Is Disparity in Asthma among Californians due to Higher Pollution Exposures, Greater Vulnerability, or Both?

Contract No: 07-309

PI: Ying-Ying Meng, DrPH

Co-Is: Michelle Wilhelm, PhD, Beate Ritz, MD, PhD, John Balmes, MD

Christina Lombardi, MPH

Angeli Bueno

Melissa Pickett, MPH

UCLA Center for Health Policy Research

10960 Wilshire Blvd, Suite 1550

Los Angeles, CA 90024

September 23, 2011

Revised November 7, 2011

Revised February 2, 2012

Revised February 24, 2012

Prepared for the California Air Resources Board and the California Environmental Protection Agency

DISCLAIMER

The statements and conclusions in this Report are those of the contractor and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products.

ACKNOWLEDGMENTS

We are very grateful to CARB for funding this work. We especially thank Nargis Jareen and Barbara Weller for their technical and administrative assistance. We also extend a special thanks to our co-investigators and collaborators for their excellent work creating the exposure measures and expert guidance on analysis and interpretation of our results. Christina Lombardi, Angeli Bueno, and Melissa Pickett did an excellent job in managing the project, putting together tables and preparing the report. We also thank our statistical staff, Yueyan Wang, Melanie Levy, and Hongjian Yu for providing their statistical and programming expertise and for doing the large number of data runs required for this project. We thank the California Health Interview Survey (CHIS) data disclosure review committee for granting us access to CHIS confidential data for this project. We thank the CHIS staff for assisting with our data access and for reviewing our data output. We also thank Michael Jerrett and Jason Su at the University of California, Berkeley for sharing their imputed traffic data with us. We also thank the Center for Health Policy Research financial and administrative staff for their assistance with budgets and contract management.

This Report was submitted in fulfillment of Contract No: 07-309 "Is Disparity in Asthma among Californians due to Higher Pollution Exposures, Greater Vulnerability, or Both?" by the UCLA Center for Health Policy Research under the sponsorship of the California Air Resources Board. Work was completed as of September 23, 2011.

This project is funded under the ARB's Dr. William F. Friedman Health Research Program. During Dr. Friedman's tenure on the Board, he played a major role in guiding ARB's health research program. His commitment to the citizens of California was evident through his personal and professional interest in the Board's health research, especially in studies related to children's health. The Board is sincerely grateful for all of Dr. Friedman's personal and professional contributions to the State of California.

Table of Contents

LIST OF FIGURES	VII
LIST OF TABLES	VIII
ABSTRACT	XI
EXECUTIVE SUMMARY	XII
Background	xii
Methods	xii
Results	xii
Conclusions	xiii
I. INTRODUCTION	
Scope and Purpose	1
Previous Studies on Asthma Exacerbations and Pollutant Exposures among Vulnerable I	
Pollutant Impacts on Asthma	
Vulnerable Populations	
Study Hypotheses	6
Background on the California Health Interview Survey (CHIS) 2003	7
II. MATERIALS AND METHODS	9
Study Design	9
Study Population	9
Measures of Air Pollutant Exposure	
Annual Average Air Pollution Concentrations for O_3 , PM_{10} , $PM_{2.5}$, and NO_2	10
Exceedances of Federal and State Standards	
Interpolated Pollutant Concentrations	
Measures of Traffic Exposure	12
State-wide Imputation of Tele Atlas Traffic Data	13
Residential Traffic Density	13
Distance to Roadways	14

Respiratory Health Outcomes in Respondents with Diagnosed and Undiagnosed Asthma	15
Potential Confounders and Vulnerability Characteristics	16
Statistical Methods	17
III. RESULTS	20
CHIS 2003 Respondents with Current Asthma	20
Exposure Distributions for CHIS 2003 Respondents with Current Asthma	20
Correlations among Air Pollution Exposure Estimates	20
Health Outcomes and Characteristics of Adults and Children with Current Asthma	21
Disparities in Asthma Outcomes and Exposure Measures among Sub-Populations	23
Disparities in Annual Average Criteria Pollutant Exposure Measures	23
Disparities in Traffic Exposure Measures	27
Disparities in Asthma Outcomes	28
Associations between Air Pollution Exposure Metrics and Asthma Health Outcomes	29
Associations of 12-month pollutant averages with asthma outcomes	30
Associations for annual number of days exceeding air pollution standards and asthma outcomes	33
Associations for traffic density/distance to roadway and asthma outcomes	33
Pollutant and Asthma Outcome Relationship after Adjusting Vulnerability (Confounding) Factors	34
Associations between ED visits and O_3 adjusting for vulnerability factors in adults	34
Associations between ED visits and PM_{10} adjusting for vulnerability factors in adults	35
Associations between ED visits and PM _{2.5} adjusting for vulnerability factors in adults	35
Associations between daily asthma medication and O ₃ adjusting for vulnerability factors in adults	36
Associations between daily asthma medication and PM ₁₀ adjusting for vulnerability factors in adults	36
Associations between daily asthma medication and PM _{2.5} adjusting for vulnerability factors in adults	37
Associations between missed work days and O ₃ adjusting for vulnerability factors in adults	38
Associations between missed work days and PM ₁₀ , adjusting for vulnerability factors in adults	38
Associations between missed work days and PM _{2.5} adjusting for vulnerability factors in adults	38
Associations between daily asthma medication and PM _{2.5} adjusting for vulnerability factors in children	39
Interactions between Pollutant Exposures and Vulnerability of Sub-Populations	44
Interactions of NO_2 with poverty	44
Interactions of NO ₂ and PM ₁₀ with race/ethnicity	44
Estimated odds in vulnerable sub-populations	44
CHIS 2003 Respondents with Asthma-like Symptoms	51
Exposure distributions for CHIS 2003 respondents with asthma-like symptoms	51
Correlations among air pollutant exposure estimates	51
Health outcomes and characteristics of adults and children with asthma-like symptoms	52
Disparities in Asthma-like Symptoms and Exposure Measures among Sub-Populations	54
Disparities in Annual Average Criteria Pollutant Exposure Measures	54
Disparities in asthma-like symptoms	58
Associations between air pollution exposure metrics and asthma-like symptoms	58
Associations between 12-month pollutant averages and asthma-like symptoms	59
Associations for annual days exceeding air pollution standards and asthma-like symptoms	59

Associations for traffic density/distance to roadway and asthma-like symptoms
Sensitivity Analyses
IV. DISCUSSION
Disparities in Exposure to Air Pollutants among Californians with Asthma67
Pollutant Effects on Asthma Outcomes68
Pollutant and Asthma Outcome Relationships after Adjusting for Vulnerability Factors
Pollutant Interactions with Poverty and Race/Ethnicity for Asthma Outcomes71
Asthma-like Symptoms among Californians72
Study Strengths and Limitations
V. SUMMARY AND CONCLUSIONS76
VI. RECOMMENDATIONS
VII. REFERENCES
VIII. LIST OF INVENTIONS REPORTED AND COPYRIGHTED MATERIALS PRODUCED.83
IX. GLOSSARY OF TERMS, ABBREVIATIONS, AND SYMBOLS84
X. APPENDIX

List of Figures

Figure 1. Pyramid of Asthma Burden in California (Adapted from the American Thoracic Society)3
Figure 2. Disparities in weighted mean annual pollutant concentrations by Federal Poverty Level in CHIS 2003 children and adults with current asthma using bivariate analysis
Figure 3. Disparities in weighted mean annual pollutant concentrations by race/ethnicity in CHIS 2003 children and adults with current asthma using bivariate analysis
Figure 4. Associations (OR (95% CI)) between 12-month pollutant averages and asthma outcomes in CHIS 2003 adults with current asthma
Figure 5. Interaction between mean NO_2 annual exposure and Federal Poverty Level on log odds of ED visits in CHIS 2003 children with current asthma
Figure 6. Interaction between mean NO₂ annual exposure and race/ethnicity on log odds of various asthma outcomes in CHIS 2003 children and adults with current asthma
Figure 7.Interaction between mean PM_{10} annual exposure and race/ethnicity on log odds of daily asthma medication use and daily/weekly symptoms in CHIS 2003 children with current asthma
Figure 8. Disparities in weighted mean annual pollutant concentrations by Federal Poverty Level in CHIS 2003 children and adults with asthma-like symptoms using bivariate analysis
Figure 9. Disparities in weighted mean annual pollutant concentrations by race/ethnicity in CHIS 2003 children and adults with asthma-like symptoms using bivariate analysis

List of Tables

Table 1. Number of CHIS 2003 adults and children with asthma or asthma-like symptoms	10
Table 2. Description of pollutant averages calculated for CHIS 2003 respondents	10
Table 3. List of exceedance exposure measures calculated for CHIS 2003 respondents	11
Table 4. Distribution of traffic volumes for major roadway categories based on Tele Atlas Dynamap traffic data – State of California	13
Table 5. Tele Atlas roadway groupings for distance to roadway calculations	14
Table 6. Weighted distributions of annual pollutant averages, exceedance days, and traffic density (within 750 feet) for CHIS 2003 adults and children with current asthma	85
Table 7. Frequencies for distance to roadway measures for CHIS 2003 adults and children with current asthma	86
Table 8. Pearson correlations between annual average air pollutant concentrations, exceedance measures, distance to roadway measures and traffic density	87
Table 9. Prevalence of asthma outcomes for CHIS 2003 adults and children with current asthma	21
Table 10. Characteristics of CHIS 2003 children and adults with current asthma	88-89
Table 11 (Highlights). Disparities in weighted mean annual pollutant concentrations by various demographic characteristics in CHIS 2003 children and adults with current asthma using bivariate analysis	27
Table 11 (Detailed). Disparities in weighted mean annual pollutant concentrations by various demographic characteristics in CHIS 2003 children and adults with current asthma using bivariate analysis	90
Table 12. Disparities in traffic and distance to roadways by various demographic characteristics in CHIS2003 children and adults with current asthma using bivariate analysis	91
Table 13. Disparities in weighted prevalence of asthma outcomes by various demographic characteristicsin CHIS 2003 children and adults with current asthma using bivariate analysis	92
Table 14 (Highlights). Associations (OR (95% CI)) for 12-month pollutant averages and respiratory outcomes in CHIS 2003 adults and children with current asthma	32
Table 14 (Detailed). Associations (OR (95% CI)) for 12-month pollutant averages and respiratory outcomes in CHIS 2003 adults and children with current asthma	93
Table 15. Associations (OR (95% CI)) between air pollution exceedance days and asthma outcomes in CHIS 2003 adults and children with current asthma	94
Table 16. Associations (OR (95% CI)) for traffic density/distance to roadway and asthma outcomes in CHIS 2003 adults and children with current asthma	95

Table 17 (Highlights). Associations between ED visits and criteria pollutants (O_3 , PM_{10} , and $PM_{2.5}$) adjusting for vulnerability characteristics among CHIS adults with current asthma	40
Table 17 (Detailed). Associations between ED visits and criteria pollutants (O ₃ , PM ₁₀ , and PM _{2.5}) adjusting for vulnerability characteristics among CHIS adults with current asthma	96
Table 18 (Highlights). Associations between daily asthma medication and criteria pollutants (O_3 , PM_{10} , and $PM_{2.5}$) adjusting for vulnerability characteristics among CHIS adults with current asthma	41
Table 18 (Detailed). Associations between daily asthma medication and criteria pollutants (O ₃ , PM ₁₀ , and PM _{2.5}) adjusting for vulnerability characteristics among CHIS adults with current asthma	97
Table 19 (Highlights). Associations between between missing 2 or more days of work and criteria pollutants (O_3 , PM_{10} , and $PM_{2.5}$) adjusting for vulnerability characteristics among CHIS adults with current asthma	42
Table 19 (Detailed). Associations between between missing 2 or more days of work and criteria pollutants (O_3 , PM_{10} , and $PM_{2.5}$) adjusting for vulnerability characteristics among CHIS adults with current asthma.	
Table 20 (Highlights). Associations between daily asthma medication and PM _{2.5} adjusting for vulnerability characteristics among CHIS 2003 children with current asthma ^a	43
Table 20 (Detailed). Associations between daily asthma medication and PM _{2.5} adjusting for vulnerability characteristics among CHIS 2003 children with current asthma ^a	99
Table 21. Interaction between mean NO ₂ annual exposure and Federal Poverty Level on log odds of ED visits in CHIS 2003 children with current asthma	46
Table 22. Interaction between mean NO ₂ annual exposure and race/ethnicity on log odds of various asthma outcomes in CHIS 2003 children and adults with current asthma	48
Table 23. Interaction between mean PM_{10} annual exposure and race/ethnicity on log odds of daily asthma medication use and daily/weekly symptoms in CHIS 2003 children with current asthma	50
Table 24. Interaction between mean NO₂ annual exposure and Federal Poverty Level or race/ethnicity on odds ratios (OR (95% CI)) of various asthma outcomes in CHIS 2003 children and adults with current asthma	101
Table 25. Interaction between mean PM_{10} annual exposure and race/ethnicity on odds ratios (OR (95% CI)) of various asthma outcomes in CHIS 2003 children and adults with current asthma	101
Table 26. Weighted distributions of annual pollutant averages, exceedance days, and traffic density (within 750 feet) for CHIS 2003 adults and children with asthma-like symptoms	101
Table 27. Frequencies for distance to roadway measures for CHIS 2003 adults and children with asthma- like symptoms	101
Table 28. Correlations between annual average air pollutant concentrations, exceedance measures, distance to roadways and traffic density among CHIS 2003 respondents with asthma-like symptoms	

Table 29. Prevalence of asthma-like outcomes for CHIS 2003 adults and children with asthma-like symptoms	52
Table 30. Characteristics of CHIS 2003 children and adults with asthma-like symptoms	03-104
Table 31. Disparities in weighted mean annual pollutant concentrations by various demographic characteristics in CHIS 2003 children and adults with asthma-like symptoms using bivariate analysis	105
Table 32. Disparities in weighted prevalence of asthma-like symptoms by various demographiccharacteristics in CHIS 2003 children and adults using bivariate analysis	106
Table 33 (Highlights). Associations (OR (95% CI)) for 12-month pollutant averages and asthma-like outcomes in CHIS 2003 adults and children with asthma-like symptoms	59
Table 33 (Detailed). Associations (OR (95% CI)) for 12-month pollutant averages and asthma-like outcomes in CHIS 2003 adults and children with asthma-like symptoms	107
Table 34. Associations (OR (95% CI)) for annual days exceeding air pollution standards and asthma-like outcomes comparing quartiles in CHIS 2003 adults and children with asthma-like symptoms	108
Table 35. Associations (OR (95% CI)) for traffic density/distance to roadway and asthma-like outcomes in CHIS 2003 adults and children with asthma-like symptoms	109
Table 36 (Highlights). Associations between two or more wheeze attacks and O_3 adjusting for vulnerability characteristics among CHIS adults with asthma-like symptoms	62
Table 36 (Detailed). Associations between two or more wheeze attacks and O ₃ adjusting for vulnerability characteristics among CHIS adults with asthma-like symptoms	110
Table 37 (Highlights). Associations between two or more wheeze attacks and vulnerability characteristics by O ₃ among CHIS children with asthma-like symptoms	63
Table 37 (Detailed). Associations between two or more wheeze attacks and vulnerability characteristics by O_3 among CHIS children with asthma-like symptoms	111
Table 38. Association (OR (95% C.I.)) between asthma outcomes and 12-month pollutant exposures forCHIS 2003 adults and children with current asthma stratified by length of residence	64
Table 39. Association (OR (95% C.I.)) between asthma outcomes and PM_{10} pollutant for CHIS 2003 adults with current asthma stratified by employment status	64
Table 40. Association (OR (95% C.I.)) between ED visits and 12-month pollutant exposures for 3-, 5-, and 10-mile linkage distances to monitors for CHIS 2003 adults and children with current asthma	65
Table 41. Association (OR (95% C.I.)) between 12-month pollutant averages and ED visits stratified by asthma medication use in CHIS 2003 adults with current asthma	66
Table 42. Association (OR (95% C.I.)) between 12-month pollutant averages and missing two or more days of work stratified by asthma medication use in CHIS 2003 adults with current asthma	66

Abstract

This study addresses the question: Is the disproportionate burden of asthma or asthma-like symptoms among low socioeconomic status individuals related to greater pollutant exposures, greater vulnerabilities, or both? Using Geographic Information System (GIS) software, we linked California Health Interview Survey (CHIS) 2003 respondents' residential addresses to government air monitoring stations for O₃, PM₁₀, PM_{2.5}, and NO₂. We calculated annual pollutant averages and days exceeding air quality standards and assessed traffic density and residential distance to roadways. Higher exposures were estimated for low income and racial/ethnic minority respondents with asthma for NO_2 , PM_{10} , and $PM_{2.5}$, but not O_3 . Among adults with asthma, we observed increases in adverse asthma outcomes, such as daily/weekly symptoms, asthma attacks, daily medication use, and asthma-related work absences and emergency department visits with increasing annual average pollutant concentrations. Among children with asthma, daily asthma medication use and school absences were associated with increased annual average NO₂ concentration. Similar positive associations were observed between O₃, PM₁₀, and PM_{2.5} exceedance days and asthma outcomes, mainly for adults. When adjusting for confounders, associations between pollutants and asthma outcomes persisted. Notably, racial/ethnic minority and low income respondents had greater increases in adverse asthma outcomes for similar increases in NO₂ and PM₁₀ exposures.

Executive Summary

Background

Children, the elderly (Babey, Hastert et al. 2007), racial/ethnic minorities (Meng, Babey et al. 2007), and low-income Californians (Babey, Hastert et al. 2007) suffer disproportionately from asthma burdens and asthma-like symptoms. Linking air pollutant data from ambient monitors and traffic data with California Health Interview Survey (CHIS) 2003 data, this study tested the following hypotheses: 1) Vulnerable sub-populations in California (e.g., racial/ethnic minorities and low-income individuals) with asthma or asthma-like symptoms have higher exposures to air pollution; 2) Individuals with asthma or asthma-like symptoms exposed to higher levels of air pollution are more likely to report adverse health outcomes; 3) Air pollution exposures, low socioeconomic status (SES), and certain vulnerability factors exert independent adverse effects on individuals with asthma or asthma-like symptoms; and 4) Higher pollutant exposures interact with vulnerability factors, resulting in greater air pollution impacts on asthma in vulnerable sub-populations.

Methods

We conducted a cross-sectional study linking California Health Interview Survey (CHIS) 2003 data to existing air pollutant and traffic data. We selected CHIS 2003 adult respondents ages 18 or older and child respondents ages 0-17 with self-or caregiver-reported lifetime asthma (N=5,620 adults and 1,889 children), then focused on those with current asthma (N=3,587 adults and 1,224 children). Additionally, we selected respondents without an asthma diagnosis who had asthma-like symptoms (N=4,413 adults and 1,109 children). Respondents living at their current addresses or neighborhoods for ≥9 months were included. Using Geographic Information System (GIS) software, we linked respondents' residential addresses to air monitoring stations measuring O_{3} , PM₁₀, PM_{2.5}, and/or NO₂. We calculated annual pollutant averages for the 12-months prior to respondents' interview dates and the number of federal/state exceedance days for pollutant concentrations and assessed traffic density and distance from residence to roadways as proxies for traffic-related air pollution exposure. We performed logistic regression analyses for respondents with asthma or asthma-like symptoms, separately for children and adults. We also conducted pollutant-outcome analyses adjusting for potential confounders related to vulnerability. Interaction terms were used to evaluate increased vulnerability to pollutants among sub-populations. We performed sensitivity analyses on length of residence, employment status, distance from pollutant monitors, and asthma medication use.

Results

We observed disparities in exposure to air pollutants by income and race/ethnicity among Californians with current asthma. Adults and children with current asthma living below 200% of the federal poverty level (FPL) had higher annual average exposures to NO₂, PM₁₀, and PM_{2.5} than those living at or above 400% of the FPL. Latino and African American adults and children had higher PM_{2.5} annual averages than whites; Latino and Asian/Pacific Islander children had higher NO₂ annual averages than white children. However, white adults and children had higher exposures to O₃ than Latinos, African Americans, and Asian/Pacific Islanders. Similar exposure disparities were seen for respondents with asthma-like symptoms.

We observed positive associations between increased annual average pollutant concentrations for O_3 , PM_{10} , and $PM_{2.5}$ and adverse asthma outcomes among adults, such as frequent asthma symptoms (daily/weekly symptoms), asthma attacks or episodes, use of daily

medication to control asthma, work absences, and asthma-related emergency department (ED) visits. Among children, use of daily asthma medication and missing 2 or more days of school/day care were associated with higher exposures to NO₂. We also observed positive associations between asthma outcomes and the number of federal or state exceedance days for O₃, PM_{2.5} and PM₁₀. In adults with asthma-like symptoms, O₃, PM₁₀, and PM_{2.5} increases were associated with increased odds of asthma-like outcomes, and among children, O₃ and NO₂ were associated with increased asthma-like outcomes. We detected few associations between traffic density and distance to roadways and asthma or asthma-like outcomes.

When adjusting for vulnerability factors as possible confounders, such as access to care, risk behaviors, asthma severity and indoor triggers, positive associations between criteria pollutants and asthma outcomes persisted, as did positive associations between asthma outcomes and belonging to minority or low income sub-populations. Having heart disease and having adult onset asthma increased odds for visiting the ED and using daily asthma medication among those with current asthma. Notably, positive interactions were observed between criteria pollutant exposure and race/ethnicity. Specifically, African American and Asian/PI/other adults had a greater increase in odds of missing two or more days of work due to asthma compared to white adults with the same increase in annual average NO₂. African American adults also had greater increases in odds of experiencing daily/weekly asthma symptoms for the same increase in NO₂. Compared to white children, American Indian/Alaska Native and Asian/PI/other children had a greater increase in odds of experiencing daily/weekly asthma symptoms for the same increase in NO_2 . Latino children had a greater increase in odds of using daily asthma medication for the same increase in PM₁₀, and African-American and Asian/PI/other children had greater increases in odds of daily/weekly symptoms than white children for a comparable increase in PM₁₀. We also found that children living below 200% of the FPL had a greater increase in odds of ED visit compared to those living at or above 400% of the FPL for the same increase in NO₂. Conclusions

In conclusion, we observed disparities in exposure to air pollutants by federal poverty level and race/ethnicity among Californians with current asthma. In general, higher annual average exposures were observed for lower income groups and racial/ethnic minorities for NO₂, PM₁₀, and PM_{2.5}. We observed increases in the odds of having adverse asthma outcomes with increasing annual average pollutant concentrations for O₃, PM₁₀, and PM_{2.5} among adults and NO₂ among children with current asthma. We also observed associations with the number of days exceeding federal or state standards for O₃, PM₁₀, and PM_{2.5}. In respondents with asthma-like symptoms, positive associations were observed between the odds of having asthma-like symptoms and annual air pollutant averages and exceedance measures. When adjusting for potential confounders, pollutant associations for O₃, PM₁₀, and PM_{2.5} remained. Novel findings include interactions for NO₂ and PM₁₀, suggesting that racial/ethnic minority and low-income groups have greater increases in adverse asthma outcomes with similar increases in exposures.

These results provide a more comprehensive understanding of the impact of air pollution on Californians suffering from asthma and asthma-like symptoms and indicate that current air quality in California needs to be further improved in order to protect California residents, especially those in vulnerable sub-populations.

I. INTRODUCTION

Scope and Purpose

In October 2003, the California Air Resources Board (CARB) developed a Vulnerable Population Research Program that aims to protect all California residents, particularly individuals considered especially at risk, to the adverse effects of air pollution. For the first time, low-income neighborhoods and communities of color were designated as vulnerable subpopulations, in addition to children, the elderly, people with preexisting cardiovascular and/or pulmonary disease, and individuals who spend a large amount of time outdoors. This research was designed to provide much needed information on the effects of long-term air pollution exposure on severe asthma and asthma-like symptoms in vulnerable populations.

According to the estimates from the 2003 California Health Interview Survey (CHIS 2003), 4.5 million Californians suffer from asthma and an additional 3.4 million Californians suffer from asthma-like symptoms (Babey, Meng et al. 2006). Although asthma cannot be cured, most individuals with asthma can become symptom-free by avoiding or controlling environmental triggers and by taking proper medications. However, children, the elderly (Babey, Hastert et al. 2007), racial/ethnic minorities (Meng, Babey et al. 2007), and low-income Californians (Babey, Hastert et al. 2007) suffer disproportionately from asthma and asthma-like symptoms. Previous studies also indicate some sub-populations are more affected by pollutants due to increased susceptibility or higher exposures. For instance, children are especially susceptible to the damaging effects of O₃ in part because their lungs are still developing , which makes them more sensitive to pollutant damage (Gilliland, McConnell et al. 1999). Minorities may be more affected due to differential exposure to air pollution and vulnerability (Clark, Brown et al. 1999; Ostro, Lipsett et al. 2001; Mortimer, Neas et al. 2002; Perera, Illman et al. 2002). More studies need to be conducted on other vulnerable populations, such as those with low socioeconomic status (O'Neill, Jerrett et al. 2003).

The overall goal of the proposed project was to examine whether the disproportionate asthma burden among these California sub-populations (e.g., low-income and ethnic minorities) is related to higher exposure to air pollutants, greater vulnerability due to low socioeconomic status (SES) related factors, or both. Here we defined "vulnerability" based on a "triple-jeopardy" theory (Jerrett, Burnett et al. 2001; Levy, Greco et al. 2002). We tested hypotheses, namely: 1) among adults with current asthma, certain sub-populations (e.g., groups with low SES) are exposed to higher levels of air pollution; 2) these individuals already have poorer health due to social determinants, such as poverty, lack of adequate health care, and psychosocial stress; and 3) this combination of higher air pollution exposures and poorer baseline health interacts, resulting in greater air pollution impacts on asthma in these vulnerable groups. No routine asthma surveillance system, such as a registry, exists in California except for mortality statistics and hospital discharge/emergency department (ED) visit data. CHIS data makes it possible, for the first time, to relate exposure to health outcome data for a large number of people with asthma (larger than the National Health Interview Survey (NHIS)). The CHIS sample is representative of California's non-institutionalized population and asks many standard health questions from the NHIS. Additionally, CHIS provides a unique

opportunity to study the adverse effects of air pollution because it collects information on residential address and duration of residence in the same neighborhood.

