMSE versus observed wsp showed 
that WRF has difficulty catching low wind events, with average WRF wind speeds 
hovering around 3 ms-1 independent of observed winds.  This bias prevents accurate 
representation of summer ozone episodes and winter PM episodes. It is crucial to solve 
this problem in order to have accurate air quality predictions using WRF simulation 
results as the meteorological inputs.  
       
The spatial distribution of simulated PBLH shows that the summertime PBLH is much 
lower in the SJV compared to other inland regions at the same latitude. Two possible 
reasons are the dominance of a high pressure system and the strong valley wind in the 
daytime during summer over SJV; both of which provide downward motion above the 
boundary layer and suppress vertical mixing in this region.  
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6.0 THE IMPACT OF CLIMATE CHANGE ON AIR QUALITY RELATED 
METEOROLOGICAL CONDITIONS IN CALIFORNIA – PART II: PRESENT 
VERSUS FUTURE TIME SIMULATION ANALYSIS 
 

6.1 Introduction 

The IPCC Fourth Assessment Report (2007) states that ‘Most of the observed increase in 
global average temperatures since the mid-20th century is very likely due to the observed 
increase in anthropogenic greenhouse gas concentrations’. Temperature is a decisive 
meteorological variable for regional climate and air quality. A temperature change can 
result in a change in atmospheric and oceanic circulations (Nitta and Yamada 1989, 
[129]), precipitation ([130]), extreme weather events ([131]), etc. These, in turn, lead to 
air quality changes.  
 
Previous studies have investigated climate change impacts in the U.S using the dynamical 
downscaling method. Leung and Gustafson ([62]) explored the potential air quality 
changes in the U.S. based on the future variations of meteorological variables, such as 
surface temperature, solar radiation and ventilation using the Penn State/NCAR 
Mesoscale Model (MM5) to downscale the Goddard Institute of Space Studies (GISS) 
model. Their results suggest a deterioration of air quality in the western U.S during fall, 
while the impact on air quality was not clear for other seasons. MM5 has also been 
applied to downscale PCM simulations ([28]; [132]) to 30-40 km resolutions for current 
and future climatology, and the results suggest that the downscaling enhances fine-scale 
features but does not alter the regional mean significantly. Similar conclusions were 
drawn by Duffy et al. [29]by comparing the simulation results from four different 
combinations of Regional Climate Model (RCM) and Global Climate Model (GCM). 
Other studies ([133], [134]) have also suggested that the RCM results are strongly 
influenced by the driving GCM or reanalysis. The addition of realistic spatiotemporal 
details to GCM projections through dynamical downscaling is more obvious over regions 
with strong meso-scale forcing associated with topographic heterogeneity ([28], [135]). 
The topography in CA is extremely heterogeneous, thus the advantage of dynamical 
downscaling may be more substantial in this region. However, downscaling at higher 
spatial resolution than 30-40km is required in order to replicate the orographic effects and 
comprehensive meso-scale features for the climate studies in CA. [105]used WRF to 
dynamically downscale Community Climate System Model ver. 3 (CCSM3) data to 12 
km resolution to evaluate the downscaling performance in CA.  This simulation at 12 km 
resolution, to the best of our knowledge, represents the highest resolution dynamic 
downscaling exercise applied to California to date.  No studies have performed high-
resolution (<10 km) dynamic downscaling over California using climatology that follows 
the IPCC BAU emissions scenarios.  
 
In this chapter, the WRF model ([111]) is applied to dynamically downscale climatology 
from the Parallel Climate Model (PCM) to 4 km resolution in CA for both present and 
future time periods to quantify climate impacts on local meteorology related to air 
pollution.  The chapter is arranged as follows. The methodology and model 
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configurations are described in section 6.2. The analysis of results, including stagnation 
events, future change of air-quality related meteorological variables and climate change 
impacts on land-sea breeze, are presented in section 6.3. The remarks and conclusions are 
given in section 6.6.  
 

6.2 Model configurations and methodology 

The configuration of the WRF model, the domain setup, and the input data used in the 
present study are identical to those described in chapter 5.  The configuration selected in 
chapter 5 consisted of the Yonsei University (YSU) planetary boundary layer 
parameterization (PBL) scheme, the Grell-Devenyi cumulus parameterization, WRF 
single-momentum 6-class (WSM6) microphysics, Rapid Radiation Transfer Model 
(RRTM) long-wave and Dudhia short-wave radiation. It is demonstrated in chapter 5 that 
simulations with this configuration reproduce the meteorology in CA for the year 2000 
more accurately than five other combinations of microphysics, cumulus parameterization, 
and PBL schemes when using Global Forecasting System (GFS) reanalysis data from the 
National Center for Environmental Prediction (NCEP).  
 
The PCM data used in this study is the “business as usual” (BAU) scenario simulation 
B06.44, in which the greenhouse gas emissions increase by one percent per year. The 
simulation spans a period of approximately one century (1995-2099). The years 2000-06 
and 2047-53 were chosen for downscaling to represent the current and future 
climatology, respectively. An interval of approximately fifty years between present and 
future climate was selected because PCM is known to have lower climate sensitivity than 
other GCMs ([136], [109]) and the climate change effects on regional meteorology and 
air quality in CA may not be evident over shorter time intervals. Simulations for two out 
of every six weeks were conducted, as described in chapter 5, in order to span a 
climatologically relevant period with a reasonable amount of computational resources.  
 
The analysis conducted in chapter 5 shows that PCM-WRF predictions averaged over the 
current climate period (2000-06) have considerable bias compared to GFS-WRF 
predictions that are presumably more accurate because they are driven by observed 
meteorological trends.  The comparison of the PCM-WRF results and the GFS-WRF 
results with observations indicated that the PCM bias was partially passed to the 
downscaled WRF results via initial and boundary conditions, causing a systematic warm 
bias over California.  The model predictions match the surface observations better during 
summer than the other seasons.  In this chapter, it is assumed that the PCM bias does not 
increase with time during the PCM simulation period (1995-2099). Therefore, the 
difference between the present and future downscaled results will ideally eliminate the 
bias inherited from PCM data, yielding a reasonable estimate for the climate change 
impact on the regional meteorology and air pollution in CA. 
 
The analysis conducted in chapter 5 shows that the WRF model has inherent bias relative 
to observations even when driven by the GFS dataset.  WRF generally does not predict 
regional wind-speeds lower than 3 ms-1 even though observed wind-speeds commonly 
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fall below this threshold during pollution events.  Once again, it is hoped that the bias 
introduced by the WRF simulations are consistent during both present and future years so 
that the comparison yields a reasonable estimate for climate change impacts on 
meteorology relevant to air pollution events.  
 
6.3 Results  

6.3.1. Stagnation Event Analysis 

Air pollution episodes in CA normally occur during stagnation events mainly 
characterized by slow winds and low atmospheric boundary layer mixing depths. Future 
changes to the duration and strength of stagnation periods will directly influence future 
pollutant concentrations. Stagnation events are often associated with dominant high 
pressure systems. Sea level pressure plots are particularly useful indicators of 
atmospheric stagnation. However, the coherence between the sea level pressure field and 
the stagnation events in the SoCAB is unclear, and the appropriate synoptic 
meteorological features to identify stagnation events over this region are not yet 
established. Therefore, in this section the stagnation analysis and comparison between 
present and future climatology focuses on the SJV only. The future changes of 
meteorology and consequent air pollution conditions in the SoCAB are studied based on 
seasonal averages, which are discussed in section 6.3.2.   
 
The four criteria to define a stagnation event in the SJV are: 1) a high pressure system, 
WPSH for most cases, intrudes inland and stalls over the region for more than three days; 
2) a large magnitude of the sea level pressure gradient (>5 pa/km) between the center to 
the outer edge of the high pressure system; 3) surface wind speeds below 3.5 m/s in the 
valley; and 4) low PBLH (threshold differs by season). Pollutant emissions are trapped 
below the low boundary layer during stagnation events and low wind speed provides very 
little ventilation, resulting in the steady accumulation of pollutants over time. 
 
As described in chapter 5, GFS reanalysis data was employed to drive WRF simulations 
between 2000-06 as a benchmark to evaluate the PCM-WRF downscaling. Figure 6-1 
shows the normalized number of stagnation days in the SJV for each season predicted by 
the GFS-WRF simulations for the present climate period and the PCM-WRF simulations 
in the present and future climate periods.  The normalized number of stagnation days was 
calculated for each season by dividing the number of stagnation days by the total number 
of simulated days and then multiplying by the total number of days within that season.  
This treatment assumes that stagnation days fall randomly throughout each year and that 
the intermittent simulation pattern captures an unbiased sampling of those stagnation 
events. Seasons were defined as spring (=simulation cases3 & 4, see chapter 3), summer 
(=simulation cases 5 & 6), fall (=simulation cases7 & 8), and winter (=simulation cases1, 
2 & 9). The results illustrated in Figure 6-1 reveal that the PCM-WRF underestimated the 
frequency of stagnation events (relative to GFS-WRF) for current climate simulations for 
all seasons except for spring. The under estimations from PCM-WRF were 3% and 17% 
for summer and winter, respectively. PCM-WRF performed better during spring and 
summer than fall and winter. The future change of the stagnation event frequency was 
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more significant during summer and fall than spring and winter (Figure 6-1). This trend is 
consistent with the study by Leung and Gustafson ([62]), which employed MM5 to 
dynamically downscale GISS data to the whole continental U.S. for both present (1995-
2005) and future (2045-2055). However, this previous study predicted an increase of 
stagnation occurrence in the future during both summer and fall in most parts of CA, 
whereas the results from the current study predict a decrease of 28% in the future during 
fall.  
 
The two main air pollution seasons in the SJV are summer (ozone) and winter (PM). The 
PCM-WRF results suggest a ~15% and ~8% future increase in the number of stagnation 
days for summer and winter, respectively. Conversely, the number of spring stagnation 
days was predicted to decrease by 7%. These trends indicate that stagnant conditions will 
encourage air pollution formation in future in the SJV during traditional pollution seasons 
(summer and winter), with reduced air pollution events in the spring and fall.  It is 
noteworthy that the annual total numbers of stagnation days between present and future 
climate are similar (only one day difference), but shifted to different seasons, as 
discussed above. 
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Figure.6-1: Normalized seasonal stagnation days from different WRF simulations: GFS-
WRF, PCM_WRF_pres. (PCM-WRF runs for 2000 to 2006) and PCM_WRF_fut. (PCM-

WRF runs for 2047 to 2053). 
 
The “strength” of a stagnation event can be calculated as the product of the surface wind 
speed and PBLH (= total ventilation rate). Ventilation is the dominant index that 
determines pollutant concentrations during stagnation events. Figure 6-2 shows the 
regional (SJV-wide) averaged total ventilation rate that was calculated based on all of the 
stagnation events occurring in each season during the present (2000-06) and future (2047-
53) WRF simulations. The comparison between ‘GFS WRF’ and ‘PCM WRF_pres.’ for 
current climate simulations indicates weaker stagnations (i.e. larger ventilation rate) from 
PCM-WRF runs, except during the fall. The PCM-WRF simulations overestimated the 
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ventilation rates (relative to GFS-PCM) by 5% and 11% for summer and winter, 
respectively.  In combination with the stagnation duration analysis, this suggests a 
significant under-estimation of the stagnation events from PCM-WRF simulations during 
the two main air pollution seasons, especially in winter.  
 
The comparison between PCM WRF_future and PCM WRF_present illustrated in Figure 
6-2 indicates that the total ventilation rate in the SJV was predicted to decrease for all 
seasons except spring. The most significant change of the total ventilation rate (-12%) 
took place during winter. The future decrease of the ventilation rates in summer and 
winter suggests that the future stagnation events will be more severe in the SJV. 
Furthermore, the frequency of these events during summer and winter will also increase 
in the future (Figure 6-1), indicating the potential for negative impacts on future air 
quality in this region during the two main air pollution seasons. Chapters 7 and 8 will 
quantify these changes for average and extreme air pollution events.   
 

Ventilation rate during stagnation days

1826

1489

838

450

2067

1566

749

498

2224

1476

731

438

0

500

1000

1500

2000

2500

spring summer fall winter

Ve
nt

ila
tio

n 
ra

te

GFS WRF
PCM WRF_pres.
PCM WRF_fut.

 

Figure 6-2: Same as Figure 6-1, but for SJV wide averaged ventilation rate during the 
stagnation events. Units are m2 s-1. 

 
Compared to GFS-WRF runs, both the duration and strength of the stagnations were 
underestimated from PCM-WRF during summer and winter. Furthermore, it was shown 
in chapter 5 that WRF inherently has difficulty capturing the low winds associated with 
the stagnation events. Both of these biases will lead to over-ventilation of pollutants in air 
quality simulations driven by the PCM-WRF meteorological fields. The biases in 
predicted PM concentration during the period 2000-06 will be discussed in chapter 7.   
 
6.3.2. Future changes of air quality related meteorological fields 

The climate-induced changes to meteorological variables that affect air quality were 
explored by comparing the future and present seven-year averages during the summer 
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and winter seasons. The seven-year averages for the seasons of interest were calculated 
for each grid point using the hourly averaged values (chapter 5) in the analysis domain. 
The spatial distributions of the difference between the future and present averages 
emphasize how climate change will affect sub-regions of CA differently.  

6.3.2.a. Surface wind analysis  
 
Figures 6-3a and 6-3b illustrate the spatial distribution of the changes in 10 meter wind 
speed (10-m wsp) (future – present) during summer and winter, respectively. Overall, the 
changes to 10-m wsp over most inland regions of CA had opposite signs during the two 
seasons (i.e. decrease during summer and increase during winter). The regional averaged 
wsp change was approximately -3% and 2% during summer and winter, respectively in 
the SJV. Future 10-m wsp was predicted to decrease by less than 1% during summer and 
increase by ~3% during winter in the SoCAB. Los Angeles County (LAC) is one of the 
most polluted regions in CA. The average wintertime 10-m wsp over LAC will increase 
by approximately 0.5 m s-1 in the future (Figure 6-3b), which is significant taking into 
account that the present seven-year averaged wintertime 10-m wsp is ~3-4 m s-1  in this 
region (figure not shown). Conversely, future summertime 10-m wsp was predicted to 
decrease by about 0.5 m sec-1 over most of northern CA (including the SJV) (Figure 6-
3a), whereas, the present summertime averages for these regions are below 3 m s-1.  
 
The analysis in chapter 5 showed that the location and strength of the WPSH is the 
decisive large scale factor that drives the climatology over CA and the adjacent Pacific 
Ocean. The influence of high pressure systems is more obvious during the summer when 
the strength of the WPSH reaches an annual maximum. The present and future seven-
year averaged summertime sea level pressure plots of the original PCM data (Figure 6-4) 
indicate a slightly weaker circulation associated with WPSH in the future, resulting in 
weaker northwesterly winds on the right side of the WPSH. This could at least partially 
account for the decrease of the surface wind speed over most of the Pacific Ocean within 
the analysis domain during summer (Figure 6-3a).  The future change of the wintertime 
WPSH is not as clear. The most obvious summertime surface wind decrease is along the 
coastline of northern and central CA (dark blue shown in Figure 6-3a), which may 
contribute to changes in the land-sea breeze pattern in this region. More details about the 
summertime land-sea breeze are explored in section 6.3.3. 
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   (a) ∆wsp_summer                                            (b) ∆wsp_winter 

  
      (c) ∆T2_summer                                           (d) ∆T2_winter 

 
     (e) ∆PBLH_summer                                     (f) ∆PBLH_winter 

 
Figure 6-3: Predicted change (future-present) in annual average surface wind speed (units 

in m s-1), 2-m temperature (units in °K) and PBLH (units in m) during summer and 
winter. 
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      (a)                                                               (b) 

 
Figure 6-4: (a) Present and (b) future seven year averaged summertime surface 

temperature (shading) and sea level pressure (contours). Units are oK for temperature and 
hPa for sea level pressure. 

 

6.3.2.b. Surface temperature analysis 
 
The predicted future 2-m air temperature change (future - present) was positive for the 
whole domain during both summer and winter seasons (Figures  6-3c and 6-3d), and the 
largest temperature increase of 1.5-2 K occurred over CA’s Central Valley (CV) during 
summertime. A belt with relatively small temperature increase (<0.8 K) was apparent for 
the coastal regions of southern CA, including the western part of SoCAB and Mexico. 
The magnitude of the future surface temperature rise gradually decreases from the 
northern boundary (over 2°K) to the southern boundary (less than 1°K) for the inland part 
of the domain during summer (Figure 6-3c), while an opposite trend is noticed during 
winter (less than 0.5 K in the north and above 1.3 K in the south; Figure 6-3d). On a 
synoptic scale, the two areas predicted to experience the greatest future surface 
temperature increase during summer (Figure 6-5a), are in northwest Canada and the 
western U.S. centered in Nevada. The latter region likely contributes to the 
aforementioned inland summertime north-south trend in temperature change. In contrast, 
in the winter the region with maximum future temperature increase in the western U.S. 
moves northeast (away from CA) and another region with a relatively large temperature 
increase appears centered at the Pacific Ocean, adjacent to Mexico (Figure 6-5b), which 
drives the wintertime CA regional temperature change trend (Figure 6-3d). The much 
more complex pattern in the downscaled results (Figures  6-3c and 6-3d) compared to the 
driving PCM data (Figure 6-5) underlines the need for detailed downscaling exercises 
when evaluating how climate change will influence future meteorology and air quality on 
regional scale.  
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The pattern of temperature change in the winter season (Figure 6-3d) is somewhat 
unexpected. Water has a greater heat capacity than land and the anthropogenic 
greenhouse gas emissions that drive global warming are mainly released over land, 
therefore, it is anticipated that future temperature increase will be greater over land than 
over the adjacent ocean. Nevertheless, the opposite trend was observed here during 
winter (Figure 6-3d), with future temperature predicted to increase by approximately 2° K 
over the ocean but only less than 1° K over land. A similar pattern was also noticed in the 
original PCM data (Figure 6-5b), but to a lesser extent. The further temperature change 
contrast over ocean versus land in PCM-WRF simulations is created during the 
downscaling process, as the large-scale temperature features can cause greater wintertime 
cloud cover, humidity, and precipitation over land. The PCM model projected 
summertime temperature increase was around 1.5° K over inland region of CA, and 
slightly lower over the neighboring Pacific Ocean (Figure 6-5a). The large-scale spatial 
pattern and absolute magnitude of the summertime temperature future variation from 
WRF simulations (Figure 6-3c) match the original low-resolution PCM data (Figure 6-
5a). Due to the much finer resolution of the analysis domain and the well-resolved 
topography in WRF, the climate signal from the downscaling results can be significantly 
different from the driving GCMs (PCM in this study), particularly in regions with 
heterogeneous land surface ([135], [137]). The surface temperature signals in the WRF 
downscaling results have much finer features associated with topography and the 
coastline compared to the original PCM data, especially during winter (Figure 6-3d vs. 
Figure 6-5b).  
 
Both the WRF results (Figures  6-3c and 6-3d) and PCM data (Figure 6-5) imply that the 
temperature contrast between summer and winter seasons in CA will intensify in the 
future due to the greater temperature increase over land during summer than during 
winter. Similar patterns were found in CCM3 data, caused by consistent intraseasonal 
fluctuations of surface temperature and the variations in atmospheric water vapor content 
([107]). 
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Figure 6-5: Predicted change (future-present) in 2-m surface temperature during (a) 

summer and (b) winter by the Parallel Climate Model (PCM). Units are oK. 
 