The objectives of this study were to: 1) characterize air pollution exposures by linking geocoded CHIS 2003 respondent residence locations to appropriate air monitoring stations and calculating annual average air pollutant concentrations (O₃, PM₁₀, PM_{2.5}, and NO₂) from the nearest monitoring station (e.g., 10 km) or interpolated pollutant concentrations for a maximum of three monitoring stations within a specified radius (e.g., 50 km), and exceedance frequencies (e.g., number of days or hours above a certain cut-off point); 2) develop GIS-based residential annual average traffic density and distance to major roadways/freeways measures using data from the California Department of Transportation (Caltrans) for each CHIS 2003 respondent; 3) identify sub-populations (e.g., low-income, children, the elderly, rural/urban residents, and ethnic minorities) that have higher exposures to a single pollutant or pollutant mixes, and/or potentially greater vulnerability to these exposures; 4) determine whether the disproportionate burden of asthma or asthma-like symptoms among low SES individuals is associated with greater pollutant exposures, greater vulnerabilities, or both, including evaluating factors that contribute to or modify the impact of air pollution on these subpopulations; and 5) develop a report and disseminate the results to policy makers, public health and environmental agencies, community-based organizations, and the public.

Previous Studies on Asthma Exacerbations and Pollutant Exposures among Vulnerable Populations

Pollutant Impacts on Asthma

A wide-ranging spectrum of negative heath effects related to air pollution was recognized by the American Thoracic Society. These effects are ordered in the pyramid below according to their frequency of occurrence within the population of California (Figure 1). Though previous studies have mostly focused on the more extreme outcomes, such as hospitalizations and deaths, these outcomes have impacted a relatively small fraction of the population. When we consider that the ratio of asthma diagnoses to asthma-related deaths is about 10,000 to 1, it is clear that these less severe health effects are equally in need of attention because of the large of number of people they affect. As noted in Figure 1, an estimated 5.08 million people in the state of California live with an asthma diagnosis based on CHIS 2009 data. Of those, 2.7 million were affected by asthma-related symptoms and 1.2 million had to take a daily asthma medication; 637,000 missed school or work due to asthma, and 763,000 visited the doctor 9 or more times for any reason. Emergency department/urgent care visits due to asthma were reported by over 302,000 of those with an asthma diagnosis; 36,000 of those were hospitalized (data from the Office of Statewide Health Planning and Development, California), and 420 died in 2009 (data from the Department of Public Health, California). This study provides a unique and much needed opportunity to assess the spectrum of the impact of air pollution on all people with asthma or asthma-like symptoms in California.

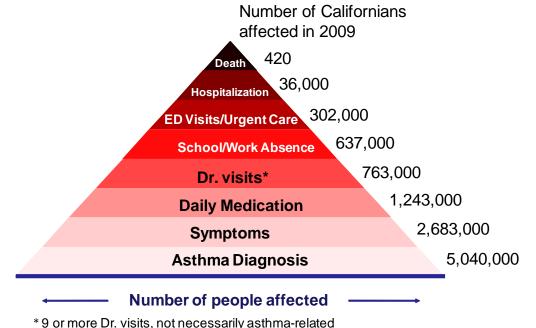


Figure 1. Pyramid of Asthma Burden in California (Adapted from the American Thoracic Society)

Data Sources: State of California, Department of Public Health, Death Records; Office of Statewide Health Planning and Development, CHIS 2009

Over the past few decades, studies have linked ozone (O_3) , nitrogen dioxide (NO_2) , and particulate matter (PM) exposure to negative respiratory health outcomes, including reduced lung function, respiratory inflammation, and lung congestion. In addition to these outcomes, studies connect greater air pollutant exposure to increases in asthma attacks and other asthmarelated negative health events, such as ED/hospital visits, medication use, and absences from school. The following is a brief summary of the existing literature.

Increased Asthma Symptoms and Medication Use: Exposure to criteria pollutants is associated with increases in asthma symptoms and medication use. A study by Thurston and Lippmann observing asthma outcomes in children with moderate to severe asthma attending summer camp found that the children had 40% more asthma symptoms when O_3 levels increased from an average O_3 level of 84 ppb to 160 ppb (Thurston, Lippmann et al. 1997). Additionally, elevations in O_3 levels have been associated with increases in medication use among children (Gent, Triche et al. 2003; Yang, Holz et al. 2005).

Moreover, in panel studies among children with asthma, increased PM exposure was associated with increases in asthma symptoms (Ward and Ayres 2004). A study based in Southern California found that as exposure to PM increased, children that exhibited the most symptoms at baseline and were not taking asthma medication were most likely to experience increased asthma symptoms (Delfino, Zeiger et al. 1998). Similar associations between PM and asthma medication use have been noted by others (Pope, Dockery et al. 1991; Slaughter, Lumley et al. 2003; Kerkhof, Postma et al. 2010).

Similarly, studies indicated a positive relationship between NO₂ exposure and increases in both asthma symptoms (Mortimer, Neas et al. 2002; Delfino, Gong et al. 2003; McConnell, Berhane et al. 2003; Gauderman, Avol et al. 2005; Schildcrout, Sheppard et al. 2006) and

medication use (Gauderman, Avol et al. 2005; Schildcrout, Sheppard et al. 2006). For example, in a study of 208 children in 10 cities in Southern California, children were twice as likely to take asthma medication with increasing NO₂ exposure (Gauderman, Avol et al. 2005).

Increased School Absences: Increases in criteria pollutant levels coincide with increases in students' absence from school. A study performed in southern California found that a short-term, 20 ppb spike in O_3 levels was associated with an 82.9% increase in student absences due to respiratory illness (Gilliland, Berhane et al. 2001). Likewise, increased PM and NO_2 levels were associated with increases in school absences among inner city children with asthma from 7 cities across the U.S. (O'Connor, Neas et al. 2008).

Increased Emergency Department (ED) visits/Hospitalizations: Increases in exposure to criteria pollutants, such as O₃, have been linked to increases in ED visits and hospitalizations due to asthma-related events (Romieu, Meneses et al. 1995; Anderson, Ponce de Leon et al. 1998; Tolbert, Mulholland et al. 2000; Lin, Liu et al. 2008; Moore, Neugebauer et al. 2008; Meng, Rull et al. 2010). White et. al compared the number of ED visits due to respiratory problems to fluctuations in O₃ levels and noted a 37% increase in the number of visits to the ED subsequent to O₃ level increases (White, Etzel et al. 1994). The direct relationship between O₃ and ED visits/hospitalizations has been documented in both directions; as O₃ levels decrease, so do the number of asthma-related hospital visits. Following a change in traffic patterns due to the 1996 Summer Olympics and the resulting decrease in O₃ exposure, Atlanta children experienced a 42% decline in health care utilization for asthma (Friedman, Powell et al. 2001).

Furthermore, the number of ED visits has been shown to escalate as PM exposure increases. In a study among inner city children in Seattle, an 11% increase in asthma-related ED visits was observed as exposure to PM_{2.5} increased (Norris, YoungPong et al. 1999). An association between daily PM2.5 and ED visits for asthma at lag days 2 and 3 was observed in the greater Tacoma, Washington area. The relative risk for lag day 2 was 1.04 and for lag day 3 was 1.03(Mar, Koenig et al. 2010).

Studies also demonstrated a positive relationship between NO₂ and ED visits/hospitalizations (Lin, Chen et al. 2003; Barnett, Williams et al. 2005; Villeneuve, Chen et al. 2007). Among them, a study in Barcelona, Spain, documented increases in ED visits corresponding with NO₂ exposure in both winter and summer months (Castellsague, Sunyer et al. 1995).

Vulnerable Populations

Air pollution affects people in all groups, spanning all ages, races, and income levels; however, the burden of the air pollution effects is not equally shared. Some sub-populations, such as low income and/or minority groups, children, and the elderly, have been shown to have higher exposures or increased risk for adverse asthma outcomes due to air pollution compared to the rest of the population.

Children: Children's physiology and activity patterns leave them more susceptible to the negative effects of air pollutants on their respiratory health (Schwartz 2004; Trasande and Thurston 2005; Bateson and Schwartz 2008). Children's lungs continue developing from birth to adolescence. Since their lungs are still developing, their respiratory extracellular lining fluid (RELF) is not as effective at protecting against the damaging effects of air pollutant penetration as the lining in adult lungs (Gilliland, McConnell et al. 1999). They are more receptive and

responsive to exposures because the surface area of their airways is smaller. Additionally, children often breath through their mouths, instead of their noses, so fewer air pollution particles are filtered out before reaching the lungs (Bateson and Schwartz 2008), compounded by the fact that children simply breathe more than adults. Higher breathing rates among children means they take in more air, and therefore potentially more air pollutants, than adults per unit of body weight (Arcus-Arth and Blaisdell 2007). In addition to physiological susceptibility, children more frequently come in contact with air pollution because they participate in outdoor activities. Children usually engage in over 5 times the amount of outdoor physical activity as adults (Wiley, Robinson et al. 1991; Wiley, Robinson et al. 1991) and do so during high O₃ periods, such as during the afternoon or summer.

Elderly: Though studies observing the effects of air pollution on asthma in the adult population are relatively rare, some studies have suggested that the elderly may be more susceptible to the effects of air pollutants. This vulnerability may be due to greater lifetime exposure and weaker immune system responses (Sandstrom, Frew et al. 2003), though studies also suggest that comorbidities, especially cardiovascular and respiratory diseases, may also contribute to increases in negative health outcomes related to asthma among the elderly population (Gouveia and Fletcher 2000; Aga, Samoli et al. 2003; Anderson, Atkinson et al. 2003; Sandstrom, Frew et al. 2003; Filleul, Rondeau et al. 2004; Gauderman, Avol et al. 2004; Meng, Wilhelm et al. 2007).

Populations with Low Socioeconomic Status: Populations with low SES have been shown to be more affected by pollutants due to their greater vulnerability or higher exposures (Clark, Brown et al. 1999; Ostro, Lipsett et al. 2001; Mortimer, Neas et al. 2002; Perera, Illman et al. 2002) Several studies reported disparities in pollution exposures by SES. For instance in California, census block groups in the lowest quartile of median family income were three times more likely to have high-traffic density than block groups in the highest income quartile (Gunier, Hertz et al. 2003). Children of color were also more likely to live in high traffic areas than white children (Gunier, Hertz et al. 2003). Studies in other states have reported low SES individuals are more likely to be exposed to O_3 (Korc 1996) and other pollutants (Neumann, Forman et al. 1998). Additionally, there is evidence that low SES populations are more affected than high SES populations when exposed to the same levels of air pollution. In Toronto, Canada, the risks of asthma-related physician visits for the low socioeconomic group were significantly greater than those for the high socioeconomic group when the two groups had comparable levels of SO_2 and $PM_{2.5}$ exposure (Burra, Moineddin et al. 2009). The high prevalence of frequent asthma symptoms among low income Californians has also been shown to be related to both higher traffic-related pollution exposures and increased vulnerability due to differences in overall health status and access to care; therefore, those in poverty appeared to be more strongly affected by heavy traffic near their residences than those above poverty (Meng, Wilhelm et al. 2008).

Minorities: Gwynn and Thurston (2001) also examined whether racial minorities are more adversely affected by ambient air pollution than their white counterparts and assessed the contribution of socioeconomic status to observed racial differences in pollution effects. They found attributable risks from air pollution (in terms of excess admissions per day per million persons) were larger for minorities than whites. However, when insurance status was used as an indicator of socioeconomic/health coverage status, higher relative risks were

indicated for the poor/working poor (i.e., those on Medicaid and the uninsured) than for those who were economically better off (i.e., the privately insured), even among non-Hispanic whites (Gwynn and Thurston 2001).

Study Hypotheses

The previous studies on asthma-related effects tend to focus on the impact of short-term (days or weeks) pollutant exposures on mortality and hospitalizations (Schwartz, Slater et al. 1993; Anderson, Ponce de Leon et al. 1998; Delfino, Murphy-Moulton et al. 1998; Sunyer, Basagana et al. 2002). However, death and hospitalizations represent just the tip of the iceberg of the overall asthma burden. More studies are needed to examine many outcome measures that affect a much larger population, such as ED visits, medication use, frequency of asthma symptoms, and school/work days missed due to asthma. Also, most of the studies have focused on the air pollution impacts on children; limited numbers of studies are available on the adult population. Previous studies indicate that vulnerable subpopulations, such as low-income and communities of color in California, have higher exposures to air pollution. Studies have also shown that children, the elderly (Babey, Hastert et al. 2007), racial/ethnic minorities (Meng, Babey et al. 2007), and low-income Californians (Babey, Hastert et al. 2007) suffer disproportionately from asthma and asthma-like symptoms. More studies are needed to examine whether the disproportionate asthma burden among these subpopulations is related to higher exposure to air pollutants, greater vulnerability due to low socioeconomic status and associated factors such as compromised health status, poor access to care, and behavioral risk factors, or to a combination of these factors. This study was designed to address the above mentioned gaps in the literature, and specifically to provide much needed information on the effects of long-term air pollution exposure on asthma symptoms in especially vulnerable subpopulations, such as children, the elderly, racial/ethnic minorities, and low-income Californians. As mentioned above, we defined "vulnerability" based on a "triple-jeopardy" theory (Jerrett, Burnett et al. 2001; Levy, Greco et al. 2002). Our specific study hypotheses were:

- Among those with asthma or asthma-like symptoms, vulnerable sub-populations in California (e.g., racial/ethnic minorities and low-income individuals) have higher exposures to air pollution;
- 2) Individuals with asthma exposed to higher levels of air pollution are more likely to report adverse asthma outcomes, such as: asthma attacks or episodes, asthma emergency department (ED) visits, use of daily medication to control asthma, school or work absences, and daily/weekly asthma symptoms. Individuals with asthma-like symptoms (defined here as individuals without physician-diagnosed asthma but reported wheezing) and exposed to higher levels of air pollution are more likely to report: wheezing or whistling sound in the chest, attacks of wheezing or whistling, seeking medical care for such symptoms, and work/school days missed due to such symptoms;
- 3) Air pollution exposures, low socioeconomic status (SES), and certain "vulnerability factors" associated with low SES, exert independent adverse effects on individuals with asthma or asthma-like symptoms. The vulnerability factors examined were: co-morbidity (such as diabetes or heart disease); access to care (health insurance status, usual source of care); disease management/asthma severity (taking daily medication to

control asthma, receiving an asthma management plan); **health behaviors** (being overweight/obese, smoking, walking outdoor, engaging in physical activity); **exposure to indoor triggers** (environmental tobacco smoke and indoor allergens, cockroaches, dogs and cats); and **housing conditions** (single family dwelling or apartment, crowding); and

4) Higher pollutant exposures interact with these vulnerability factors resulting in greater air pollution impacts on asthma in vulnerable sub-populations (racial/ethnic minorities, low-income individuals).

Background on the California Health Interview Survey (CHIS) 2003

CHIS is a population-based random-digit dial telephone survey of California's population that is conducted every two years. First conducted in 2001, CHIS is the largest health survey ever conducted in any state and one of the largest health surveys in the nation. CHIS is a collaborative project of the UCLA Center for Health Policy Research, the California Department of Health Services, and the Public Health Institute. CHIS collects extensive information for all age groups on health status, health conditions, health-related behaviors, health insurance coverage, access to health care services, and other health and development issues. The goal is to provide health planners, policymakers, state, county and city health agencies, and community organizations with information on the health and health care needs facing California's diverse population.

CHIS provides a representative sample of the state's non-institutionalized population. The CHIS sample is designed to meet two broad objectives: 1) provide local-level estimates for counties with populations of 100,000 or more; and 2) provide statewide estimates for California's overall population and its larger racial/ethnic groups, as well as for several smaller ethnic groups. To address the first objective, the sample was allocated by large counties (those with a population over 100,000) and aggregates of smaller counties (those with a population less than 100,000) with supplemental samples of selected populations and cities. To accomplish the second objective — assuring adequate sample sizes for larger racial/ethnic groups and some smaller ones, CHIS 2001 used two strategies. First, sufficient samples were allocated to the larger urban counties in which the populations of color disproportionately reside to generate adequate samples for major ethnic groups of color. Second, supplemental samples were designed to improve the sample size and precision of the estimates for specific ethnic groups. To capture the rich diversity of the California population, interviews were conducted in six languages: English, Spanish, Chinese (Mandarin and Cantonese dialects), Vietnamese, Korean, and Khmer (Cambodian). These languages were chosen based on research that identified these as the languages that would cover the largest number of Californians who did not speak English or did not speak English well enough to participate in an interview. As a result, CHIS allows us to study disparities in health status among California's most-represented racial and ethnic groups.

CHIS had a multi-stage sample design. First, the state was divided into 41 geographic sampling strata, including 33 single-county strata and 8 groups that included the 25 other counties with small population sizes. Second, within each geographic stratum, households were selected through random-digit dial (RDD), and within each household, an adult (age 18 and over) respondent was randomly selected. In addition, in those households with children (under age 12) or adolescents (ages 12-17) associated with the sampled adult, one child and one

adolescent were randomly sampled, so up to three interviews could have been completed in each sampled household. The sampled adult was interviewed, and the parent or guardian most knowledgeable about the health and care of the sampled child was interviewed. The sampled adolescent responded for him or herself, but only after a parent or guardian gave permission for the interview. Adjustment factors for the selection mechanisms have been incorporated into the data's sample weights.

CHIS collects information on major chronic diseases, such as asthma, heart disease, hypertension, cancer, arthritis and diabetes. Since many chronic diseases have multiple causes and are influenced by many factors, the development and control of these chronic diseases can be very complex. Therefore, it is important to examine the relationship between disease and exposure to hazards after controlling for confounding factors. For example, control of asthma exacerbations may not only relate to reducing exposures to environmental triggers, but also to improving access to timely and quality healthcare. In this regard, CHIS has advantages over many administrative data sources such as vital statistics, hospital discharge data, cancer registry data or claim data. These administrative data sets usually lack detailed information related to socioeconomic status, access to healthcare, and health risk behaviors. However, CHIS 2001 collected many measures for health outcomes, access to care, and socio-demographic information. Beginning with CHIS 2003, CHIS has collected residential address information for respondents. This geographic information allows us to link CHIS respondents' data to the air pollution data collected at fixed monitoring stations, as well as traffic data or other environmental hazard data. This linkage also allows us to assess the health effects of exposure to environmental hazards. These kinds of linkages are usually not possible or meaningful for NHIS and BRFSS since these surveys are not designed to provide information below the state level. Hospital Discharge data does provide patients' zip code information. However, this data source only contains information about people admitted to the hospital and is not a source of information on disease prevalence.

Westat, a private firm that specializes in statistical research and large-scale sample surveys, conducted the CHIS 2003 data collection. The overall response rate for CHIS 2003 is a composite of the screener completion rate (i.e., success in introducing the survey to a household and randomly selecting an adult to be interviewed), and the extended interview completion rate (i.e., success in getting the selected person to complete the full interview). In 2003, the screener completion rate was 55.9 percent, and the rate was higher for those households that could be sent a letter introducing them to the survey in advance. The extended interview completion rate was 60.0 percent for the adult survey. The CHIS response rate is comparable to response rates of other scientific telephone surveys in California, such as the California Behavioral Risk Factor Surveillance System (BRFSS) survey.

In summary, CHIS data provide the first-ever opportunity to provide population-based information examining the association between exposure to air pollution and adverse respiratory health outcomes while also incorporating socioeconomic status, disease management/asthma severity, risk factors such as smoking and obesity, and access to care. Such an effort would usually be very time-consuming and costly. The availability of CHIS data made this type of study possible with relatively modest means in terms of time and resources.

II. MATERIALS AND METHODS

Study Design

To investigate the effects of air pollution on those with asthma and asthma-like symptoms in California and to identify potentially vulnerable subgroups, we conducted a cross-sectional study linking California Health Interview Survey (CHIS) 2003 data to existing air pollutant and traffic data. First, we selected CHIS 2003 respondents with current asthma and those not diagnosed with asthma but reported experiencing asthma-like symptoms. We linked these respondents' residential addresses to the nearest government air monitoring station for each of four criteria pollutants (O₃, PM₁₀, PM_{2.5}, and NO₂). We then calculated annual pollutant averages for the 12-month period prior to respondents' CHIS interview dates. We also assessed traffic density and distance to roadways as proxies for traffic-related air pollution exposure. We performed univariate and multivariate logistic regression analyses to examine associations between air pollution and asthma outcomes. Interaction terms were used to evaluate increased vulnerability to pollutants among sub-populations.

Study Population

CHIS 2003 interviews were conducted from August 2003 to February 2004. CHIS 2003 collected information on approximately 54,500 non-institutionalized Californians, including 12,500 children (<18 years of age). Respondents were asked if they had ever been told they have asthma by a doctor and at what age. In addition to asking about asthma outcomes, CHIS respondents never diagnosed with asthma were asked if they experienced any wheezing or whistling sound in their chests in the past 12 months. About 15% (n=1,889) of children (<18 years of age) and 12% (n=5,620) of adults reported a physician diagnosis of asthma at some point in their lives, here defined as "lifetime asthma" (Table 1). Among those with a lifetime asthma diagnosis, 4,811 (3,587 adults and 1,224 children) had "current asthma", defined as reporting that they still have asthma and/or that they had an asthma attack in the year prior to their CHIS interview. An additional 10% of Californians not reporting to ever have been diagnosed with asthma (n=5,522, 4,413 adults and 1,109 children) reported experiencing asthma-like symptoms, i.e., wheezing or whistling in the chest in the past year. We restricted our study population to those who lived in the same home or neighborhood for at least 9 months and some analyses were also limited to the respondents with geocodable home addresses. Three hundred and fifteen respondents with current asthma and 442 respondents with asthma-like symptoms were excluded because they did not live in the same neighborhood for at least 9 months. Residential geocodes were based on address (83.8%), nearest crossstreets (4.2%), or zip code (11.9%). For traffic density and distance to roadway analyses, geocodes based on residential zip code were excluded (n=537). For air pollution analyses, only respondents living within 5 miles of an air monitoring station were included to reduce potential exposure misclassification. However, sensitivity analyses were conducted for 3-, 5-, and 10-mile linkage distances.

199118-88010	679'E	833
Geocoded by address or nearest		
boorhoddgian ni srfnom e s	ť156	156
smotqmy2 s Ai.1-smdt sA	t'tI3	601'I
199118-88010	5,941	810,1
Geocoded by address or nearest		
boorhoddgiən ni srlnom 9 s	3'343	1,153
Surrent Asthma	L85'E	1,224
toss-street	\$65't	6 <i>LS</i> ʻI
Geocoded by address or nearest		
boorhoddgiən ni sthnom 9 s	2,236	£8 <i>L</i> 'I
smdtzA 9mit9fi.]	2'950	688ʻI
	stlubA	Children
	stlubA	nərblid"

Table 1. Number of CHIS 2003 adults and children with asthma or asthma-like symptoms

Measures of Air Pollutant Exposure

Annual air pollutant averages were calculated for the 12-month period prior to each Annual Average Air Pollution Concentrations for O₃, PM₂₀, PM_{2.5}, and NO₂

from the CARB 2008 Air Quality Data DVD (Table 2). cases residential 5-digit zip codes. Pollutant averages were estimated using air pollution data respondents' residential locations were geocoded based on nearest cross streets, and in some performed using ESRI ArcGIS software. In cases where residential address was not available, monitoring station within 20 miles of their residential addresses. All mapping work was respondent's CHIS interview date by linking respondents to the nearest government air

iourly, we used the CARB calculated 24-hr averages)	bW ^{5:2} ا
l2-month averages of daily (24-hour) averages (most stations have 24-hour averages; for the few stations that measure	& 01Mq
L-month averages of taily (24-hour) averages (calculated using hourly data)	^z ON
((T28XMZO ,1db. agylb) soulev mumixam yliab nuod 8 10 sogarova d1nom-2)	O ³
zuposure measure	Pollutant 1
געטניטט אסטמנשני פאפראפא באוכטאראי איז איז איז איז איז איז איז איז איז א	au .z alubi

Table 2. Description of pollutating averages calculated for CHD 2003 respondents

For NO₂, we estimated daily (24-hr) averages based on hourly measurement data. We monthly averages, requiring at least 50% of daily values to be available (25 daily values/month). name OZMX8SD. To ensure sufficient monitoring data were available, we first estimated For O_3 , annual averages were based on daily 8-hr maximums provided by CARB (variable

.dines/month. month, requiring at least 50% of daily values to be available per month, i.e. 15 daily value for the 24-hr average for that day. Then, we averaged the NO2 24-hr averages for each values be available during 8am-8pm. If these two criteria were not met, we recorded a missing required at least 50% of hourly values be available per 24-hr period and at least 50% of hourly

monitor frequency, i.e., at least 3 (out of 5) daily values per month for stations that monitored averages. For PM10, we required that at least 50% of expected values be available for each respectively. For the few stations with hourly PM data, we used CARB's calculated daily (24-hr) Most PM stations recorded 24-hr averages every 6 and 3 days for PM_{2.5},

every 6 days and at least 15 daily values per month for stations that monitored every day. For $PM_{2.5}$, we required at least 5 (out of 10) daily values to be available per month for stations that monitored every 3 days and at least 15 daily values per month for stations that monitored every day.

Some PM stations had collocated (multiple) monitors. In these cases, we checked the recorded data for each monitor to determine whether it met the above sufficiency criteria. If both monitors met the criteria, we averaged all available daily measures from both stations for the given month. If only one monitor met the criteria, then we used data from that monitor.

Finally, annual averages were then estimated based on monthly averages for subjects who had 12 monthly values available. For all pollutants, if data did not meet the sufficiency criteria defined above, we searched to see if there was another monitor measuring that pollutant within 20 miles. If a more distant station had more complete data that met the sufficiency criteria, data from that station was used to calculate exposure averages. We generated variables to record if there was no station available within 20 miles, and which station was used to generate the exposure average. We also recorded the distance to the station used to estimate the average.

We further restricted our study population to individuals residing within a relatively close proximity (5 miles \approx 8 km) to a monitoring station, after sensitivity analyses were conducted for 3-, 5-, and 10-mile linkage distances.

Exceedances of Federal and State Standards

Annual exceedances of federal and state standards for O₃, PM₁₀, PM_{2.5}, and NO₂ were calculated for the 12-month period prior to each respondent's CHIS interview date, again linking respondents to the nearest government air monitoring station within 20 miles of their residential addresses (Table 3).

Exceedance measure	Description
O ₃ 1-hr (State)	Number of days in 12-months prior to interview date where 1-hour daily ozone max (OZMAX1HR) >0.09 ppm
O ₃ 8-hr (State)	Number of days in 12-months prior to interview date where 8-hour daily ozone max (OZMX8ST) >0.070 ppm
O ₃ 8-hr (Federal)	Number of days in 12-months prior to interview date where 8-hour daily ozone max (OZMX8ST) >0.08 ppm
NO ₂ 1-hr (State)	Number of days in 12-months prior to interview date where 1-hr daily NO2 max (NO2MAX1H) >0.18 ppm
PM ₁₀ 24-hr (State)	Number of days in 12-months prior to interview date where 24-hour average $PM_{10} > 50 \text{ ug/m3}$
PM ₁₀ 24-hr (Federal)	Number of days in 12-months prior to interview date where 24-hour average $PM_{10} > 150 \text{ ug/m}3$
PM _{2.5} 24-hr (federal)	Number of days in 12-months prior to interview date where where 24-hour average $PM_{2.5} > 35 \text{ ug/m}3$

Table 3. List of exceedance exposure measures calculated for CHIS 2003 respondents

For NO₂ and O₃, we used 1-hr and 8-hr daily maximum values provided by CARB to estimate number of exceedance days, i.e., days above state and federal standards. For NO₂, the number of exceedance days was counted where NO2MAX1H>0.18 ppm for the state 1-hour standard. There is no equivalent federal standard. Similar to the annual average air pollution averages, we required at least 50% of daily values per month to be available to generate a nonmissing monthly count value. Because almost 100% of the study population had no days exceeding the NO₂ standard, this measure was not used in the analyses. For O₃, the number of exceedance days was counted where OZMAX1HR>0.09 ppm for the state 1-hr standard. There is no federal 1-hr standard. We also counted exceedance days where OZMX8ST>0.070 ppm for the state 8-hr standard and where OZMX8ST>0.08 ppm for the federal 8-hr standard. Again, we required at least 50% of daily values per month be available. The O₃ federal 8-hr standard was not used in the regression analyses comparing quartiles because more than 25% had a value of 0, resulting in having no < 25th percentile reference group to use.

For PM_{10} , we counted the number of days where 24-hr averages>50 µg/m³ (state 24-hr standard) and 24-hr average>150 µg/m³ (federal 24-hr standard), requiring at least 50% of expected values for each monitor frequency (i.e., at least 3 (out of 5) daily values per month for stations that monitored every 6 days and at least 15 daily values per month for stations that monitored every day.

For PM_{2.5}, we counted the number of days where 24-hr averages>35 μ g/m³ for the federal 24-hr standard. There is no state 24-hr standard. We required at least 50% of expected values for each monitor frequency (i.e., at least 5 (out of 10) daily values per month for stations that monitored every 3 days and at least 15 daily values per month for stations that monitored every 4ay.

For PM stations with collocated monitors, we checked whether each station met the above sufficiency criteria. If both monitors met the criteria, we averaged available daily measures from both stations for the given month. If only one monitor met the criteria, then we used the data from that monitor.

If data were sufficient, we took the sum of monthly counts to generate final annual exceedance counts for each pollutant. If data did not meet the sufficiency criteria defined above, we searched to see if there was another monitor measuring that pollutant within 20 miles. If a more distant station had more complete data, that station was used to calculate the exceedance value. Again, information was recorded on distance to station and whether the closest or a more distant station was used due to implementation of the sufficiency criteria.

Interpolated Pollutant Concentrations

We originally proposed to interpolate air pollution measurement data from monitoring stations assigned to residential locations in rural areas using inverse distance weighting and a maximum of three monitoring stations for each interpolation. However, even expanding the interpolation radius out to 10 miles, only a small percent of rural subjects (9% (n=48), 21% (n=177), 14% (n=120) and 5% (n=37) for NO₂, O₃, PM₁₀ and PM_{2.5}, respectively) had more than one monitoring station available to inform such modeling. Since interpolation would not be relevant for \geq 80% of the rural subjects, even with a large 10 mile radius, we excluded this exposure modeling method.

Measures of Traffic Exposure

We generated several measures based on distance to and traffic levels on roadways near CHIS respondent homes as proxies for traffic exhaust exposures. We estimated traffic density within 500, 750, and 1000 feet around each subject's home location using Tele Atlas' Dynamap traffic count data from Spatial Insights Inc., Bethesda, MD. These data were imputed to all road segments in the state based on roadway type. We also calculated the distance from each home to the nearest interstate highway, state highway, and major road using the Tele Atlas Dynamap 2000 roadway map. All work was completed using ESRI's ArcGIS software.

State-wide Imputation of Tele Atlas Traffic Data

We collaborated with Drs. Michael Jerrett and Jason Su at UC Berkeley to use Tele Atlas' Dynamap data (Spatial Insights Inc., Bethesda, MD) to derive a state-wide traffic count map for estimating residential traffic density. We used an imputation method to attribute available measured traffic counts to un-counted road segments in the state. We used Tele Atlas Dynamap 2000 as our roadway map for the imputation because the underlying road network had the most accurate spatial representation when compared to digital orthophotos. The Tele Atlas Dynamap traffic data (in the form of annual average daily traffic or AADT) were combined into a mosaic from individual county files and repeated road segments were removed. Measured traffic counts were available for 2.0% of the road segments in California (56734 out of 2784428 segments) during the period from 1987 to 2005 (Table 4). For the imputation, the median traffic count from measured road segments within a given road category was assigned to un-counted road segments within the same category. The road feature classification codes (FCC) were aggregated into the following seven road categories for the imputation: (1) primary road with limited access (i.e., interstate highway: A1), (2) primary road without limited access (i.e., state highway: A2), (3) secondary and connecting road (i.e., major road: A3), (4) local, neighborhood or rural road (A4), (5) vehicle trail (A5), (6) road ramp (A6), and (7) bicycle, pedestrian trail or drive way (A7).

ti anne uata	- State U							
Road		Traffic volume measurements					Tele Atlas data	
category ^a	# roads	Minimum	Maximum	Mean	Median	Std	# roads	%
A1	6076	1300	210500	56229.93	46500	40894.38	76286	7.96
A2	3419	210	76000	13154.88	11150	10406.72	44430	7.70
A3	27242	10	239000	12253	10463	9342.19	442460	6.16
A4	19824	1	88680	4003.83	2317	4860.98	1965782	1.01
A5	3	564	2100	1092.67	614	872.73	56049	0.01
A6	158	906	210500	25983.21	14150	32918.15	106883	0.15
A7	12	95	29900	6576.42	1280	10559.1	92538	0.01
Total:	56734						2784428	2.04

Table 4. Distribution of traffic volumes for major roadway categories based on Tele Atlas Dynamap traffic data – State of California

^aA1: Primary highway with limited access; A2: primary road without limited access; A3: secondary and connecting road; A4: local, neighborhood and rural road; A5: vehicular trail; A6: road access ramp; A7: road as other thoroughfare.

Residential Traffic Density

Mapped home locations for CHIS 2003 respondents were then overlaid with the Tele Atlas Dynamap 2000 roadway map containing the imputed traffic count data. We drew 500-, 750-, and 1000-foot buffers around each subject's home location and identified all roadways within these buffers. Similar to Gunier et al.(Gunier, Hertz et al. 2003) and Reynolds et al.(Reynolds, Von Behren et al. 2004), the traffic density value for each subject was estimated by first calculating the Vehicle Meters Traveled (VMT) for each road segment within the buffered area. VMT was estimated by multiplying the AADT value by the corresponding road segment length. Traffic density was then calculated as the sum of the VMT for all road segments in the buffer divided by the area of the buffer, i.e.,

$$TD = \sum (AADT X L)/A_B$$
,

where TD is traffic density (vehicles x meters/day/meters²), AADT the annual average daily traffic count (vehicles/day), L the length of roadway segment (meters), and A_B the area of the buffer: 500 ft (152.4 m): 72966 m²; 750 ft (228.6 m): 164173 m²; 1000 ft (304.8 m): 291864 m².

Distance to Roadways

Again using the Tele Atlas Dynamap 2000 roadway map, we also calculated distance from mapped home locations to nearest interstate highways, state highways and major roads. Distance to roadway measures do not rely on the availability of traffic data near respondents' residences and, therefore, can be calculated for respondents without using imputation. Also, freeways and highways may be particularly important exposures for those with respiratory problems, since they have more diesel truck traffic and higher traffic volumes than smaller roads. For these analyses, we determined the distance in meters from subjects' homes to the nearest interstate highway, state highway, and major road (see Table 5 for a description of roadway groupings).

Tele Atlas FCC code	Tele Atlas Description	Our grouping	
A10	Primary interstate highway, major category	Interstate highways	
A11	Primary limited access or interstate highway, unseparated	Interstate highways	
A12	Primary limited access or interstate highway, unseparated, in	Interstate highways	
A15	Primary limited access or interstate highway, separated	Interstate highways	
A16	Primary limited access or interstate highway, separated, in	Interstate highways	
A17	Primary limited access or interstate highway, separated,	Interstate highways	
A20	Primary US and State highways, major category	State highways	
A21	Primary US and State highways, unseparated	State highways	
A22	Primary US and State highways, unseparated, in tunnel	State highways	
A25	Primary US and State highways, separated	State highways	
A26	Primary US and State highways, separated, tunnel	State highways	
A27	Primary US and State highways, separated, underpassing	State highways	
A30	Secondary State and County highways, major category	Major road	
A31	Secondary State and County highways, unseparated	Major road	
A32	Secondary State and County highways, unseparated, in tunnel	Major road	
A33	Secondary State and County highways, unseparated,	Major road	
A34	Secondary State and County highways, unseparated, with rail	Major road	
A35	Secondary State and County highways, separated	Major road	
A36	Secondary State and County highways, separated, in tunnel	Major road	
A37	Secondary State and County highways, separated, underpassing	Major road	
A38	Secondary State and County highways, separated, with center	Major road	

Table 5. Tele Atlas roadway groupings for distance to roadway calculations

Respiratory Health Outcomes in Respondents with Diagnosed and Undiagnosed Asthma

CHIS collected information regarding respiratory health outcomes from respondents with and without a diagnosis of asthma. Respondents with current asthma were asked to report *how often have you had asthma symptoms such as coughing, wheezing, shortness of breath, chest tightness or phlegm (not at all, less than every month, every month, every week, or every day)* and whether or not they experienced the following asthma-related health outcomes in the 12 months prior to their CHIS interview date: ED or urgent care visits, use of daily medication, and missed day care/school or work days. Although respondents were also asked the number of doctor visits for any reason during this period, we omitted this variable as an asthma outcome from our analyses because the question was not specific to doctor visits for asthma. Also, teenagers (12-17 years of age) were not asked if they missed school due to asthma, so this outcome is only available for children ages 0-11 years.

In addition to asking about asthma outcomes among respondents with a lifetime asthma diagnosis, CHIS 2003 contained a series of questions on asthma-like symptoms, i.e. wheezing in respondents never diagnosed with asthma. They were asked about the number of wheezing attacks, the number of times they sought medical attention for the breathing problem, and whether they missed any days of work or school/day care due to these problems in the 12 months prior to interview. Teenagers were not asked about how many attacks of wheezing or whistling they experienced or if they missed any school days due to wheezing. In summary, we examined the following health effect measures reported by respondents as occurring within the 12 months preceding the interview:

Health effect measures for CHIS 2003 respondents for CHIS 2003 child and adult respondents (except those noted below) with physician-diagnosed asthma:

The following measure is applied to those with a lifetime asthma diagnosis only:

• Asthma episode or attack (dichotomous);

The following measures are applied to those with current asthma only:

- Asthma symptoms among those with current asthma: persistent asthma (with daily or weekly symptoms) vs. intermittent asthma (with monthly, less than monthly, or no symptoms);
- Currently taking daily medication to control asthma (dichotomous);
- ED/urgent care clinic visit for asthma, abbreviated to ED visits throughout the report (dichotomous);
- Two or more work days missed due to asthma, adults only (dichotomous); and
- Two or more days of day care or school missed due to asthma, children ages 0-11 only (dichotomous).

Health effect measures for CHIS 2003 child and adult respondents (except those noted below) with asthma-like symptoms among those without asthma diagnoses:

• Asthma-like symptoms, wheezing or whistling sound in chest (dichotomous);

- Two or more attacks of wheezing or whistling (dichotomous), excluding teen respondents;
- Sought medical care for such symptoms at least once (dichotomous);
- Two or more work days missed due to such symptoms, adults only (dichotomous); and
- Two or more days of day care or school missed due to such symptoms, children ages 0-11 only (dichotomous).

Potential Confounders and Vulnerability Characteristics

CHIS is a rich data source; in addition to health outcomes, information was collected on several important potential confounders and vulnerability characteristics for asthma or asthmalike symptoms. Particularly relevant to this study, CHIS 2003 collected information on basic demographics, overall health status, access to health care, asthma disease management, health behaviors, indoor asthma triggers, and housing conditions. For all the adjusted analyses, we included age, sex, race/ethnicity and federal poverty level (FPL) as covariates. We considered the following vulnerability-related risk factors as potential confounders of air pollution health effects estimates:

- Access to health care: having health insurance currently, having experienced delays in getting care for any medical reason, having a usual source of care;
- Overall health status: co-morbidity such as diabetes or heart disease;
- **Disease management/asthma severity indicators:** year of asthma diagnosis, receiving an asthma management plan, taking daily medication to control asthma;
- Health behaviors: being overweight/obese, smoking, and walking for transportation or leisure;
- **Housing conditions:** type of housing, such as single family dwelling or apartment, and crowding;
- Indoor triggers: smoking in the home, dog/cat in the home, cockroaches in the home, and
- **Residence**: urban/rural residence, length of residence at current address/neighborhood.

CHIS established if respondents' household income was above or below the FPL based on federal poverty guidelines. For example, 100% of the FPL means an annual household income of \$8,980 for a one member household, \$12,120 for a two member household, \$15,260 for a three member household, and \$18,400 for a four member household, while 200% of the FPL means household income was double the relevant amount. We decided to use 200% of the FPL as a cut point since the cost of living in California is higher in general than in most parts of the country due to housing costs.

CHIS used the U.S. Center for Disease Control body mass index (BMI) criteria to define overweight or obese based on self-reported height and weight. For instance, for adult men and women, the categories are underweight ≤18.5 BMI, normal weight=18.5–24.9 BMI, overweight=25–29.9 BMI and obese=BMI of 30 or greater.

CHIS assigned respondents to four levels of urbanicity based on definitions developed by the commercial company Claritas: 1) urban, 2) 2nd city, 3) suburban, 4) small town/rural. Using

population density of an area and neighboring areas, Claritas classified mega-cities with density scores of 85-99 (on scale of 0 to 99) as "urban"; cities and big towns with density scores of 40-85 as "2nd cities"; suburbs of urban and 2nd city areas, with density scores of 40-90 as "suburban"; and exurbs and towns with density less than 40 as "town/rural". CHIS classified respondents based on the most prevalent Claritas household type in their residential zip code. Household crowding refers to households with more than one occupant per room (not counting bathrooms) based on the U.S. Census Bureau definition.

Statistical Methods

Once the data were linked, we conducted analyses to examine whether the disproportionate burden of asthma or asthma-like symptoms among low SES individuals is associated with greater pollutant exposures, greater vulnerabilities or both (Objective 3-4). Under Objective 3, we tested Hypothesis 1: Among those with asthma or asthma-like symptoms, vulnerable sub-populations in California (e.g., racial/ethnic minorities and low-income individuals) have higher exposures to air pollution. We examined distributions of exposures for the four criteria air pollutants and traffic metrics among CHIS 2003 respondents and tested whether exposures varied by sub-populations, characterized by rural and urban residency (rural/town, urban, second city and suburban), age (0-5, 6-11, 12-17, 18-34, 35-64 and ≥65 years), gender, income level (0-199% FPL, 200-399% FPL, and ≥400% FPL), and by racial and ethnic group (white, Latino, African American, Alaskan Native/American Indian, Asian and Pacific Islanders and other minorities). We also examined differences in distributions of health outcomes across these subgroups. We performed t-tests and z-tests for proportions to identify disparities in pollutant exposures and respiratory outcomes within these sub-populations.

To examine whether there were positive associations between air pollution exposure and the respiratory outcomes of interest, and to identify additional factors that might contribute to the variations in association (Objectives 3 and 4), our analysis was comprised of several steps. First, we tested our hypothesis that individuals with asthma exposed to higher levels of air pollution are more likely to report adverse asthma outcomes, such as: asthma attacks or episodes, asthma emergency department (ED) visits, use of daily medication to control asthma, school or work absences, and daily/weekly asthma symptoms. Individuals with asthma-like symptoms and exposed to higher levels of air pollution are more likely to report: wheezing or whistling sound in the chest, attacks of wheezing or whistling (Hypothesis 2). We examined crude associations between individual air pollutants and asthma outcomes using tabular analyses and logistic regression modeling adjusting for age, sex, race/ethnicity and federal poverty level. For regression analyses, annual pollutant averages were included in the model as continuous measures scaled by a fixed number of units depending on the distributions of the pollutant averages and as commonly practiced in the literature. Specifically, we scaled O₃ by 10 ppb, NO₂ by 10 ppb, PM₁₀ by 10 μ g/m³, and additionally we scaled PM_{2.5} by 5 μ g/m³ based on the distribution after univariate analysis. Categorical variables were used for exceedance days and traffic measures to explore the shape of the exposure-outcome associations and evaluate possible exposure-response relations. To illustrate, we fit the following logistic model for the binary outcome asthma (noted here as A, where A=1 if a respondent reported persistent asthma (daily/weekly symptoms); a similar model would apply if we considered A to be an indicator of asthma-like symptom prevalence):

$$logit(Pr(A=1 | O_3)) = \beta_0 + \beta_1 (O_3)$$

Here exp (β_1) represents the odds ratio for asthma corresponding to a 10 ppb change in O₃ exposure.

Second, to test if air pollution exposures, low SES status, and certain vulnerability factors associated with low SES exert independent adverse effects on individuals with asthma or asthma-like symptoms (Hypothesis 3), we used multiple logistic regression analyses to quantify associations between air pollution exposures and outcomes after including and excluding suspected confounders, such as insurance status, cigarette smoking, and delays in care. We fit three models for adults: (1) a base model, which includes each pollutant measure individually, plus age, race, federal poverty level, and sex; (2) the base model plus adjustment for major possible confounders related to access to care, health behaviors and overall health status, such as insurance status, overweight or obesity, heart disease, work status, and smoking status; and (3) the base model, including other possible confounders, such as urban vs. rural residence, having a usual source of care, having a delay in care for any medical reason, age of asthma onset, taking a daily asthma medication, having an asthma management plan, the presence of household smoking, having a dog or cat in the home, having cockroaches in the home, housing type, household crowding, having diabetes, and walking for leisure or transportation. For Model 3, we purposely excluded additional factors from Model 2, namely insurance status, overweight or obese, heart disease, work status, and smoking status, since some of them may be highly correlated with variables in Model 2, e.g. having heart disease and diabetes. After the models were selected, covariates that could be reasonably related were tested for possible correlations, and no significant correlations were observed for covariates in the same model. We focused the Model 1-Model 3 analyses on three asthma-related outcomes: ED visits, daily asthma medication use, and 2 or more missed work days due to asthma in relationship to three criteria pollutants (O_3 , PM_{10} , $PM_{2.5}$) for adults and use of daily asthma medication in relationship with PM_{2.5} exposures for children. For children, the base model was the same as the base model for adults. In Model 2, we included the base model, plus adjusted for major possible confounders among children, such as insurance status, the presence of household smoking, having a dog or cat in the home, and having cockroaches in the home; Model 3 included the base model, as well as other possible confounders, such as urban vs. rural residence, having a delay in care for any medical reason, taking a daily asthma medication, having an asthma management plan, housing type, and household crowding.

Third, we tested the hypothesis that higher pollutant exposures interact with these vulnerability factors resulting in greater air pollution impacts on asthma in vulnerable sub-populations, i.e. racial/ethnic minorities, and low-income individuals (Hypothesis 4). We examined interactions between exposure and sub-populations characterized by age, race/ethnicity, income, and urban/rural residency. If an interaction term was statistically significant (based on a p-value ≤ 0.05), we calculated the interaction odds ratios using the formula:

 $OR(x)=exp(b_1+b_x)$

where 1 represents the reference group and x represents the comparison group. We then calculated the standard error (SE) using the formula:

$$SE(x) = \sqrt{(var_1 + var_x + 2cov_{1x})}$$

and used the standard error to calculate the confidence intervals (CI) for each interaction odds ratio, To calculate the CIs we used the formula:

If an interaction term was statistically significant (based on a p-value \leq 0.05), we also conducted stratified analyses, for example, by income level or racial/ethnic group. None of the stratified analyses produced meaningful results (at least one group's confidence intervals crossed the null) due to insufficient sample size (results not reported). As a result, we were unable to estimate population attributable risk (PAR) within the sub-group strata.

In addition to the above mentioned analyses, we also performed several sensitivity analyses. First, we stratified on length of residence in the same home or neighborhood (<3 years versus ≥3 years) to examine whether associations between air pollution exposure and odds of reporting asthma symptoms are greater in long-term residents who have been consistently exposed to higher pollution for a longer period of time. We also compared unemployed with employed adults to examine the influence of potentially greater measurement error in residential exposure measures for employed adults due to additional exposures incurred while commuting or at the workplace. Additionally, we examined changes in air pollution estimates by residential distance to nearest monitoring station (3-, 5- and 10 miles), assuming exposure measures for subjects living closer to a station are less misclassified. Finally, we conducted stratified analyses based on asthma medication use assuming that air pollution may have different effects on those taking medication and those not taking medication.

All analyses incorporated sampling weights that adjust for the unequal probabilities of selection into the CHIS sample. In our adjusted analyses, some study respondents were excluded due to missing data for exposure measures. Final sample sizes for each model are reported in the results tables. Additionally, weighted population estimates were calculated using a weight variable constructed through a complex, iterative process; the weight variable was then applied to the sample data. Separate weights were created for adults, children, and adolescents, which were then used to calculate statewide estimates representative of the entire state population. As a result, CHIS 2003 estimates were consistent with the 2003 California Department of Finance (DOF) Population Projections.

Air pollution, traffic and distance to roadway measures were checked for accuracy and completeness by inspecting the raw data files and univariate statistics for the measures. For many of the descriptive and regression analyses, SAS macros were developed with our statistical staff to expedite the analysis process and reduce the possibility for human error while cutting and pasting results into tables.

III. RESULTS

CHIS 2003 Respondents with Current Asthma

Exposure Distributions for CHIS 2003 Respondents with Current Asthma

Distributions of annual average pollutant exposures, exceedance days, and traffic density are shown in Table 6 in the Appendix. Among adults with current asthma, annual average exposures to O_3 ranged from 22.8 to 63.5 ppb, with a mean of 41.6 ppb, while NO_2 averages ranged from 1.6 to 36.1 ppb, with a mean of 21.1 ppb. Annual averages ranged from 12.3 µg/m³ to 80.1 µg/m³ for PM₁₀ (mean=28.6 µg/m³) and 4.1 µg/m³ to 27.5 µg/m³ for PM_{2.5} (mean=16.0 µg/m³).

Based on the 1-hr state standard, adults with current asthma had a maximum of $122 O_3$ exceedance days and an average of $22.4 O_3$ exceedance days in the year prior to CHIS interview; under the 8-hr state standard, there was a maximum of 153 exceedance days and a mean of $31.1 O_3$ exceedance days. Using the 8-hr federal standard, there was a maximum of 114 exceedance days and an average of 16.8 exceedance days. Based on the PM₁₀ federal standard, the maximum number of exceedance days was 4 days (mean=0.1 days); when using the state standard, the maximum was 66 exceedance days (mean=7.2 days). For PM_{2.5}, the maximum number of days exceeding the federal standard was 54 days, with an average of 15.5 exceedance days.

The mean traffic density within a 750-foot buffer was 66.0 VMT/day/meters², with a minimum of 0.09 and a maximum of 583.0.

Among children with current asthma, annual average O_3 exposure ranged from 23.0 ppb to 64.2 ppb with a mean of 41.3 ppb (Table 6 in Appendix). Annual PM₁₀ averages ranged from 13.0-80.1 µg/m³ (mean=30.0 µg/m³), and PM_{2.5} annual average exposure ranged from 7.4 to 26.2 µg/m³ (mean=16.8 µg/m³). NO₂ annual averages varied from 1.6-36.0 ppb, with a mean of 22.0 ppb.

The maximum number of O_3 exceedance days was 122 (mean=24.9 days) under the 1-hr state standard, 153 under the 8-hr state standard (mean=33.5 days), and 114 (mean=18.5 days) under the 8-hr federal standard. The maximum number of PM₁₀ exceedance days was 4 (mean=0.1 days) under the federal standard and 65 (mean=7.8 days) under the state standard. The maximum number exceeding the federal PM_{2.5} standard was 54, with an average 17.5 exceedance days. Traffic density ranged from 1.1-793.4 VMT/day/meters², with an average of 70.1 among children with current asthma (Table 6 in Appendix).

Frequencies for distance to roadway measures are shown in Table 7 in the Appendix. Less than 10% of adults with current asthma lived either within 300 meters of a state highway (5.4%) or interstate highway (9.9%). One-fifth (20.5%) of adults with current asthma lived within 50 meters of a major road. Five percent of children with current asthma lived within 300 meters of a state highway, and 12.1% lived within 300 meters of an interstate highway. Onefifth (19.1%) of children with current asthma lived within 50 meters of a major road.