6.3.2.c. PBLH analysis 
 
Figures 6-3e and 6-3f give the spatial distribution of the temporally averaged PBLH 
difference (future - present) during summer and winter. PBLH is a diagnostic variable in 
WRF that is calculated based on the instability and wind shear of the atmosphere ([114]). 
PBLH was predicted to decrease during both summer and winter seasons for most inland 
CA regions, except for some coastal regions. The decrease of seven-year averaged PBLH 
across the entire SJV was 10-30m during summer and around 10m during winter. The 
present averaged PBLH over the SJV was predicted to be approximately 400 m (200 m) 
during summer (winter) (Figure 6-6), thus the future PBLH decreases are approximately 
5% for both seasons. Future PBLH was predicted to increase across the Pacific Ocean 
within the study domain during winter (Figure 6-3f) and across the portion of the Pacific 
Ocean adjacent to southern CA during summer (Figure 6-3e). Similar changes also 
appeared over coastal regions influenced by the marine boundary layer, especially along 
the coastal regions of the SoCAB where the future summertime PBLH was predicted to 
increase by 20-30m (Figure 6-3e).   
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Figure 6-6: Present-day seven year averaged (2000-06) PBLH during (a) summer and (b) 

winter.  Units are m. 
 
The PBLH for most of LAC was within the marine atmospheric boundary layer inversion 
zone where the average summertime PBLH only reaches ~400m (Figure 6-6a). 
Therefore, the predicted 20~30m PBLH increase in the coastal part of LAC represents a 
change of 7.5%.  Sub-regions of the SoCAB further inland were predicted to experience a 
decrease in PBLH similar to trends predicted for the SJV. As mentioned previously in 
section 6.3.1, stagnation events happen frequently in SJV during summer. 
Unsurprisingly, the summertime averaged PBLH over inland regions of SoCAB, such as 
San Bernardino County and the eastern part of Riverside County, was about twice that of 
the values in SJV (Figure 6-6a). Meanwhile, the future PBLH decrease for these inland 
regions of the SoCAB was roughly double the decrease predicted in the SJV during 
summer, yielding a similar percentage change in both regions. The current seven-year 
averaged PBLH over the SJV during the winter season was slightly lower than values in 
the inland SoCAB (Fig 6b), whereas, the predicted future decrease of PBLH was greater 
over SJV than over inland SoCAB. Therefore, the wintertime PBLH decrease was more 
significant in SJV. There was an obvious future wintertime PBLH increase over water, 
including the Pacific Ocean and inland lakes (such as the Salton Sea and Lake Tahoe, etc) 
(Figure 6-3f), while this trend was not clear during the summertime. The present seven-
year averaged PBLH over the ocean was around 400m during both summer and winter 
(Figure 6-6), so the future PBLH was predicted to increase by roughly 20% over the 
Pacific Ocean during winter (Figure 6-3f). These changes could potentially affect 
concentrations of pollutants emitted by off-shore shipping activities in addition to 
dimethyl sulfide (DMS) and other precursor species emitted from the coastal ocean 
waters. 

(a) (b) 
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6.3.2.d Integrated analysis of wind, temperature, and PBLH  
 
Surface wind, temperature, and PBLH are the three most important meteorological 
variables directly related to regional air quality.  These variables influence air pollutant 
concentrations simultaneously and so it is necessary to perform an integrated assessment 
to predict their effects on future air quality.  During the summer, the surface wind speed 
was predicted to increase slightly and the PBLH was predicted to increase by ~8% in the 
coastal region of LAC, providing greater ventilation for the summertime pollutants. In 
contrast, both surface wind and PBLH were predicted to decease, and surface temperature 
was predicted to increase significantly in the SJV and inland portions of the SoCAB. 
These future atmospheric conditions are less conducive to the accumulation of pollutants 
at coastal locations and more conducive to the accumulation of pollutants at inland 
locations during the summer.  
 
Predicted changes to wind speed were modest in the SJV during winter with some sub-
regions predicted to experience slight increases while others experience slight decreases. 
PBLH was predicted to decrease slightly in the SJV. These combined trends will lead to a 
slight increase in wintertime PM concentrations in some regions of the SJV and a slight 
decrease in others. Wind speed was predicted to increase strongly over most of the 
SoCAB, especially in LAC, together with a slight decrease of PBLH, leading to an 
overall increase in ventilation for this region during the winter.  
 
Note that the discussion of the potential air quality change for the SJV region is based on 
an analysis of all simulation days.  The conclusions are therefore different from those in 
the previous section, which are based on an analysis of stagnation events only. The net 
effect of PCM-WRF meteorology on predicted air quality will be quantified in chapters 
7-8 of this report. 
 
 
6.3.3 Climate change impacts on land-sea breeze  

 
Daytime surface temperature typically increases more over land than over the adjacent 
ocean due to the fact that water has a higher heat capacity than soil, and water can 
therefore absorb a greater amount of incoming solar radiation with less of an associated 
increase in temperature. The higher temperatures over coastal inland regions induce 
vertical air movement via buoyancy forces resulting in lower sea level pressure compared 
to the adjacent region over the ocean. This forcing induces onshore air mass movement at 
the surface level (cooler ocean air moves inland) and a compensating offshore movement 
aloft. The flow pattern is reversed during the night when the air over land is cooler than 
the air over the ocean, but the nighttime land breeze is typically much weaker than the 
daytime sea breeze. Land-sea breeze [138] is apparent around the coastal regions of CA 
during periods when the meteorology is not dominated by other strong weather systems. 
Although the WPSH is persistent, the associated synoptic scale flows are normally 



 

 135

weaker than the flows due to surface forcing (i.e., sea breeze and mountain valley wind) 
[139]. The land-sea breeze signal is normally more evident during summer than winter 
due to stronger solar heating effects. 
 
The sea breeze in southern CA follows a classical pattern similar to that described by 
[140], [141], and [142]. The cool marine surface air moves inland with a penetration 
distance that depends on the land-sea temperature contrast. This influx of cool marine air 
reduces the daytime temperature near the ground, leading to the establishment of a 
temperature inversion (cold air trapped beneath warmer air aloft) that inhibits vertical 
mixing in the atmosphere. The pollutant emissions are trapped within the shallow mixing 
layer associated with the temperature inversion. In contrast, the nighttime land breeze 
may transport these pollutants back out over the ocean in an elevated layer of warmer air 
that stays aloft in the land breeze front (a convergence zone).  This recycled plume may 
return onshore during the afternoon of the next day, affecting the pollutant concentrations 
near the surface. In general, the land-sea breeze potentially reduces the net ventilation by 
trapping pollutants close to the surface within the coastal zone of Southern CA.  
 
The effect of the sea breeze around the San Francisco Bay Area is quite different than the 
pattern established in southern CA. The analysis in Section 6.3.1 showed that stagnation 
events occur frequently during the summer in the CV, and pollutants accumulate close to 
the emissions’ source due to lack of ventilation. The sea breeze in the Bay Area 
transports the marine air and emissions from San Francisco into the CV through the 
Carquinez Strait.  The sea breeze flow separates into a northward flow towards the 
Sacramento Valley and a southward flow towards the SJV as it impinges against the 
Sierra Nevada Mountains located on the eastern side of the CV ([143]). These marine air 
flows transport pollutant emissions between regions within the valley and they reduce the 
temperature and increase the humidity of the air in the valley at the same time. Cooler 
surface temperatures result in greater atmospheric stability which further traps local 
emissions.  The nighttime return flow back towards the ocean is very weak in the CV due 
to the complex topography and flow patterns in this region. The future change of the 
summertime land-sea breeze system will potentially influence the climate and air quality 
in both the CV and the coastal part of the SoCAB. 
 
The strength of the land-sea breeze is directly proportional to the land-sea temperature 
contrast, which reaches its peak around 2-3pm before the net warming effect becomes 
negative. Figures 6-7a and 6-7b show the predicted future change of the summertime 
surface temperature at 2 pm and 2 am over CA. The 2 pm surface temperature increase in 
the Sacramento Valley (SV), which is northern part of the CV, was greater than the 
temperature increase over the neighboring Pacific Ocean at the same latitude by 
approximately 0.5oK. The increased land-sea temperature contrast will produce a stronger 
sea breeze in this region.  In Southern CA, the 2 pm temperature increase is only ~0.7 K 
in the coastal region, while the temperature increase over the adjacent ocean is ~1.5 K. 
Hence, there will be a future decrease of land-sea temperature contrast, leading to a 
reduced sea breeze.  The future change of land-sea temperature contrast was more 
significant in southern CA than in the Bay Area, therefore the changes to the sea breeze 
system were predicted to be more evident in Southern CA.  
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The pattern of predicted temperature change at 2 am (Figure 6-7b) was quite similar to 
the pattern predicted at 2 pm (Figure 6-7a) in northern CA, but the effect on the land 
breeze will be reversed. Hotter nighttime temperatures over land weaken the land-breeze 
rather than strengthen it. The predicted change between air temperatures over inland and 
ocean regions at 2 am in Southern CA suggests a slight strengthening of the predicted 
land breeze in this region. The weaker daytime sea breeze and stronger nighttime land 
breeze in Southern CA implies that more polluted inland air will be brought over ocean at 
night, while fewer residual plumes over the ocean will move inland during daytime.  
 
The direction of the land-sea breeze is perpendicular to the coastline: the daytime sea 
breeze blows onshore and the nighttime land breeze blows offshore. The coastlines 
around both the Bay Area (gateway to the CV) and Southern CA are approximately 
aligned in the northwest-to-southeast direction (45°). The sea breeze therefore flows 
approximately from the southwest direction (i.e., southwesterly wind), while the land 
breeze flows approximately from the northeast direction (i.e., northeasterly wind) in both 
regions. The seven-year averaged southwesterly component of the wind at 2 pm (2 am) 
was calculated for each grid point during the summer season. Positive (negative) values 
of the southwesterly component correspond to sea (land) breeze. The formula used to 
calculate the southwesterly wind component wasU × sin(45o) +V × cos(45o), where U is 
the x-component of the 10-m wind and V is the y-component of the 10-m wind. Figures 
6-7c and 6-7d illustrate the future change of the southwesterly wind at 2 pm and 2 am for 
the summer season. The southwesterly flow is shown to increase in the CV (Figure 6-7c), 
which is likely due to the marine flows with southwesterly momentum entering the valley 
through the Carquinez Strait. In contrast, Figure 6-7c suggests a future sea breeze 
decrease in the coastal region of Southern CA The predicted sea breeze behaved exactly 
as expected based on the predicted land-sea temperature contrast in these two regions. 
The predicted nighttime southwesterly flows (Figure 6-8d) slightly increased for the 
coastal part of Southern CA. The nighttime coastal wind should be offshore 
(northeasterly signified by a negative value), therefore the land breeze was predicted to 
slightly decrease in the coastal part of SoCAB.  The opposite was predicted for the Bay 
Area and the CV. The predicted future changes to the sea breeze were larger than to the 
land breeze (Figure 6-8c vs. 6-8d), due to the fact that the daytime sea breeze is normally 
stronger than the nighttime land breeze.  
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(a) ∆T2 at 2pm                                               (b) ∆T2 at 2am 

    
       (c) ∆Southwesterly at 2pm                             (d) ∆Southwesterly at 2am 

    
 

Figure 6-7: Spatial distribution of future change for surface temperature and 
southwesterly wind component at 2pm and 2am during summer. Units are oK. 
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6.3.4 Significance Test  

The comparison between meteorology in the future and present climate periods is 
complicated by the natural variation within each seven year interval.  Large amounts of 
inter-annual variability can make it impossible to discern the effects of climate change 
with reasonable confidence.  In the present study, the hypothesis that climate change had 
no effect on meteorological variables was tested by quantifying the probability that the 
simulation results yielded no actual change as a p-value (Figure 6-8).  The p-value was 
calculated based on the annual mean and variance of meteorological data from each 
seven-year interval in both present (2000-2006) and future (2047-2053) time periods 
using the student t-distribution with 12 degrees of freedom. A small p-value indicates that 
the climate change signals are stronger than the inter-annual variability ([144]), while a 
large p-value indicates that we can’t reject the hypothesis that climate change has no 
impact on the variable of interest.  Normal thresholds for statistical significance require 
p-values smaller than 0.1 (90% confidence) or 0.05 (95% confidence).  The highest 
confidence results (lowest p-values) apparent in Figure 6-8 are those associated with 
temperature, suggesting that the predicted increases in surface temperature are 
statistically significant at the 95% confidence level relative to inter-annual variability.  
This pattern is expected due to the fact that the green house gas concentrations increase 
1% per year in the driving PCM data. The p-values calculated for wind speed and PBLH 
are higher, with no broad region experiencing future changes that were statistically 
significant at the 95% confidence level.  Changes to wind speed were significant in the 
southern portion of the SJV (summer only) and in the coastal portion of the SoCAB 
(summer and winter).  Overall, the p-values for temperature, wind speed, and PBLH are 
smaller during summer than winter in CA, suggesting the climate change is likely to be 
more statistically significant during summer.  
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      (a) p_value wsp_summer                               (b) p_value wsp_winter 

 
       (c) p_value T2_summer                                (d) p_value T2_winter 

 
      (e) p_value PBLH_summer                          (f) p_value PBLH_winter 

 
Figure 6-8: Corresponding p-values of the plots in Figure 6-3. The p-value quantifies the 
likelihood that average meteorological conditions are identical in the present (2000-2006) 

and future (2047-2053). Note that smaller p-values represent bigger climate change 
signals. 
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6.4 Conclusions 

 In this chapter, the present and future climatology in CA was simulated by dynamically 
downscaling global PCM predictions generated under a BAU scenario to a spatial 
resolution of 4 km over a span of 14 years (2000-2006 in the present and 2047-3053 in 
the future) to characterize the intricate meso-scale features in CA induced from complex 
topography. The spatial resolution used in this study was much finer than previous CA 
climate studies carried out over a comparable time window. The changes in the predicted 
future meteorology have direct implications for air pollution in two of the most polluted 
air basins in the U. S. - the SJV and the SoCAB.   
 
The frequency of stagnation events in the SJV was predicted to increase during both 
summer (~15%) and winter (~8%) in 2047-53 vs. 2000-06. The strength of the stagnation 
events (inversely proportional to the regional ventilation rate) was predicted to increase 
during all seasons except for spring. The combination of these changes suggests that air 
pollutant concentrations may increase during extreme pollution events in the future 
because of climate change.   

   
Future changes to average surface wind speed, temperature, and PBLH were calculated 
for the two main air pollution seasons (i.e. summer and winter) between 2047-53 vs. 
2000-06.  In the coastal areas of LAC, both the wind speed and PBLH were predicted to 
increase, while the temperature was predicted to remain relatively unchanged during the 
summertime. These changes will provide more ventilation for the summertime pollutants 
in this region. The situation is reversed in both the inland portions of the SoCAB and the 
SJV, providing more favorable meteorological conditions for the buildup of pollutants 
during summer. The change to wind speed, temperature, and PBLH during the wintertime 
was less obvious and somewhat uncertain. The analysis of the surface wind and PBLH 
indicated a slightly stronger ventilation rate in the SoCAB in the future, with no clear 
trend for the SJV.  
 
The summertime land-sea temperature contrast was shown to increase in northern CA 
(decrease in southern CA) at 2pm, which implies a stronger (weaker) sea breeze intruding 
into the CV (SoCAB). The situation was reversed at 2am, so that the nighttime land 
breeze was predicted to be weaker (stronger) around the Bay Area (SoCAB) in the future. 
The analysis of the land-sea breeze speed (southwesterly component of the 10-m wind 
around the coastal regions) confirms that the sea breeze will increase (decrease) around 
the Bay Area (coastal region of SoCAB) during the summer.   
 
Confidence intervals calculated for the change to meteorological variables between 2000-
06 and 2047-53 indicate that increased temperature is statistically significant (p<0.05) but 
changes to wind speed and PBLH are not generally significant (p>0.01) across broad 
geographical regions of California.  The inter-annual variability within the time periods 
2000-06 and 2047-53 appears to be larger than the changes that occur between these 
periods for wind speed and PBLH.   
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7.0 CLIMATE IMPACT ON AIRBORNE PARTICULATE MATTER 
CONCENTRATIONS IN CALIFORNIA USING SEVEN YEAR ANALYSIS 
PERIODS 
 
7.1 Introduction 
 
Exposure to elevated concentrations of airborne particles with aerodynamic diameters 
less than 2.5 µm (PM2.5) has serious health consequences (see for example [145]).  The 
National Ambient Air Quality Standard for annual average PM2.5 is currently 15 µg m-3 
and the more stringent California State Air Quality Standard for PM2.5 is currently 12 µg 
m-3.  Despite the adoption of a more stringent state standard, annual average PM2.5 
concentrations measured in California’s San Joaquin Valley (SJV) (21.5 µg m-3) and 
South Coast Air Basin (SoCAB) (19.7 µg m-3) were the highest in the nation during the 
years 2007-2008.  Some estimates predict that more than 18,000 California residents die 
prematurely each year due to air pollution [146].  Meteorological parameters including 
temperature, precipitation, clouds, atmospheric water vapor, boundary layer height, wind 
speed, and wind direction influence the atmospheric chemistry and transport processes 
that determine PM2.5 concentrations ( see for example Kleeman, 2008; Aw and Kleeman, 
2003; Sillman and Samson, 1995).  Climate change will modify weather patterns in 
California with unknown consequences for PM2.5 concentrations.   
 
The effect of global climate on regional PM2.5 concentrations can be studied using a 
dynamic downscaling approach where Global Climate Models (GCMs) provide initial 
and boundary conditions for Regional Climate Models (RCMs) with subsequent analysis 
using regional chemical transport models.  California has several unique features that 
make this type of detailed analysis challenging.  California’s topographic features 
transition abruptly between mountains, valleys, deserts, lakes and oceans over distances 
of 10’s of km.  Emissions patterns in California also change quickly over small spatial 
scales due to the complex arrangement of residential, commercial, industrial, agricultural, 
and natural land use types.  Intricate meteorological features that strongly influence air 
pollution concentrations such as the land-sea breeze system and mountain-valley flows 
must also be modeled using high spatial resolution.  Regional air quality studies in 
California are usually carried out at spatial scales finer than 10 km to resolve these 
features.  Long time periods must also be considered when studying climate-air quality 
interactions in California.  Natural annual variation in meteorology such as the El-Nino 
Southern Oscillation (ENSO) has a strong effect on air quality.  The period of the ENSO 
cycle in recent decades has been 3-8 years suggesting that air quality analysis must be 
carried out over a similar time scale in order to be climatologically relevant.  The 
combined need for fine spatial scales and long simulation times results in a 
computationally challenging analysis for climate-air quality interactions in California. 
 
Several recent studies have examined the effects of global climate change on regional air 
quality across the entire United States including California (see for example [18, 19, 21, 
26, 147-150]).  The GCMs employed in the studies to date include the Goddard Institute 
for Space Studies (GISS) GCM ([151]), the NCAR/DOE Parallel Climate Model (PCM) 
[108], and the Stanford GATOR-GCMOM model [19].  Most of the regional climate 
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analysis was conducted using the fifth generation Penn State/NCAR Mesoscale Model 
(MM5) [152] although the GATOR-GCMOM model provides a unified framework from 
global to regional scales.  Of those studies that compared PM2.5 concentrations in present 
and future climates, [18]simulated air quality for the entire United States using 36 km 
resolution for the years 2001 and 2050.  The results of their study indicate that that the 
annual average PM2.5 concentration in some parts of California is likely to decrease by 
~1.5 µg m-3 in the future due to the effects of climate change alone under the A1B 
emissions scenario.  Avise et al., ([21]) also conducted a climate – air quality study for 
the entire United States using 36 km resolution but they focused their analysis on a single 
month (July) in the years 1990-1999 and 2045-2054.  Results were averaged within the 
administrative regions defined by the United States Environmental Protection Agency 
(USEPA).  Avise et al. ([21]) predicted that 24-hr average concentrations of PM2.5 mass, 
PM2.5 sulfate, PM2.5 nitrate, and PM2.5 ammonium for EPA’s Region 9 (containing 
California) would decrease by ~0.4 µg m-3, ~0.1 µg m-3, ~0.1 µg m-3, ~0.1 µg m-3, 
respectively, due to the effects of climate change alone.   Dawson et al. ([149]) modeled 
the climate effects on 24-hr average total mass and speciated PM2.5 concentrations for the 
eastern United States under the A2 emissions scenario.  In this study, the authors used 36-
km resolution and modeled January and July in 5 present years (1990s) and 5 future years 
(2050s)) to report that on average the total mass and speciated PM2.5 concentrations are 
likely to decrease in January due to increased precipitation and increase in July due to 
decreased ventilation in the future.     
 
None of the previous studies for the entire United States have simultaneously used spatial 
resolution finer than 10 km and analysis times longer than 3 years to determine how 
climate change will influence the annual average PM2.5 concentration in California.  The 
current study applies a dynamic downscaling approach with 8-km spatial resolution 
during 7 years of current climate and 7 years of future climate to address this question.  
The 7-year analysis period during the current climate is long enough to allow for a 
meaningful comparison between simulated vs. measured PM2.5 concentrations.  To the 
best of our knowledge, this comparison is the most rigorous evaluation of a climate – air 
quality modeling system ever conducted.  The 7-year analysis windows also contain 
enough data to support a statistical analysis of annual variability so that confidence 
intervals can be calculated for the differences between present vs. future conditions.  The 
results of the current study reduce the uncertainty of likely climate impacts on annual-
average PM2.5 concentrations in California at the regional scale.   
 
7.2 Methods 
 
Figure 7-1 shows a schematic diagram of the regional climate – air quality modeling 
system employed in this study.  The regional climate is simulated by dynamically 
downscaling output from the Parallel Climate Model (PCM) using the Weather Research 
and Forecasting (WRF) model, and the air quality is simulated using the latest generation 
of the UCD/CIT air quality model for the entire state of California.  A detailed 
description of the modeling system is provided below. 
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 Parallel Climate Model (PCM) 
- provides initial and boundary conditions for the Weather 

Research and Forecasting (WRF) model. 

CIT-UCD 3D Photochemical Model 
- calculates transport and chemistry of gas- and particle-phase 

species, and uses dry and wet deposition schemes  

WRF Preprocessing System (WPS) 
- processes PCM outputs into the format used by WRF   

Weather Research and Forecasting (WRF) version 2.2 
- generates hourly fields for a 264x264x10 grid-cell domain 

with 4-km horizontal resolution, and variable vertical spacing 
extending to 5000 m above the ground  

WRF Output Processing   
-extracts and processes 2D 

and 3D meteorological 
fields for the air quality 

model 

Emissions Processing 
- processes source oriented 
typed emissions for area, 

point, mobile and biogenic 
sources 

Initial conditions, seasonal 
boundary conditions, and 

land use data 

- hourly mixing ratios of gas-phase and concentrations of 
particle-phase species using SAPRC chemical mechanism  

 
Figure 7-1: Flow Chart of the climate downscaling and air quality modeling systems. 

 
PCM is a Global Climate Model (GCM) that was developed at the National Center for 
Atmospheric Research (NCAR) [108].  The parent PCM dataset utilized in this study was 
available in 2.8°(~240-km) x 2.8°(~310-km) horizontal resolution with 18 hybrid vertical 
layers from ground to ~4 hPa.  PCM output was obtained for a 7-year period in the 
present-day climate (2000-06) and a 7-year period in the future climate (2047-53) under 
the “business as usual” (B06.44) global emissions scenario.  Seven year windows were 
selected to account for the effects of El Nino Southern Oscillation (ENSO) events and the 
intra-annual variability in the climate data that would have different implications in the 
final air quality results (see for example, [33]).  The PCM output was processed through 
the WRF Preprocessing System (WPS) in preparation for regional downscaling.  
 
Version 2.2 of the WRF model [153] was utilized to generate the regional climate data in 
this study. All of the WRF simulations were carried out using an optimized configuration 
of the modeling system for California ([154], manuscript in preparation).  The 
optimization process tested six different configurations of WRF for conditions in central 
California.  The best agreement with measured meteorological parameters was produced 
by the Yonsei University (YSU) planetary boundary layer (PBL) scheme [114], Grell-
Devenyi cumulus parameterization scheme [118], WRF single-momentum 6-class 
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(WSM6) microphysics scheme [120], Rapid Radiation Transfer Model (RRTM) long-
wave scheme [121], and Dudhia short-wave radiation scheme [122].  The WRF 
simulations used a three-domain 1-way nesting technique, where the coarse grid output 
provided initial and lateral boundary conditions for the fine grid simulations with 
horizontal resolutions of 36-km, 12-km, and 4-km, respectively.  Meteorological fields 
with 4-km resolution were generated for a domain with 264x264 grid cells in the 
horizontal plane and 10-vertical layers extending to a height of 5000 meter above the 
ground. The heights of the vertical layers in WRF were matched with those of the air-
quality model such that the model used finer vertical resolutions near the surface.  All of 
the variables were saved on the A-grid (i.e. in the center of a grid-cell) except for the u- 
and v-components of wind speed, which were staggered using the Arakawa C-grid (i.e. 
on the face center of each grid-cell).  The native C-grid output was retained for the wind 
field in order to achieve better accuracy in the air quality transport calculations.  The 
gridded WRF output was averaged over each 60-minute simulation period for every 
simulated day.  A total of nine periods were simulated for each year such that each 
consisted of 17 days followed by 25 days that were not simulated.  The first simulation 
day of each year was set to be Jan 1.  This approach captures an unbiased sample of 
predicted meteorology and air quality across the full seven year period that reflects both 
seasonal variation and annual variability while still keeping the analysis time to a 
reasonable level.      
 
Finer grid resolution provides a better description of small-scale meteorological dynamics 
such as sea-land breezes and orographic winds during regional meteorological modeling, 
but this resolution does not necessarily need to be retained in subsequent regional air 
quality modeling exercises.  In the present study, the 4-km WRF meteorological fields 
were extracted and averaged to 8-km resolution to generate inputs for the air quality 
modeling.  The coarser resolution of the air quality model reflects a balance between 
accuracy and speed.  Each 7-year study period involved 1,008 simulation days over a 
domain composed of 131x128x10 grid cells requiring approximately 45 days of real time 
to complete.  Ying et al. ([155]) showed that increasing the resolution of simulations in 
the Central Valley of California from 8-km to 4-km does not significantly improve 
accuracy but it increases the computational effort by a factor of 4.  A previous study 
carried out in Marseilles-Fos-Berre in the south of France has also found that beyond a 
certain point finer grid resolution does not necessarily yield better air quality predictions 
[156].  The South Coast Air Quality Management District (SCAQMD) provides 
emissions inventories with 5-km spatial resolution for the SoCAB and numerous previous 
air quality studies have been carried out at this scale [34, 41, 157] without the perceived 
need to improve resolution to 4-km.  The requirement for uniform grid spacing across the 
entire state of California combined with the balance between efficiency vs. accuracy 
produced the compromise of 8-km grid resolution during the air quality modeling carried 
out in this study.   
 
The initial conditions (ICs) of gas-phase and particle-phase species were generated 
following the work of [155] and [158].  Table 1 summarizes the domain average IC 
concentrations of major model species used in the current study as a function of season.  
The IC concentrations can be quantified within the UCD/CIT framework through the use 
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of internal tracers.  It was found that the influence of IC concentrations on air quality 
chemistry diminishes by the end of first 3-4 days in the current study.  As a result, 
predicted concentrations from the first 4-days of each simulation period were disregarded 
in the calculations of periodic/annual average particulate matter (PM) concentrations.   
 

Table 7-1:  Domain-averaged initial concentrations of major model gas and particle 
species at the surface. 

 
  Domain Average Concentration 
Species  Unit Winter 

(DJF) 
Spring 
(MAM) 

Summer 
(JJA) 

Fall 
(SON) 

Carbon monoxide (CO) ppm 0.2823 0.2823 0.2823 0.2823 
Carbon dioxide (CO2) ppm 332.00 332.00 332.00 332.00 
Sulfur dioxide (SO2) ppm 0.0020 0.0020 0.0020 0.0020 
Nitrogen dioxide (NO2) ppm 0.0046 0.0046 0.0046 0.0046 
Nitric oxide (NO) ppm 0.0033 0.0033 0.0033 0.0033 
Reactive hydro carbon (RHC) ppm 0.0513 0.0513 0.0513 0.0513 
Ozone (O3) ppm 0.0401 0.0401 0.0401 0.0401 
Nitric acid (HNO3) ppm 0.0010 0.0010 0.0010 0.0010 
Ammonia (NH3) ppm 0.0029 0.0029 0.0029 0.0029 
Hydrochloric acid  (HCl) ppm 0.0010 0.0010 0.0010 0.0010 
Formaldehyde (HCHO) ppm 0.0000 0.0000 0.0000 0.0000 
Acetaldehyde (CH3CHO) ppm 0.0000 0.0000 0.0000 0.0000 
Aldehydes (RCHO) ppm 0.0000 0.0000 0.0000 0.0000 
Acetone (ACET) ppm 0.0006 0.0006 0.0006 0.0006 
Methyl ethyl ketone (MEK) ppm 0.0000 0.0000 0.0000 0.0000 
Methyl glyoxal (MGLY) ppm 0.0000 0.0000 0.0000 0.0000 
Glyoxa (GLY) ppm 0.0000 0.0000 0.0000 0.0000 
Peroxy acetyl nitrate (PAN) ppm 0.0003 0.0008 0.0008 0.0005
Hydrogen peroxide (H2O2) ppm 0.005 0.005 0.005 0.005
Isoprene (ISO) ppm 0.0003 0.0003 0.0003 0.0003
Elemental carbon (EC) µg m-3 0.18 0.18 0.18 0.18 
Organic carbon (OC) µg m-3 0.66 0.66 0.66 0.66 
Nitrate (N(V)) µg m-3 0.36 0.36 0.36 0.36 
Sulfate (S(VI)) µg m-3 0.45 0.45 0.45 0.45 
Chloride (Cl(-1)) µg m-3 0.19 0.19 0.19 0.19 
Sodium (NA(1)) µg m-3 0.21 0.21 0.21 0.21 
Ammonium (N(-III)) µg m-3 0.24 0.24 0.24 0.24 
OTHER µg m-3 1.62 1.6 1.6 1.60 
H2OPART µg m-3 0.891 0.89 0.89 0.89 

 
The boundary conditions (BCs) of various gas-phase and particle-phase species were 
adjusted for seasonal variability [159, 160].  The scaling for vertical boundary conditions 
was obtained from Ying et al. ([155]), and boundary conditions at the top of the model 
domain were interpolated from the lateral boundary conditions in the top model layer.  
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Table 2 summarizes the average BC concentrations of selected model species along the 
West Coast as used in the current study as a function of season.   
 

Table 7-2: Average boundary concentrations of various model gas and particle species 
concentrations along the western boundary of the modeling domain. 

 
  Domain Average Concentration 
Species  Unit Winter 

(DJF) 
Spring 
(MAM) 

Summer 
(JJA) 

Fall 
(SON) 

Carbon monoxide (CO) ppm 0.4000 0.4000 0.4000 0.4000 
Carbon dioxide (CO2) ppm 332.0000 332.0000 332.0000 332.0000
Sulfur dioxide (SO2) ppm 0.0010 0.0010 0.0010 0.0010 
Nitrogen dioxide (NO2) ppm 0.0010 0.0004 0.0003 0.0004 
Nitric oxide (NO) ppm 0.0010 0.0004 0.0003 0.0004 
Reactive hydro carbon (RHC)  ppm 0.0069 0.0069 0.0069 0.0069 
Ozone (O3) ppm 0.0350 0.0400 0.0400 0.0350 
Nitric acid (HNO3) ppm 0.0007 0.0007 0.0007 0.0004 
Ammonia (NH3) ppm 0.0025 0.0025 0.0025 0.0025 
Formaldehyde (HCHO) ppm 0.0015 0.0015 0.0015 0.0015 
Acetaldehyde (CH3CHO) ppm 0.0020 0.0020 0.0020 0.0020 
Aldehydes (RCHO) ppm 0.0014 0.0014 0.0014 0.0014 
Acetone (ACET) ppm 0.0015 0.0015 0.0015 0.0015 
Glyoxal (GLY) ppm 0.0002 0.0002 0.0002 0.0002 
Peroxi acetyl nitrate (PAN) ppm 0.0005 0.0005 0.0005 0.0003 
Isoprene (ISO) ppm 0.0000 0.0000 0.0000 0.000 
Elemental carbon (EC) µg m-3 0.01 0.01 0.01 0.01 
Organic carbon (OC) µg m-3 0.02 0.02 0.02 0.02 
Nitrate (N(V)) µg m-3 0.04 0.03 0.03 0.03 
Sulfate (S(VI)) µg m-3 0.05 0.05 0.05 0.05 
Chloride (Cl(-1)) µg m-3 0.06 0.06 0.06 0.06 
Sodium (NA(1)) µg m-3 0.06 0.06 0.06 0.06 
Ammonium (N(-III)) µg m-3 0.01 0.01 0.01 0.01 
OTHER µg m-3 0.03 0.03 0.03 0.03 
H2OPART µg m-3 1.47 0.35 1.09 0.65 
 
The base-case raw emissions inventories for the year 2000 were obtained from the 
California Air Resources Board (CARB) and the SCAQMD.  Area source and point 
source emissions were used without modification in all simulations.  On-road mobile 
source emissions were adjusted for the variation of meteorological conditions 
experienced during each simulation using CARB’s Emissions Factors (EMFAC) model.  
EMFAC produces mobile emissions summaries for different pollutants and technology 
classes in 69 geographical locations spanning the entire state of California.  EMFAC is 
also able to predict how temperature and humidity influence mobile source emissions of 
nitrogen oxides (NOx) and reactive hydrocarbons (RHCs).  EMFAC results were 
generated for the base-case year 2000 emissions inventory and for the conditions 
predicted to occur within each of the 69 geographical regions at each simulated hour.  
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The base-case year 2000 mobile source emissions were then scaled by the ratio of 
EMFACactual/EMFACbase-case for each pollutant of interest in each grid cell of the model 
domain.  WRF predictions for hourly-averaged temperature and surface shortwave 
radiation in each grid cell were also combined with the MODIS satellite data and fed into 
CARB’s BEIGIS model to predict episode-specific biogenic volatile organic compound 
emissions.  The adjusted mobile source emissions and the newly generated biogenic 
emissions were then processed with the remaining area and point sources to provide a 
source oriented model-ready gridded hourly emissions inventory.   
 
The UCD/CIT air quality model employed in this study is based on the original CIT 3-D 
photochemical model [99, 161] with updates to provide a source-oriented framework (see 
for example, [34-37, 46, 155, 162]).  Only those aspects of the UCD/CIT model that were 
updated during the current study are discussed here.   
 
Previous studies [163-167] have found mass consistency errors when the meteorological 
model and the chemistry-transport model do not use the same grid system, the same 
interpolation strategies and/or the same transport algorithms.  [164] proved the existence 
of the mass consistency errors while using the MM5/CMAQ modeling system and 
recommended an effective way to overcome the problem by re-calculating the vertical 
wind velocity using the horizontal wind components and atmospheric density generated 
by the meteorology model.  Calculation of vertical winds was therefore incorporated into 
the UCD/CIT modeling framework in the current study.  The UCD/CIT model was also 
updated so that it could work with either prognostic wind fields (C-grid) or diagnostic 
wind fields (A-grid).   
 
The computational burden of simulating air quality in a large domain over 2016 days 
motivated revisions to the approach for gas-particle transfer of inorganic species in the 
UCD/CIT model.  The original approach for gas-particle conversion involved fully 
dynamic transfer of both acidic and basic species between the gas and particle phase, 
requiring many thousands of calls to the thermodynamics routines during each integration 
time step within each grid cell.  The fully dynamic approach for gas-particle conversion 
was replaced by the approach proposed by [168] whereby acid gases are treated as fully 
dynamic species while ammonia is considered to be in equilibrium between the gas and 
particle phases.  The original thermodynamic routines were based on the Aerosol 
Inorganic Module (AIM) developed by [169] with updates to correct coding errors and 
impose minimum water constraints to keep the solution in the continuum region [170].  
The modified approach used in the present study replaces the AIM thermodynamics 
module with ISORROPIA II [171, 172] to calculate the vapor pressure of semi-volatile 
inorganic species above each particle surface.  The combination of these changes 
increased the speed of the model calculations by roughly a factor of two with less than 
10% difference in the final predicted concentrations of gas-phase and particle-phase 
species.  
 
Wet deposition calculations were added to the UCD/CIT model so that it could correctly 
predict removal rates for gases and particles during rain events.  The rain drop size 
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distribution was calculated as a function of total precipitation rate [173] followed by a 
calculation of the pollutant washout rate [174].  
 
The original version of the UCD/CIT model relied on independently generated emissions 
inventories for sea salt over ocean grid cells.  The input data and correlations used to 
calculate sea salt emissions are relatively simple, and so the sea salt emissions algorithm 
was embedded directly within the UCD/CIT model in the present study.  Sea salt 
emissions over the open ocean [175] and sea salt emissions in the surf zone [176] were 
both predicted by this new module based on the surface wind speed.   
 
7.3 Results 
 
Airborne particulate matter concentrations in California are strongly influenced by 
temperature, relative humidity, UV radiation, wind speed, and mixing height [33, 61].  It 
is instructive to examine the climate-induced changes to these meteorological variables 
over 7 year windows to gain greater insight into the processes that influence PM2.5 
concentrations.  Figure 7-2 shows the differences between the future (2047-53) and 
present-day (2000-06) averages for ground-level temperature, humidity, wind speed, 
precipitation, mixing height, and UV radiation.  Figure 7-2a shows that the surface air 
temperature is predicted to increase by 1.0-1.7 °C over the Pacific Ocean west of 
California and increase by 0.2 to 1.2 °C over California inland regions in the future years 
compared to the present-day.  The predicted increase is slightly greater (~1.0 °C) in large 
urban areas such as Los Angeles, Bakersfield, Fresno, San Francisco and Sacramento 
compared to rural and mountainous areas (~0.2-0.8 °C).   
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Figure 7-2: Panels (a)-(f) show changes in annual average values in meteorological 
parameters likely to occur due to climate change in the future (2047-53) from the present-

day (2000-06). 
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The prediction of larger temperature increases over the ocean than over land is caused by 
large scale features of the PCM simulation that drive the WRF model during the 
downscaling exercise.  Future PCM predictions for air temperature 2 m above the surface 
increase more over the Pacific Ocean than over the California land mass during the 
months of December, January, and February.  Much of this change is driven by the sea-
surface temperature inherited from the PCM simulations and by an increased frequency 
of precipitation events over land during the winter months.  These PCM temperature and 
precipitation patterns are consistent with the results produced by the Community Climate 
System Model (CCSM) operated under the SRES A2 emissions scenario.  Although some 
GCMs may predict greater future temperature increase over land than over the ocean 
during winter months, the results of the PCM simulations used in the current study are a 
legitimate example of a relatively modern simulation of climate that contributes to the 
ensemble of results that have been produced by the scientific community to date.  In 
contrast to the winter trends, both PCM and CCSM predict that air temperatures over 
land increase more than air temperatures over water during the summer months (see 
chapter 6).  Hotter temperatures generally encourage lower PM2.5 concentrations in 
California through the evaporation of ammonium nitrate aerosol [61].  A downward bias 
in future surface temperature over land would produce an upward bias in predicted future 
PM2.5 concentrations.   
 