Correlations among Air Pollution Exposure Estimates

We estimated Pearson correlation coefficients for exposure metrics assigned to CHIS 2003 respondents with current asthma (Table 8 in Appendix). Annual average exposure

estimates for PM₁₀ and PM_{2.5} were strongly correlated (r=0.78), as were estimates for PM_{2.5} and VO₂ (r=0.56), as Were estimates for PM_{2.5} were strongly correlations were observed between PM₁₀ and VO₂ (r=0.56), as well as PM₁₀ and O₃ (r=0.49). Annual average exposures were strongly correlated with exceedance measures for O₃ (r=0.81) but not federal (r=0.43) standards. Annual average PM_{2.5} exposures were strongly correlated with exceedances of the federal standard (r=0.69). There were low level correlated with exceedances of the federal standard (r=0.69). There were low level correlated with exceedances of the federal standard (r=0.69). There were low level correlations between annual average exposures and exceedance reactions between annual average exposures and exceedance correlated with the correlations between annual average exposures were stoned (r=0.69). There were low level correlations between annual average exposures and exceedance correlated with the criteria pollutant exposure metrics and with each other.

emdtsA tnerver on Characteristics of Adults and Children with Current Asthma

Table 9 below shows prevalence of asthma outcomes among respondents with current asthma. Among respondents with lifetime asthma, 35.0% of adults experienced an asthma attack in the year prior to their interview. Among adults with current asthma, the prevalence of daily or weekly symptoms was 29.8%. About half of adults with current asthma (47.6%) reported taking daily asthma medication, and 16.4% reported an ED visit within the past year. Additionally, 13.2% of adults with current asthma missed work at least twice.

Thirty-six percent of children with litetime asthma experienced an asthma attack in the year prior to the interview. Of children with current asthma, 11.7% experienced daily or weekly symptoms, 21.7% had visited the ED, and 37.0% took daily asthma medication for their illness. Close to half of children with current asthma (45.9%) missed at least two school days.

8 5 0'I	8.62	156	<i>L</i> .II
LTE	13.2	767	6.24
£\$9'I	9.74	451	0.75
200	16.4	LEZ	<i>L</i> .12
156'1	0.25	7 99	0'9£
u	(bətdgiəW)	u	(bətdgiəW)
	%		%
Adults (≥18 years)		Childre	n (< 18 years)
LtE ES9'I 005 IS6'I u	13.2 (b)13.2 16.4 35.0 %	53 451 532 999 u	Э.

Table 9. Prevalence of asthma outcomes for CHIS 2003 adults and children with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only those who lived in the same home or neighborhood for at least 9 months were included.

^bRespondents ever diagnosed with asthma who lived in the same home or neighborhood for at least 9 months were included. ^cData not collected for teen respondents.

Demographic characteristics of respondents with current asthma are shown in Table 10 in the Appendix. Among adults with current asthma, there were more women than men (65.3% vs. 34.7%). The majority of adult respondents with current asthma were between the ages of 35-64 (55.0%); 28.8% were 18-34, and 16.2% were 65 years old or older. The racial/ethnic distribution of the adult population with current asthma was as follows: 60.3% white, 17.3% Close to a third (34.3%) of adults with current asthma had received a high school diploma at most, while 43% had attended college or vocational school, and 11.3% had attended graduate school. The remaining 11.4% were under the age of 25, an age group that is often still pursuing school. The remaining 11.4% were under the age of 25, an age group that is often still pursuing school. The remaining 11.4% were under the age of 25, an age group that is often still pursuing an education, so educational attainment was not assessed for these respondents. Nearly twofifths (38.2%) of respondents with current asthma were unemployed. Approximately one-third (32.5%) of adults with current asthma lived below 200% of the federal poverty level (FPL), 23.8% lived between 200-399% of the FPL, and the remaining 43.6% lived at or above 400% of the FPL.

While the majority of respondents were insured throughout the previous year, 16.1% of adults with current asthma were either not insured or only insured for part of the year. Similarly, more than 90% of adult respondents with current asthma reported a usual source of care; however, 21.0% reported a delay in needed care for any medical reason in the last 12 months. Only 22.1% of adults with current asthma reported visiting the doctor 0-1 time for any reason during the past year, while 45.4 % visited the doctor 2-5 times and 32.5% visited 6 or more times in the past year. The majority were diagnosed with asthma in adulthood. Nearly half (49.8%) of adults with current asthma were diagnosed between the ages of 18-64, and 5.4% were diagnosed at the age of 65 or older. Approximately a third (33.9%) were diagnosed between the ages of 12-17. Just less than half of adults with current asthma (47.6%) reported taking asthma medication daily, and only 37.6% said they had an asthma management plan.

When asked about current health status, 32.8% of adult respondents with current asthma stated their health status to be either poor or fair. The remaining 67.2% self-reported their health as good, very good, or excellent. Heart disease was reported in 11.3% of adults with current asthma; among them, 31.7% reported congestive heart failure. Based on BMI, 61.7% of adults with current asthma were classified as overweight or obese, as opposed to normal or underweight; 9.5% reported being diabetic, and 1.0% reported being borderline diabetic. While 45.5% of adults stated they currently or previously smoked, only 11.1% said they lived in a household with a current smoker. Nearly three-fourths (71.1%) of respondents reported walking for transportation or leisure. Almost half (47.7%) had dogs or cats in the home, and cockroaches were reported in the home among 12.2% of adults with current asthma.

The residences of most adults with current asthma were classified as urban (39.9%), as compared to 2nd city (27.5%), suburban (19.8%), or town/rural (12.7%). Most adult respondents (79.9%) had lived at their current addresses for 3 or more years. Two-thirds of adults (66.7%) stated they lived in houses, while the remainder described their housing units as apartments, duplexes, or mobile homes, and 16.3% of adults reported household crowding.

Child respondents with current asthma were 58.4% boys and 41.6% girls (Table 10 in Appendix). One-fifth (21.1%) of the children with current asthma were between the ages of 0-5, 37.5% were ages 6-11, and 41.4% were ages 12-17. Children with current asthma were 43.5% white, 26.9% Latino, 12.1% Asian/other, 14.6% African American, and 2.9% American Indian/Alaska Native. Over a third (38.3%) of children with current asthma had parents or guardians who had completed a high school education or less. Half of the parents or guardians of child respondents had completed college or vocational school, and the remaining 11.7% had graduate degrees. More than a third (38.3%) children with current asthma lived in households earning below 200% of the FPL, 30.8% lived between 200-399% of the FPL, and 30.8% lived in households earning 400% or more than the FPL.

The majority of children with current asthma were insured in the year prior to interview, though 4.9% of children were either not insured at all or only insured for part of the year. Most children (90.5%) were reported to have a usual source of care; still, 8.1% of children reportedly had a delay in needed care for any medical reason in the last 12 months. Among children with current asthma, 22.9% visited the doctor 0-1 time for any reason, 60.8% visited 2-5 times, and 16.3% visited 6 or more times in the past year. Most children with current asthma (90.5%) were diagnosed between the ages of 0 and 11. Thirty-seven percent took daily asthma medication, and 40.7% had an asthma management plan.

Most child respondents with current asthma were reported to have good, very good, or excellent health (81.3%), though 18.7% were reported to have poor or fair health. Based on BMI, 36.5% of teens with current asthma were classified as overweight or obese. Only 7.6% of children with current asthma lived in a household with a smoker. Two-fifths (40.9%) had dogs or cats in the home, while 15.4% had cockroaches in the home.

The greatest percentage of children with current asthma lived in urban residences (40.7%) compared to 2nd city (28.0%), suburban (21.0%), or town/rural residences (10.3%). More than three-fourths (76.6%) had lived at their current addresses for 3 or more years. Most children lived in houses (71.0%), while the remainder lived in apartments, duplexes, or mobile homes. One-third of children (33.4%) lived with household crowding.

Disparities in Asthma Outcomes and Exposure Measures among Sub-Populations

In this part of the study, we tested Hypothesis 1: Among those with asthma, vulnerable sub-populations in California (e.g., racial/ethnic minorities and low-income individuals) have higher exposures to air pollution. We present differences in estimated criteria pollutant exposures across various sub-populations, characterized by income level, racial and ethnic group, rural and urban residency, sex, and age. We also present results regarding differences in distributions of asthma outcomes across these subgroups.

Disparities in Annual Average Criteria Pollutant Exposure Measures

Adult respondents with current asthma and living below 200% of the FPL had higher annual average exposures to all criteria pollutants, except for ozone, than those living at 400% or above the FPL (Figure 2 and Table 11). Specifically, adults living below 200% of the FPL had a mean annual average NO₂ level of 22.4 ppb compared to 20.1 ppb among those living at or above 400% of the FPL. Additionally, adults living below 200% of the FPL had mean PM₁₀ and PM_{2.5} exposures of 29.9 μ g/m³ and 16.7 μ g/m³, respectively, compared to 27.8 μ g/m³ and 15.0 μ g/m³ for those living at 400% or greater than the FPL. Mean annual average exposures to O₃ did not vary across poverty levels, however.

Disparities in criteria pollutant exposures were also observed across races/ethnicities (Figure 3). Latino adults had greater mean exposures to NO₂, PM₁₀ and PM_{2.5} than whites (24.2 ppb vs. 19.6 ppb, 31.3 μ g/m³ vs. 27.6 μ g/m³ and 17.9 μ g/m³ vs. 15.1 μ g/m³, respectively). Asian and Pacific Islander adults had greater mean NO₂ exposures (22.6 ppb vs. 19.6 ppb), and adult African Americans also had greater mean annual average exposure to PM_{2.5} (16.2 μ g/m³ vs. 15.1 μ g/m³. However, whites had greater mean exposures to O₃ than any of the aforementioned groups (whites: 42.5 ppb; Latinos: 41.1 ppb; Asian and Pacific Islanders: 40.4 ppb; African Americans: 39.3 ppb).

There were also disparities in estimated criteria pollutant exposures across respondents' location of residence. Adults with current asthma living in urban residences had the highest exposure to NO₂, with a mean annual average exposure more than twice that of adult respondents living in rural/town residences (24.4 ppb vs. 10.6 ppb). Adults in urban residences had a mean PM_{2.5} exposure of 16.2 μ g/m³, versus a mean of 15.1 μ g/m³ for adult respondents living in second cities and 10.8 μ g/m³ for adult respondents in town/rural residences. However, for all respondents, living farther from urban areas increased their annual exposure to O₃. Adult respondents in urban residences had a mean annual average O₃ exposure of 38.9 ppb compared to 42.8 ppb for those in second city residences, 44.6 ppb for those in suburban residences, and 47.6 ppb for those in town/rural residences.

Few significant differences were observed in annual pollutant exposure levels across age groups or for men versus women. Adult females had greater mean PM_{10} exposures at 29.1 $\mu g/m^3$ compared to 27.7 $\mu g/m^3$ among males, while adults ages 18-34 had greater mean NO_2 exposures than adults 65+ years of age (22.0 ppb vs. 19.9 ppb).

Among children with current asthma, those living between 0-199% of the FPL had a mean annual NO₂ exposure of 24.1 ppb versus 20.2 ppb for those living at or above 400% of the FPL (Figure 2 and Table 11). For those living below 200% of the FPL and those living between 200-399% of the FPL, mean annual exposure to PM_{10} was estimated at 30.6 µg/m³ and 31.3 µg/m³, respectively, compared to 28.0 µg/m³ for those living at or above 400% of the FPL. Mean $PM_{2.5}$ exposure was 17.5 µg/m³ for children living at 0-199% of the FPL and 16.9 µg/m³ for children living at 200-399% of the FPL, while children living at or above 400% of the FPL had a mean annual average exposure of 15.3 µg/m³.

Children in minority populations were found to have higher average exposure to most air pollutants compared to their white peers (Figure 3). Latino, African American, and Asian/Pacific Islander/other children had higher mean annual exposures to NO₂ at 23.9 ppb, 22.1 ppb, and 23.8 ppb respectively, compared to 19.7 ppb for white children. Latino children had 17.2 μ g/m³ of annual average PM_{2.5} exposure, and African American children had 17.8 μ g/m³ of annual average PM_{2.5} exposure, compared to 15.7 μ g/m³ among white children. However, children of these race/ethnicities had lower O₃ exposures compared to white children (Latino: 40.6 ppb; African American: 40.0 ppb; Asian/PI/Other: 38.1 ppb; White: 43.1 ppb).

The mean annual NO₂ exposure for urban children was greater than mean exposures for children living in all other areas; for example, urban children had mean NO₂ averages nearly twice as high as children in town or rural residences (25.1 ppb vs. 13.7 ppb). Those living in non-urban areas had higher average exposure to O₃ than their urban-dwelling counterparts (2nd city: 44.3 ppb; Suburban: 45.5 ppb; Town/Rural: 43.5 ppb vs. Urban: 37.8 ppb). Compared to urban children, suburban children had higher PM₁₀ exposure (29.3 μ g/m³ vs. 33.7 μ g/m³), while town/rural children had lower PM_{2.5} exposure than urban children (13.9 μ g/m³ vs. 17.0 μ g/m³). Among children with current asthma, boys had greater average exposure to PM_{2.5} at 17.4 μ g/m³ versus 15.9 μ g/m³ for girls.

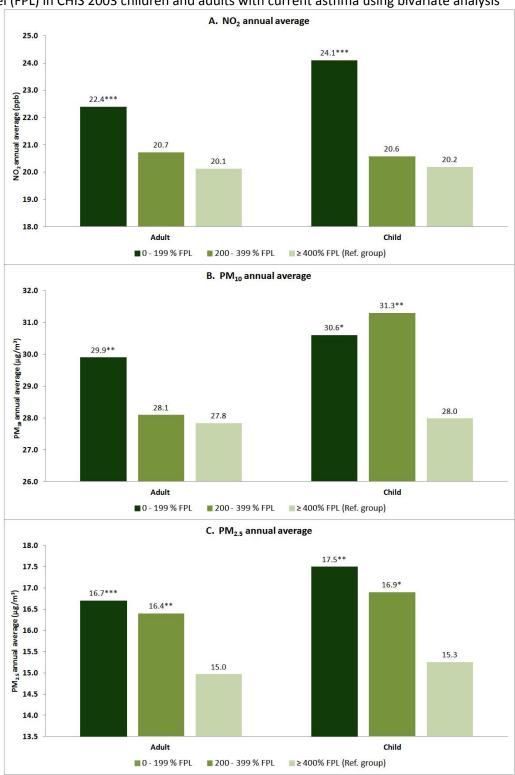


Figure 2. Disparities in weighted mean annual pollutant concentrations by Federal Poverty Level (FPL) in CHIS 2003 children and adults with current asthma using bivariate analysis^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included. *p < 0.05, **p < 0.01, ***p < 0.001

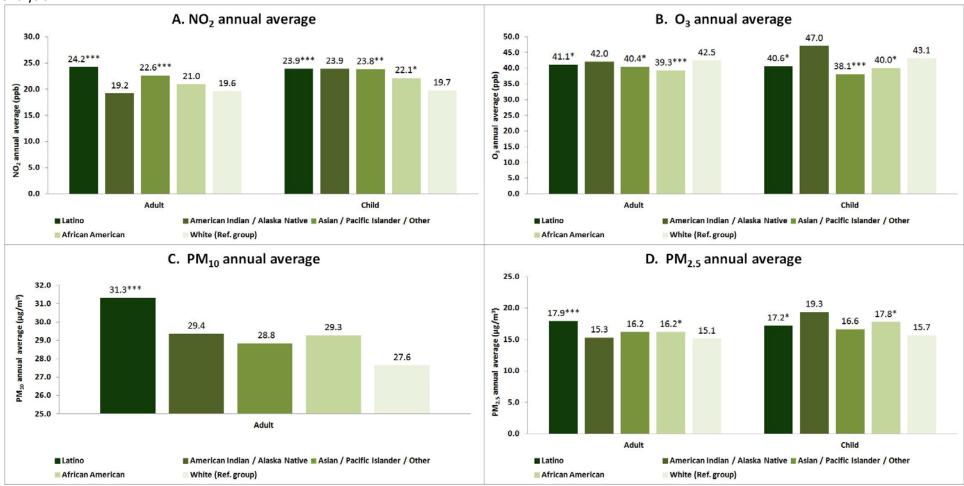


Figure 3. Disparities in weighted mean annual pollutant concentrations by race/ethnicity in CHIS 2003 children and adults with current asthma using bivariate analysis^{a,b}

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bFor Figure 3C, results for children with current asthma showed no significant differences between groups and are not shown in the graph.

*p < 0.05, **p < 0.01, ***p < 0.001

Table 11 (Highlights). Disparities in weighted mean annual pollutant concentrations by various demographic characteristics in CHIS 2003 children and adults with current asthma using bivariate analysis^a

		NO2 annual a	werage (ppb)	O3 annual a	verage (ppb)	PM10 annual a	verage (µg/m ³)	PM2.5 annual a	verage (µg/m ³)
Demographics		Adult mean	Child mean	Adult mean	Child mean	Adult mean	Child mean	Adult mean	Child mean
Household Federal	0 - 199 % FPL	22.4***	24.1***	41.1	41.0	29.9**	30.6*	16.7***	17.5**
Poverty Level (FPL)	200 - 399 % FPL	20.7	20.6	42.1	42.0	28.1	31.3**	16.4**	16.9*
	≥400% FPL†	20.1	20.2	41.8	41.1	27.8	28.0	15.0	15.3
Race/ethnicity	Latino	24.2***	23.9***	41.1*	40.6*	31.3***	30.8	17.9***	17.2*
	American Indian /								
	Alaska Native	19.2	23.9	42.0	47.0	29.4	32.1	15.3	19.3
	Asian / Pacific Islander /								
	Other	22.6***	23.8**	40.4*	38.1***	28.8	28.8	16.2	16.6
	African American	21.0	22.1*	39.3***	40.0*	29.3	31.7	16.2*	17.8*
	White†	19.6	19.7	42.5	43.1	27.6	29.1	15.1	15.7

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

+Reference Group

*p < 0.05, **p < 0.01, ***p < 0.001

Disparities in Traffic Exposure Measures

Disparities in traffic density and residential proximity to roadways are shown in Table 12 in the Appendix. African American adults with current asthma had higher mean traffic density within a 750-foot buffer than white adults with current asthma (76.5 VMT/day/meters² vs. 60.2 VMT/day/meters²). Urban dwelling adults had the highest mean traffic density at 80.6 VMT/day/meters², compared to 59.4 VMT/day/meters² among second city dwellers, 59.5 VMT/day/meters² among suburban dwellers, and 40.6 VMT/day/meters² among town/rural dwellers.

Adults with current asthma with lower household incomes were more likely to live within 50 meters of a major road than those with higher incomes. Of those living below 200% of the FPL, 26.4% lived near a major road, compared to 23.7% among those living between 200-399% of the FPL, and 17.5% among those living at or above 400% of the FPL. Fewer Alaskan Natives/American Indians lived near an interstate highway compared to whites (3.4% vs. 9.8%). Urban adults with current asthma were more likely to live within 300 meters of an interstate highway than town/rural-dwelling asthmatic adults (10.9% vs. 6.9%); however, those living in towns or rural areas were more than three times as likely to live within 300 meters of a state highway as those living in urban areas (13.3% vs. 4.4%). Twice as many women lived within 300 meters of a state highway as men (6.5% vs. 3.3%).

Asthmatic children living closer to the federal poverty line were more likely to live near all types of roadways and in places with greater traffic density than children living farther from the poverty line. Children living between 0-199% of the FPL had a mean traffic density of 84.6 VMT/day/meters², and children living between 200-399% of the FPL had a mean traffic density of 70.2 VMT/day/meters², while children living at or above 400% of the FPL had a mean traffic density of 70.2 VMT/day/meters², while children living at or above 400% of the FPL had a mean traffic density of only 52.7 VMT/day/meters² (Table 12 in Appendix). Both Latino and African American children had higher mean traffic density measures than white children (93.6 VMT/day/meters² and 89.8 VMT/day/meters² vs. 53.2 VMT/day/meters²). Urban children had greater mean traffic density than both 2nd city and town/rural children (84.7 VMT/day/meters² vs. 57.4 VMT/day/meters² and 46.4 VMT/day/meters²).

Children with asthma living at 0-199% of the FPL were close to three times more likely to live within 300 meters of a state highway compared to children from households earning 400% or more than the FPL (9.5% vs. 2.6%). Children living below 200% of the FPL were also more than twice as likely to live within 300 meters of an interstate highway (16.4% vs. 6.3%), and nearly a quarter (24.7%) lived within 50 meters of a major road compared to only 15.3% of children living at or above 400% of the FPL. Latino children were more than twice as likely as white children to live within 300 meters of an interstate highway (18.1% vs. 8.5%). Urban children were nearly twice as likely to live within 50 meters of a major road as 2nd city and town/rural dwelling children (27.1% vs. 14.2% and 15.6%).

Disparities in Asthma Outcomes

Table 13 in the Appendix provides prevalence measures for asthma outcomes among CHIS 2003 respondents with current asthma by various demographic characteristics. Adults living below 200% of the FPL had the highest prevalence for all measured asthma outcomes compared to those living at or above 400% of the FPL. The prevalence of asthma attacks for adults with lifetime asthma living below 200% of the FPL was 40.3% compared to 32.9% for those living at or above 400% of the FPL. The prevalence of asthma-related ED visits in the year prior to the CHIS 2003 interview for adults with current asthma living below 200% of the FPL was nearly twice that of adults with current asthma living at or above 400% of FPL used daily asthma medication as compared to 43.7% living at or above 400% of the FPL. The prevalence of daily/weekly asthma symptoms for adults with current asthma among adults living below 200% of the FPL and adults living at 200-399% of the FPL were greater than the prevalence among those living at or above 400% of the FPL (35.0% and 31.0% vs. 25.2%).

When comparing asthma outcomes in adults with current asthma by race/ethnicity, the percentage of Latino adults who visited the ED was over twice that of white adults (26.8% vs. 12.7%). African American adults reported a higher prevalence of daily asthma medication use at 59.4%, as compared to 48.0% of white adults. African Americans (19.7%), Latinos (21.9%), and Asian/Pacific Islander/others (16.7%) all reported missing at least 2 days of work at a prevalence higher than that of white respondents (8.8%). However, more white respondents (32.7%) reported daily/weekly asthma symptoms than either Latino (22.2%) or Asian/Pacific Islander/other (25.2%).

The prevalence of asthma outcomes among those with current asthma differed by location of residence. Fewer adult respondents who lived in 2nd city residences (11.3%) or town/rural residences (9.6%) reported missing at least 2 days of work versus adults living in urban residences (15.6%). However, a lower percentage of adults living in urban residences reported daily/weekly asthma symptoms than adults living in town/rural residences (27.7% vs. 35.3%).

Among adults with lifetime asthma, more female respondents experienced an asthma attack than male respondents (41.8% vs. 25.9%). Furthermore, a higher percentage of women with current asthma had visited the ED (17.8% vs. 13.76%) and missed at least 2 days of work (14.7% vs. 10.3%), and 31.7% of women with current asthma experienced asthma symptoms daily or weekly compared to 26.1% of men.

Significant differences in prevalence of asthma outcomes were found among the youngest and oldest respondents. More than two-thirds of adults with current asthma in the oldest age group, age 65 or older, took asthma medication daily at 67.3% compared to 48.4% of adults ages 35-64 and 35.2% of adults ages 18-34. More than one-third (38.1%) of adults with current asthma who were 65 or older reported experiencing daily or weekly asthma symptoms compared to 32.3% of those ages 35-64 and only 20.3% of those ages 18-34. However, adults ages 35-64 were more likely than those 65 or older to have visited the ED in the year prior to the interview (18.7% vs. 13.1%).

Among children with lifetime asthma, those living at or above 400% of the FPL had the highest prevalence of asthma attacks at 40.4% compared to 32.1% for those living at less than 200% of the FPL; however, for all other asthma outcomes, children with current asthma living below 200% of the FPL had the highest prevalence (Table 13 in Appendix). Children with current asthma whose household incomes fell below 200% of the FPL or between 200-399% of the FPL had higher prevalence of ED visits at 26.4% and 23.0% respectively, compared to 14.7% prevalence for those living at or above 400% of the FPL. Additionally, 45.7% of children with current asthma living below 200% of the FPL took asthma medication daily as opposed to only 28.7% living at or above 400% of the FPL. Over half (54.3%) of those living below 200% of the FPL were reported to have missed ≥2 days of school versus 33.2% of those living at or above 400% of the FPL.

The prevalence of asthma outcomes also varied by race/ethnicity among child respondents. Although Latino children with lifetime asthma had a lower prevalence of asthma attacks (29.8%) compared to white children (37.9%), more Latino children with current asthma took a daily asthma medication (45.4% vs. 31.5%). Nearly a third (32.3%) of African American children with current asthma reported visiting the ED in the past year compared to only 18.8% of white children with current asthma. Compared to children with current asthma living in town/rural residences, more children with current asthma living in urban residences had visited the ED (25.0% vs. 9.7%), taken daily asthma medication (39.6 % vs. 27.7%), and/or missed at least 2 days of school (45.1% vs. 29.2%).

The prevalence of an asthma attack in the past year was greater among children with lifetime asthma ages 0-5 (55.2%) and 6-11 years old (41.1%) than among children with lifetime asthma ages 12-17 (23.4%). While only 5.8% of children with current asthma in the oldest age group had visited the ED in the past 12 months, 26.7% of children with current asthma ages 6-11 and 44.3% of children with current asthma ages 0-5 had been taken to the ED within the year prior to the interview; yet, the oldest children with current asthma reported the highest prevalence of daily or weekly asthma symptoms at 16.1% in comparison to 8.9% among those 6-11 years old and 7.9% among those ages 0-5.