The predicted change in future (2047-53 vs 2000-06) relative humidity (RH) at the 
surface is shown in Figure 7-2b.  RH is predicted to decrease by ~0.20-1.9 % over the 
ocean as the air temperature warms because the amount of additional water vapor 
evaporated from the ocean surface does not keep pace with the additional capacity of the 
warmer atmosphere to hold water vapor.  RH is predicted to increase by ~ 0.20-4.4% 
over land as the moist air cools by 0.5-0.8oC reducing its capacity to hold water vapor.  
The SoCAB is predicted to experience the greatest increase in RH by as much as 4% 
compared to only ~0.2-0.7% in the SJV in the future.  Increasing RH encourages the 
partitioning of ammonium nitrate to the particle phase (Kleeman, 2008).  Any upward 
bias in predicted RH would once again bias PM2.5 concentrations upwards. 
 
Wind speed and mixing height are two of the most critical meteorological parameters for 
air pollution calculations since they determine the ventilation of fresh emissions away 
from the surface.  Air pollution episodes in California are generally characterized by a 
stagnation period (low ventilation) lasting more than 2-days.  Figure 7-2c shows that the 
future wind speed (2047-53) is predicted to increase by as much as ~0.3 ms-1 relative to 
current years (2000-06) around Los Angeles, and in some parts of the SJV + Sacramento 
Valley air basins.  These changes are important since average wind speed in these air 
basins are approximately 2.7 ms-1.  The mixing height (planetary boundary layer) shown 
in Figure 7-2d is predicted to increase by ~25-30 m in the coastal areas but decrease by 
~25-30 m in the Sierra Nevada mountain range.  The average future mixing height is 
predicted to increase by ~6 m in the SJV and by ~20 m in the lower part of the SoCAB.  
All of these changes are small compared to the base-case average mixing height of ~600 
m and so they have little effect on pollutant concentrations.  The major driver for changes 
to future air pollution concentrations associated with ventilation is the changes to wind 
speed illustrated in Figure 7-2c.   
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Figure 7-2e shows that the average future (2047-53) precipitation rate is predicted to 
increase by ~0.3 mm hr-1 in the Sierra and some areas in the SoCAB relative to current 
years (2000-06).  Precipitation in the SJV is predicted to increase by ~0.01-0.04 mm hr-1 
in the future (~80% increase over current levels).  The increased rate reflects the 
increased humidity in the atmosphere resulting in greater precipitation rates during rain 
events and a general lengthening of the rainy season.  Future SJV precipitation rates 
increased by ~40% in the current rainy season (DJF) but increased by ~240% in the 
months before and after the traditional rainy season (Sept, Oct, Mar, May).  Increased 
precipitation enhances the wet deposition of pollutants leading to reduced atmospheric 
concentrations. 
 
Figure 7-2f illustrates that future (2047-53) UV radiation is predicted to decrease by 
~1.0-1.3 % in the Sierras, and by ~0.4-0.5 % in the SJV and SoCAB.  UV flux decreases 
as cloud cover increases and so the trend in UV radiation is consistent with the pattern of 
precipitation rates in the future, i.e., the UV radiation is likely to decrease as precipitation 
rates increase.  UV radiation drives photochemical chemical reactions in the atmosphere, 
thus reduced UV will reduce the production of secondary PM.  Further details of the 
effects of climate on air pollution meteorology in California are discussed by Zhao et al. 
([154])   
 
Figure 7-3a shows the present-day (2000-06) annual average concentrations of PM2.5 
mass for the entire state of California.  Higher PM2.5 concentrations (>15 µg m-3) are 
predicted around the urban centers such as Los Angeles, Bakersfield, Fresno, San 
Francisco and Sacramento because primary particulate emissions sources are 
concentrated in these regions.  Elevated total PM2.5 concentrations (>~10 µg m-3) are also 
predicted along the major transportation routes in the SJV and SoCAB.  The highest 
PM2.5 total mass concentrations are predicted in the vicinity of El Centro in the southeast 
portion of the domain due to the influence of windblown dust. 
 
Figures 7-3(b-f) show the contribution to present-day PM2.5 total mass from elemental 
carbon (EC), organic carbon (OC), nitrate (N(V)), ammonium (N(-III)) and sulfate 
(S(VI)) concentrations, respectively.  Primary particulate matter components such as EC 
and OC account for approximately ~50% of the total PM2.5 mass concentrations in 
California during the present-day (2000-06) simulations.  Maximum annual average EC 
concentrations of ~0.5-1.0 µg m-3 are found in the major urban areas and along the major 
transportation routes as shown in Figure 7-3b.  The highest EC concentration of ~1.8 µg 
m-3 was predicted around the port of Oakland in the San Francisco Bay Area under the 
present-day climate.  
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Figure 7-3: Annual average Particulate Matter 2.5 (PM2.5) concentrations (µg m-3) in CA 
for the present day (2000-06) (a) total mass, (b) elemental carbon, (c) organic carbon, (d) 

nitrate, (e) ammonium, and (f) sulfate. 
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Predicted annual average OC concentrations are also higher around the major sources of 
primary emissions in the domain (Figure 7-3c).  Maximum annual average OC 
concentrations in the range of ~5.0-6.6 µg m-3 are predicted in the San Joaquin and 
Sacramento Valleys near major urban areas, while predicted OC concentrations in the 
SoCAB are in the range of ~3.0-5.0 µg m-3.  
 
Figure 7-3d shows the predicted annual average concentrations of PM2.5 nitrate in 
California.  Nitrate accounts for ~12% of the annual average PM2.5 mass over broad 
segments of the state.  Predicted nitrate concentrations range from ~1.2-2.6 µg m-3 in the 
SJV to ~1.2-2.0 µg m-3 in the SoCAB.  The majority of the particulate nitrate is 
neutralized by ammonium ion and so it is not surprising that the pattern of annual-
average ammonium ion concentration (Figure 7-3e) appears similar to the pattern of 
nitrate concentration.  The highest annual average nitrate concentrations are generally 
found where gas-phase ammonia emissions from agricultural sources are highest 
(including large dairy farms in the eastern portion of the SoCAB).  Predicted ammonium 
nitrate concentrations had a strong seasonal dependence with concentrations in the winter 
season (DJF) ~3 times larger than the summer (JJA). 
 
Predicted annual average concentrations of sulfate (S(VI)) were ~<1.0 µg m-3 in the SJV 
but as high as ~1.0-3.5 µg m-3 in the SoCAB.  Higher annual average concentrations of 
sulfate (~2.0 µg m-3) were also found along the coastal areas of the SoCAB.  This spatial 
pattern gives strong clues that shipping emissions are the dominant source of sulfate 
aerosol in the present day simulations.       
 
Climate – air quality predictions are often presented with little verification that the base-
case modeling system is able to reproduce present-day air quality concentrations over 
multi-year periods.  Climate- air quality modeling systems that use GCM inputs 
downscaled to regional scales cannot resolve individual air pollution events but the multi-
year average concentrations predicted by these systems should ideally match the multi-
year average measurements in each region of interest.  Previous studies have evaluated 
the performance of the UCD/CIT 3D photochemical airshed model driven by observed 
meteorological fields [155].  The present study is the first to evaluate model performance 
over a climatologically relevant time-frame (7-year averages) using prognostic 
meteorology produced by a GCM.   
 
Figure 7-4 shows comparisons between the predicted and observed concentrations of 
primary and secondary PM2.5 components averaged between the years 2000-06 at 
representative locations in California’s most heavily populated air basins.  The Central 
Los Angeles (CELA) site is located in the SoCAB.  The Modesto (M14), Visalia (VCS), 
Fresno (FSF) and San Jose (SJ4) sites are situated in the greater SJV, and the Sacramento 
(S13) site is in the Sacramento Valley air basin.  For each site, 24-hr average measured 
concentrations of the PM2.5 total mass and the major chemical components that contribute 
to PM2.5 mass were obtained from CARB.  The corresponding predicted concentrations 
were then extracted for the present-day (2000-06) air quality simulations.  Daily average 
concentrations were used to calculate mean values and standard deviations over the 7-
year period.   
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Figure 7-4: Comparison between modeled and observed 7-year average PM2.5 (a) total 

mass, (b) elemental carbon, (c) organic carbon, (d) nitrate, (e) ammonium, and (f) sulfate 
concentrations at different sites in California: (1) CELA-central Los Angeles North Main 

St, (2) SJ4-San Jose 4th St, (3) FSF-Fresno 1st St,  (4) M14-Modesto 14th St, (5) VCS-
Visalia Church St, and (6) S13-Sacramento T St. 

 

Panels (a–c) in Figure 7-4 show the comparisons between the predicted and observed 
concentrations of PM2.5 total mass, PM2.5 elemental carbon (EC), and PM2.5 organic 
carbon (OC).  Annual average PM2.5 total mass concentrations above 20.0±2.0 µg m-3 
were measured in both the SoCAB and the SJV.  Predicted maximum PM2.5 total mass 
concentrations (~13-18 µg m-3) were 4-39% lower than measured values, with consistent 
under-predictions at all sites.  Model performance was relatively better at Central Los 
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Angeles (CELA), San Jose (SJ4) and Sacramento (S13) compared to other sites.  In 
general, the variation between measured PM2.5 concentrations at different sites is greater 
than the variation between predicted PM2.5 concentrations at those same locations 
(compare the height of the average bars between locations in Figure 7-4a).  In contrast, 
the time variation of the predicted PM2.5 concentrations at the same site can be greater 
than, equivalent to, or less than the time variation of measured PM2.5 concentrations at 
that same site (compare the size of the uncertainty bars at each location in Figure 7-4a). 
 
Figure 7-4b illustrates that present-day (2000-06) predictions for EC concentrations are 
64% lower than measured values at central Los Angeles and 12%-39% lower than 
measured values at all other sites except San Jose where they agree well with 
measurements.  EC is a primary pollutant and so wide-spread under-predictions suggest a 
systematic bias in emission rates, removal rates, and/or ventilation (i.e., wind speed × 
mixing height).  The fundamental equations and input data files used to represent 
emissions and removal rates have been validated during numerous retrospective modeling 
studies that used diagnostic wind fields [50, 155]) and so it seems likely that the 
ventilation rates generated by the prognostic PCM-WRF meteorological fields are 
slightly over-predicted.  Recent studies confirm that prognostic meteorological fields 
provide greater ventilation than diagnostic meteorological fields in central California 
[177].  A zero-order approximation of the air pollution system would predict that 
concentration (C) (µg m-3) = emissions rate (E) (µg hr-1) / ventilation rate (V) (m3 hr-1).  
From this simplified relationship we can derive that the relative change in concentration 
is inversely proportional to the relative change in ventilation (∆C/C = -∆V/V).  The 
concentration under-prediction at each location could therefore be corrected with a 
change in average surface wind speed of ~0.15 m sec-1 at the Sacramento (S13) site to 
~1.98 m sec-1 at the Modesto (M13) site. The analysis of PCM-WRF wind speed bias 
illustrated in chapters 5-6 indicates that it is possible and even likely that wind speeds are 
over-predicted by at least this amount in the current study.   



 

 156

 
 

D
iff

er
en

ce
 b

et
w

ee
n 

an
nu

al
 a

nd
 7

-y
ea

r a
ve

ra
ge

 P
M

2.
5 

to
ta

l m
as

s 
co

nc
en

tra
tio

n 
(µ

g 
m

-3
) 

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
47

20
48

20
49

20
50

20
51

20
52

20
53

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
47

20
48

20
49

20
50

20
51

20
52

20
53

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
47

20
48

20
49

20
50

20
51

20
52

20
53

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
47

20
48

20
49

20
50

20
51

20
52

20
53

 Present-day Future Present-day Future 

 
Figure 7-5: Predicted variations around the 7-year average PM2.5 total mass concentration 

at four sites in California: (a) Riverside-Rubidoux (RIVR), (b) Central Los Angeles 
(CELA), (c) Bakersfield (BFK), and (d) Fresno (FSF) 

 
Panel (c) shows the measured and predicted annual average concentrations of OC at the 
six representative sites chosen for model evaluation.  Measured annual average OC 
concentrations ranged from 5.5-8 µg m-3 while predicted OC concentrations range from 
2.5-5.4 µg m-3.  In short, OC concentrations were under-estimated by ~33-60% at all sites 
except for central Los Angeles (CELA) and San Jose (SJ4) where predictions match 
observations reasonably well.  OC can either be emitted directly from sources (primary) 
or it can be produced in the atmosphere through precursor reactions that form products 
with low saturation vapor pressure (SOA).  In the present study, ~99% of the annual 
average OC concentrations was attributed to primary organic compounds with the 
remaining ~1% attributed to SOA formation.  Recent studies suggest that primary organic 
aerosol is semi-volatile [178] implying that SOA formation dominates total OC formation 
but major questions remain unanswered concerning the exact composition and formation 
mechanism of this material.  Mechanisms that depend on high concentrations of 
intermediate-volatility precursor compounds have been proposed [179], and even 
implemented in regional calculations [180], but the intermediate volatility framework 
characterizes all compounds solely by their saturation vapor pressure.  It therefore 
requires numerous parameterizations for critical elements (rate at which compounds 
transition between volatility bins, temperature dependence of partitioning, etc.) that (to 
date) are based on simplistic laboratory experiments.  Much work remains to be done 
using additional laboratory experiments and retrospective field studies supported by 
comprehensive measurements to constrain these critical parameters before the 
intermediate volatility framework can be used confidently for climate – air quality 

(a) RIVR (b) CELA 

(c) BFK (d) FSF 
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predictions.  More chemically complete models for SOA formation that include 
calculations for activity coefficients in aqueous and organic phases [158] have been 
shown to form roughly the same amount of SOA as more simplistic two product 
absorption models [98].  The more computationally efficient two-product model was used 
in the current study, with the caveat that it does not completely describe all aspects of 
SOA formation.   
 
Panels (d-f) show the measured and predicted annual average concentrations of PM2.5 
nitrate, ammonium, and sulfate, respectively.  The plots show that the model under-
predicts the concentrations of secondary species at all the chosen monitoring sites by 
~18-73%.  The majority of this under-prediction is likely caused by the excess ventilation 
produced by the PCM-WRF meteorological predictions (see discussion for Figure 7-4b) 
exacerbated by the non-linear chemical system for the formation of secondary PM [33].  
The pattern of variation between sites appears to be similar for the measured and 
predicted concentrations of secondary PM since model predictions are able to identify the 
sites with the highest and lowest concentrations of each secondary pollutant. 
 
Natural annual and intra-annual variability makes it extremely difficult to quantify 
climate impacts on airborne particulate matter concentrations in California.  Panels in 
Figure 7-5 show the differences between predicted annual average PM2.5 concentrations 
and their 7-year averages at Riverside, central Los Angeles, Bakersfield, and Fresno over 
the periods 2000-06 and 2047-53.  The relative standard deviations (standard deviation 
divided by the mean) are 2%, 3%, 6% and 9% for the present (2000-06), and 5%, 6%, 8% 
and 7% for the future (2047-53) periods at Riverside, central Los Angeles, Bakersfield, 
and Fresno, respectively.  This annual variability in PM2.5 mass concentrations is mainly 
caused by normal variation in yearly meteorology combined with ENSO effects operating 
on a ~3-8 year cycle.  One of the key objectives in this study was to capture this annual 
variability both in the present (2000-06) and future (2047-53) air quality simulations so 
that the effects of global change can be understood over a climatologically relevant 
period.  
 
The differences between the future (2047-53) and present-day (2000-06) annual average 
concentrations of PM2.5 total mass, EC and OC are illustrated in Figure 7-6.  Panels (a, c, 
e) display the difference between the 7-year averages while panels (b, d, f) display the 
significance of this result expressed as the p-value.  The p-value quantifies the likelihood 
that present day (2000-06) concentrations and future (2047-53) concentrations are equal.  
The p-value is calculated using information about the mean and variance within each 7-
year window.  Small p-values are produced when large differences exist between present 
and future concentrations while the annual variability of concentrations within the present 
and future analysis windows is small.  The 7-year analysis windows used in the current 
study are long by atmospheric chemical modeling standards but relatively short by 
statistical standards and so p-values were calculated using the student T distribution with 
12 degrees of freedom rather than the Normal distribution.   
 
Figure 7-6a shows that the future annual average PM2.5 mass concentration is predicted to 
increase by ~0.2-0.5 µg m-3 in the Sacramento Valley and northern portions of the SJV.  
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The corresponding p-values shown in panel (b) are ≥0.4 indicating that the differences 
between 2047-53 and 2000-06 are small relative to the annual variability in the predicted 
signal.  PM2.5 concentrations are predicted to decrease by ~0.3-0.7 µg m-3 in the southern 
portion of the SJV and decrease by ~0.3-1.1 µg m-3 along coastal regions of California 
including the heavily populated San Francisco Bay Area and the SoCAB surrounding Los 
Angeles.  The corresponding p-value analysis shows that the majority of these changes 
are statistically significant (p<0.05).  As discussed previously, the majority of this 
decreased concentration stems from increased wind speeds and warmer temperatures 
providing greater ventilation of primary emissions and increased volatilization of 
secondary components.  The increased wind speed is predicted largely because of the 
synoptic features of the GCM inputs that were used in the analysis.  GCM calculations 
have a certain degree of inherent uncertainty and so ensembles of GCM calculations are 
usually employed to build confidence in the results of climate calculations.  The present 
study provides a first data-point for a GCM-WRF-air quality model calculation of climate 
impacts on air quality that should be followed up with a full ensemble of downscaling 
runs using multiple GCMs as their starting point. 
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Figure 7-6: Changes  in annual average total mass and primary PM2.5 concentrations (µg 
m-3), and their corresponding p-values in CA likely to occur in the future (2047-53) due 
to climate change from the present-day (2000-06).  The p-value quantifies the likelihood 

that average future concentrations are equal to present day concentrations. 
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In general, the major features of the PM2.5 mass analysis illustrated in Figure 7-6(a,b) are 
echoed for PM2.5 EC in Figure 7-6(c,d) and for PM2.5 OC in Figure 7-6(e,f).  The only 
significant trends at the 95% confidence level are localized along the California coast 
where concentrations generally decrease due to the effects of increased ventilation.  
Future (2047-53) annual average EC concentrations are predicted to decrease by ~0.02-
0.1 µg m-3 while future annual average OC concentrations are predicted to decrease by 
~0.2-0.46 µg m-3 in coastal regions relative to current conditions (2000-06) due to climate 
change alone.   
 
Figure 7-7 shows the predicted change in annual average concentrations for the 
secondary PM2.5 species and their corresponding p-values using the same format as 
Figure 7-6.  Patterns for nitrate and ammonium ion (panels (a-d)) are similar with 95% 
confidence achieved for reductions in the SoCAB, in the southern portion of the SJV and 
extending along the Pacific coast between LA and San Francisco.  PM2.5 nitrate 
concentrations are predicted to decrease in both of these regions by up to 0.26 µg m-3 
with a corresponding decrease of 0.13 µg m-3 in ammonium ion concentrations.  PM2.5 
nitrate concentrations are predicted to increase in the northern SJV and southern SV by 
up to 0.2 µg m-3 and in the eastern portion of the SoCAB by up to 0.15 µg m-3 with 
corresponding p-values < 0.1 in portions of these regions.  The majority of this increased 
nitrate concentration stems from the impact of higher background ozone concentrations 
in future years, which increases the rate of nitric acid production (see Chapter 2). 
 
PM2.5 sulfate concentrations are predicted to decrease very slightly in northern CA and 
around central Los Angeles but increase slightly in the eastern portions of southern 
California.  Each of these trends is significant at the 95% confidence level in portions of 
the domain.  Sulfate increases result from increased temperatures that speed up oxidation 
of S(IV).  .  
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Figure 7-7: Changes in annual average secondary PM2.5 concentrations (µg m–3), and 

their corresponding p-values likely to occur in the future (2047-53) due to climate change 
from the present-day (2000-06).  The p-value quantifies the likelihood that average future 

concentrations are equal to present day concentrations. 
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7.4 Summary and Conclusions 
 
The effect of global climate change on annual average PM2.5 mass concentrations in 
California has been studied using seven-year analysis periods that allowed for meaningful 
statistical analysis of the results.  A regional climate – air quality modeling system was 
employed that downscaled PCM output using the WRF model followed by emissions 
generation and air quality simulations using the UCD/CIT photochemical model to 
predict PM2.5 concentrations.  Simulations were carried out for the present-day climate 
(2000-06) and for future climate (2047-53) predicted under the “business as usual” global 
emissions scenario.  Air pollutant emissions in California were held at their nominal year 
2000 levels to directly examine the effect of climate on regional air quality. 
 
The present-day results from the climate-air quality modeling system successfully 
predicted the spatial pattern of high PM2.5 concentrations in California but the absolute 
magnitude of the annual average PM2.5 concentrations were under-predicted by ~10-35% 
at different sites in the major air basins.  Of the total PM2.5 mass, primary PM 
concentrations were only under-estimated by 4-39% while secondary PM concentrations 
were under-estimated by ~18-73%.  The majority of this under-prediction is likely caused 
by the excess ventilation produced by the PCM-WRF meteorological predictions; this 
bias should be consistent in both present and future climate scenarios so that a minimum 
amount of net bias is introduced into the comparison.  The present study is the first to 
evaluate climate – air quality model performance over a climatologically relevant time-
frame (7-year averages) using prognostic meteorology produced by a GCM.  It is likely 
that other modeling systems would have similar performance features if they were 
checked against observations. 
 
Future predictions indicate that changes to global climate lead to changes in key regional 
meteorological parameters that affect airborne particulate matter concentrations in 
California.  An analysis of the major meteorological variables shows that the future 
surface temperature, relative humidity (RH), rain rate, and wind speed are predicted to 
increase while the UV radiation is predicted to decrease in major urban areas in the SJV 
and SoCAB.  These changes lead to a predicted decrease in PM2.5 mass concentrations of 
~0.3-0.7 µg m-3 in the southern portion of the SJV and ~0.3-1.1 µg m-3 along coastal 
regions of California including the heavily populated San Francisco Bay Area and the 
SoCAB surrounding Los Angeles.  The 95 % confidence interval spans zero for PM2.5 
concentration changes in other parts of California.  The natural annual variability in the 
PM2.5 predictions was generally larger than the changes induced by climate.  Secondary 
PM concentrations were predicted to increase in portions of California while primary PM 
concentrations were predicted to decrease in other regions.  These results somewhat 
contradict previous studies that have predicted decreased PM2.5 concentrations 
throughout California in response to climate change.  Those previous studies used coarser 
spatial resolution and shorter averaging times that made it difficult to fully analyze 
geographical variation and annual variability in California.  The 8 km spatial resolution 
combined with the seven-year analysis periods used in the current study provide the most 
comprehensive picture to date about climate effects on PM2.5 concentrations in 
California. 
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GCM calculations have a certain degree of inherent uncertainty and so ensembles of 
GCM calculations are usually employed to build confidence in the results of climate 
calculations.  The present study provides a first data-point for a GCM-WRF-air quality 
model calculation of climate impacts on air quality in California that should be followed 
up with a full ensemble of downscaling runs using multiple GCMs as their starting point.    
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8.0 CLIMATE IMPACT ON POPULATION-WEIGHTED AIRBORNE 
PARTICULATE MATTER CONCENTRATIONS IN CALIFORNIA DURING 
SHORT AND LONG TIME PERIODS 
 
8.1 Introduction 
 
Air pollution is a persistent public health problem in the United States with 
approximately 126 million people living in regions that violate the National Ambient Air 
Quality Standards (NAAQS).  The pollutant of greatest current concern is airborne 
particulate matter with aerodynamic diameter smaller than 2.5 µm (PM2.5).  
Epidemiological studies have estimated rates of mortality and morbidity associated with 
PM2.5 (see for example, [11]; [10]; [9]) yielding predictions that an average of 24000 
people die from exposure to particulate matter each year in the United States ([181]).  
California experiences a disproportionately high fraction of these deaths ([146]) because 
it is home to two of the air basins that experience some of the highest PM2.5 
concentrations each year. The South Coast Air Basin (SoCAB) is home to ~15M 
residents with an annual-average PM2.5 concentration that is ~1.5 times higher than the 
NAAQS and a 24-hr average PM2.5 concentration that is ~2.3 times higher than the 
NAAQS.  The San Joaquin Valley (SJV) is home to ~3M residents with PM2.5 
concentrations that exceed the NAAQS by factors of ~1.4 (annual-average) and ~2.3 (24-
hr average).   
 
Meteorology plays an important role in California’s air pollution problems.  Persistent 
stagnation events develop when high pressure systems stall over the air basins trapping 
warm air over cooler air at the surface leading to reduced ventilation of emissions.  
Temperature, wind speed and direction, and mixing height in the atmosphere play critical 
roles in determining patterns of air quality over multiple scales of time and space by 
affecting emissions, atmospheric transformation, and deposition of particles ([182]).  
Global climate change is likely to change these meteorological parameters affecting air 
quality (see for example, [61];[33];[55]) with unknown consequences to human health.   
 
California has a complex terrain that includes mountains, valleys, desserts and ocean, 
which makes the climate-air-quality study even more challenging compared to other parts 
of the United States.   Recently Tagaris et al. ([18]) investigated the potential impact of 
climate change on PM2.5 related health effects for the United Stated using the 
Environmental Protection Agency (EPA’s) Environmental Benefits Mapping and 
Analysis Program (BenMAP).  The authors showed that the national average premature 
mortality is likely to increase by 4000 cases in 2050 compared to 2001 along with both 
increasing and decreasing mortality cases in different states due to climate change alone.  
According to their analysis, California is likely to experience an average decrease of 186 
cases of premature death with decreasing trends also in other PM2.5-related health issues 
including chronic and acute bronchitis, asthma, hospital admissions, and respiratory 
diseases in the future.  This health effects analysis was based on a limited air quality 
simulation [18] that did not fully address the spatial scales and time scales of the climate - 
air quality interactions that are critical in California.  Subsequent analysis performed 
using longer simulation periods with higher spatial resolution [144] have helped provide 
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more accurate estimates not only of the mean predicted response in PM2.5 concentrations 
caused by climate change, but also the uncertainty of that response relative to inter-
annual variability.   
 
The objective of the current study is to quantify the impact of climate change on 
population-weighted concentrations of PM0.1, PM2.5, and PM10 mass, component species, 
trace metals, and sources in California.  The analysis is based on more than 1000 
simulated days of present climate and 1000 simulated days of future climate that span 
enough years to capture inter-annual variability associated with large scale patterns such 
as El Nino Southern Oscillation (ENSO) cycles.  The large number of simulation days 
allow for an analysis of extreme events in addition to the analysis of average 
concentrations.  The results are put into proper context by rigorously quantifying the 
magnitude of the climate effect relative to inter-annual variability.     
 
8.2 Methods 
 
The impact of climate change on regional air quality over the entire state of California 
was studied using the Parallel Climate Model (PCM), the Weather Research and 
Forecasting (WRF) model, and the latest generation of the UCD/CIT air quality model.  
A schematic diagram and detailed description of the modeling system is presented 
elsewhere ([144]).  An overview of the modeling system is presented below. 
 
PCM ([108]) data generated under the “business as usual” climate emissions scenario was 
dynamically downscaled to 4-km resolution using the WRF model version 2.2 [153] for 
present-day (2000-06) and future (2047-53) time periods. The WRF model was optimized 
for California simulations with the physics schemes described by Mahmud et al. [144].  
A total of 153 days equally divided into nine periods of 17 days each were simulated for 
each year. Gaps of 25 days were left between simulation periods to evenly distribute the 
active days starting on Jan 1 throughout the year.  This pattern captures an unbiased 
sample of 1008 days over each of the seven-year periods.  The WRF 4-km fields were 
averaged to 8-km for the air quality simulations to increase the speed of the calculation 
without sacrificing significant accuracy in the final results (see for example [155]).  The 
final air quality modeling domain was composed of 131x128x10 grid cells (x-y-z) 
spanning the entire state of California with a first vertical height of 30 m and a total 
vertical depth of 5km above ground.   
 
The base-case raw emissions inventories for the year 2000 were obtained from the 
California Air Resources Board (CARB) and the South-Coast Air Quality Management 
District (SCAQMD).  On-road mobile source emissions and biogenic volatile organic 
emissions were adjusted for the variation of meteorological conditions experienced 
during each simulation using CARB’s Emissions Factors (EMFAC) model, and biogenic 
processing model (BEIGIS) model, respectively.  The techniques to adjust these 
emissions are summarized by Mahmud et al. [144].  Source-oriented and gridded hourly 
emissions were generated by merging the adjusted on-road mobile and biogenic sources 
with the original area and point source emissions.  Seasonally variable initial conditions 
(ICs) and boundary conditions (BCs) of gas-phase and particle-phase species were 
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specified for the air quality model calculations.  A summary of the ICs and BCs is 
provided by Mahmud et al. [144]).   
 
The source oriented UCD/CIT 3-D photochemical model (see for example, [34-37, 46, 
155, 162]) was updated in the current study [144] with a scheme to re-calculate vertical 
wind to enforce mass conservation.  The fully dynamic treatment of gas-particle 
conversion using the Aerosol Inorganic Module (AIM) thermodynamic code [169] was 
replaced by the approach proposed by [168] using the ISORROPIA II thermodynamics 
package [171, 172] to calculate the vapor pressure of semi-volatile inorganic species 
above each particle surface.  The revised model also includes a new wet deposition 
scheme and a sea salt emissions scheme.     
 
Figure 8-1 shows the air quality modeling domain and three air basins of interest: the 
Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South 
Coast Air Basin (SoCAB).  Population-weighted concentrations of particles were 
calculated for these air basins and for the entire state of California so that the impacts of 
climate change on public health via changes to air quality could be viewed more directly.  
According to the 2000 census California has a total population of 33.9 millions, with a 
total land area of 4.24x105 km2.  The population of the SV was 2.4 million with an area 
of 0.38x105 km2, the population of SJV was 3.2 million with an area of 0.60x105 km2, 
and the population of the SoCAB was 14.6 million with an area of 0.18x105 km2.  In 
order to understand the climate change effects independent of future changes in 
population dynamics, the year 2000 population densities and distributions were assumed 
to be the same in future years in this study.  The population-weighted concentration is 

calculated as ∑
=

×n

i tot

ii

p
Cp

1
 , where i designates each computational cell in the domain, pi is 

the population at a given cell location, Ci is the particulate concentration in the same cell 
location, and ptot is the total population in the domain of interest (i.e. air basin wide total 
population).   
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Figure 8-1:  Three major air basins in California: (1) Sacramento Valley Air Basin (SV), 

(2) San Joaquin Valley Air Basin (SJV), and (3) South Coast Air Basin (SoCAB) 
 
8.3 Results and discussion 
 
8.3.1 Annual Average PM Concentrations 

The difference between future (2047-53) and present-day (2000-06) population-weighted 
annual average concentrations of PM2.5 are displayed in Figure 8-2 for the entire state of 
California, and the three major air basins highlighted in Figure 8-1.  It should be noted 
here that the emissions for both the future and present day simulations were kept at 2000 
levels.  Only the meteorology was varied between the future and present-day simulations 
to quantify the effect of climate change and increased ozone boundary conditions.  
Concentrations of total mass, major components, trace metals and source categories 
contributing to the total mass of primary particles were calculated.  The error bars in 
these figures represent 95% confidence intervals for the mean difference based on the 
inter-annual variability within each analysis period. 
 
Population-weighted annual average concentrations of PM2.5 total mass were predicted to 
decrease by ~2% in the SoCAB with little change predicted for the SV and SJV.  
Concentrations of all major PM2.5 components such as elemental carbon (EC), organic 
carbon (OC), sulfate (S(VI)), and ammonium ion (N(-III)) followed this downward trend.  
In contrast, statewide population-weighted concentrations of PM2.5 nitrate (N(V)) 
increased by ~2%.  Population-weighted primary PM2.5 concentrations from all sources 
including dust, shipping, wood smoke, diesel combustion, gasoline combustion, meat 
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cooking, high sulfur content fuels, and miscellaneous were predicted to decrease by 
between ~2-6% in California in the future.   
 
Figures 8-3 and 8-4 present the same analysis for the PM0.1 and PM10 size fractions with 
largely the same conclusion that future analysis period tends to have lower annual-
average population-weighted concentrations than present-day analysis period.  The 
population-weighted annual average concentration of PM0.1 total mass was predicted to 
decrease by ~9% in California during future years (2047-53) relative to present years 
(2000-06) with the majority of this change occurring in the SoCAB (Figure 8-3).  
Primary PM0.1 source contributions to EC and OC concentrations decreased in the SV but 
increased in the SJV and SoCAB. Secondary PM0.1 component concentrations decreased 
in the SoCAB with mixed results in the SV and SJV.    
 
Figure 8-4 shows the future change (%) in population-weighted annual average 
concentrations of PM10 in the future (2047-53) compared to the present-day (2000-06) for 
California and the three air basins of interest.  Patterns for PM10 total mass, component 
species, trace metals, and contributions from different sources were similar to PM2.5 
patterns.  PM10 total mass was predicted to decrease by ~3% in California in the future.  
Concentrations of EC, OC, S(VI), and N(-III) were predicted to decrease in the range 
between ~1-4%.  Population-weighted concentrations of trace metals, and contributions 
from different sources were also predicted to decrease in the future by as much as ~3-6%. 
 
Uncertainty analysis must be considered to put the results illustrated in Figures 8-2 to 8-4 
into proper context.  The error bars in these figures represent the 95% confidence interval 
based on the inter-annual variability within each analysis period.  The most significant 
feature displayed in these figures is the size of the uncertainty bars induced by inter-
annual variability vs. the size of the average change between future and present years.  In 
almost all cases, the magnitude of the inter-annual variability is greater than the average 
change between future and present years.  The only exceptions to this trend are slightly 
reduced concentrations of OC associated with reduced contributions from shipping and 
combustion of fuels with high sulfur content. 
 
The fact that 95% confidence intervals displayed in Figures 8-2 to 8-4 overlap zero 
implies that a random selection of different years within each climate period could lead to 
either positive or negative effects on concentrations.  The Intergovernmental Panel on 
Climate Change (IPCC) Third Assessment Report (AR3) (2001) and the Fourth 
Assessment Report (AR4) (2007) projected future global changes relative to the present-
day based on 30-year (1960-1989) and 20-year (1980-1999) averages, respectively.  In 
the current study, only ~40% of the days within seven-year periods in the present-day 
(2000-06) and future (2047-2053) were simulated.  The reduced analysis window greatly 
lowers the computational burden of the problem while still capturing the inter-annual 
variability associated with the ENSO cycle.  Unfortunately, the limited number of sample 
points also increase the uncertainty of the comparison between present-day vs. future 
climate since the uncertainty range in the comparison is inversely proportional to the 
square root of n (=number of simulated days).  The current results provide a best estimate 
for the effect of climate on annual-average population-weighted PM concentrations in 
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California, but the length of the analysis periods must be expanded to calculate a full set 
of statistically significant changes.   
 
It must also be recognized that the inter-annual variability is only one source of 
uncertainty in the climate-air quality calculation.  Most notably, the uncertainties 
introduced by the choice and configuration of the GCM, RCM, and air quality models are 
not included in the current analysis.  Running a complete ensemble of calculations over a 
full 20-year analysis period would fully characterize this uncertainty but this effort was 
beyond the scope of the current study. 
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Figure 8-2:  Future (2047-53) change in population-weighted concentrations of PM2.5 
total mass, primary and secondary components, trace metal and source categories 

contributing to the total mass from present-day (2000-06). Panels (top-down) show 
California state-wide average, Sacramento Valley (SV) air basin average, San Joaquin 

Valley (SJV) air basin average, and South Coast Air Basin (SoCAB) average results.  The 
error bars represent the 95% CI. 
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Figure 8-3:  Future (2047-53) change in population-weighted concentrations of PM0.1 
total mass, primary and secondary components, trace metal and source categories 

contributing to the total mass from present-day (2000-06). Panels (top-down) show 
California state-wide, Sacramento Valley (SV) air basin, San Joaquin Valley (SJV) air 

basin, and South Coast Air Basin (SoCAB) average results. The error bars represent the 
95% CI. 
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Figure 8-4:  Future (2047-53) change in population-weighted concentrations of PM10 
total mass, primary and secondary components, trace metal and source categories 

contributing to the total mass from present-day (2000-06). Panels (top-down) show 
California state-wide average, Sacramento Valley (SV) air basin average, San Joaquin 

Valley (SJV) air basin average, and South Coast Air Basin (SoCAB) average results.  The 
error bars represent the 95% CI. 
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8.3.2 Extreme Events 

Short-term exposures to high concentrations of airborne particulate matter could lead to 
serious health effects for susceptible populations.  The impact of climate change on 
extreme air pollution events was examined in detail during the current study.    Figure 8-5 
shows the distribution of population-weighted daily average PM2.5 total mass 
concentrations for 1008 days of present climate (panel a) and 1008 days of future climate 
(panel b).  The 24-hr average concentrations in both analysis periods are approximately 
normally distributed with a slightly lower mean value in the future compared to present-
day.  In contrast, the extreme concentration events defined to be the highest 1% of the 
predicted concentrations are higher in the future than in the present time period.  The 
shaded regions in panels (a) and (b) show that the extreme values in the present climate 
range from 16.5-19.2 µgm-3 while the extreme values in the future climate range from 
16.6-24.7 µgm-3.  Further analysis was carried out to understand the effects of climate 
change on these extreme concentrations. 
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Figure 8-5:  Frequency distribution of 24-hr average population-weighted PM2.5 total 
mass concentrations for California under the (a) present-day (2000-2006) and (b) future 
(2047-2053) climate conditions.  The shaded regions encompass values higher than the 
99th percentile value of each distribution. 
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Figure 8-6 shows the average PM2.5 total mass concentrations corresponding to the 10 
days with the highest population-weighted PM2.5 concentrations in California (99th 
percentile extreme concentrations).  Panel (a) shows the 10-day average concentrations 
for the future extreme events (2047-53), panel (b) shows the 10-day average 
concentrations for the present-day extreme events (2000-06), and panel (c) shows the 
difference between the future and present-day extreme events.   
 
 

Figure 8-6:  Average of worst 24-hr average PM2.5 total mass concentrations (µg m–3) 
corresponding to days with population-weighted concentrations above the 99th percentile 
values as illustrated in Figure 8-3 for California under the (a) future (2047-2053), and (b) 
present-day climate (2000-2006) conditions.  Panel (c) shows the difference between the 

future (a) and present-day (b).   
 