Associations between Air Pollution Exposure Metrics and Asthma Health Outcomes

In this part of the study, we tested Hypothesis 2, that individuals with asthma exposed to higher levels of air pollution are more likely to report adverse asthma outcomes, such as: asthma attacks or episodes, asthma emergency department (ED) visits, use of daily medication to control asthma, school or work absences, and daily/weekly asthma symptoms. We present results of crude associations (Crude Odds Ratio) between individual air pollutants and asthma outcomes and adjusted associations controlling for age, sex, race/ethnicity and federal poverty level (Adjusted Odds Ratio) using logistic regression modeling.

Associations of 12-month pollutant averages with asthma outcomes

We observed positive associations between annual average criteria pollutant concentrations and asthma outcomes after controlling for age, race, poverty level and sex (Figure 4 and Table 14). A 10 ppb increase in annual average O₃ concentration was associated with 20% higher odds of experiencing an asthma attack in the previous year (95% CI=1.05-1.36) among adults with lifetime asthma. A 10 ppb increase in annual average O₃ was also associated with a 22% (95% CI=1.04-1.43) increase in the odds of using daily asthma medication and a suggested 19% (95% CI=0.96-1.47) increase in the odds of visiting the ED within the past year in adults with current asthma.

Among adults with current asthma, a 10 µg/m³ increase in annual average PM₁₀ concentration was associated with a 20% (95% CI 1.00-1.43) increase in the odds of visiting the ED within the past year and a 28% (95% CI=1.00-1.65) increase in the odds of 2 or more asthmarelated absences from work. Associations were also suggested between PM₁₀ and an increase in the odds of taking a daily asthma medication (OR=1.12, 95% CI=0.96-1.30). For every 5 µg/m³ increase in annual average PM_{2.5} concentration, the odds of taking daily asthma medication increased by 26% (95% CI=1.05-1.52); the odds of visiting the ED increased by 22% (95% CI=0.96-1.56); and the odds of experiencing daily/weekly asthma symptoms increased by 15% (95% CI=0.96-1.39). A 5 µg/m³ increase in PM_{2.5} concentration was also associated with a suggested 23% (95% CI=0.94-1.60) increase in the odds of missing ≥2 work days. Additionally, we observed a suggested 24% (95% CI=0.93-1.65) increase in odds of having ≥2 asthma-related work absences and an 18% (OR=1.18, 95% CI=0.92-1.50) increase in odds of visiting the ED per 10 ppb increase in mean annual average NO₂.

In general, we observed few associations between annual average concentrations of criteria pollutants and asthma symptoms in children. We estimated a 36% (95% CI=0.99-1.87) increase in the odds of taking a daily asthma medication and a 35% (95% CI=0.94-1.96) increase in missing 2 or more days of school per 10 ppb increase in annual average NO₂.

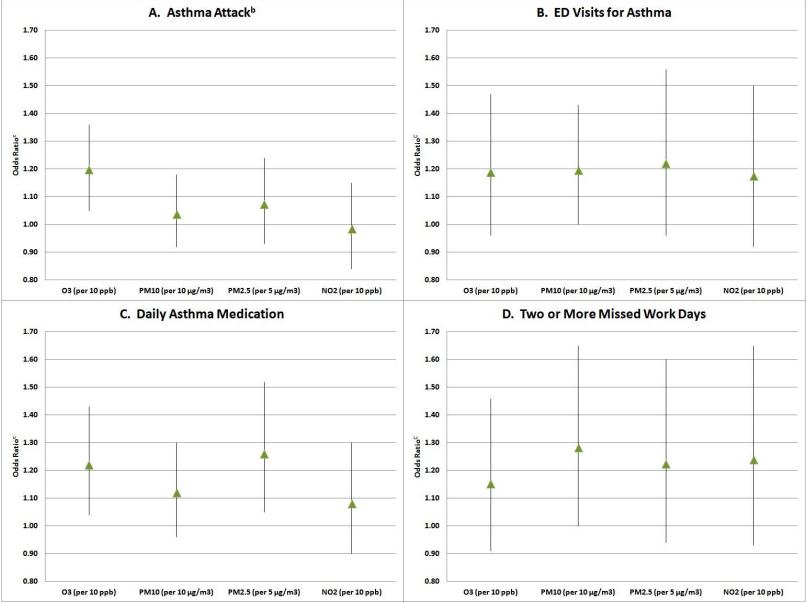


Figure 4. Associations (OR (95% CI)) between 12-month pollutant averages and asthma outcomes in CHIS 2003 adults with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question "do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included.

^bFor respondents ever diagnosed with asthma

^cAdjusted for age, race, poverty level, and sex

		Asthm	a Attac	k ^b]	ED Visit	for Ast	hma	Dai	ly Asthr	na Med	ication
		Non-	Adj.			Non-	Adj.			Non-	Adj.	
Pollutant	Cases	Cases	OR ^d	95% C.I.	Cases	Cases	OR ^d	95% C.I.	Cases	Cases	OR ^d	95% C.I.
Adults												
O ₃ (per 10 ppb)	965	1582	1.20	[1.05, 1.36]	245	1372	1.19	[0.96, 1.47]	815	802	1.22	[1.04, 1.43]
PM_{10} (per 10 µg/m ³)	770	1272	1.04	[0.92, 1.18]	212	1092	1.20	[1.00, 1.43]	659	645	1.12	[0.96, 1.30]
$PM_{2.5}$ (per 5 µg/m ³)	592	974	1.07	[0.93, 1.24]	160	830	1.22	[0.96, 1.56]	494	496	1.26	[1.05, 1.52]
NO ₂ (per 10 ppb)	782	1313	0.99	[0.84, 1.15]	200	1115	1.18	[0.92, 1.50]	667	648	1.08	[0.90, 1.30]
Children												
NO ₂ (per 10 ppb)	282	430	0.97	[0.74, 1.27]	113	356	1.17	[0.81, 1.69]	171	298	1.36	[0.99, 1.87]

Table 14 (Highlights). Associations (OR (95% CI)) for 12-month pollutant averages and respiratory outcomes in CHIS 2003 adults and children with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included

^bRespondents ever diagnosed with asthma who lived within 5 miles of an air monitoring station and in the same home or neighborhood for at least 9 months were included.

^cData not collected for teen respondents.

^dAdjusted for age, race, poverty level, and sex.

Table 14 (Highlights). Associations (OR (95% CI)) for 12-month pollutant averages and respiratory	
outcomes in CHIS 2003 adults and children with current asthma ^a (continued)	

	Misse	ed ≥2 Scł Due to		ork Days a ^c	Daily/W	Veekly A	sthma	Symptoms
	G	Non-	Adj.		G	Non-	Adj.	0504 01
Pollutant	Cases	Cases	OR ^d	95% C.I.	Cases	Cases	OR ^d	95% C.I.
Adults								
O ₃ (per 10 ppb)	176	1208	1.15	[0.91, 1.46]	504	1113	1.03	[0.87, 1.22]
PM_{10} (per 10 µg/m ³)	142	977	1.28	[1.00, 1.65]	415	889	1.03	[0.89, 1.20]
$PM_{2.5} (per 5 \mu g/m^3)$	118	743	1.23	[0.94, 1.60]	316	674	1.15	[0.96, 1.39]
NO ₂ (per 10 ppb)	147	985	1.24	[0.93, 1.65]	410	905	1.03	[0.85, 1.25]
Children								
NO ₂ (per 10 ppb)	132	166	1.35	[0.94, 1.96]	51	418	1.13	[0.72, 1.75]

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included

^bRespondents ever diagnosed with asthma who lived within 5 miles of an air monitoring station and in the same home or neighborhood for at least 9 months were included.

^cData not collected for teen respondents.

^dAdjusted for age, race, poverty level, and sex.

Associations for annual number of days exceeding air pollution standards and asthma outcomes

We observed associations between the number of days annually in which criteria pollutant levels exceeded maximum state and/or federal standards and asthma outcomes. Exceedances of state maximum 1-hr O₃ standards (i.e. over 36.7 days per year) were associated with a 40% (95% Cl=1.03-1.91) increase in the odds of having an asthma attack in the past year among adults with lifetime asthma compared to those with <0.8 exceedance days (Table 15 in Appendix). They are also associated with a 91% (95% Cl=1.14-3.18) increase in the odds of visiting the ED in the last 12 months and a 52% (95% Cl=1.03-2.24) increase in the odds of taking a daily asthma medication in adults with current asthma. When looking at exceedance days for the O₃ 1-hr state standard, there appeared to be a pollutant exposure-response trend for all three outcomes mentioned above.

Based on the O₃ 8-hr state standard, adults with lifetime asthma and \geq 51.2 exceedance days were 44% more likely to have asthma attacks in the previous year (95% CI=1.07-1.94). Adults with current asthma and \geq 51.2 exceedance days were 50% more likely to require a daily asthma medication (95% CI=1.04-2.18) than those with <1.9 exceedance days.

In addition to associations with O_3 , asthma outcomes were also associated with exceedance days for particulate matter. Adults with current asthma and \geq 6.6 days when PM_{10} concentrations exceeded the 24-hr state standard had 77% (95% CI=1.05-2.97) greater odds of visiting the ED in the year prior to the interview. Adults with current asthma and \geq 23.9 days when $PM_{2.5}$ concentrations exceeded the 24-hr federal standard were twice (OR=2.01, 95% CI=1.10-3.68) as likely to visit the ED in the past year as adults with <4.8 exceedance days, and there was a suggested exposure-response trend for this outcome. Adults with asthma with \geq 23.9 exceedance days were also 66% (95% CI=1.02-2.68) more likely to experience daily or weekly asthma symptoms compared to those with <4.8 PM_{2.5} exceedance days.

Among those with current asthma, children with \geq 36.7 days when maximum 1-hr O₃ concentrations exceeded the 1-hr state standard were 3 times as likely (OR=3.00, 95% CI=1.20-7.51) to miss 2 or more school days compared to children with <0.8 exceedance days (Table 15 in Appendix). We did not observe associations between any of the other exceedance measures or asthma outcomes in children.

Further associations were suggested between particulate matter exceedance days and asthma outcomes among adults with current asthma. A suggested 70% (95% CI=0.91-3.18) increase in the odds of missing \geq 2 work days due to asthma was observed for respondents with \geq 6.6 PM₁₀ exceedance days compared to their counterparts with <1.6 exceedance days. Also, a suggested 49% (95% CI=0.92-2.39) increase in the odds of needing a daily asthma medication was observed for those with \geq 23.9 compared to those with <4.8 PM_{2.5} exceedance days.

Associations for traffic density/distance to roadway and asthma outcomes

We observed few consistent associations between traffic density and residential proximity to roadway measures and asthma outcomes (Table 16 in Appendix). An interquartile increase in traffic density within 750 feet of respondent's homes was associated with a 8% (95% CI= 0.97-1.21) increase in odds of reporting asthma ED visits in the past year, but analyses based on quartiles of exposure did not demonstrate a clear exposure-response pattern for this outcome. Traffic density was not associated with any other outcome in adults. Living within 300 m of an interstate highway was associated with a 51% (95% CI=0.91-2.48) suggested increase in

the odds of visiting the ED in the past year, as well as a 34% (95% CI=0.95-1.90) suggested increase in the odds of needing a daily asthma medication.

For children with current asthma, we observed a 58% (95% CI=0.94-2.66) suggested increase in the odds of taking an asthma medication daily for children in the 3^{rd} versus 1^{st} quartile of TD exposure, but a 43% (95% CI=0.83-2.47) for children in the highest TD quartile (Table 16 in Appendix).

Pollutant and Asthma Outcome Relationship after Adjusting Vulnerability (Confounding) Factors

In this part of the study, we tested Hypothesis 3: Do air pollution exposures, low SES status, and certain vulnerability factors associated with low SES exert independent adverse effects on individuals with asthma? We fit three models (1) a base model, which includes each pollutant measure, plus socio-demographics, such as age, race, federal poverty level, and sex; (2) the base model plus adjustment for access to care (i.e. health insurance) and major risk factors, such as smoking and being overweight or obese, and heart disease; and (3) the base model plus adjustment for indicators of asthma severity, such as age of asthma onset, taking a daily asthma medication, having an asthma management plan; as well as indoor triggers, such as the presence of household smoking, having a dog or cat in the home, having cockroaches in the home, housing type, and household crowding.

Associations between ED visits and O_3 adjusting for vulnerability factors in adults

We observed persistent associations between ED visits and O_3 , controlling for vulnerability factors by using three different models in order to observe variations in the pollutant effect when these factors are taken into account (Table 17). Specifically, for O_3 , a positive association between increases in O_3 and ED visits remained across all models. We observed a suggested 19% (95% CI=0.96-1.47) increase in the odds of an ED visit in the last year per 10 ppb increase in annual average O_3 concentration among adults with current asthma, when using our base model after adjusting for socio-demographics (Model 1). The estimated association between annual average O_3 and ED visits remained after further adjusting for access to care and risk behaviors under Model 2 (OR= 1.18; 95% CI=0.95-1.47) and after adjusting for asthma severity and indoor triggers in Model 3 (OR=1.15, 95% CI=0.91-1.45), although in Model 3, the estimated odds were slightly lower and less precise.

Furthermore, we observed the increased odds of ED visits across races/ethnicities, age groups, poverty levels, and genders, which persisted across all three models. Based on Model 1, African Americans had 86% (95% CI= 1.04-3.32) greater odds and Latinos had twice greater odds (95% CI=1.27-3.23) of having an ED visit as white respondents. Adults with current asthma ages 35-64 years old had nearly twice (OR=1.91, 95% CI=1.15-3.20) greater odds of having visited the ED in the last year than asthmatic adults 65 years or older, and respondents living below 200% of the FPL had 93% greater odds of an ED visit (95% CI=1.26-2.97) compared to those living at or above 400% of the FPL. Women had higher odds of ED visits than men (OR=1.45, 95% CI=0.97-2.18). Under model 2, Latino and African American respondents, those 35-64 years old, females, and those living below 200% of the FPL continued to have higher odds of ED visits. Under Model 3, the pattern of increased odds of ED visits remained the same in

general, though for African Americans and women the estimated odds of ED visits moved closer toward the null.

In addition to the above associations observed in all models, under Model 2 we observed a 69% (95% CI=1.01-2.84) increase in the odds of having an ED visit in the last year for those who reported having heart disease and a 65% (95% CI=1.08-2.54) increase in odds for those with adult onset of asthma compared to childhood onset. Under Model 3 those not using a daily asthma medication and those without an asthma management plan had lower odds of ED visits (OR=0.35, 95% CI=0.23-0.52 and OR=0.52, 95% CI=0.36-0.76, respectively).

Associations between ED visits and PM₁₀ adjusting for vulnerability factors in adults

A positive association between ED visits and annual average PM_{10} concentration persisted across all models. We estimated a 20% (95% CI=1.00-1.43) increase in the odds of ED visits in the last 12 months per 10 µg/m³ increase in annual average PM_{10} after adjusting for socio-demographics under our base model (Model 1). The association stayed nearly the same after further adjusting for access to care and risk behaviors under Model 2 (OR=1.18, 95% CI=0.95-1.47) and increased slightly (OR=1.25, 95% CI=1.03-1.51) after adjusting for asthma severity and indoor triggers under Model 3.

Positive associations were also observed between ED visits and race/ethnicity, age, and poverty level across all models. Based on Model 1, we estimated increased odds of ED visits for adults 35-64 years versus ≥65 years (OR=1.76, 95% CI=0.99-3.13), Latinos versus whites (OR=2.42, 95% CI=1.46-4.00), and individuals living below 200% of the FPL versus those at ≥400% of the FPL (OR=2.02, 95% CI=1.27-3.20). Under Models 2 and 3, the strength of association between ED visits and being Latino remained approximately the same. Compared to Model 1, the odds of ED visits increased for respondents ages 35-64, but decreased for those living below 200% of the FPL under Models 2 and 3.

We also observed associations between ED visits and several model-specific vulnerability factors. Having heart disease doubled the odds of an ED visit (OR=2.07, 95% CI=1.22-3.52), and adult versus childhood asthma onset increased the odds of an ED visit by 50% (95% CI=0.94-2.39). Those not taking a daily asthma medication (OR=0.30, 95% CI=0.20-0.47) and those without an asthma management plan (OR=0.56, 95% CI=0.37-0.84) had lower odds of visiting the ED.

Associations between ED visits and PM_{2.5} adjusting for vulnerability factors in adults

A 5 μ g/m³ increase in annual average PM_{2.5} increased the odds of visiting the ED in the last 12 months by 22% (95% CI=0.96-1.56) among adults with current asthma after adjusting for socio-demographics per Model 1. The positive association between ED visits and PM_{2.5} remained nearly the same after further adjusting for access to care and risk behaviors under Model 2 (OR=1.21, 95% CI=0.95-1.54) and after adjusting for asthma severity and indoor triggers under Model 3 (OR=1.20, 95% CI=0.92-1.56).

Under Model 1 we observed that Latinos (OR=2.03, 95% CI=1.18-3.49) and African Americans (OR=1.92, 95% CI=0.99-3.71) had twice greater odds of visiting the ED. Adults with asthma living below 200% of the FPL had odds 84% (95% CI=1.11-3.03) greater than those living at 400% of the FPL or above. The positive association between ED visits and being Latino persisted across all models, though increased under Model 2, while the positive association

between ED visits and being African American was present in Model 2, but not Model 3. For respondents living below 200% of the FPL, estimated odds moved toward the null under Models 2 and 3.

Having heart disease increased the odds of ED visits by 2.12 times (95% CI=1.20-3.73). A negative relationship was observed between ED visits and not taking a daily asthma medication (OR=0.29, 95% CI=0.17-0.49), as well as not having an asthma management plan (OR=0.63, 95% CI=0.40-1.00).

Associations between daily asthma medication and O_3 adjusting for vulnerability factors in adults

For every 10 ppb increase in annual average O_3 concentration, we estimated a 22% (95% CI=1.04-1.43) increase in the odds of needing a daily asthma medication among adults with current asthma, according to Model 1 after adjusting for socio-demographics (Table 18). The relationship between O_3 and daily asthma medication was similar across all models after further adjusting for access to care and risk behaviors or asthma severity and indoor triggers.

Based on Model 1, being 18-34 years old (OR=0.32, 95% CI=0.21-0.48) or 35-64 (OR=0.55, 95% CI=0.39-0.78) was found to have lower odds of needing a daily asthma medication. In addition, we observed suggested associations between taking daily asthma medication and being African American (OR=1.49, 95% CI=0.92-2.41) and living below 200% of the FPL (OR=1.30, 95% CI=0.94-1.79). As in Model 1, being <65 versus ≥65 years of age was found to have lower odds in general, but African Americans had greater odds of needing a daily asthma medication under Models 2 and 3. The positive association between daily asthma medication and living below 200% of the FPL did not appear under Model 2, but was seen in Model 3.

Model-specific vulnerability factors were also found to have associations with increased odds of needing a daily asthma medication. Having current insurance (OR=1.56, 95% CI=1.02-2.38), having heart disease (OR=1.77, 95% CI=1.16-2.69), and ever smoking (OR=1.41, 95% CI=1.07-1.86) were found to increase respondents' odds of daily asthma medication use under Model 2. Moreover, individuals without a usual source of care (OR=2.28, 95% CI=1.35-3.85) had higher odds of daily asthma medication use under Model 3, while not having an asthma management plan (OR=0.46, 95% CI=0.35-0.61) and having cockroaches in the home (OR=0.58, 95% CI=0.38-0.88) were shown to have a negative association with needing a daily asthma medication.

Associations between daily asthma medication and PM₁₀ adjusting for vulnerability factors in adults

According to our base model (Model 1), a 10 μ g/m³ increase in annual average PM₁₀ was associated with a 12% (95% CI=0.96-1.30) increase in the odds of daily asthma medication use after adjusting for socio-demographics among adults with current asthma. The positive association between PM₁₀ and daily medication use stayed the same under Model 2 (OR=1.12, 95% CI=0.96-1.30) after further adjusting for access to care and risk behaviors and increased slightly after adjusting for asthma severity and indoor triggers under Model 3 (OR=1.23, 95% CI=1.04-1.45). Under Model 1, African Americans (OR=1.85, 95% CI=1.07-3.19) and American Indian/Alaska Natives (OR=2.46, 95% CI=0.92-6.62) had higher odds of daily asthma medication use. Younger adult respondents had lower odds of needing a daily asthma medication compared to adult respondents ≥65 years (18-34 years: OR=0.32, 95% CI=0.20-0.51; 35-64 years: OR=0.53, 95% CI=0.36-0.79).

The positive association between odds of daily asthma medication use and being African American increased in Models 2 and 3, while estimates for American Indian/Alaska Natives remained the same and precision increased. The lower odds for those between the ages of 18-34 years old remained, but lower odds for those 35-64 years old was only evidenced under Model 2.

Adults with heart disease had 81% (95% CI=1.12-2.91) higher odds, and those who had ever smoked had 31% (95% CI=0.97-1.77) higher odds of needing a daily asthma medication under Model 2. Under Model 3, odds of daily medication use was greater for those with a usual source of care (OR=1.83, 95% CI=1.02-3.28). On the other hand, those without an asthma management plan (OR=0.44, 95% CI=0.32-0.60), those who had experienced a delay in care for any medical reason (OR=0.68, 95% CI=0.47-0.97), and those with the presence of cockroaches in the home (OR=0.54, 95% CI=0.33-0.87) had lower odds of using a daily asthma medication.

Associations between daily asthma medication and PM_{2.5} adjusting for vulnerability factors in adults

The odds of daily medication use increased 26% (95% CI=1.05-1.52) per 5 μ g/m³ increase in annual average PM_{2.5} concentration level after adjusting for socio-demographics based on Model 1. The odds of using a daily asthma medication increased after further adjusting for access to care and risk behaviors under Model 2 (OR=1.30, 1.07-1.57), and increased even further after adjusting for asthma severity and indoor triggers under Model 3 (OR=1.44, 95% CI=1.18-1.76).

Under Model 1, respondents with current asthma between the ages of 18-34 and 35-64 years had lower odds of needing a daily asthma medication than respondents 65 years old or older (OR=0.40, 95% CI=0.24-0.66 and OR=0.56, 95% CI=0.36-0.88, respectively). There also appeared to be a positive association between daily asthma medication use and being African American (OR=1.62, 95% CI=0.92-2.84). Under Models 2 and 3, younger respondents, ages 18-34, had lower odds of using a daily asthma medication than those with current asthma 65 years old or older, but the previous negative associations for ages 35-64 years (OR=0.64, 95% CI=0.42-0.97) only remained under Model 3. Positive associations between increased odds of taking a daily asthma medication and being African American persisted under Models 2 and 3.

In addition to the above associations seen across all models, being currently insured (OR=1.86, 95% CI=1.11-3.11), having heart disease (OR=1.73, 95% CI=1.05-2.84), and ever smoking (OR=1.47, 95% CI=1.04-2.06) all increased the odds of daily asthma medication use under Model 2. Based on Model 3, those with a usual source of care had increased odds (OR=3.07, 95% CI=1.57-5.99), while having an asthma management plan (OR=0.41, 95% CI=0.29-0.59) or cockroaches in the home (OR=0.59, 95% CI=0.36-0.97) had a negative relationship with daily asthma medication use.

Associations between missed work days and O₃ adjusting for vulnerability factors in adults

According to results from Model 1, we observed a 15% suggested increase (95% CI=0.91-1.46) in the odds of missing ≥ 2 days of work as O₃ annual averages increased by 10 ppb among adults with current asthma after adjusting for socio-demographics (Table 19). Model 2 appeared to also evidence a 15% increase (95% CI=0.91-1.44) after further adjusting for access to care and risk behaviors, and Model 3 appeared to evidence a 13% increase in odds of missing ≥ 2 days of work due to asthma after adjusting for asthma severity and indoor triggers (95% CI=0.88-1.44), though precision was low.

Based on Model 1, African American, Asian/Pacific Islander/Other race, and Latino adults had two to four times greater odds of missing ≥ 2 days of work than white adults (OR=3.79, 95% CI=2.02-7.13; OR=2.06, 95% CI=1.07-3.97; OR=3.42, 95% CI=2.06-5.68, respectively). Women had twice greater odds of missing ≥ 2 days of work as men (OR=2.26, 95% CI=1.39-3.68). Living below 200% of the FPL was shown to have a negative relationship with missing 2 or more work days. For all O₃ vulnerability characteristic models and all subsequent pollutant vulnerability characteristic models, the odds ratios for the age variable were not estimated due to small sample size. Associations observed based on results from Model 1 were maintained in Models 2 and 3, and changes in point estimates for these factors were minimal. Beyond the associations evidenced across all models controlling for O₃, those without a daily asthma medication (OR=0.44, 95% CI=0.28-0.69) had lower odds of missing ≥ 2 days of work.

Associations between missed work days and PM₁₀, adjusting for vulnerability factors in adults

Based on Model 1, we observed a 28% (95% CI=1.00-1.65) increase in the odds of missing ≥ 2 days of work per 10 µg/m³ increase in annual average PM₁₀ concentration after adjusting for socio-demographics. Associations between PM₁₀ and missing ≥ 2 days of work were similar after further adjusting for access to care and risk behaviors in Model 2 (OR=1.30, 95% CI=1.01-1.68) or adjusting for asthma severity and indoor triggers in Model 3(OR=1.25, 95% CI=0.96-1.63).

Both African Americans and Latinos had nearly 4 times greater odds of missing ≥ 2 days of work than their white counterparts (OR=3.60, 95% CI=1.73-7.47 and OR=3.60, 95% CI=2.00-6.47, respectively), and women had twice greater odds than men to miss ≥ 2 days of work (OR=2.14, 95% CI=1.25-3.65) under Model 1. Positive associations were similarly maintained for African Americans, Latinos, and women under Models 2 and 3. As with all models investigating O₃ associations with the adverse asthma outcomes mentioned above, those not taking a daily asthma medication had lower odds of missing ≥ 2 days of work than those taking a daily asthma medication (OR=0.44, 95% CI=0.26-0.74).

Associations between missed work days and PM_{2.5} adjusting for vulnerability factors in adults

We observed a 23% suggested increase in the odds of missing ≥ 2 days of work (95% CI=0.94-1.60) for every 5 µg/m³ increase in PM_{2.5} annual averages after adjusting for sociodemographics under Model 1. The association between missing ≥ 2 days of work and PM_{2.5} was of similar magnitude after further adjusting for access to care and risk behaviors in Model 2 (OR=1.23, 95% CI=0.94-1.60) and after adjusting for asthma severity and indoor triggers in Model 3 (OR=1.24, 95% CI=0.93-1.66). African American and Latino respondents had greater odds of missing ≥ 2 days of work than white respondents (OR=4.69, 95% CI=2.24-9.81 and OR=3.28, 95% CI=1.76-6.10, respectively), as did women compared to men (OR=2.23, 95% CI=1.24-4.03) under Model 1. Respondents living below 200% of the FPL appeared to have lower odds of missing ≥ 2 days of work than those living at or above 400% of the FPL (OR=0.37, 95% CI=0.21-0.67). The positive associations for African Americans, Latinos, and women and the negative association for those living below 200% of the FPL remained similar in Models 2 and 3. Similar to Models 1-3 investigating O₃ and PM₁₀ associations, those not taking a daily asthma medication had lower odds of missing ≥ 2 days of work (OR=0.49, 95% CI=0.28-0.86).

Associations between daily asthma medication and PM_{2.5} adjusting for vulnerability factors in children

Based on Model 1, we observed a 20% (95% CI=0.88-1.63) suggested increase in the odds of using a daily asthma medication for every 5 μ g/m³ increase in annual average PM_{2.5} concentration after adjusting for socio-demographics among children with current asthma. The positive association between daily asthma medication use and PM_{2.5} persisted across all models, though confidence intervals crossed the null after adjusting for insurance status, the presence of household smoking, having a dog or cat in the home, and having cockroaches in the home (Model 2); as well as after adjusting for urban vs. rural residence, having a delay in care, taking a daily asthma medication, having an asthma management plan, housing type, and household crowding in Model 3.

In Model 1, children living below 200% and those living between 200-399% of the FPL had three times greater odds of using a daily asthma medication compared to those living at ≥400% of the FPL (OR=2.64, 95% CI=1.22-5.72; OR=3.00, 95% CI=1.46-6.14). Associations between living below 200% or between 200-399% of the FPL and using a daily asthma medication were similar in Models 2 and 3. In addition to associations seen across models, children without an asthma management plan had lower odds of using a daily asthma medication (OR=0.38, 95% CI=0.19-0.75), according to results from Model 3.

No vs Yes							75.0	95.0	92.0					··		96.0	<i>L</i> E:0	7 8'0	-	-					6.63	070	00.1
sthma Management Plan							02 0	200	120								200								0,5 0	0, 0	
səY sv oN							SE. 0	0.23	22.0							0.30	0.20	L‡'0							67.0	<i>L</i> I.0	67.0
aily Asthma Medication																											
blidD av flubA							29.1	80.1	5.54							02.1	†6 [.] 0	65.2									
smitzA fo isan																											
oN sv ssy				69'I	10.1	2.84							7.07	1.22	3.52							21.2	1.20	£7.£			
eart Disease																											
Female vs. Male	1.45	<i>L</i> 6 [.] 0	2.18	9†.I	<i>L</i> 6 [.] 0	12.2	7E.1	68.0	2.10	82.1	68.0	79.1	1.23	08.0	88.1	22.1	08.0	96'I	24.1	68.0	75.37	02.1	16.0	545	12.1	68.0	55.2
Xe																											
200 - 399% FPL	1.14		68.1			08.1		89.0	£8.I		62.0			92.0				66.2							86.0		
0 - 166% EbF	561	92.1	<i>L</i> 67	791	201	<i>T</i> 2.2	781	21.1	2.95	202	<i>LC</i> 1	3.20	721	901	08.2	<u>96 I</u>	21.1	15.5	181	111	£0 £	151	06.0	757	1.64	£6 O	067
oveny (Ref. ≥400% FPL) ^g																											
Latino	2.03		3.23						87.E		9†.I			<i>1.47</i>			7E.1								2.05		
Asian / Pacific Islander / Other	97.1	17.0	5.26	86.1	<i>LL</i> .0	74.2	[4.I	6 <i>L</i> .0	12.2	08.0	24.0	7 5. I	78.0	44.0	6 <u>5</u> .1	06.0	24.0	6 <i>L</i> .I	96.0	74.0	96'I	80.1	22.0	2.23	26.0	97.0	1.84
American Indian / Alaska Vative	12.1	6.43	62.2	9†.I	0.42	91. 2	96.0	62.0	9I.E	9E.I	8£.0	£6 . 4	L2.1	6.33	88.4	68.0	t7:0	16.2	<i>L</i> 6 [.] 0	91.0	26.2	68.0	0.14	82.2	65.0	01.0	3.34
A freibal acordan A	06.1	1.04	76.6	0/.1	/6'0	07.6	04.1	s/:0	89.2	7 5 .1	7 /.0	17.2	00.1	/0.0	5.53	91.1	80.0	67.7	76'1	66.0	1/.0	C6.1	86.0	/9°C	8E.I	1/.0	/0.7
ace (Ref. White)	201	101	000	121	200	00.0	011	CL U	870	011	120	120	001	270	030	711	830	000	01	000	120	301	800	200	001	120	270
32 - 94	16.1	21.1	3.20	97.7	05.1	76 [.] E	55.2	67.I	4.19	9/.'I	66.0	51.5	5.19	07.I	4.00	67.7	6I'I	4'4]	t⁄9'I	98.0	61.5	07.2	£Г.Т	97.4	88.1	76.0	9 <i>L</i> .E
18 - 34	60.1		£6.1			58.2						88.1			06.2										15.1		
ge (Ref.≥65)																											
¹ 9garavA tnatullo¶ dtnoM-2	6I.I	96'0	<i>L</i> ⊅.1	81.1	\$6 .0	<i>L</i> ⊅.I	2I.I	16.0	1.45	1.20	00.1	1.43	81.1	66.0	1.42	1.25	£0.1	12.1	1.22	96.0	95.I	12.1	\$6 .0	1.54	1.20	26.0	95.1
ulnerability Characteristic	ОĽ	%\$6	CT	ОĽ	%S6	CT	ОĽ	%S6	CT	ОĽ	%\$6	CT.	ОĽ	656	° CT	ОĽ	6 5 6	CT	ОĽ	%\$6	CT	ОĽ	%\$6	CT	ОĽ	% S 6	CT
	(54	°(245, 1372)°			961 'S	,(S	(7)	EEI 'Ot	ə(7	(7)	501 '7	_ع (70	7)	15, 108	<u>ع</u> 2)و	(5	601 60	ə(8)I)	90, 830)(₀	I)	78 '09	ə(I)	.08 '25	_(/
	N	^d I ləboM		M	[əpo]	5 ₀	N	ləbol	pE	N	lsbol	1 _p	N	ləbol	5 ₉	N	lsbol	p£	M	[[əpo]	q	N	ləbol	50	N	ləbol	pE
				O_3 (per 10 ppb) PM_{10} (per 10 μg/m ²) PM_{10} (per 10 μg/m ²)																							

Table 17 (Highlights). Associations between ED visits and criteria pollutants (O₃, PM₁₀, and PM_{2.5}) adjusting for vulnerability characteristics among CHIS adults with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

ⁿModel 1 controlled for age, race, poverty level, and sex.

^cModel 2 controlled for the following vulnerability factors: insurance status, obesity, heart disease, smoking status, and work status, in addition to age, race, poverty level, and sex.

^dModel 3 controlled for the following vulnerability factors: urban/rural, usual source of care, delay in care, onset of asthma, daily asthma medication, asthma management plan, household smoking, dog or cat in home, cockroaches in home, housing type, household crowding, diabetes, and walking, in addition to age, race, poverty level, and sex.

(Cases, Non-cases)

Refers to the criteria pollutant noted in the column heading.

⁸FPL = Federal Poverty Level

			·	O ₃ (j	per 10	ppb)		·			·	·	PM_{10}	(per 10)μg/m ³)						PM _{2.5}	(per 5	µg/m)		
	N	Aodel	1 ^b	Ν	lodel	2 ^c	N	Model	3 ^d	Ν	Model	1 ^b	N	Model	2 ^c	Ν	Aodel	3 ^d	Ν	lodel	1 ^b	Ν	fodel	2 ^c	N	Aodel	3 ^d
	(8	315, 80	(2) ^e	(8	11, 79	9) ^e	G	789, 78	38) ^e	((559,64	45) ^e	(6	554, 64	(3) ^e	(6	634, 63	(3) ^e	(4	94, 49	6) ^e	(4	91, 494	4) ^e	(4	479, 48	$(5)^{\rm e}$
Vulnerability Characteristic	OR	959	6 C.I.	OR	95%	6 C.I.	OR	959	% C.I.	OR	95	% C.I.	OR	959	% C.I.	OR	959	6 C.I.	OR	95%	6 C.I.	OR	95%	C.I.	OR		6 C.I.
12-Month Pollutant Average ^f	1.22	1.04	1.43	1.23	1.05	1.46	1.24	1.05	1.48	1.12	0.96	1.30	1.12	0.96	1.30	1.23	1.04	1.45	1.26	1.05	1.52	1.30	1.07	1.57	1.44	1.18	1.76
Age (Ref. ≥65)																									-		
18 - 34	0.32	0.21	0.48	0.52	0.33	0.83	0.30	0.19	0.48	0.32	0.20	0.51	0.51	0.30	0.87	0.33	0.19	0.55	0.40	0.24	0.66	0.80	0.44	1.44	0.41	0.23	0.73
35 - 64	0.55	0.39	0.78	0.76	0.52	1.12	0.51	0.35	0.74	0.53	0.36	0.79	0.72	0.46	1.13	0.50	0.32	0.77	0.56	0.36	0.88	0.91	0.55	1.49	0.52	0.32	0.85
Race (Ref. White)																											
African American	1.49	0.92	2.41	1.54	0.95	2.49	1.52	0.92	2.51	1.85	1.07	3.19	1.98	1.15	3.41	2.16	1.22	3.84	1.62	0.92	2.84	1.87	1.05	3.32	1.76	0.97	3.18
American Indian /																											
Alaska Native	1.88	0.74	4.75	1.89	0.77	4.66	1.77	0.74	4.24	2.46	0.92	6.62	2.56	0.97	6.77	2.47	1.02	5.99	1.85	0.55	6.29	1.85	0.57	6.00	1.84	0.59	5.73
Asian / Pacific Islander /																											
Other	0.75	0.47	1.20	0.86	0.54	1.38	0.71	0.44	1.16	0.72	0.41	1.26	0.81	0.46	1.42	0.86	0.48	1.53	0.77	0.45	1.31	0.84	0.49	1.42	0.87	0.50	1.52
Latino	0.81	0.54	1.20	0.90	0.59	1.36	0.90	0.58	1.39	1.06	0.66	1.68	1.17	0.72	1.90	1.33	0.80	2.21	0.65	0.40	1.06	0.79	0.48	1.29	0.78	0.45	1.36
Poverty (Ref. ≥400% FPL) ^g																											
0 - 199% FPL	1.30	0.94	1.79	1.16	0.82	1.65	1.41	0.98	2.03	1.16	0.81	1.65	1.06	0.72	1.57	1.28	0.86	1.90	1.28	0.86	1.91	1.12	0.73	1.72	1.45	0.94	2.22
200 - 399% FPL	0.96	0.68	1.36	0.96	0.68	1.36	0.96	0.68	1.36	0.92	0.62	1.35	0.94	0.63	1.38	0.93	0.62	1.38	0.85	0.55	1.30	0.87	0.56	1.34	0.89	0.57	1.37
Sex																											
Female vs. Male	1.12	0.85	1.48	1.11	0.84	1.48	1.09	0.82	1.47	0.95	0.69	1.30	0.98	0.71	1.35	0.94	0.67	1.31	1.06	0.75	1.51	1.07	0.75	1.53	0.98	0.68	1.41
Currently Insured																											
Yes vs No				1.56	1.02	2.38																1.86	1.11	3.11			
Heart Disease																											
Yes vs No				1.77	1.16	2.69							1.81	1.12	2.91							1.73	1.05	2.84			
Smoker																											
Ever vs Never				1.41	1.07	1.86							1.31	0.97	1.77							1.47	1.04	2.06			
Usual Source of Care																											
Yes vs No							2.28	1.35	3.85							1.83	1.02	3.28							3.07	1.57	5.99
Delay in Care																											
Yes vs No																0.68	0.47	0.97									
Asthma Management Plan																											
No vs Yes							0.46	0.35	0.61							0.44	0.32	0.60							0.41	0.29	0.59
Cockroaches																											
Yes vs No							0.58	0.38	0.88							0.54	0.33	0.87							0.59	0.36	0.97

Table 18 (Highlights). Associations between daily asthma medication and criteria pollutants (O₃, PM₁₀, and PM_{2.5}) adjusting for vulnerability characteristics among CHIS adults with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bModel 1 controlled for age, race, poverty level, and sex.

^cModel 2 controlled for the following vulnerability factors: insurance status, obesity, heart disease, smoking status, and work status, in addition to age, race, poverty level, and sex.

^dModel 3 controlled for the following vulnerability factors: urban/rural, usual source of care, delay in care, onset of asthma, asthma management plan, household smoking, dog or cat in home, cockroaches in home, housing type, household crowding, diabetes, and walking, in addition to age, race, poverty level, and sex.

^e(Cases, Non-cases)

^fRefers to the criteria pollutant noted in the column heading.

^gFPL = Federal Poverty Level

98.0	0.28	67.0								<i>†L</i> .0	97.0	<i>tt</i> .0							69.0	0.28	<i>†</i> †.0							səY sv oN
																												noitsoib9M smhtzA ylis0
\$03	81.1	2.18	88.8	12 J	1.1	11.2	4.03	1.24	5.23	08°E	1.20	2.13	3.40	9I.I	66.I	3.65	1.25	5.14	3.40	1.24	2.05	12.5	15.1	5.14	89°E	6E.I	5.26	Female vs. Male
																												XƏ
2.15	79.0	1.17	06.1	1 85	5.0 (1.00	0 <i>L</i> .1	05.0	26.0	9 <i>L</i> .2	\$8.0	£2.1	5.63	28.0	<i>L</i> ⊅`I	25.32	£Ľ:0	1.30	2.10	<i>SL</i> .0	1.25	96'I	69.0	9I.I	68.I	L9'0	£I.I	700 - 366% EbF
8 <i>L</i> .0	91.0	95.0	<i>†L</i> .0	0 17	2.0 6	6£.0	L9'0	12.0	LE.O	80.1	L2.0	<i>t</i> \$.0	1.23	9£.0	L9'0	1.02	6.33	82.0	<i>L</i> 8 [.] 0	0.24	6.45	1.04	0.34	65.0	6.0	0.34	<i>LS</i> .0	0-166% EbF
																												overty (Ref. ≥400% FPL) ^g
8.33	21.2	4.21	62.23	9 92	1.1	15.5	01.0	9 <i>L</i> .1	3.28	81.7	5.03	3.82	95.9	1 [.] 61	12.5	<i>L</i> †'9	00.2	09.6	t⁄9 [.] 9	5.25	98 [.] E	64.8	66'I	3.30	89.Z	90.2	3.42	Latino
\$0.4	16.0	1.92	79.6	E 82	L'0 6	69.1	0Ľ.E	28.0	<i>†</i> ∕.1	8 <i>L</i> .2	LÞ.0	1.14	5.42	97.0	20.1	89.2	67.0	1.15	4'30	11.1	2.18	78.E	10.1	86.I	79.F	70.1	5.06	Other
																												Asian / Pacific Islander /
8.53	12.0	1.34	98.9	9 51	1.01	10.1	82.T	81.0	£I.I	25.9	<i>LS</i> .0	£6.1	91.9	6.45	<i>L</i> 9'I	80.9	<i>22.</i> 0	1.83	1 <i>L</i> .9	22.0	98.I	6ĽS	97.0	1.62	28.2	12.0	£7.1	Alaska Vative
																												American Indian /
15.89	2.35	5.50	17.6	6 11	2.1	54.45	18.0	5.24	69.4	74.T	1.43	3.25	S0.7	69°I	3.45	Lt.T	£7.1	09°E	66°L	1.82	18.£	6Ľ9	1.92	19.5	£1.7	2.02	6Ľ.E	nsəriəmA nsərifA
																												lace (Ref. White)
99°I	£6 [.] 0	1.24	09.1	I 76	50 8	1.23	09.1	7 6'0	1.23	£9.I	96.0	1.25	89.1	10.1	1.30	S 9.1	1.00	1.28	1.44	88.0	£1.1	1.44	16.0	21.15	9†.I	16.0	۲.15	¹ 9garavA tnatulloT dtnoM-2
CT	% S 6	ОĽ	.I.C) %S	6	OB	CT	% S 6	ОĽ	CI.	%\$6	OB	9 C.I.	6 S 6	Оß	9 C.I.	% S 6	ОĽ	CT.	%S6	ОĽ	CT	%S6	ЯO	CT.	% S 6	ОĽ	ulnerability Characteristic
ə(/	<i>LTL</i> '81	(11)	a	_(E7L	. '811)) _e	67 <i>1</i> 43	1)	ى) _د	¢1,95	I)	_э (Д	L6 '77	I)	_э (Д	L6 '77	I)	92) _e	811 '5/	(1)	_ə (8	6, 120	LI)	(176, 1208) ^e		(1)	
p8	E ləbol	M		el 2º	boM	I	q	l Isbol	W	pε	ləbol	N	5 _c	ləbol	N	ηĮ	lsbol	N	pĘ	ləbol	N	_o 7	[əpo]	M	^d I IsboM			
		((<mark>_m/8</mark>	gul č t	ıəd) s	^{5.2} Wq	[(em/gµ(per 10	O ³ (bet 10 bbp) bW10 (bet 10													
% LZ	56 72 '81	(11) ЯО	TC	2% C 143) ₆ 15	900 6 7 (811)	OK ()	CT) _e	%\$6 E7/ '81	ОК []	۶ CT ۱)و	%\$6 .\$6 'I†	<u>ОК</u> (1	۶ CT ۱) ₆ ۲ ₆	1960 192, 97 1950	ОВ (1 И	۹ CT ۱)ډ ۱ _۹	%\$6 .L6 '77	ОВ () М	פ כד פני פני פני פני	ləbol 811,27 820	<u>80</u> (1) М	CT 8) _c 5 _c bbp)	92% 92% 92% 92% 92% 92% 92% 92% 92% 92%	OB (17 M 703 (p	9 СТ)8) ₆ Ј _р	92% 150 Jepoj	<u>80</u> (1) М	¹ 9garavA tnatullof dinoM

Table 19 (Highlights). Associations between missing 2 or more days of work and criteria pollutants (O₃, PM₁₀, and PM_{2.5}) adjusting for vulnerability characteristics among CHIS adults with current asthma^a

^eFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^MModel 1 controlled for the following vulnerability factors: insurance status, obesity, heart disease, smoking status, and work status, in addition to age, race, poverty level, and ^CModel 2 controlled for the following vulnerability factors: insurance status, obesity, heart disease, smoking status, and work status, in addition to age, race, poverty level, and

sex. ^dModel 3 controlled for the following vulnerability factors: urban/rural, usual source of care, delay in care, onset of asthma, daily asthma medication, asthma management plan, ^dModel 3 controlled for the following vulnerability factors: urban/rural, usual source of care, delay in care, onset of asthma, daily asthma medication, asthma management plan,

(cases, Non-cases)

'Refers to the criteria pollutant noted in the column heading.

⁸FPL = Federal Poverty Level

						(per 5 132, 20		³)		
		N	Iodel	1 ^c	,	152, 20 10del 2	,	-	Model	3 ^e
Vulneral	bility Characteristic	OR		C.I.	OR		C.I.	OR		6 C.I.
12-Montl	h Pollutant Average ^f	1.20	0.88	1.63	1.20	0.87	1.64	1.28	0.93	1.76
Age (Ref										
	≤6	0.89	0.40	1.99	0.89	0.40	1.99	1.04	0.46	2.36
	12 - 17	1.07	0.56	2.07	1.07	0.55	2.09	1.51	0.74	3.12
Race (Re:	f. White)									
	African American	1.16	0.46	2.92	1.15	0.43	3.07	1.03	0.40	2.71
	American Indian /									
	Alaska Native	1.11	0.15	8.44	1.11	0.14	8.82	0.84	0.11	6.26
	Asian / Pacific									
	Islander / Other	0.92	0.34	2.49	0.97	0.36	2.60	0.86	0.32	2.29
	Latino	1.43	0.66	3.10	1.49	0.68	3.26	1.31	0.57	3.00
Poverty ((Ref. $\geq 400\%$ FPL) ^g									
	0 - 199% FPL	2.64	1.22	5.72	2.51	1.14	5.56	3.21	1.40	7.39
	200 - 399% FPL	3.00	1.46	6.14	2.86	1.40	5.87	3.56	1.66	7.60
Sex										
	Female vs. Male	0.96	0.52	1.75	0.96	0.52	1.76	0.92	0.51	1.69
Asthma I	Management Plan									
	No vs Yes							0.38	0.19	0.75

Table 20 (Highlights). Associations between daily asthma medication and PM_{2.5} adjusting for vulnerability characteristics among CHIS 2003 children with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^b(Cases, Non-cases)

^cModel 1 controlled for age, race, poverty level, and sex.

^dModel 2 controlled for the following vulnerability factors: household smoking, dog or cat in home, cockroaches in home, and insurance status, in addition to age, race, poverty level, and sex.

^eModel 3 controlled for the following vulnerability factors: urban/rural residency, delay in care, asthma management plan, housing type, and household crowding, in addition to age, race, poverty level, and sex.

^fRefers to the criteria pollutant noted in the column heading.

^gFPL = Federal Poverty Level

Interactions between Pollutant Exposures and Vulnerability of Sub-Populations

In this part of the study, we tested the hypothesis that higher pollutant exposures interact with these vulnerability factors resulting in greater air pollution impacts on asthma in vulnerable sub-populations, i.e. racial/ethnic minorities, and low-income individuals (Hypothesis 4). We tested for interactions between the pollutant exposure and vulnerability from belonging to a low SES sub-population using logistical regression models that included the main effect and interaction terms and held all control variables constant at the reference level. We present the findings of interactions between pollutant exposure and sub-populations, characterized by race/ethnicity and income.

Interactions of NO₂ with poverty

We examined the potential modifying effects of income measured by poverty level on the relationships between air pollutants and asthma outcomes among respondents with current asthma by adding appropriate interaction terms to our regression models while adjusting for age, race, and sex. For children with current asthma, we found that those living below 200% of the FPL had greater increases in odds of ED visits as NO₂ annual average concentrations increased than children living at or above 400% of the FPL (p=0.01) (Figure 5 and Table 21).

Interactions of NO₂ and PM₁₀ with race/ethnicity

Significant interactions between NO₂ and race/ethnicity were also observed (Figure 6 and Table 22). Among adults, African Americans and Asians/PIs/Others had greater increases in odds of missing 2 or more work days as annual average NO₂ increased (p=0.03 and p<0.01, respectively). African American adults also experienced greater increases in odds of daily/weekly symptoms than white respondents with the same increase in annual average NO₂ (p=0.03). American Indian/Alaska Native children (p < 0.001) and Asian/PI/other children (p=0.04) showed greater increases in odds of daily/weekly asthma symptoms than white children with the same increase in annual average NO₂.

For PM₁₀, significant interactions with race/ethnicity were found among children for two outcomes, using daily asthma medication and experiencing daily/weekly asthma symptoms (Figure 7 and Table 23). Latino children had greater increases in odds of daily asthma medication use compared to white children as annual average PM₁₀ increased (p=0.05). Both African American children (p=0.03) and Asian/PI/other (p=0.03) children had greater increases in odds of daily/weekly symptoms in comparison to white children with the same level of increase in PM₁₀ annual average concentration.

Estimated odds in vulnerable sub-populations

Based on the significant interaction models described above, we calculated odds ratios and 95% confidence intervals to quantify the increased influence of criteria pollutants on asthma outcomes by sub-population group. While significant differences in pollutant effect on asthma outcomes by sub-population were observed, there was not enough statistical power to quantify the strength of association by racial/ethnic group or poverty level in most models. Therefore, the confidence intervals for the ORs often crossed the null except for a few interaction odds. The results of these calculations are noted in Tables 24 and 25 in the Appendix.

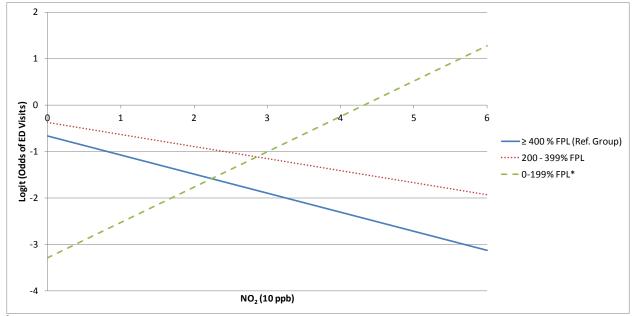


Figure 5. Interaction between mean NO_2 annual exposure and Federal Poverty Level (FPL) on log odds of ED visits in CHIS 2003 children with current asthma^{a,b}

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bAdjusted for age, race, poverty level, and sex.

*p < 0.05, **p < 0.01, ***p < 0.001

		ED V	isits (Child	lren)
Variables		Estimate	Std Error	p-value
Intercept		-0.67	0.76	0.38
NO ₂ (per	10 ppb) ^b	-0.41	0.36	0.25
Age				
(Ref. 6 -		0.88	0.33	0.01
11 year	0-5			
	12-17	-1.70	0.42	<.0001
Race (Ref	Whites)			
	African American	0.67	0.42	0.11
	American Indian /	0.65	0.93	0.48
	Alaska Native			
	Asian / Pacific Islander /	-0.61	0.55	0.27
	Other			
	Latino	0.32	0.39	0.41
Poverty (Ref. \geq 400% FPL)			
	0 - 199% FPL	-2.62	1.03	0.01
	200 - 399% FPL	0.30	0.98	0.76
Sex (Ref.	Male)			
	Female	0.08	0.31	0.79
$NO_2 * Po$	verty (0-199% FPL)	1.17	0.46	0.01
$NO_2 * Po$	verty (200-399% FPL)	0.15	0.48	0.76

Table 21. Interaction between mean NO_2 annual exposure and Federal Poverty Level (FPL) on log odds of ED visits in CHIS 2003 children with current asthma

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question "do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bRepresents the pollutant estimate for the reference group of the interaction term, in this case respondents living at \ge 400% FPL with current asthma.