Extreme events in the future climate are characterized by PM2.5 concentrations of ~45-
55 µgm-3 in and around cities including Bakersfield, Fresno, and Sacramento (panel (a)).  
In comparison, extreme events in the present climate exhibit PM2.5 concentrations in the 
range between ~35-45 µgm-3 in and around major cities (panel b).  The extreme 
concentrations exceed both the California Ambient Air Quality Standard (CAAQS) of 20 
µg m-3 and the National Ambient Air Quality Standard (NAAQS) of 35 µg m-3 for 24-hr 
average PM2.5 total mass concentration.  Panel (c) shows that the extreme concentrations 
are predicted to increase by ~15-19 µg m-3 in and around Bakersfield, Fresno, 
Sacramento, and San Francisco in the future compared to present-day.  The maximum 
future increase of ~18-20 µg m-3 is predicted to occur in areas between Fresno and 
Bakersfield in the SJV.  Extreme PM2.5 concentrations in Los Angeles are predicted to 
decrease by ~2 µg m-3 in the future with larger decreases of ~15 µg m-3 predicted in 
Ventura county west of Los Angeles.   
 
Further analysis using the population-weighted 10-day average extreme concentrations 
for PM0.1, PM2.5 and PM10 was carried out to understand the climate effects on total mass, 
component species, and sources contributing to the total primary mass concentration of 
PM.  The results are shown in Figures 8-7 through 8-9.  Error bars were calculated by 
sequentially withholding data from each year of the analysis to generate 7 different 
estimates of extreme concentrations during current and future climate.  The variance of 
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those estimates in each time period was then combined to generate 95% confidence 
intervals.  The results show that even though PM concentrations increase strongly during 
future extreme events (see Figure 8-6), the uncertainty caused by intra-annual variability 
is larger than the net change between present and future climate in many cases.   
 
Figure 8-7 displays the population-weighted average PM0.1 concentrations during 
extreme events.  No statistically significant climate-induced changes in PM0.1 
concentrations were detected for any species or source contribution (as the 95% 
confidence interval spans zero). 
 
Figure 8-8 displays the population-weighted average PM2.5 concentrations during 
extreme events.  Total mass, EC, OC, NO3

- and NH4
+ concentrations were predicted to 

increase in the future for the SV and SJV although these changes do not reach 95% 
significance.  Increases in the population-weighted concentrations of trace metals 
(METL) and primary source contributions from diesel engines (Statewide) and dust 
(SJV) are statistically significant.  The PM2.5 SO4

2- concentration was predicted to 
decrease in all three air basins, as were primary source contributions from shipping and 
high sulfur content fuel combustion.  These results reflect the effects of stagnant wind 
conditions during extreme events that trap local emissions close to populations but failed 
to transport off-shore shipping emissions to inland locations.   
 
Figure 8-9 displays the climate effects on population-weighted PM10 concentrations 
during extreme events.  Population-weighted concentrations of PM10 total mass, chemical 
species, trace metals and primary source contributions are predicted to increase in the 
future for the SV and SJV, with smaller changes in the SoCAB.  The total mass 
concentration of PM10 was predicted to increase by 9% in California, 39% in the SV, 
47% in the SJV and only -7% in the SoCAB.  Once again, the 95% confidence interval 
spans zero for the majority of these results relative to the inter-annual variability.  The 
only statistically significant trends displayed in Figure 8-9 are an increase in population-
weighted concentrations of primary diesel PM (SJV) and a decrease in primary shipping 
PM (statewide). 
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Figure 8-7: Climate change effects on 24-hr average population-weighted concentrations 
of PM0.1 total mass and component species, and contributions from various sources to the 

total mass using average data above the 99th percentile value in the 7-year data 
distribution in the present-day and future periods.      
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Figure 8-8: Climate change effects on 24-hr average population-weighted concentrations 
of PM2.5 total mass and component species, and contributions from various sources to the 

total mass using average data under the shaded regions illustrated in Figure 8-6.    
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Figure 8-9: Climate change effects on 24-hr average population-weighted concentrations 
of PM10 total mass and component species, and contributions from various sources to the 

total mass using average data above the 99th percentile values in the 7-year data 
distribution in the present-day and future periods. 
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8.4 Conclusions 

The effects of climate change on airborne PM mass concentrations in California between 
the years 2000-06 and 2047-53 are generally smaller than the natural inter-annual 
variability within either of these periods.  Population-weighted concentrations of 
PM0.1/PM2.5/PM10 mass in the SoCAB, SJV, SV, and across the entire state were not 
statistically different in the future climate vs. the present climate even though 1008 
representative days were simulated in each climate period.  Likewise, concentrations of 
PM chemical components and primary source contributions generally did not respond to 
climate change in a statistically significant fashion other than a few notable exceptions 
discussed below.  The results of these tests are unable to reject the hypothesis that climate 
change has only a small effect on population-weighted airborne PM mass in California’s 
major air basins.  This implies that any calculation that combines the population-
weighted concentrations from <1000 sample days with mortality or morbidity 
coefficients derived from epidemiological studies would likewise be unable to find 
statistically significant effects of climate change on human health due to changes in 
airborne PM mass.  This finding contradicts the results from recent studies that show 
projected health impacts of climate change via changes to airborne PM in California [18].     
 
Even though the majority of the 95% confidence intervals for climate effects on airborne 
PM mass overlapped zero, a few PM sub-categories did experience statistically 
significant changes in response to climate.  Statewide population-weighted annual-
average concentrations of PM2.5 organic carbon (OC) are predicted to decrease by ~4% in 
the future and statewide population-weighted annual-average PM2.5/PM10 concentrations 
from shipping and combustion of high sulfur fuel are predicted to decrease by ~5-6%.  
These trends reflect the increase in annual-average wind speed over coastal portions of 
California. 
 
An analysis of extreme pollution events suggests that future climate will lead to increased 
concentrations of 99th percentile population-weighed concentrations of primary PM.  
Statewide population-weighted PM2.5 primary diesel concentrations are predicted to 
increase by ~28% during future extreme pollution events.  Likewise, population-weighted 
concentrations of PM2.5 road dust are predicted to increase by ~47% in the SJV during 
future extreme pollution events.  Population-weighted concentrations of offshore 
shipping primary PM are predicted to decrease by ~31% in future extreme pollution 
events.  These trends are consistent with the increased strength of future stagnation events 
which trap pollutants close to the emissions source.  Stronger stagnation events increase 
population-weighted concentrations of emissions released close to major cities and 
decrease the effects of more remote sources.   
 
Longer averaging times are needed to reduce the uncertainty associated with inter-annual 
variability discussed above.  Ensembles of models are needed to capture the full 
uncertainty inherent in the analysis. 
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9.0 CLIMATE IMPACT ON PARTICULATE MATTER (PM) IN CALIFORNIA 
FOR EMISSIONS PROJECTED IN 2050 
 
9.1 Introduction 

The atmospheric chemistry involved in the production of secondary PM is non-linear, 
meaning that changes to emissions inventories are not necessarily proportional to changes 
in ambient PM concentrations.  Meteorological conditions influence this non-linear 
behavior through differential effects on individual chemical reaction rates and 
partitioning behavior (see chapters 2 and 3).  Climate change may therefore have a 
different effect on PM concentrations under 2050 emissions conditions vs. 2000 
emissions conditions.  The purpose of the present chapter is to describe the methodology 
used to estimate 2050 emissions and then to repeat the analysis conducted in Chapters 7 
and 8 to determine if any of the conclusions would change because the differences 
between the 2000 vs. 2050 emissions expose some non-linear feature of the atmospheric 
chemistry.  Results are summarized as regional plots and population-weighted 
concentrations to facilitate a direct comparison with the previous chapters. 
 
9.2 Emissions Projections 

The starting point for the 2050 emissions inventory used in the current study was a base-
case statewide raw emissions inventory for the year 2029 obtained from CARB and a 
base-case SoCAB raw emissions inventory for the year 2030 provided by SCAQMD.  
Both of these starting inventories were developed to demonstrate compliance with State 
Implementation Plans to meet the requirements of the PM2.5 NAAQS. 
 
Base-case emissions were projected to the year 2050 by estimating the effects of 
additional population growth on source activity. The standard methodology to predict 
future emissions based on a known reference year is to multiply the reference emissions 
by a growth factor associated with increased population or economic expansion and by a 
control factor representing improved emissions control technology.  The equation 
describing this simple approach in the current study is:  
 

Emissions2050 = Emissionsbase year * Fgrowth * Fcontrol            (1) 
 
In all cases, growth factors between 2029/2030 and 2050 were calculated using 
population projections published by the California Department of Finance [183].  Control 
factors between 2029/2030 and 2050 were generally set to 1.0 since all existing official 
controls are included in the 2029/2030 inventories and development of additional 
emissions controls to ensure compliance with the NAAQS in the presence of upward 
population pressure between 2030-2050 was beyond the scope of the current project.  
Exceptions to this rule included a complete ban on wood combustion for residential 
heating during winter months, and the incorporation of diesel particulate filters (DPFs) 
with 90% efficiency on all diesel engines.  The ratio of NO2/NO emissions was doubled 
for diesel engines to account for the effects of the DPFs. 
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The general assumption behind the use of population growth as a surrogate for changes to 
emissions is that most mobile, residential, commercial, and industrial activity scales 
either directly or indirectly with population.  The direct effects of population on mobile 
and residential emissions are obvious since increased population leads to increased 
vehicle miles traveled and increased numbers of households that all have associated 
emissions.  Increased population also leads to secondary effects such as increased 
demand for consumer products which spurs commercial and industrial activities.  
 
Factors such as the capacity of transportation facilities and land-use policies that govern 
the growth of cities will result in non-uniform emissions growth in the future [184].  A 
rigorous analysis of these factors for the year 2050 was beyond the scope of the current 
project.  The spatial pattern of emissions growth was considered with county-level 
resolution. County-specific growth factors were calculated for all mobile and residential 
emissions categories based on population growth projections within each county. County-
specific growth factors were also applied to commercial and industrial sources with the 
exception of boats/ships and locomotives that were scaled based on statewide population 
growth factors.  Table 9-1 summarizes the county-specific growth factors obtained from 
the DOF that were used in the current study between the years 2029/2030 and 2050. 
 
A number of emissions categories were judged to be relatively constant and were not 
scaled to account for population growth between 2029/2030 and 2050.  These constant 
sources included military activities, fugitive/windblown dust, agricultural dust, and 
unplanned/wildfires.  Recent studies have indicated that climate change may influence 
the frequency and severity of wildfires [185-188], but a rigorous analysis of this issue 
was beyond the scope of the current study. 
 
Once the 2050 emissions inventories were prepared, processing for model use was 
identical that that described in Chapter 7.  Area source and point source emissions were 
used without further modification in all simulations.  On-road mobile source emissions 
were adjusted for the variation of meteorological conditions experienced during each 
simulation using CARB’s Emissions Factors (EMFAC) model.  WRF predictions for 
hourly-averaged temperature and surface shortwave radiation in each grid cell were also 
combined with the MODIS satellite data and fed into CARB’s BEIGIS model to predict 
episode-specific biogenic volatile organic compound emissions.  No changes to 
vegetation patterns were incorporated in the current study.  The adjusted mobile source 
emissions and the newly generated biogenic emissions were then processed with the 
remaining area and point sources to provide a source oriented model-ready gridded 
hourly emissions inventory.   
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Table 9-1: County-specific growth factors between 2029/2030 and 2050 based on 

Department of Finance population projections. 
 

County 
Population GF (DoF) 
2030-2050 County 

Population GF (DoF) 
2030-2050 

Alameda 1.41 Orange 1.39 
Alpine 1.09 Placer 2.98 
Amador 1.94 Plumas 1.36 
Butte 2.16 Riverside 3.03 
Calaveras 1.97 Sacramento 1.76 
Colusa 2.19 SanBenito 2.70 
ContraCosta 1.89 SanBernardino 2.13 
DelNorte 2.03 SanDiego 1.59 
ElDorado 1.98 SanFrancisco 1.09 
Fresno 2.40 SanJoaquin 3.13 
Glenn 2.38 SanLuisObispo 1.47 
Humboldt 1.20 SanMateo 1.15 
Imperial 2.70 SantaBarbara 1.33 
Inyo 1.38 SantaClara 1.55 
Kern 3.16 SantaCruz 1.30 
Kings 2.71 Shasta 2.01 
Lake 1.82 Sierra 0.96 
Lassen 1.64 Siskiyou 1.49 
LosAngeles 1.36 Solano 2.05 
Madera 3.32 Sonoma 1.65 
Marin 1.24 Stanislaus 2.64 
Mariposa 1.64 Sutter 3.55 
Mendocino 1.55 Tehama 2.22 
Merced 3.08 Trinity 2.30 
Modoc 2.50 Tulare 2.78 
Mono 2.77 Tuolumne 1.34 
Monterey 1.60 Ventura 1.62 
Napa 2.01 Yolo 1.93 
Nevada 1.47 Yuba 3.32 
  STATE 1.74 

 
 
9.3 Results 

Figure 9-1 illustrates the predicted airborne fine particulate matter concentrations in 
California averaged between the years 2000-06 using the emissions estimated for 2050.  
The results are noticeably different from those calculated using the year 2000 emissions 
(see Figure 7-3).  The maximum PM2.5 concentration of 30 µg m-3 occurs near the city of 
El Centro south of the Salton Sea.  The majority of this material is composed of dust that 
is primarily composed of crustal material.  The major population centers of San Francisco 
and Los Angeles are predicted to experience slightly lower concentrations between 14-20 
µg m-3, while the San Joaquin Valley is predicted to experience concentrations between 
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10-16 µg m-3 under the 2050 emissions predictions.  Significant contributions from EC, 
OC, nitrate, ammonium ion, and sulfate are evident in each of these locations. 
 
It should be noted that the PM2.5 concentrations predicted using the meteorology from 
2000-06 and the emissions estimated for 2050 violate the annual-average National 
Ambient Air Quality Standards (NAAQS) (15 µg m-3) and the California Ambient Air 
Quality Standards (12 µg m-3).  This study should not be interpreted as a comment on the 
current State Implementation Plans to achieve attainment for PM2.5 since the emissions 
estimates for 2050 generated during the current project are not official estimates from the 
California Air Resources Board.  Rather, the emissions estimates prepared for 2050 
reflect a projected growth of the official 2030 emissions using the best available methods 
within the time and scope allowed by the current project.  No effort was made to 
formulate additional regulations to control increased emissions associated with 
population growth between the years 2030 and 2050.      
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Figure 9-1: Annual average fine particulate matter (PM2.5) concentrations in CA for the 
present day (2000-06) utilizing the emissions control projected for 2050: (a) total mass, 

(b) elemental carbon, (c) organic carbon, (d) nitrate, (e) ammonium, and (f) sulfate.   
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Figure 9-2 illustrates the difference between predicted PM2.5 concentrations in 2047-53  
vs. 2000-06 using the emissions predicted for the year 2050.  The results are organized to 
show the difference for total mass and various components of total mass in the first 
column, and the p-value in the second column.  The p-value quantifies the probability 
that climate change causes no difference between future years and present years.  The p-
value largely depends on the variability within the period 2000-06 and 2047-53 caused by 
inter-annual differences associated with El Nino events and other large scale weather 
patterns.   
 
The results illustrated in Figure 9-2 are similar to those illustrated in Chapter 7.  Slightly 
increasing concentrations and slightly decreasing concentrations are evident in different 
regions of California, but only limited areas experience changes that approach statistical 
significance at the 95% confidence level.  PM2.5 concentrations in the coastal region of 
Los Angeles and southern California are predicted to decrease by ~1 µg m-3 due to 
reduced concentrations of primary components such as OC and EC.  The meteorological 
drivers for this change are identical to those discussed in Chapter 5: higher wind speeds 
on average in coastal Los Angeles provide greater dilution of primary emissions reducing 
overall PM2.5 concentrations.  Reduced concentrations of ammonium nitrate are also 
evident in the coastal regions of southern California.  Increased wind speed likely also 
plays a role in those changes by providing extra dilution that prevents the buildup of 
ammonium nitrate precursors. 
 
PM2.5 mass concentrations in the southern portion of the SJV are also predicted to 
decrease by ~1 µg m-3 due to the effects of climate change.  The majority of this change 
is driven by decreased ammonium nitrate concentrations.  The reduction of agricultural 
ammonia emissions predicted in 2050 in the SJV leads to more balanced concentrations 
of gas-phase nitric acid and ammonia which makes the particulate ammonium nitrate 
formation more sensitive to temperature fluctuations [33].  Increased temperatures in the 
future SJV therefore have a larger impact on ammonium nitrate formation when 
considering the 2050 emissions (Figure 9-2) than the 2000 emissions (Figure 7-7).   
 
The final noteworthy trend illustrated in Figure 9-2 is the predicted increase in PM2.5 
sulfate concentrations across much of the inland portion of Southern California in 
response to climate change.  This trend results because warmer future temperatures and 
increased relative humidity lead to increased hydroxide radical (OH) concentrations that 
convert gaseous SO2 emissions to sulfuric acid more quickly in the future.  Sulfuric acid 
is non-volatile over all relevant atmospheric temperatures (with or without climate 
change) and rapidly condenses to form particulate sulfate. 
 
The trends for particulate ammonium nitrate and particulate sulfate that are evident in 
Figure 9-2 are consistent with predictions made during previous studies that performed 
perturbation analysis of the atmospheric chemistry during historical air pollution episodes 
[33], [61]. 
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Figure 9-2: Changes in annual average total mass and primary PM2.5 concentrations (µg 
m–3), and their corresponding p-values in CA likely to occur in the future (2047-53) due 
to climate change and projected emissions control for 2050 from the present-day (2000-

06).  The p-values were calculated for a one-tailed student t-distribution from annual 
average concentrations at 95% confidence interval.  
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Figure 9-2 continued: Changes in annual average secondary PM2.5 concentrations (µg m–

3), and their corresponding p-values in CA likely to occur in the future (2047-53) due to 
climate change and projected emissions control for 2050 from the present-day (2000-06).  
The p-values were calculated for a one-tailed student t-distribution from annual average 

concentrations at 95% confidence interval.  
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Figure 9-3 illustrates the population-weighted annual-average PM2.5 concentrations of 
total mass, individual chemical components, and primary source contributions calculated 
for the state of California (CA), and Sacramento Valley (SV), and San Joaquin Valley 
(SJV), and the South Coast Air Basin (SoCAB).  The population distribution used in the 
concentration weighting calculations was consistent with the population distribution 
assumed during the generation and spatial disaggregation of emissions.  The uncertainty 
bars shown in Figure 9-3 quantify the 95% confidence interval of the difference between 
the seven future years (2047-53) and the seven present years (2000-06).    
 
The 95% confidence intervals for annual-average population-weighted PM2.5 mass and 
almost all components / sources that contribute to that mass shown in Figure 9-3 overlap 
zero.  This pattern indicates that climate impacts induce small changes in the PM2.5 
concentrations associated with 2050 emissions relative to the inter-annual variability 
present in any given seven year period.  Some sub-categories of annual-average 
population-weighted primary source contributions do have statistically significant 
responses to climate change.  Annual-average population-weighted primary PM2.5 from 
meat cooking and high sulfur fuel combustion averaged across the entire state were 
reduced by 3-4%, and primary PM2.5 from shipping and diesel combustion in the SoCAB 
was reduced by 5-6%.  These trends largely reflect the impact of increased wind speed 
over coastal areas of California.    
 