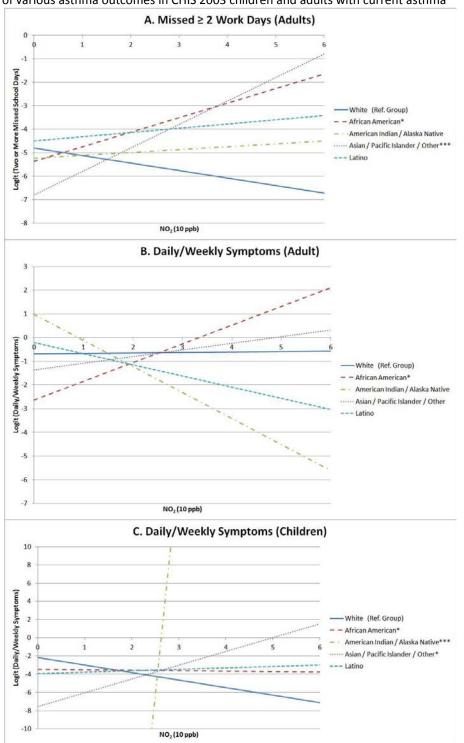


Figure 6. Interaction between mean NO_2 annual exposure and race/ethnicity on log odds of various asthma outcomes in CHIS 2003 children and adults with current asthma^{a,b}

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bAdjusted for age, race, poverty level, and sex

*p < 0.05, **p < 0.01, ***p < 0.001

		Missee	l ≥2 Work (Adults)	Days	Daily/We	ekly Sym Adults)	ptoms	-	/eekly Syr (Children)	nptoms
Variables		Estimate	Std Error	p-value	Estimate	Std Erro	p-value	Estimate	Std Error	p-value
Intercept		-4.80	1.12	<.0001	-0.69	0.31	0.03	-2.19	0.83	0.01
NO ₂ (per 10 ppb) ^b		-0.32	0.22	0.15	0.02	0.12	0.85	-0.82	0.38	0.03
Age										
(Ref. 6 - 11 year old)	0-5							0.06	0.59	0.92
	12-17							0.70	0.47	0.14
(Ref. \geq 65 years old)	18-34	2.49	1.05	0.02	-0.85	0.24	0.00			
	35-64	2.70	1.03	0.01	-0.18	0.19	0.34			
Race (Ref. Whites)										
	African American	-0.57	1.01	0.57	-1.95	0.86	0.02	-1.27	1.69	0.45
	American Indian / Alaska Native									
	(AI/AN)	-0.43	1.88	0.82	1.67	1.23	0.17	-128	6.27	<.0001
	Asian / Pacific Islander (PI) / Other	-2.00	1.07	0.06	-0.68	0.75	0.37	-5.37	3.19	0.09
	Latino	0.30	0.81	0.00	0.48	0.75	0.37	-1.77	1.17	0.09
Poverty (Ref. ≥ 400%		0.50	0.01	0.72	0.40	0.00	0.42	-1.77	1.17	0.15
	0 - 199% FPL	-0.68	0.28	0.02	0.49	0.19	0.01	1.21	0.54	0.03
	200 - 399% FPL	-0.04	0.29	0.88	-0.01	0.21	0.95	1.33	0.52	0.01
Sex (Ref. Male)										
	Female	0.80	0.28	< 0.01	0.13	0.17	0.44	0.24	0.42	0.57
NO ₂ * Race (African	American)	0.94	0.44	0.03	0.77	0.36	0.03	0.77	0.78	0.33
NO ₂ * Race (AI/AN)		0.44	0.84	0.60	-1.12	0.78	0.15	50.4	2.43	<.0001
NO ₂ * Race (Asian/P	I/Other)	1.32	0.43	0.00	0.26	0.32	0.42	2.33	1.13	0.04
NO ₂ * Race (Latino)		0.50	0.34	0.14	-0.49	0.28	0.08	0.98	0.53	0.06

Table 22. Interaction between mean NO_2 annual exposure and race/ethnicity on log odds of various asthma outcomes in CHIS 2003 children and adults with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bRepresent the pollutant estimate for the reference group of the interaction term, in this case white respondents with current asthma

^cFPL = Federal Poverty Level

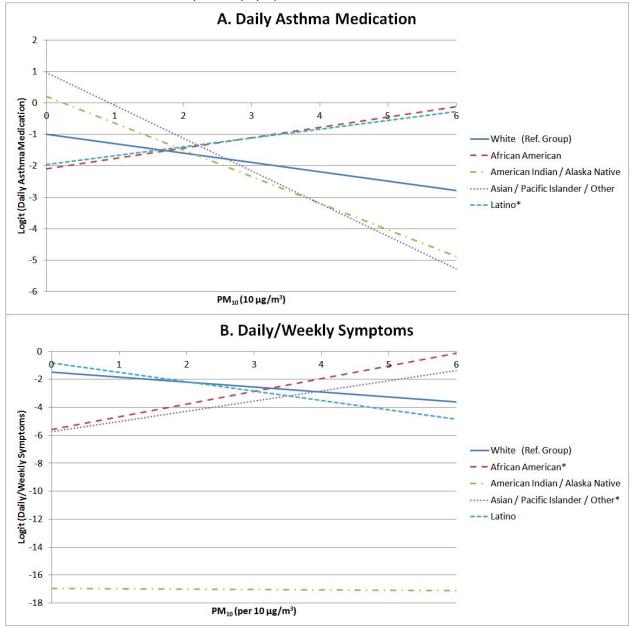


Figure 7. Interaction between mean PM₁₀ annual exposure and race/ethnicity on log odds of daily asthma medication use and daily/weekly symptoms in CHIS 2003 children with current asthma^{a,b}

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bAdjusted for age, race, poverty level, and sex

*p < 0.05, **p < 0.01, ***p < 0.001

	ifoh zi cardtze taoraus S											
$M_{10} * R_{ac}$	e (Latino)	82.0	0:30	\$0.0	16.0-	44.0	84.0					
$M_{10} * R_{ad}$	(rodrOther) (rodroch	₽ <u>7.</u> 0-	54.0	01.0	60.I	67.0	6.03					
$M_{10} * R_{ac}$	(NA\IA) ə:	-0.55	<i>L</i> 9 [.] 0	0.41	0.34	54.0	54.0					
$M_{10} * R_{ac}$	(nsoinom A nsointA) oa	6.63	0.52	0.23	1.27	<i>LS</i> .0	£0 [.] 0					
	Female	<i>L</i> S [.] 0	0.28	t⁄0.0	90.0-	0.43	06.0					
ex (Ref. M	શ))											
	700 - 366% EbГ	20.1	0.33	00.0	62.0	0.43	L0'0					
	기d년 %661 - 0	18.0	55.0	20.0	0.41	05.0	070					
ονεαγ (Βα	st ≥ ⊄00% EBT)c											
	Latino	L6 [.] 0-	96'0	15.0	t⁄9 [.] 0	1.25	19.0					
	Is lander (PI) / Other	96'I	15.1	6.13	-4.26	72.I	10.0					
	offiosA / nsisA											
	(NA/IA)	1.20	5.16	82.0	-15.50	86.1	1000.>					
	Alaska Native											
	American Indian /											
	nsəriəm A nsərifA	II.I-	LS.I	0.48	-4'11	5.06	20.0					
ace (Ref. '	(sətid W											
	LI-21	-0.23	0.30	54.0	SI.0	54.0	<i>†L</i> .0					
	S-0	6.25	6£.0	75.0	0.28	69.0	99'0					
9 .fsØ) sg.	-11 years old)											
1 19d) 01 M	⁶ (⁵ m\ยูน 0	-0.30	61.0	0.12	96.0-	L2.0	LI.0					
itercept		66.0-	09.0	01.0	<i>L</i> ⊅.1-	18.0	L0'0					
ariable		Estimate	Std Error	əulav-q	Estimate	Std Error	ən[ɐʌ-d.					
)	(nərblid)		<u>)</u>	(nərblid)						
			bəM smdt	noitsoi								
-11-;)	(Children))	motymy Symptom (Children) Stimate Std Error p-va						

Table 23. Interaction between mean PM₁₀ annual exposure and race/ethnicity on log odds of daily asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the

same home or neighborhood for at least 9 months were included. ^bRepresent the pollutant estimate for the reference group of the interaction term, in this case white respondents with current

.emdtse

^cFPL = Federal Poverty Level

CHIS 2003 Respondents with Asthma-like Symptoms

Exposure distributions for CHIS 2003 respondents with asthma-like symptoms

Distributions of annual average criteria pollutant exposures, exceedance days, and traffic density for CHIS 2003 respondents with asthma-like symptoms are shown in Table 26 in the Appendix. Among adults, annual average O_3 exposure ranged from 22.9-65.7 ppb, with a mean of 41.7 ppb. Annual average exposure to PM_{10} ranged from 7.9-82.8 µg/m³, with a mean of 30.1 µg/m³, and annual average exposure to $PM_{2.5}$ ranged from 4.1-26.9 µg/m³ with a mean of 16.5 µg/m³. Annual average exposure to NO_2 ranged from 1.4-36.1 ppb, with a mean of 22.0 ppb.

On average, adults experienced 23.6 days when maximum 1-hr O_3 concentrations exceeded the 1-hr state standard (range of 0-131 days), 32.1 days when the maximum 8-hr O_3 concentration exceeded the 8-hr state standard (range 0-160 days) and 17.7 days when the maximum 8-hr O_3 concentration exceeded the 8-hr federal standard (range of 0-130 days). Adult 24-hr averages for PM₁₀ rarely exceeded the federal standard (mean=0.10 days, range 0-4 days), but averages more frequently exceeded the state standard (mean=8.2 days, range 0-66 days). Adults experienced an average of 16.1 days when PM_{2.5} levels exceeded the federal standard (range of 0-54 days).

Adults with asthma-like symptoms had a mean traffic density of 65.8 VMT/day/meters², with a minimum of 1.0 and a maximum of 745.4. Among children with asthma-like symptoms, annual average exposures to O₃ ranged from 22.9-63.5 ppb, with a mean of 42.1 ppb. Annual average PM₁₀ exposure ranged from 12.8-82.8 μ g/m³ (mean=29.9 μ g/m³), and annual average PM_{2.5} exposure ranged from 6.6-26.3 μ g/m³ (mean=16.5 μ g/m³). Annual averages for NO₂ ranged from 5.0-36.0 ppb, with a mean of 22.3 ppb.

Children with asthma-like symptoms had a mean of 24.6 O_3 exceedance days based on the 1-hr state standard (range 0-122 days), a mean of 33.9 exceedance days based on the 8-hr state standard (range of 0-153 days), and a mean of 18.6 exceedance days based on the 8-hr federal standard (range 0-114 days) in the year prior to the CHIS interview. Under the federal PM₁₀ standard, children with asthma-like symptoms had a maximum of 4 exceedance days and an average of 0.12 exceedance days; under the state PM₁₀ standard, they had a maximum of 64 exceedance days and an average of 7.9 exceedance days. The maximum number of PM_{2.5} exceedance days was 54 days, with a mean of 16.6. Traffic density exposure ranged from 0.5-637.2 VMT/day/meters², with a mean of 64.1, among children with asthma-like symptoms. Frequencies for distance to roadway measures among adults and children with asthma-like symptoms are shown in Table 27 in the Appendix. Among adults with asthma-like symptoms, 6.1% lived within 300 meters of a state highway, and 10.4% lived within 300 meters of an interstate highway. One-fifth (19.7%) of adults with asthma-like symptoms lived within 50 meters of a major road. Among children with asthma-like symptoms, 5.3% lived within 300 meters of a state highway, and 10.8% lived within 300 meters of an interstate highway. Close to one-fifth (17.8%) lived within 50 meters of a major road.

Correlations among air pollutant exposure estimates

Table 28 in the Appendix shows Pearson correlation coefficients for exposure metrics among CHIS 2003 respondents with asthma-like symptoms. Annual average exposure estimates

for PM_{10} and $PM_{2.5}$ were strongly positively correlated (r=0.74), as were estimates for $PM_{2.5}$ and NO_2 (r=0.71). PM_{10} annual averages were moderately correlated with O_3 and NO_2 (r=0.48 and r=0.50). State and federal O_3 exceedance measures had strong positive correlations with annual average O_3 exposure (r \approx 0.8) and moderate correlations with annual average PM_{10} exposure (r \approx 0.6). Annual average PM_{10} exposure was highly correlated with PM_{10} state standard exceedances (r=0.83). Exceedances of the PM_{10} state standard were moderately correlated with exceedances of state and federal standards for O_3 (r \approx 0.6). Moderate to weak correlations were observed between annual average exposures and exceedance measures across the other pollutants. Weak correlations were observed between traffic density and distance to roadway measures and the criteria pollutant exposure metrics.

Health outcomes and characteristics of adults and children with asthma-like symptoms

Table 29 shows health outcomes among respondents without an asthma diagnosis who reported asthma-like symptoms and had lived in the same home or neighborhood for at least 9 months prior to being interviewed. Among adults without an asthma diagnosis, 11.5% reported symptoms described as wheeze, and nearly two-thirds (62.0%) had experienced two or more wheeze attacks within the past year. Additionally, 16.8% had missed at least two days of work, and 41.3% had sought medical help for wheezing.

Among children without an asthma diagnosis, 9.9% had experienced wheezing, and over half (51.7%) had suffered two or more wheeze attacks. Close to half (45.4%) had missed at least two school days, and almost two-thirds (65.5%) had sought medical help due to wheezing.

	Adults	$(\geq 18 \text{ years})$	Children	n (<18 years)
		%		%
Outcome	n	(Weighted)	n	(Weighted)
Wheeze ^b	4,129	11.5	951	9.9
Missed ≥ 2 Work/ School Days ^c	510	16.8	313	45.4
Wheeze Attacks (2 or more) ^c	2,313	62.0	324	51.7
Sought Medical Help for Wheezing (1 or more)	1,497	41.3	643	65.5

Table 29. Prevalence of asthma-like outcomes for CHIS 2003 adults and children with asthma-like symptoms^a

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived in the same home or neighborhood for at least 9 months were included. ^bRespondents without an asthma diagnosis who lived within 5 miles of an air monitoring station and had lived in the same home or neighborhood for at least 9 months were included. Respondents with wheezing symptoms were designated as having asthma-like symptoms.

^cData not collected for teen respondents.

Asthma-like symptoms were reported in nearly the same percentage of male adults as female, 50.5% vs. 49.5% respectively (Table 30 in Appendix). More than half of adult respondents with asthma-like symptoms were between 35-64 years old (56.4%), 28.3% were 18-34 years old, and 15.3% were 65 years old or older. The racial/ethnic distribution of the adult population with asthma-like symptoms was as follows: 58.5% white, 23.0% Latino, 9.5% Asian/other, 6.7% African American, and 2.3% American Indian/Alaska Native.

Among adults with asthma-like symptoms, 43.3% had a high school education or less. More than a third (37.8%) had completed college or a vocational school, and 8.6% had a graduate degree. The remaining 10.3% were 25 years old or younger; for these respondents, educational attainment was not assessed. More than one-third (39.0%) of adults with asthmalike symptoms lived below 200% of the FPL, and 24.7% lived between 200-399% of the FPL. Close to one-third (36.4%) of adult respondents with asthma-like symptoms had an income ≥400% of the FPL. Nearly a third (32.5%) of adults with asthma-like symptoms were unemployed.

Approximately one-fourth (24.5%) of adults with asthma-like symptoms were not insured or were only insured for part of the year. Similarly, 16.2% of these adults reported that they did not have a usual source of care, and 25.8% of adults reported a delay in needed care for any medical reason in the last 12 months. Nearly a quarter (24.5%) of adults reported visiting the doctor six or more times for any reason in the last year, and 41.8% of adults visited the doctor between two and five times for any reason in the past year. The remaining third (33.8%) had visited the doctor 0-1 time for any reason in the past year.

When self-reporting health status, 35.8% of adults with asthma-like symptoms reported poor or fair health as compared to 64.2% who reported good, very good, or excellent health. Heart disease was reported in 11.3%, and 41.3% of those reported congestive heart failure. Based on BMI, 62.5% of adults were classified as overweight/obese as opposed to normal or underweight.

More than half (59.3%) of adults were currently smoking or had been smokers in the past, though only 17.1% reported smokers living in the home. More than two-thirds (68.9%) of adult respondents reported walking for transportation or leisure. Dogs and/or cats lived in the home with 43.3% of adult respondents. Cockroaches were reported in the home for 20.3% of adults.

The majority (43.7%) of adult respondents with asthma-like symptoms lived in urban residences. Among those remaining, 26.2% lived in 2nd city locations, 16.3% in the suburbs, and 13.7% in towns or areas designated as rural. Most adults (80.4%) with asthma-like symptoms had lived at their residences for three years or more. Household crowding was reported for 23.5% of adults. The majority (63.1%) of adults with asthma-like symptoms lived in houses, and the remainder lived in apartments, duplexes, or mobile homes.

In children with asthma-like symptoms, slightly more boys reported experiencing wheezing (54.9%) as compared to girls (45.1%). Children ages 0-5 composed 41.2% of child respondents with asthma-like symptoms, 28.5% were ages 6-11, and the remaining 30.3% were ages 12-17. Children with asthma-like symptoms were 42.6% white, 34.3% Latino, 14.7% Asian/other, 7.4% African American, and 1.1% American Indian/Alaska Native.

The majority of children with asthma-like symptoms lived in households in which the adult who had responded on their behalf had either a college education (46.3%) or a high school education or less (42.8%). Eleven percent lived in households in which the adult respondent had completed graduate school. Forty-two percent of children with asthma-like symptoms lived below 200% of the FPL, 23.6 percent lived in households between 200-399% of the FPL, and the remaining 34.0% lived at or above 400% of the FPL.

Though the majority of children with asthma-like symptoms were insured, 10.1% of children were not insured or were only insured for part of the year, 10.6% of children reported

that they did not have a usual source of care, and 12.3% of children reported a delay in needed care for any medical reason in the last 12 months. Fifteen percent of children reported visiting the doctor six or more times for any reason in the last year, and 60.0% of children visited the doctor between two and five times for any reason in the past year. A quarter (25.0%) had visited the doctor one time or less for any reason in the last year.

Among children with asthma-like symptoms, 13.5% self-reported poor or fair health. Among respondents below the age of 18, BMI was assessed for teenage respondents only. For teens with asthma-like symptoms 25.5% were classified as overweight/obese.

The percentage of children with smokers living in the home was 7.1%. Dogs and/or cats within the home were reported for 38.2% of child respondents. A quarter (25.3%) of children with asthma-like symptoms reportedly also had cockroaches in the home.

Most (42.5%) child respondents with asthma-like symptoms lived in urban residences, compared to 25.0% of children who lived in 2nd city locations, 20.3% in the suburbs, and 12.2% in towns or rural areas. Sixty-two percent of children with asthma-like symptoms had lived at their residences for three years or more. Household crowding was reported for more than a third (37.3%) of children with asthma-like symptoms. Most children with asthma-like symptoms lived in houses (68.8%), while the remainder lived in apartments, duplexes or mobile homes.

Disparities in Asthma-like Symptoms and Exposure Measures among Sub-Populations

In this part of the study, we tested Hypothesis 1: Among those with asthma-like symptoms, vulnerable sub-populations in California (e.g., racial/ethnic minorities and low-income individuals) have higher exposures to air pollution. We presented differences in estimated criteria pollutant exposures across various sub-populations, characterized by rural and urban residency, age, gender, income level, and by racial and ethnic group. We also presented results regarding differences in distributions of asthma-like symptoms across these subgroups.

Disparities in Annual Average Criteria Pollutant Exposure Measures

We observed differences in mean annual average criteria pollutant exposures for CHIS respondents with asthma-like symptoms according to demographic characteristics (Table 31 in Appendix). In comparison to those living at or above 400% of the FPL, adult respondents with asthma-like symptoms living below 200% of the FPL had higher average annual exposure to three of the four criteria pollutants (Figure 8). The mean annual average NO₂ level was 23.3 ppb for those living below 200% of the FPL, compared to 21.1 ppb for those living at or above 400% of the FPL. The mean annual average PM₁₀ level was 32.4 μ g/m³ for those living below 200% of the FPL, compared to 29.5 μ g/m³ for those living at or above 400% of the FPL. A dose-response relationship was observed between poverty level and annual average PM_{2.5} exposure. Individuals living at or above 400% of the FPL had a mean exposure of 15.3 μ g/m³, which increased to 16.4 μ g/m³ among those living between 200-399% of the FPL and 17.4 μ g/m³ for those living at less than 200% of the FPL.

When comparing exposures across ethnicities, we observed that Latino adult respondents had higher mean exposures to NO₂ (24.3 ppb vs. 20.5 ppb), PM₁₀ (33.7 μ g/m³ vs. 28.6 μ g/m³), and PM_{2.5} (18.2 μ g/m³ vs. 15.7 μ g/m³) than white adult respondents (Figure 9). Mean annual average NO₂ exposures were also higher among African Americans than whites

(23.3 ppb vs. 20.5 ppb); however white respondents had higher mean annual O_3 concentrations than African Americans (42.4 ppb vs. 38.9 ppb).

Mean annual average NO₂ levels were highest among urban dwellers (24.7 ppb), compared to 2nd city (18.4 ppb), suburban (19.8 ppb), and town/rural (11.0 ppb) dwellers. However, as residential distance from city centers increased, so did annual average O₃ exposure. Urban dwellers had the lowest annual average O₃ exposure at 38.8 ppb, versus 44.2 ppb for 2nd city, 44.7 ppb for suburban, and 48.1 ppb for town/rural dwellers. Urban dwellers also had lower annual average PM₁₀ levels than both 2nd city and suburban dwellers (29.2 μ g/m³ vs. 30.7 μ g/m³ and 33.0 μ g/m³, respectively). Adults living in urban residences had higher annual average PM_{2.5} levels (16.6 μ g/m³) than those living in town/rural residences (10.1 μ g/m³), but lower levels than those living in suburban residences (17.7 μ g/m³). Adult females had higher average annual PM₁₀ concentrations at 30.7 μ g/m³, compared to 29.3 μ g/m³ among males.

Among children with asthma-like symptoms, individuals living between 200-399% of the FPL had slightly higher annual average NO₂ levels than children living at or above 400% of the FPL (20.8 ppb vs. 20.3 ppb). Compared to white children, Latino and African American children had higher mean annual average levels of NO₂ (19.3 ppb vs. 24.8 ppb and 24.0 ppb, respectively). Latino children also had higher mean annual average concentrations of PM₁₀ than white children (32.6 μ g/m³ vs. 28.6 μ g/m³).

Children living in urban residences had the highest annual average NO₂ levels at 25.6 ppb, compared to 18.0 ppb among 2nd city residents, 19.9 ppb suburban residents, and 18.8 ppb among town/rural residents. Conversely, urban children had the lowest mean annual O₃ exposure at 39.0 ppb, as opposed to 44.2 ppb among 2nd city children, 45.3 ppb among suburban children, and 47.7 ppb among town/rural children. Suburban children had higher annual average PM₁₀ concentrations than urban children (33.9 μ g/m³ vs. 29.0 μ g/m³). Urban children had higher PM_{2.5} annual average concentrations at 16.8 μ g/m³, compared to 2nd city and town/rural children at 14.6 μ g/m³ and 9.2 μ g/m³, respectively.

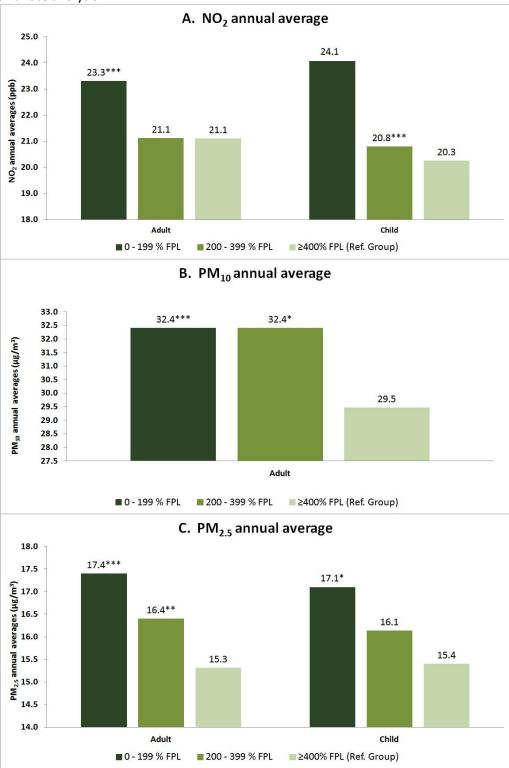


Figure 8. Disparities in weighted mean annual pollutant concentrations by Federal Poverty Level (FPL)in CHIS 2003 children and adults with asthma-like symptoms using bivariate analysis^{a,b}

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bFor Figure 8B, results for children with asthma-like symptoms showed no significant differences between groups and are not shown in the graph.