Figures 9-4 and 9-5 examine the impact of climate change on annual-average PM10 and 
PM0.1 concentrations of total mass, chemical components, and primary source 
contributions using the 2050 emissions as the reference point.  The format of Figures 9-4 
and 9-5 is identical to Figure 9-3.  As was the case for PM2.5, the major trends for annual-
average population-weighted PM10 and PM0.1 produced using 2050 emissions are 
consistent with the results produced using the 2000 emissions. The differences in future 
vs. present PM mass concentrations are generally not significant (95% confidence) 
relative to inter-annual variability.  Annual-average population-weighted PM10 primary 
source contributions from shipping, diesel combustion, meat cooking, and high sulfur 
fuel combustion decrease in the SoCAB due to the effects of increased wind speed.  
These same trends are apparent in the statewide averages although 95% confidence is 
only reached for meat cooking.   
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Figure 9-3:  Future change (2047-53 vs. 2000-06) in population-weighted concentrations 

of PM2.5 total mass / components / primary source contributions.  Panels (top-down) 
show California state-wide average, Sacramento Valley (SV) air basin average, San 

Joaquin Valley (SJV) air basin average, and South Coast Air Basin (SoCAB) average 
results.  
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Figure 9-4:  Future change (2047-53 vs. 2000-06) in population-weighted concentrations 
of PM10 total mass / components / primary source contributions.  Panels (top-down) show 

California state-wide average, Sacramento Valley (SV) air basin average, San Joaquin 
Valley (SJV) air basin average, and South Coast Air Basin (SoCAB) average results.  
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Figure 9-5: Future change (2047-53 vs. 2000-06) in population-weighted concentrations 

of PM0.1 total mass / components / primary source contributions.  Panels (top-down) 
show California state-wide average, Sacramento Valley (SV) air basin average, San 

Joaquin Valley (SJV) air basin average, and South Coast Air Basin (SoCAB) average 
results. 
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Figure 9-6 summarizes the distribution of statewide population-weighted 24-hr average 
PM2.5 concentrations generated for current climate conditions (top panel) and future 
climate conditions (bottom panel) using 2050 emissions.  The shaded region at the right 
of each plot illustrates the top 1% of predicted values during each period.  The behavior 
of these extreme 99th percentile events in the presence of climate change is of interest 
because of the potential risk to all exposed segments of the population.  A comparison of 
Figure 9-6 to Figure 8-5 indicates that the emissions inventory for 2050 produces a 
different distribution of extreme PM concentrations than the emissions inventory for the 
year 2000. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-6:  Frequency distribution of 24-hr average population-weighted PM2.5 total 
mass concentrations for California under the (a) present-day (2000-2006) and (b) future 
(2047-2053) climate conditions.  The shaded regions encompass values higher than the 

99th percentile value of each distribution. 
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Figure 9-7 illustrates the regional PM2.5 concentrations predicted over California on the 
1% of days with the highest population weighted concentrations during the future (2047-
53) and present (2000-06) time periods using the 2050 emissions as a fixed reference 
point.  Figure 9-7c illustrates the difference between future and present extreme 99th 
percentile events.  Future concentrations of PM2.5 are predicted to increase by ~7 µg m-3 
across central California and inland portions of southern California during extreme 
events.  Extreme PM2.5 concentrations along coastal portions of southern California are 
not predicted to change in the future.  This response is distinctly different than the results 
shown in Figure 8-6 where future extreme events had PM2.5 concentrations that were 
~18-20 µg m-3 greater in the SJV and 2-4 µg m-3 greater in the SJV.  The apparent 
reduction in the climate sensitivity of the PM concentrations caused by the changes in the 
emissions inventory between 2000 and 2050 is qualitatively consistent with the reduced 
climate sensitivity of the ozone system caused by changes in the emissions between 1980 
and 2000 (see chapter 4; [103]).    
 
As was the case with the analysis of extreme events using the 2000 emissions, the results 
shown in Figure 9-7 need to be viewed in the context of inter-annual variability.  It is not 
appropriate to describe the behavior of the upper tail of the distribution shown in Figure 
9-6 using the standard error from the overall distribution.  The variation of the extreme 
events was therefore calculated by withholding individual years out of the analysis 
producing an ensemble of extreme 99th percentile events that were then analyzed to 
determine the mean and the 95% confidence interval. 
 
(a) Future (2047-53) (b) Present-day (2000-06) (c) ∆ (future, present-day) 

 
 
Figure 9-7:  Average of the highest 24-hr average PM2.5 total mass concentrations (µg m–

3) corresponding to days with population-weighted concentrations above the 99th 
percentile values as illustrated in Figure 9-3 for California under the (a) future (2047-

2053), and (b) present-day climate (2000-2006) conditions.  Panel (c) shows the 
difference between the future (a) and present-day (b).   

 
Figure 9-8 illustrates the difference between future and present population-weighted 
average concentrations of PM0.1 during extreme 99th percentile concentration events 
using the 2050 emissions as a fixed reference point.  Uncertainty bars illustrate the 95% 
confidence interval for the concentration change during extreme events.  The 95% 
confidence intervals span zero (no change) for all population-weighted PM0.1 changes 
except for a ~34% decrease in sulfate (S(VI)) accompanied by a ~21% decrease in 
population-weighted PM from combustion of high sulfur fuel.    
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Figure 9-8: Future change (2047-53 vs. 2000-06) in population-weighted 99th percentile 
concentrations of PM0.1 total mass / components / primary source contributions.  Panels 

(top-down) show California state-wide average, Sacramento Valley (SV) air basin 
average, San Joaquin Valley (SJV) air basin average, and South Coast Air Basin 

(SoCAB) average results.      
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Figure 9-9 illustrates the difference between future and present population-weighted 
average concentrations of PM2.5 during extreme 99th percentile concentration events 
using the 2050 emissions as a fixed reference point.  Statistically significant trends for 
population-weighted 99th percentile PM2.5 mass were not detected across any of the major 
air basins.  Population-weighted concentrations of PM2.5 trace metals (METL) and 
primary contributions from dust increased in all air basins, with statistical significance 
achieved in the SV and SJV.  The dust category shown in Figures 9-9 and 9-10 includes 
contributions from fugitive/windblown + agricultural dust that were not changed between 
2000 and 2050.  The similarity of the 2050 vs. 2000 dust emissions yields consistent 
climate trends during 99th percentile extreme events (compare Figures 8-8 and 9-8).  
Population-weighted contributions from shipping and high-sulfur fuel combustion 
emissions to 99th percentile primary PM2.5 mass were reduced in the future due to the 
effects of reduced wind speed during future stagnation events.   
 
Figures 9-10 illustrate the difference between future and present population-weighted 
average concentrations of PM10 during extreme 99th percentile concentration events using 
the 2050 emissions as a fixed reference point.  The 99th percentile population-weighted 
PM10 mass increased by 48% in the future (2047-53) SV relative current (2000-06) 
conditions.  All primary components of the PM10 mass increased during the future 
extreme events in the SV, with statistically significant changes for elemental carbon 
(EC), and trace metals (METL).  Likewise, local primary source contributions increased 
in the SV and SJV, with statistically significant changes for dust and wood smoke in the 
SV.  Residential wood combustion for home heating was banned in the 2050 emissions 
inventory, and so the wood smoke contribution evident in Figure 9-10 largely reflects the 
impact of agricultural burns. 
 
Population-weighted concentrations of primary diesel PM during extreme 99th percentile 
events were higher in 2047-53 than in 2000-06 based on 2000 emissions (Figures 8-8 and 
8-9) but this trend was not present when 2050 emissions were used for the analysis 
(Figures 9-9 and 9-10).  Diesel particle filters (DPFs) were applied to reduce primary on-
road diesel PM emissions by 90% in the future inventory resulting in changes to the 
spatial distribution of diesel emission in California (compare Figure 7-3 to Figure 9-1 for 
EC as an indirect marker of diesel PM).  This analysis suggests that DPFs or some other 
technology to eliminate primary diesel PM emissions will be required in California to 
prevent a climate-induced increase of population-weighted concentrations of primary 
diesel PM during future extreme (99th percentile) pollution events.     
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Figure 9-9: Future change (2047-53 vs. 2000-06) in population-weighted 99th percentile 
concentrations of PM2.5 total mass / components / primary source contributions.  Panels 

(top-down) show California state-wide average, Sacramento Valley (SV) air basin 
average, San Joaquin Valley (SJV) air basin average, and South Coast Air Basin 

(SoCAB) average results. 
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Figure 9-10: Future change (2047-53 vs. 2000-06) in population-weighted 99th percentile 
concentrations of PM10 total mass / components / primary source contributions.  Panels 

(top-down) show California state-wide average, Sacramento Valley (SV) air basin 
average, San Joaquin Valley (SJV) air basin average, and South Coast Air Basin 

(SoCAB) average results.    
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9.4 Conclusions 

The non-linear features of the atmospheric chemistry do not combine with changes in the 
emissions between 2000 and 2050 to produce a different annual-average outcome based 
on changing climate.  Future studies comparing the climate response of annual-average 
PM2.5 concentrations between 2000 and 2050 in California can focus on emissions from 
one period without the need for a full evaluation of present and future inventories under 
both sets of climatology. 
 
The analysis of annual-average concentrations conducted with the 2050 emissions 
inventory indicates that population-weighted primary PM2.5 concentrations will generally 
decrease in the future (2047-53) relative to present day (2000-06).  This trend is 
especially true in the SoCAB.  The primary driver for the decreased primary PM 
concentrations is increased average wind speed in the future, especially in coastal 
regions. 
 
The analysis of extreme events conducted with the 2050 emissions inventory had the 
same qualitative behavior as the simulations conducted with the 2000 emissions 
inventory.  Stagnation conditions are stronger in future extreme pollution episodes 
resulting in enhanced population-weighted concentrations of primary PM from sources 
located close to population centers.  Controls that eliminate PM emissions from major 
sources such as wood combustion and diesel engines are needed to avoid higher 
population-weighted concentrations in the future.   
 
The analysis presented in the previous sections confirms the results shown in Chapters 7 
and 8.  Based on the year 2050 emissions inventory, the impact of climate change on 
ground-level PM concentrations in California is smaller than the inter-annual variability 
during any seven year period in both current and future climate conditions.  This makes 
the 95% confidence intervals for the effect of climate change on average ground-level 
PM concentrations broad when n=1000 sample days are used.  Longer analysis periods 
are needed to quantify the climate impact with 95% confidence intervals that do not 
overlap zero. 
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10.0 COMBINED IMPACT OF CLIMATE CHANGE AND EMISSIONS 
CONTROLS ON PARTICULATE MATTER (PM) IN CALIFORNIA 
 
10.1 Introduction 

Climate and emissions will change simultaneously in the future, producing a net change 
to airborne particulate matter (PM) concentrations in California.  The magnitudes of these 
combined changes and the signals contributed by climate vs. emissions are of interest 
since any climate “penalties” for PM2.5 will require additional emissions controls.    The 
present chapter compares the net effects of climate and emissions on airborne particulate 
matter concentrations. 
 
10.2 Methods 

Four sets of simulations with different climatology and emissions conditions were 
analyzed as shown in Table 10.1. 
 
Table 10-1: Summary of climate and emissions cases analyzed. 
Climatology\Emissions Present Emissions Future Emissions 
Present Climate 2000-06 meteorology 

2000 emissions 
2000-06 meteorology 
2050 emissions 

Future Climate 2047-53 meteorology 
2000 emissions 

2047-53 meteorology 
2050 emissions 

 
Comparisons will be made between results associated with each of the four quadrants 
within Table 10-1.  Chapters 7-9 compared results across climate conditions (vertically) 
for either present emissions or future emissions.  The present chapter is the first to 
compare results across emissions conditions (horizontally) for present climate and future 
climate.  The present chapter is also the first to compare results simultaneously across 
climate and emissions conditions (diagonally). 
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10.3 Results 

Figure 10-1 illustrates the surface-level PM2.5 concentration differences predicted using 
2050 emissions and 2047-53 meteorology vs. 2000 emissions and 2000-06 meteorology.  
Regions offshore of California are predicted to experience an increase of 14 µg m-3 due to 
increased shipping activities associated with goods movement.  Coastal inland regions 
including the San Francisco Bay Area and southern California are also predicted to 
experience increased PM2.5 concentrations ranging from 5-14 µg m-3 higher than present-
day values.  In contrast, the PM2.5 concentrations predicted in the future SV and SJV are 
lower than present-day values, with decreases of up to3- 4.4 µg m-3 predicted in the cities 
of Sacramento, Fresno and Bakersfield.  These changes reflect the net effects of climate 
and emissions trends between 2000 and 2050. 
 

 
Figure 10-1: Annual average PM 2.5 mass difference (2047 to 2053) using 2050 
emissions vs.  (2000 – 2006) using 2000 emissions. 
 
Figure 10-2 illustrates the effects of climate change, emissions change, and net changes 
to population-weighted PM2.5 concentrations in California.  Results are displayed for total 
PM2.5 mass and the chemical components that make up the majority of that mass.  
Comparisons are shown for the effect of climate change (2047-53 vs. 2000-06) for the 
2000 emissions (1st bar) and 2050 emissions (2nd bar) of each grouping.  Comparisons are 
shown for the effect of emissions change (2000 vs. 2050) for the 2000-06 meteorology 
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(3rd bar) and 2047-53 meteorology (4th bar).  Comparisons are shown for the combined 
effect of emissions and climate in the 5th bar.  Uncertainty estimates shown in Figure 10-
2 represent the 95% confidence interval.  Simulations conducted with identical 
meteorology but altered emissions (3rd and 4th bars) were treated as a paired t-test with 
each day compared under two different emissions conditions yielding n>1000 and 
resulting in relatively small uncertainty ranges.  The 1st, 2nd, and 5th bars compare 
differences between climate periods and so calculations were done as n=7 annual 
averages in both present and future climate periods yielding a paired t-test with 12 
degrees of freedom. Note that crustal components were removed from all emissions 
comparisons (3rd, 4th, and 5th bars) outside of the SoCAB to avoid potential bias in the 
comparison.  The 2000 emissions outside of the SoCAB were based on a winter 
emissions inventory while the 2050 emissions were based on an annual average 
emissions inventory, resulting in some biases between species that contribute to crustal 
components. 
 
The results summarized in Figure 10-2 indicate that climate change has a similar effect 
on population-weighted concentrations under both the year 2000 and year 2050 emissions 
inventory.  This result is also evident by comparing the results in chapters 7+8 with the 
results in chapter 9.  The climate signal is shown in Figure 10-2 to aid in the comparison 
with emissions changes and net changes.  The 3rd and 4th bars illustrated in Figure 10-2 
indicate that the effects of emissions changes are very similar under both present and 
future climate conditions.  Statewide population weighted PM2.5 concentrations are 
predicted to increase by ~0.3-0.4 µg m-3, largely due to increased concentrations of 
ammonium sulfate and metals even as statewide OC and EC population-weighted 
concentrations decrease due to the adoption of new emissions control measures such as 
diesel particle filters.  Emissions comparisons in the SV and the SJV clearly reveal the 
benefits of a complete ban on residential wood combustion through a decrease in 
population-weighted OC concentrations of 0.5-1.5 µg m-3.  Population-weighted 
concentrations of nitrate decrease by ~0.1-0.2 µg m-3 in the SV and SJV due to a 
reduction in ammonia emissions from agricultural sources.  Population-weighted PM2.5 
mass concentrations in the SoCAB are predicted to increase by ~1 µg m-3 due to 
increased exposure to OC, sulfate, and crustal material.   
 
The 5th bar shown for each PM2.5 concentration component in Figure 10-2 illustrates the 
combined differences between 2047-53 vs. 2000-06 driven by both climate changes and 
emissions changes.  Not surprisingly, the emissions changes appear to be the larger of the 
two signals for almost all comparisons. 
 
Figures 10-3 and 10-4 illustrate population-weighted concentrations of PM0.1 and PM10 in 
various regions of California using the same format as Figure 10-2.  The trends for the 
PM0.1 and PM10 size fractions are in general agreement with those for PM2.5.   
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Figure 10-2: PM2.5 population-weighted concentration differences by chemical 
component.  The first two bars of each group show the climate signal, the second two 
bars show the emissions signal, and the final bar shows the combined signal.  Uncertainty 
bars represent the 95% confidence interval based on the inter-annual variability.  The 
crustal signal has been removed from the (2050-2000) emissions comparisons (3rd – 5th 
bars) for all locations except the SoCAB to remove a bias in the calculation. 
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Figure 10-3: PM0.1 population-weighted concentration differences by chemical 
component.  The first two bars of each group show the climate signal, the second two 
bars show the emissions signal, and the final bar shows the combined signal.  Uncertainty 
bars represent the 95% confidence interval based on the inter-annual variability.  The 
crustal signal has been removed from the (2050-2000) emissions comparisons (3rd – 5th 
bars) for all locations except the SoCAB to remove a bias in the calculation. 



 

 204

Statewide

-2.5

-1.5

-0.5

0.5

1.5

2.5

PM 25 Mass OC EC Nitrate Sulfate Ammonium Metl Crustal

( 
µ

g
 m

-3
 )

(2000)Emis (Fut-Pres)Met (2050)Emis (Fut-Pres)Met

(2050-2000)Emis (Present)Met (2050-2000)Emis (Future)Met

(2050 Emis Fut. Met - 2000 Emis Pres. Met)

SJV

-2.5

-1.5

-0.5

0.5

1.5

2.5

PM 25 OC EC Nitr ate Sul f ate Ammonium Metl Cr ustal

SoCAB

-2.5

-1.5

-0.5

0.5

1.5

2.5

PM 25 OC EC Nitrate Sulfate Ammonium Metl Crustal

SV

-2.5

-1.5

-0.5

0.5

1.5

2.5

PM 25 OC EC Nitrate Sulfate Ammonium Metl Crustal

 
Figure 10-4: PM10 population-weighted concentration differences by chemical 
component.  The first two bars of each group show the climate signal, the second two 
bars show the emissions signal, and the final bar shows the combined signal.  Uncertainty 
bars represent the 95% confidence interval based on the inter-annual variability.  The 
crustal signal has been removed from the (2050-2000) emissions comparisons (3rd – 5th 
bars) for all locations except the SoCAB to remove a bias in the calculation. 
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Figure 10-5 illustrates the effects of climate change, emissions change, and net changes 
to population-weighted primary source contributions to PM2.5 concentrations using the 
same format that was employed for Figure 10-2.  Note that Figure 10-5 presents results 
for primary mass only while Figure 10-2 presents results for total mass (=primary + 
secondary).  Also note that dust and miscellaneous (Misc) source contributions were 
removed from all emissions comparisons (3rd, 4th, and 5th bars) outside of the SoCAB to 
avoid potential bias in the comparison. 
 
The results shown in Figure 10-5 indicate a stronger signal associated with future 
changes to emissions than from the changes to climate in all regions of California.  Future 
bans on residential wood combustion reduce population-weighted concentrations of 
primary wood smoke (Burns) while the application of diesel-particle filters reduces 
population-weighted concentrations of primary diesel particles.  Uncontrolled sources 
such as meat cooking and gasoline engine combustion increase their primary population-
weighted concentrations in the future as increased population puts upward pressure on 
these emissions.  Likewise, population-weighted concentrations of primary ship exhaust 
increase in the future reflecting the projected increased movement of goods through 
California ports.  The net changes to population-weighted annual-average PM2.5 mass are 
predicted to be positive in the SoCAB and negative for all other regions of the state.     
 
Figures 10-6 and 10-7 summarize population weighted concentrations of primary PM2.5 
source contributions to PM0.1 and PM 10 using the same format as Figure 10-5.  The 
trends illustrated for the PM0.1 and PM10 size fractions are similar to those for PM2.5, with 
the importance of combustion sources slightly increased in the PM0.1 size fraction and the 
importance of crustal dust sources slightly increased in the PM10 size fraction. 
 
The results summarized in Figures 10-2 through 10-7 predict that population-weighted 
annual-average PM2.5 concentrations are strongly influenced by future emissions changes 
in California.  The 2050 emissions projections analyzed in the current project do not 
incorporate any reductions in criteria pollutants associated with rules designed to reduce 
greenhouse gas emissions.  It is possible that efforts to control greenhouse gas emissions 
may not only mitigate climate change, but they will provide co-benefits of reduced 
criteria pollutant emissions and reduced population-weighted concentrations in 
California.  A comprehensive analysis of this feedback is currently being conducted at 
UC Davis under funding from the US EPA.  
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Figure 10-5: PM2.5 population-weighted concentration differences by primary source 
contribution.  The first two bars of each group show the climate signal, the second two 
bars show the emissions signal, and the final bar shows the combined signal.  Uncertainty 
bars represent the 95% confidence interval based on the inter-annual variability.  The dust 
and miscellaneous (Misc) signals have been removed from the (2050-2000) emissions 
comparisons (3rd – 5th bars) for all locations except the SoCAB to remove a bias in the 
calculation. 
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Figure 10-6: PM0.1 population-weighted concentration differences by primary source 
contribution.  The first two bars of each group show the climate signal, the second two 
bars show the emissions signal, and the final bar shows the combined signal.  Uncertainty 
bars represent the 95% confidence interval based on the inter-annual variability.  The dust 
and miscellaneous (Misc) signals have been removed from the (2050-2000) emissions 
comparisons (3rd – 5th bars) for all locations except the SoCAB to remove a bias in the 
calculation. 
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Figure 10-7: PM10 population-weighted concentration differences by primary source 
contribution.  The first two bars of each group show the climate signal, the second two 
bars show the emissions signal, and the final bar shows the combined signal.  Uncertainty 
bars represent the 95% confidence interval based on the inter-annual variability.  The dust 
and miscellaneous (Misc) signals have been removed from the (2050-2000) emissions 
comparisons (3rd – 5th bars) for all locations except the SoCAB to remove a bias in the 
calculation. 
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10.4 Conclusions 

The results of the present study do not detect a statistically significant climate “penalty” 
associated with annual-average concentrations of airborne particulate matter (PM).  The 
changes to the annual-average population-weighted PM concentrations induced by the 
changes to the emissions inventories between 2000 and 2050 appear to be largely 
unmodified by the climate signal in each of California’s major air basins.  
 
Climate change does appear to impose a “penalty” on airborne PM in California during 
extreme (99th percentile) pollution episodes (see chapters 8 and 9).  Although cross 
comparison figures are not shown in the current chapter, the results of chapters 8 and 9 
indicate that population-weighted extreme PM concentrations increase in future climate 
relative to current conditions.  Strict control measures can prevent a future increase in 
population-weighted concentrations of primary diesel PM and biomass PM.  These 
necessary control measures may be considered a climate “penalty” for extreme PM 
concentrations. 
 
The conclusions regarding climate “penalties” for annual-average population-weighted 
PM concentrations and extreme (99th percentile) population-weighted PM concentrations 
are subject to the qualifications inherent in the previous chapters of this report.  The 
climate-weather-air quality modeling system under-predicts present-day PM2.5 
concentrations by 30-40% due to the inability of WRF to simulate low wind speeds in the 
surface layer during high pressure stagnation events.  It is possible that low wind speed 
events will be influenced by future climate change, and this in turn will influence future 
PM2.5 concentrations.  Furthermore, the GCM used in the current study is one example of 
an ensemble of GCM’s that have been employed to study future climate.  Significant 
differences exist between predictions from GCM’s, especially for wind speed, mixing 
depth, cloud cover, precipitation, etc that all influence PM concentrations.  Further 
studies that employ ensembles of GCMs/RCMs/CTMs are needed to fully quantify the 
uncertainty in the climate air quality interactions. 
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11.0 SUMMARY AND CONCLUSIONS 
 
The chapters presented in this report provide comprehensive analyses of climate change 
impact on air quality, especially on ozone and particulate matter (PM) with probable 
implications for public health in California.  The results will benefit the scientific 
community, regulatory agencies and the general public in better understanding the impact 
of global climate change on regional air quality.   
 
11.1 A Preliminary Assessment of the Sensitivity of Air Quality in California to 
Global Change 
 
A regional air quality model was used to quantify the effect of temperature, humidity, 
mixing depth, and ozone (O3) background concentrations on O3 and airborne particulate 
matter (PM) during three air quality episodes in California.  Increasing temperature with 
no change in absolute humidity promoted the formation of O3 by +2 to +9 ppb K-1 
through increased reaction rates.  Increasing temperature with no change in relative 
humidity increased predicted O3 concentrations by +2 to +15 ppb K-1 through enhanced 
production of hydroxyl radical combined with increased reaction rates.  Increasing 
mixing depth promoted the formation of O3 in regions with an over-abundance of fresh 
NO emissions (such as central Los Angeles) by providing extra dilution.   
 
Increasing temperature with no change in absolute humidity reduced particle water 
content and promoted ammonium nitrate evaporation at a rate of -3 to -7 µg m-3 K-1.  
Increasing temperature with no change in relative humidity maintained particle water 
content and moderated ammonium nitrate evaporation rates to a maximum value of -3 µg 
m-3 K-1 during warmer episodes and increased ammonium nitrate condensation by +1.5 
µg m-3 K-1 during colder episodes. Increasing mixing depth reduced the concentration of 
primary particulate matter but increased the formation of secondary particulate matter in 
regions with an over-abundance of fresh NO emissions.     
 
O3 transported into California from upwind areas enhanced the formation of particulate 
nitrate by promoting the formation of N2O5 and HNO3 at night.  A 30 ppb increase in 
background O3 concentrations (roughly doubling current levels) increased maximum 
PM2.5 concentrations by +7 to +16 µg m-3 even when temperature was simultaneously 
increased by +5 K with no change in absolute humidity (most unfavorable conditions for 
nitrate formation). 
 
 
11.2 Impact of Climate Change on Photochemical Air Pollution in Southern 
California 
 
The effects of future climate and emissions-related perturbations on ozone air quality in 
Southern California was considered, with an assumed increase to 2x pre-industrial levels 
(280 ppm to 560 ppm) for global background levels of carbon dioxide. Effects of 
emission and climate-related forcings on air quality were superimposed on a summer 
2005 high-ozone time period. Perturbations considered here included (a) effect of 
increased temperature on atmospheric reaction rates, (b) effect of increased temperature 
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on biogenic emissions, (c) effect of increased water vapor concentrations, (d) effect of 
increased pollutant levels at the inflow (western) boundary, and (e) effect of population 
growth and technology change on emissions within southern California. Various 
combinations of the above perturbations were also considered. The climate-related 
perturbations (a-c) led to combined peak 1-h ozone increases of up to 11 ppb. The effect 
on ozone was greatly reduced when the temperature increase was applied mostly during 
nighttime hours rather than uniformly throughout the day. Increased pollutant levels at 
the inflow boundary also led to ozone increases up to 5 ppb. These climate and inflow-
related changes offset some of the anticipated benefits of emission controls within the air 
basin. 
 
11.3 Statistical Downscaling of Climate Change Impacts on Ozone Concentrations 
in California  
 
The statistical relationship between the daily 1-hr maximum ozone (O3) concentrations 
and the daily maximum upper air temperature was explored for California’s two most 
heavily polluted air basins: the South Coast Air Basin (SoCAB) and the San Joaquin 
Valley Air Basin (SJVAB).  A coarse scale analysis of the temperature at an elevation of 
850-millibar pressure (T850) for the period 1980 – 2004 was obtained from the National 
Center for Environmental Prediction (NCEP) / National Center for Atmospheric Research 
(NCAR) Reanalysis1 dataset for grid points near Upland (SoCAB) and Parlier (SJVAB).  
Daily 1-hr maximum ozone concentrations were obtained from the California Air 
Resources Board (CARB) for these locations over the same time period.  The ozone 
concentrations measured at any given value of the Reanalysis T850 were approximately 
normally distributed.  The 25%, 50%, and 75% quartile ozone concentrations increased 
linearly with T850, reflecting the effect of temperature on emissions and chemical 
reaction rates.  A 2-D Lagrangian (trajectory) form of the UCD/CIT photochemical air 
quality model was used in a perturbation study to explain the variability of the ozone 
concentrations at each value of T850.  Wind speed, wind direction, temperature, relative 
humidity, mixing height, initial concentrations for VOCs, background ozone 
concentrations, time of year (late spring – early fall) and overall emissions were 
perturbed in a realistic fashion during this study.  A total of 62 model simulations were 
performed and the results were analyzed to show that long-term changes to emissions 
inventories were the largest sources of ozone variability at a fixed value of T850.  
Projections of future T850 values in California were obtained from the Geophysical Fluid 
Dynamics Laboratory (GFDL) model under the Intergovernmental Panel on Climate 
Change (IPCC) A2 and B1 emissions scenarios for the years from 2001 to 2100.  The 
future temperature trends combined with the historical statistical relationships suggest 
that an additional 22-30 days year-1 in California would experience O3≥90 ppb under the 
A2 emissions scenario and an additional 6-13 days year-1 would experience O3≥90 ppb 
under the B1 emissions scenario by the year 2050 (assuming the emissions remained at 
1990-2004 levels).  These calculations help to quantify the climate “penalty” that must be 
overcome to improve air quality in California. 
 
An extensive search for a robust statistical relationship between measured airborne 
particulate matter (PM) concentrations and meteorological variables did not identify a 



 

 212

suitable relationship for statistical downscaling.  This finding suggests that either a strong 
climate-PM relationship does not exist in California or the climate-PM relationship is so 
non-linear that it could not be identified by multiple regression analysis of the 
measurements.  Dynamic downscaling should be used to further investigate the 
relationship between climate and PM in California’s major air basins. 
 
11.4 The Impact of Climate Change on Air Quality Related Meteorological 
Conditions in California – Part I: Present Time Simulation Analysis  
 
The impact of climate change on meteorology related to air quality conditions in 
California (CA) was investigated by dynamically downscaling Parallel Climate Model 
(PCM) results to 4km resolution using the Weather Research and Forecast (WRF) model. 
The analyses focused on wind speed, planetary boundary layer height (PBLH), surface 
temperature, and relative humidity between the years 2000-06. The accuracy of the PCM-
WRF simulations was evaluated by comparing results to separate WRF simulations that 
used data from the National Center for Environmental Prediction (NCEP) Global 
Forecasting System (GFS) reanalysis data.  Regionally-averaged performance statistics of 
the downscaling results were estimated for the South Coast Air Basin (SoCAB) and the 
San Joaquin Valley (SJV). This comparison indicated that two types of biases exist in the 
downscaling results – those inherited from PCM and those introduced by the WRF model 
itself. PCM-WRF biases were primarily caused by an imprecise prediction for the 
location and strength of the Pacific Subtropical High (PSH). Inherent WRF biases 
identified in the GFS-WRF predictions overestimated surface temperature and wind 
speed for most of the year, indicating that WRF has systematic errors in California’s 
major air basins. The GFS-WRF simulations had lower bias during the summer vs. the 
winter. The overall analysis implies that PCM-WRF predictions used as input data for air 
quality models will likely cause underestimates for air pollution concentrations in CA.  
 
11.5 The Impact of Climate Change on Air Quality Related Meteorological 
Conditions in California – Part II: Present versus Future Time Simulation Analysis 
 
The Weather Research and Forecasting (WRF) model was applied to dynamically 
downscale the Parallel Climate Model (PCM) projection for the impact of climate change 
on the regional meteorological conditions in California (CA). Comparisons were made 
for meteorological fields that strongly influence regional air quality between the current 
(2000-06) and future (2047-53) climate periods.  Analyses showed that stagnation events 
will occur more frequently and have stronger intensity in the future during summer and 
winter seasons (decreasing stagnation frequency during the spring and fall).  This trend 
may intensify the concentrations of air pollutants during extreme episodes.  Increases in 
surface wind and planetary boundary layer height (PBLH) were predicted for the coastal 
part of southern California during summer, suggesting stronger ventilation in this region. 
The analysis of the inter-annual variability indicates that future changes in temperature 
are statistically significant (p<0.05) throughout California, but future changes to surface 
wind and PBLH are not statistically significant (p>0.1) except in limited sub-regions 
along the coast.  This suggests that the inter-annual variability in meteorological 
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conditions is larger than the climate signal between 2000 and 2050 for most variables 
except temperature.    
 
11.6 Climate Impact on Airborne Particulate Matter Concentrations in California 
Using Seven Year Analysis Periods 
 
The effect of global climate change on the annual average concentrations of fine 
particulate matter (PM2.5) in California was studied using a climate – air quality modeling 
system composed of global through regional models.  Meteorological output from the 
Parallel Climate Model (PCM) generated under the “business as usual” global emissions 
scenario was downscaled using the Weather Research and Forecasting (WRF) model 
followed by air quality simulations using the UCD/CIT airshed model.  The air quality 
simulations were carried out for the entire state of California with a resolution of 8-km 
for the years 2000-06 (present climate) and 2047-53 (future climate).  The 7-year 
windows were chosen to properly account for annual variability with the added benefit 
that the air quality predictions under the present climate could be compared to actual 
measurements.  The climate – air quality modeling system successfully predicted the 
spatial pattern of present climate PM2.5 concentrations in California but the absolute 
magnitude of the annual average PM2.5 concentrations were under-predicted by ~35-40% 
in the major air basins.  The majority of this under-prediction was caused by excess 
ventilation predicted by PCM-WRF that should be present to the same degree in the 
current and future time periods so that the net bias introduced into the comparison is 
minimized.   
 
Surface temperature, relative humidity (RH), rain rate, and wind speed were predicted to 
increase in the future climate while the ultra violet (UV) radiation was predicted to 
decrease in major urban areas in the San Joaquin Valley (SJV) and South Coast Air Basin 
(SoCAB).  These changes lead to a predicted decrease in PM2.5 mass concentrations of 
~0.3-0.7 µg m-3 in the southern portion of the SJV and ~0.3-1.1 µg m-3 along coastal 
regions of California including the heavily populated San Francisco Bay Area and the 
SoCAB surrounding Los Angeles.  Annual average PM2.5 concentrations were predicted 
to increase in the northern portion of the SJV and in the Sacramento Valley due to the 
effects of climate change, but a corresponding analysis of the annual variability showed 
that these predictions are not statistically significant (i.e. the choice of a different 7-year 
period could produce a different outcome for these regions).   
  
 
11.7 Climate Impact on Population-Weighted Airborne Particulate Matter 
Concentrations in California during Short and Long Time Periods 
 
The climate change effect on population-weighted concentrations of particulate matter 
(PM) was studied using the Parallel Climate Model (PCM), the Weather Research and 
Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model.  A 
“business as usual” climate emissions scenario was dynamically downscaled for the 
entire state of California between the years 2000-06 and 2047-53.  Air quality simulations 
were carried out for 1008 days in each of the present-day and future climate conditions 
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using emissions at 2000 level.  Population-weighted annual average concentrations of 
PM0.1, PM2.5, and PM10 total mass, components species, trace metal and primary source 
contributions were calculated for California and three air basins: the Sacramento Valley 
Air Basin (SV), the San Joaquin Valley Air Basin (SJV) and the South Coast Air Basin 
(SoCAB).  Population-weighted concentrations during extreme events were also 
calculated for California and the three air basins of interest. 
 
Population-weighted annual average concentrations of PM2.5 showed mixed climate 
responses for California.  The PM2.5 total mass concentration was predicted to decrease 
by ~2% in the SoCAB with little change in the SV and SJV in the future.  PM2.5 
elemental carbon, organic carbon, sulfate, ammonium ion and trace metal concentrations 
followed the trends of total mass for California and the sub-regions.  Contributions from 
shipping, wood smoke, diesel combustion, gasoline combustion, meat cooking, high 
sulfur content fuels, and miscellaneous sources were predicted to decrease by ~2-6% in 
the SoCAB in the future.  Population-weighted annual average concentrations of PM10 
total mass, component species, trace metal, and sources generally had the same pattern as 
the PM2.5 results.  The uncertainty associated with the climate signal is large because the 
inter-annual variability within any climate period is greater than the mean difference 
between climate periods.  
 
Extreme PM concentrations were examined by calculating the average concentration on 
the 10 most heavily polluted days during present and future climate conditions (99th 
percentile concentrations).  Extreme PM2.5 total mass was predicted to be ~20 µg m-3 

higher in the future compared to the present-day in the SJV and SV.  Population-
weighted concentrations for these extreme events were also calculated for PM0.1, PM2.5 
and PM10 for the entire state of California and the three sub-regions of interest.  Predicted 
extreme PM2.5 and PM10 concentrations for total mass and almost all components and 
primary source contributions increased in the future vs. present climate in the SV and 
SJV.  Statewide extreme population-weighted PM2.5 primary diesel concentrations were 
higher in the future due to the effects of climate change, while PM2.5 primary shipping 
concentrations decreased.  These trends reflect the increased strength of future stagnation 
episodes which trap pollutants close to the locations where they were emitted.   
 
11.8 Climate Impact on Particulate Matter (PM) in California for Emissions 
Projected in 2050 
 
Emissions inventories for California in the year 2050 were projected from basecase 
inventories for 2029/2030 using population growth estimates obtained from the 
Department of Finance.  The average PM concentrations between 2000-06 and 2047-53 
were predicted using the year 2050 emissions inventories and the PCM/WRF/UCD-CIT 
models.  PM concentrations predicted using the 2050 emissions and the meteorology 
between 2000-06 and 2047-53 were consistent with predictions using the year 2000 
emissions inventory.  Stated another way, the changes to the emission inventory between 
the year 2000 and 2050 did not expose any non-linear relationships between emissions 
and annual-average PM concentrations.   
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In contrast to the annual-average results, extreme PM concentrations did respond 
differently to the climate signal when the emissions were changed from year 2000 to year 
2050.  Future emissions generally produced lower climate sensitivity for extreme PM 
concentrations because emissions of primary diesel PM and wood smoke were greatly 
reduced in the future inventory.  This finding suggests that diesel particle filters and 
similar control strategies that control primary PM emitted close to population centers are 
effective methods to avoid the climate penalty associated with extreme pollution events 
in the future.   
 

11.9 Combined Impact of Climate Change and Emissions Controls on Particulate 
Matter in California  
 
A cross-comparison of the simultaneous effects of climate change and emissions change 
on airborne particulate matter concentrations in California was carried out.  Changes to 
the emissions inventories resulted in similar changes to annual-average airborne 
particulate matter concentrations under either current or future climate conditions.  No 
climate “penalty” for annual-average airborne particulate matter was revealed in the 
current analysis, subject to the qualification that the biases in the downscaling system 
may be masking such an effect.     
 
11.10 Future research 
 
Chapters 4-10 of the current report analyze climate change under a moderate “business as 
usual” emissions scenario.  The IPCC analyzes global climate change under a range of 
SRES emissions scenarios ranging from the lowest (B1) through to the highest (A2FI) 
emissions.  It is recommended that further air quality simulations should be carried out 
under a high IPCC-SRES emissions scenario to complement the findings of the current 
study.   
 
The current work utilized future climate predictions based on one Global climate Model 
(GCM) output in each of the statistical down-scaling (GFDL2) and dynamic down-
scaling (PCM) techniques.  In contrast, the IPCC analyzes results from multiple GCMs  
to generate an ensemble of results that are then used to create a “weight of science” 
estimate for future climate under each one of the SRES emissions scenarios.  Air quality 
simulations should take the same approach.  Air quality results produced by an ensemble 
of GCMs should be produced to create a “weight of science” estimate for the effects of 
climate change on air quality in California.  A true assessment of the uncertainty in the 
calculations is impossible without going through this exercise. 
 
Air quality simulations with fine spatial resolution (<10km) over climatologically 
relevant time periods (3-8 years) are computationally challenging.  A possible approach 
to reduce the burden of these calculations would be to carry out air quality simulations 
using meteorological fields averaged over an analysis period for a base year instead of 
running the simulations using meteorological fields from individual years.  A mechanism 
to quantify the uncertainty associated with this technique should be developed.   
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