*p < 0.05, **p < 0.01, ***p < 0.001

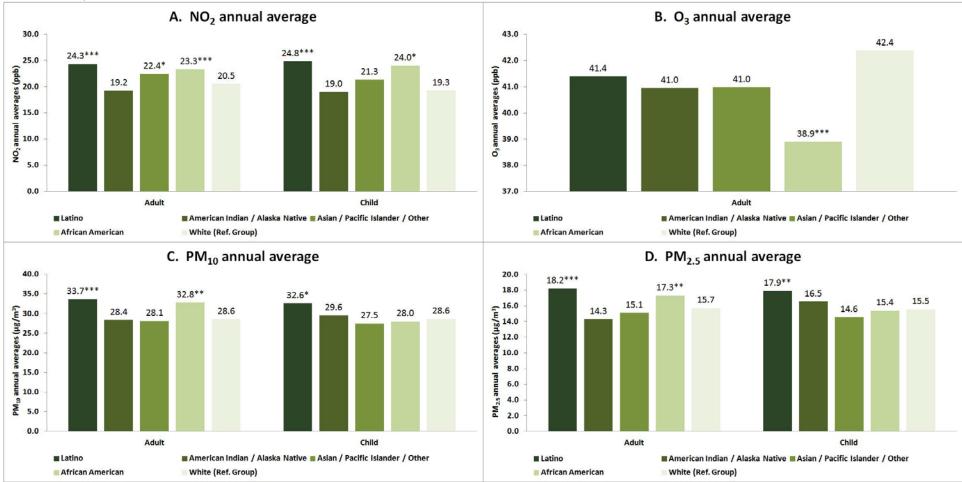


Figure 9. Disparities in weighted mean annual pollutant concentrations by race/ethnicity in CHIS 2003 children and adults with asthma-like symptoms using bivariate analysis^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bFor Figure 9B, results for children with asthma-like symptoms showed no significant differences between groups and were not shown in the graph.

*p < 0.05, **p < 0.01, ***p < 0.001

Disparities in asthma-like symptoms

Asthma-like symptoms were not equally reported across all demographic characteristics. Among adults, 9.8% of those living at 400% or greater than the FPL, 11.7% of those living between 200-399% of the FPL, and 13.4% of those living below 200% of the FPL reported wheezing (Table 32 in Appendix).

When comparing asthma-like outcomes across races/ethnicities, Alaskan Natives/American Indians had the highest prevalence of wheeze (26.4%), more than twice the prevalence than that of white adults (13.1%). However, Latino and Asian/Pacific Islander respondents had lower prevalence of wheezing compared to white respondents, at 9.8% and 7.2%, respectively. Nearly a quarter (24.5%) of Latino respondents reported missing ≥2 days of work, compared to 14.3% of whites, and nearly half (46.1%) sought medical help at least once because of breathing problems, compared to 38.5% of whites. Additionally, just over half (51.7%) of Latino respondents reported having 2 or more wheeze attacks, although comparatively more white respondents reported 2 or more wheeze attacks (64.8%). Forty-nine percent of African Americans sought medical help for a breathing problem compared to 38.5% of whites.

A higher percentage of adult respondents living in 2nd city (12.2%) or town/rural (14.4%) residences reported experiencing wheezing as compared to their urban counterparts (11.0%). More female adult respondents reported missing at least 2 days of work (20.3%) and seeking medical help at least once due to breathing problems (50.3%) compared to males (13.6% and 32.8%).

More adults between the ages of 18-34 (18.3%) and 35-64 (17.0%) reported missing at least 2 days of work. Adult respondents in the oldest age bracket (\geq 65, 48.6%) had a higher prevalence of seeking medical help due to breathing problems than adult respondents in the lowest age bracket (18-34, 35.5%).

Among child respondents with asthma-like symptoms, Asians/Pacific Islanders/Others reported a higher prevalence of ≥ 2 wheeze attacks in the last year, at 75.5% compared to 48.1% among white children, but they reported a lower prevalence of missing at least 2 days of school due to wheezing (29.6% vs. 45.5%). The prevalence of wheezing was greater amongst boys than girls (10.9% vs. 8.9%). Fourteen percent of children ages 0-5 were reported to experience wheezing compared to 8.4% of children ages 12-17. As children got older, the prevalence of seeking medical help at least once in the last year because of breathing problems decreased. The prevalence of seeking medical attention due to breathing problems was 82.8% in children ages 0-5, 73.6% in children ages 6-11, and 34.2% in children ages 12-17.

Associations between air pollution exposure metrics and asthma-like symptoms

In this part of the study, we tested Hypothesis 2 that individuals with asthma-like symptoms and exposed to higher levels of air pollution are more likely to report: wheezing or whistling sound in the chest, attacks of wheezing or whistling. We present results of crude associations (Crude Odds Ratio) between individual air pollutants and asthma-like symptoms using tabular analyses and logistic regression modeling adjusting for age, sex, race/ethnicity and federal poverty level (Adjusted Odds Ratio).

Associations between 12-month pollutant averages and asthma-like symptoms

Among adults with asthma-like symptoms, a 10 ppb increase in annual average O₃ concentration was associated with a 9% (95% CI=1.01-1.18) increase in odds of reporting wheeze and an 11% increase in odds of reporting 2 or more wheezing attacks (95% CI=0.94-1.30, Table 33). A 10 μ g/m³ increase in PM₁₀ annual averages was associated with a 9% increase in wheeze (95% CI=1.01-1.18), a 10% increase in odds of reporting ≥2 wheeze attacks (95% CI=0.94-1.29), and a 9% (95% CI=0.94-1.27) increase in seeking medical help in the past year. A 5 μ g/m³ increase in PM_{2.5} annual averages was associated with a 7% (95% CI=0.97-1.17) increase in odds of reporting wheeze. The odds of missing ≥2 days of work due to wheezing appeared to decrease with increasing NO₂ exposure (OR=0.73, 95% CI=0.56-0.96).

Among children with asthma-like symptoms, a 10 ppb increase in O_3 annual averages was associated with a 9% (95% CI=0.92-1.29) suggested increase in odds of wheeze and a 29% (95% CI=0.92-1.81) suggested increase in the likelihood of reporting 2 or more wheeze attacks. A 10 ppb increase in NO₂ was suggested to increase the odds of seeking medical help due to breathing problems by 33% (95% CI=0.90-1.98).

	Wheeze ^b				Missed ≥2 School/Work Days Due to Wheezing ^c				≥2 Wheeze Attacks ^c				Sought Medical Help for Breathing Problem			
Pollutant	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.
Adults																
O3 (per 10 ppb)	2,044	14,824	1.09	[1.01, 1.18]	258	1,296	0.91	[0.74, 1.12]	1,121	657	1.11	[0.94, 1.30]	739	1,039	1.06	[0.91, 1.24]
PM_{10} (per 10 µg/m ³)	1,614	11,229	1.09	[1.01, 1.18]	198	1,027	0.84	[0.66, 1.06]	912	488	1.10	[0.94, 1.29]	577	823	1.09	[0.94, 1.27]
$PM_{2.5}$ (per 5 µg/m ³)	1,253	9,331	1.07	[0.97, 1.17]	162	797	0.88	[0.69, 1.12]	691	396	1.00	[0.83, 1.19]	462	625	1.06	[0.89, 1.26]
NO ₂ (per 10 ppb)	1,687	12,534	0.93	[0.86, 1.02]	222	1,061	0.73	[0.56, 0.96]	905	566	1.09	[0.91, 1.30]	622	849	0.93	[0.78, 1.11]
Children																
O ₃ (per 10 ppb)	441	4,109	1.09	[0.92, 1.29]	143	167	0.96	[0.67, 1.36]	157	153	1.29	[0.92, 1.81]	295	146	0.99	[0.72, 1.36]
NO ₂ (per 10 ppb)	364	3,504	0.94	[0.79, 1.11]	113	146	1.25	[0.82, 1.90]	134	125	1.02	[0.69, 1.50]	243	121	1.33	[0.90, 1.98]

Table 33 (Highlights). Associations (OR (95% CI)) for 12-month pollutant averages and asthma-like outcomes in CHIS 2003 adults and children with asthma-like symptoms^a

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bRespondents without an asthma diagnosis who lived within 5 miles of an air monitoring station and had lived in the same home or neighborhood for at least 9 months were included. Respondents with wheezing symptoms were designated as having asthma-like symptoms.

^cData not collected for teen respondents.

^dAdjusted for age, race, poverty level, and sex.

Associations for annual days exceeding air pollution standards and asthma-like symptoms

Adults who experienced \geq 51.2 days when maximum 8-hr O₃ concentrations exceeded the 8-hr state standard had an estimated 16% (95% CI=0.97-1.38) increase in odds of reporting wheeze in the previous year, compared to adults with <1.9 exceedance days (Table 34 in Appendix). Adults with 14.3-<51.2 days when maximum 8-hr O₃ concentrations exceeded the state standard had estimated odds increases of 42% (95% CI=0.99-2.04) for reporting \geq 2 wheeze attacks in the previous year compared to adults with <1.9 exceedance days, but those with \geq 51.2 exceedance days had only a 30% increase (95% CI=0.91-1.87). Adults who experienced \geq 6.6 days with PM₁₀ concentrations exceeding the state standard had estimated odds increases for wheeze of 26% (95% CI=1.04-1.53). Children with asthma-like symptoms experiencing 0.8-<8.7 or \geq 36.7 days when maximum 1-hr O₃ concentrations exceeded the 1-hr state standard were nearly 3 (OR=2.79, 95% Cl=1.10-7.10) or 4 (OR=3.98, 95% Cl=1.56-10.11) times more likely, respectively, to have experienced \geq 2 wheeze attacks in the last year than their peers with <0.8 exceedance days (Table 34 in Appendix). Children with maximum 8-hr O₃ concentrations exceeding the state standard 1.9-<14.3 or \geq 51.2 O₃ days had a 34% (95% Cl=0.92-1.96) or 32% (95% Cl=0.91-1.91) suggested increase in odds of experiencing wheezing in comparison to those with <1.9 exceedance days. Children with 14.3-<51.2 days exceeding the 8-hr O₃ state standard were also more than twice as likely to miss 2 or more days of school due to wheezing (OR=2.35, 95% Cl=1.01-5.47), but those with \geq 51.2 days were not at increased odds. In general, the exposureresponse patterns for the exceedance day measures and wheeze outcomes were not consistent in children.

Associations for traffic density/distance to roadway and asthma-like symptoms

We observed few consistent associations between residence-based measures of traffic and wheeze outcomes in adults (Table 35 in Appendix). Adults with traffic density exposures in the 2nd and 3rd exposure quartiles were 23% (95% CI=0.94-1.62) and 30% (95% CI=0.99-1.71) more likely to report seeking medical help in the last year due to breathing problems compared to those in the lowest exposure quartile, however those in the highest TD exposure quartile did not appear to have increased odds.

We also did not observe consistent associations between traffic density and wheeze outcomes in children (Table 35 in Appendix). Children with asthma-like symptoms and living within 300 m of an interstate highway had two and a half times greater odds of \geq 2 wheeze attacks (OR=2.55, 95% CI=1.16-5.57), and those living within 50 m of a major road had 73% (95% CI=0.98-3.07) greater odds of missing \geq 2 days of school due to wheezing compared to children living farther from these roadways.

Pollutant and Asthma-like Symptom Relationships after Adjusting for Vulnerability (Confounding) Factors

In this part of the study, we tested the hypothesis if air pollution exposures, low SES status, and certain vulnerability factors associated with low SES exert independent adverse effects on individuals with asthma-like symptoms (Hypothesis 3). We presented findings multiple logistic regression results regarding associations between air pollution exposures and outcomes after including and excluding suspected confounders, such as insurance status, cigarette smoking, and delays in care.

Associations between 2 or more wheeze attacks and O_3 , adjusting for vulnerability factors in adults

Under the base model, adults with asthma-like symptoms had an 11% (95% CI=0.94-1.30) suggested increase in the odds of having \geq 2 wheeze attacks in the year prior to the interview as O₃ annual average concentration increased by 10 ppb (Table 36). The suggested positive relationship between having \geq 2 wheeze attacks and O₃ was upheld under Model 2 (OR=1.12, 95% CI=0.95-1.32) and Model 3 (OR=1.12, 95% CI=0.95-1.31).

No other positive associations were observed under Model 1; however, the model demonstrated decreased odds for Latino respondents versus white respondents (OR=0.56, 95%

CI=0.39-0.78). The similar effect of being Latino was also evidenced under Model 3. Positive associations were observed between having two or more wheeze attacks and other vulnerability factors in Models 2 and 3. Under Model 2, respondents ages 35-64 had 63% (95% CI=1.08-2.44) greater odds than respondents 65 or older, and those who had ever smoked were 43% (95% CI=1.08-1.88) more likely to report ≥2 wheeze attacks in the last year than those who had never smoked. Employed respondents were less likely than unemployed respondents to have had ≥2 wheeze attacks in the last year (OR=0.52, 95% CI=0.37-0.73). Under Model 3, having a delay in care (OR=0.58, 95% CI=0.43-0.80) and the absence of household smoking (OR=0.54, 95% CI=0.37-0.79) had negative associations with having ≥2 wheeze attacks in the past year.

Associations between 2 or more wheeze attacks and O_3 , adjusting for vulnerability factors in children

Among children with asthma-like symptoms, the odds of having ≥ 2 wheeze attacks had a suggested increase of 29% (95% CI=0.90-1.84) as annual average O₃ concentration increased by 10 ppb under the base model (Table 37). Under Models 2 and 3, the suggested association between ≥ 2 wheeze attacks and O₃ was maintained (OR=1.28, 95% CI=0.89-1.83 and (OR=1.27, 95% CI=0.86-1.89, respectively).

Under Model 1, a negative relationship was observed between having ≥ 2 wheeze attacks and poverty level. Children living between 200-399% of the FPL had over twice greater odds (OR=2.42, 95% CI=1.06-5.55) and children living below 200% of the FPL had over three times greater odds (OR=3.44, 95% CI=1.60-7.38) of having ≥ 2 wheeze attacks as children living at or above 400% of the FPL. Under Models 2 and 3, the relationship with poverty level persisted.

					O ³ (per 10)ppb)			
		М	odel	1 ^b	Μ	lodel	2 ^c	Ν	Aodel	3 ^d
		(11	21, 65	7) ^e	(11	15, 65	(2) ^e	(1	105, 64	7) ^e
Vulnerability Character	ristic O	R	95%	C.I.	OR	95%	5 C.I.	OR	95%	5 C.I.
12-Month Pollutant Ave	rage ^f 1.	11	0.94	1.30	1.12	0.95	1.32	1.12	0.95	1.31
Age (Ref. ≥65)										
18 - 34	0.	85	0.57	1.27	1.17	0.72	1.88	0.63	0.40	0.98
35 - 64	1.	22	0.86	1.72	1.63	1.08	2.44	0.98	0.68	1.41
Race (Ref. White)										
African American	0.	.94	0.57	1.54	0.97	0.59	1.62	1.05	0.62	1.77
American Indian / A	Alaska									
Native	1.	.83	0.73	4.59	2.00	0.78	5.17	1.85	0.72	4.79
Asian / Pacific Islan	nder/									
Other	1.	.02	0.63	1.65	1.08	0.67	1.73	1.07	0.64	1.78
Latino	0.	56	0.39	0.78	0.57	0.39	0.82	0.64	0.44	0.94
Poverty (Ref. ≥400% FP)	L) ^g									
0 - 199% FPL		.05	0.76	1.45	0.82	0.58	1.17	0.98	0.69	1.40
200 - 399% FPL	0.	92	0.67	1.27	0.84	0.60	1.16	0.86	0.62	1.19
Sex										
Female vs. Male	0.	.99	0.76	1.28	0.96	0.73	1.26	0.94	0.71	1.23
Work Status										
Employed vs Uner	ployed				0.52	0.37	0.73			
Delay in Care										
Yes vs No								0.58	0.43	0.80
Household Smoking										
No vs Yes								0.54	0.37	0.79

Table 36 (Highlights). Associations between two or more wheeze attacks and O_3 adjusting for vulnerability characteristics among CHIS adults with asthma-like symptoms^a

^aFor CHIS 2003, asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bModel 1 controlled for age, race, poverty level, and sex.

^cModel 2 used the following vulnerability factors: insurance status, obesity, heart disease, smoking status, and work status, in addition to age, race, poverty level, and sex.

^dModel 3 used the following vulnerability factors: urban/rural, usual source of care, delay in care, household smoking, dog or cat in home, cockroaches in home, household type, household crowding, diabetes, walking, in addition to age, race, poverty level and sex.

^e(Cases, Controls)

^fRefers to the criteria pollutant noted in the column heading.

^gFPL = Federal Poverty Level

					-	-) ppb)			
					(1	157, 15	53) ^b			
		N	Iodel	1 ^c	M	[odel]	2 ^d	Ν	Model	3 ^e
Vulr	nerability Characteristic	OR	95%	6 C.I.	OR	95%	5 C.I.	OR	95%	6 C.I.
12-M	Ionth Pollutant Average ^f	1.29	0.90	1.84	1.28	0.89	1.83	1.27	0.86	1.89
Age	(Ref. 6-11 years)									
	< 6 years old	0.66	0.35	1.25	0.69	0.37	1.29	0.65	0.34	1.25
Race	e (Ref. White)									
	African American	0.32	0.06	1.69	0.26	0.04	1.60	0.38	0.08	1.81
	American Indian /									
	Alaska Native	0.21	0.03	1.54	0.18	0.03	1.16	0.16	0.02	1.53
	Asian / Pacific Islander									
	/ Other	2.07	0.77	5.57	1.84	0.69	4.91	2.55	0.88	7.41
	Latino	0.53	0.25	1.15	0.46	0.20	1.07	0.75	0.34	1.65
Pove	erty (Ref. ≥400% FPL) ^g									
	0 - 199% FPL	3.44	1.60	7.38	3.62	1.59	8.23	4.88	2.05	11.63
	200 - 399% FPL	2.42	1.06	5.55	2.40	1.06	5.47	2.61	1.10	6.23
Sex										
	Female vs. Male	0.93	0.52	1.69	0.88	0.49	1.59	0.93	0.49	1.75
Hou	sehold Crowding									
	No vs Yes							2.32	1.02	5.27

Table 37 (Highlights). Associations between two or more wheeze attacks and vulnerability characteristics by O_3 among CHIS children with asthma-like symptoms^a

^aFor CHIS 2003, asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^b(Cases, Controls)

^cModel 1 controlled for age, race, poverty level, and sex.

^dModel 2 used the following vulnerability factors: household smoking, dog or cat in home, cockroaches in home, and insurance status, in addition to age, race, poverty level, and sex.

^eModel 3 used the following vulnerability factors: urban/rural, delay in care, housing type, and household crowding, in addition to age, race, poverty level, and sex.

^fRefers to the criteria pollutant noted in the column heading.

^gFPL = Federal Poverty Level

Sensitivity Analyses

We performed analyses stratifying on: (1) length of residence in the same neighborhood, (2) employment status in adults, (3) residential distance to nearest monitoring station (3-, 5and 10- miles), and (4) asthma medication use. Although associations between annual average O_3 exposure and odds of reporting asthma attacks in the previous year were similar for adults residing in the same neighborhood for <3 versus \geq 3 years, associations between annual average O_3 and PM_{2.5} exposure and odds of reporting daily asthma medication use in adults appeared isolated to individuals residing in the same neighborhood for at least 3 years (Table 38). In children, associations between annual average NO₂ and odds of daily asthma medication use also appeared isolated to longer-term residents (\geq 3 years). However, the sample sizes for respondents residing <3 years in the same neighborhood were smaller and the 95% confidence intervals for all point estimates overlapped widely.

			Lived	in Neigh	horho	d < 3 Years	Lived	in Neigh	borho	od \geq 3 years
			Liveu	0	10011100		Liveu	0	10011100	Ju 2 5 years
	Health			Non-				Non-		
	Outcome	Pollutant	Cases	Cases	OR ^b	95% C.I.	Cases	Cases	OR ^b	95% C.I.
Adults										
	Asthma A	ttack ^c								
		O ₃	179	259	1.22	[0.90, 1.61]	786	1,323	1.20	[1.04, 1.39]
	Daily Astl	nma Medication								
		O ₃	120	171	0.99	[0.70, 1.40]	695	631	1.28	[1.07, 1.54]
		PM _{2.5}	77	97	0.99	[0.64, 1.52]	417	399	1.36	[1.10, 1.67]
Children										
	Daily Astl	nma Medication								
		NO ₂	35	72	1.21	[0.62, 2.35]	136	226	1.50	[1.05, 2.15]

Table 38. Association (OR (95% C.I.)) between asthma outcomes and 12-month pollutant exposures for CHIS 2003 adults and children with current asthma stratified by length of residence^a

^aFor CHIS 2003 current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included.

^bAdjusted for age, race, poverty level, and sex.

^cRespondents ever diagnosed with asthma who lived within 5 miles of an air monitoring station and in the same home or neighborhood for at least 9 months were included.

When stratifying on employment status, the association between annual average PM_{10} and odds of ED visits in adults with appeared isolated to employed individuals (Table 39). This was the opposite of our prior expectation, assuming residence-based exposure measures are less misclassified for unemployed individuals who spend more time at home and that this misclassification is non-differential. One possible explanation for this finding is that employed individuals have other risk factors (e.g., co-morbidities, obesity) which make them more susceptible to the effects of PM_{10} . Or associations in employed individuals may reflect, in part, time spent commuting, since in-vehicle air pollution exposures have been shown to be higher than ambient exposures (Fruin et al., 2004, Westerdahl et al., 2005, Zhu et al., 2007).

Table 39. Association (OR (95% C.I.)) between asthma outcomes and PM₁₀ pollutant for CHIS 2003 adults with current asthma stratified by employment status^a

			Em	ployed			Une	mploye	d
			Non-				Non-		
		Cases	Cases	OR ^b	95% C.I.	Cases	Cases	OR ^b	95% C.I.
PM_{10})								
	ED Visits	107	641	1.44	[1.10, 1.89]	105	444	1.01	[0.78, 1.33]

^aFor CHIS 2003 current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included.

^bAdjusted for age, race, poverty level, and sex.

Additionally, since we had address information for most respondents, we were able to examine the influence of residential distance from the monitoring station on our study results. Specifically, we ran logistic regression models for the outcome of ED visits for respondents living within 3-, 5-, and 10-miles of an air monitoring station for each pollutant (Table 40). For

adults, the point estimates for annual average PM₁₀ and PM_{2.5} were higher for the 3- and 5-mile linkage distances, while odds ratio estimates for annual average O₃ followed the opposite pattern, but 95% Cls overlapped widely in all cases. The most marked difference in odds ratio point estimates across linkage distances was observed for annual average NO₂, with the highest association observed in adults living within 3 miles of a monitoring station. In children, crude odds ratio estimates for all pollutants were greater for individuals residing within 3 miles of a monitoring station, however, these patterns did not persist for PM_{2.5} and NO₂ in adjusted monetoring station, however, these patterns did not persist for PM_{2.5} and NO₂ in adjusted models and 95% Cls for all associations were wide due to the smaller sample sizes available.

							_			-			
[10.1,00.0]	1.20	[17.1,20.0]	72.1	129	281	[12.1,10.1]	1.24	[1.12, 1.64]	1.35	£68'I	155	10	
[66.1,18.0]	71.1	[27.1, 88.0]	1.23	955	511	[02.1,20.0]	81.1	[69.1, 80.1]	1.33	SII,I	500	ç	
[0.80, 2.06]	1.28	[22,2,50]	1.45	L8 I	<i>L</i> 9	[1.12, 2.06]	1.52	[1.30, 2.32]	1.74	919	155	ε	
													^z ON
[42.1, 38.0]	۲.15	[10.1,80.0]	1.26	273	148	[75.1, 80.0]	۲.15	[22.1,80.1]	82.1	L\$\$'I	987	10	
[64.1, 66.0]	10.1	[86.1,48.0]	6I.I	797	εL	[92.1, 60.0]	1.22	[17.1, e0.1]	9E.I	830	091	ç	
[00.2, 66.0]	81.1	[05.2,2.0]	1.45	131	45	[99.1, 19.0]	1.23	[10.1,01.1]	1.45	\$25	76	ε	
													$PM_{2.5}$
[72.1,87.0]	00.1	[62.1, 88.0]	1.06	799	180	[0:64' 1:24]	80.1	[55.1,50.1]	71.1	2,018	L9E	10	
[46.1,47.0]	00.I	[64.1,98.0]	1.13	688	<i>L</i> 6	[1.00, 1.43]	1.20	[22.1, 90.1]	62.I	260ʻI	212	Ş	
[28.1, 68.0]	72.I	[48.1,00.1]	1.36	86 I	85	[44, 1,44]	9I.I	[00.1,00.1]	1.30	899	133	ε	
													PM_{10}
[60.1, 62.0]	08.0	[60.1 , £8.0]	68.0	ΠL	<i>L</i> 61	[95.1,26.0]	1.13	[85.1,86.0]	91.I	2,193	265	10	
[71.1,22.0]	08.0	[02.1,10.0]	98.0	41 <i>1</i>	150	[74.1, 80.0]	6I.I	[14.1,59.0]	1.14	1,372	542	ç	
[67.1,17.0]	1.12	[82.1,86.0]	1.04	526	0 <i>L</i>	[82, 1,28.0]	70.1	[25.1,18.0]	£0.1	7 <i>LL</i>	148	ε	
													εO
92% CT	ОВ _р	92% C.I.	ОĽ	(u)	(u)	92% C.I.	OВp	92% C.I.	ОĽ	(u)	(u)	Station (miles)	Exposure
	.įbA		Srude	səses-uoN	Cases		.įbA		əpnıD	səseo-uoN	Cases	Distance to	
	(<18 years old) nərbli	ЧЭ				(blo srsəy 8	t≤) silu	bΑ			
,													

Table 40. Association (OR (95% C.I.)) between ED visits and 12-month pollutant exposures for 3-, 5-, and 10-mile linkage distances to monitors for CHIS 2003 adults and children with current asthma^a

^aFor CHIS 2003 current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included. ^bAdjusted for age, race, poverty level, and sex.

Medication use can be treated as an adverse outcome because it is a measure of asthma severity. However, use of daily medication can also be expected to reduce the frequency of other adverse outcomes such as ED visits and absences from work. To investigate whether air pollution effects on ED visits or absences from work are different among those taking asthma use (Table 41 and 42). As anticipated, the results suggested that associations between annual exposure and odds of ED visits and having two or more work apsences the medication every for PM_{2.5} exposure and odds of ED visits and having two or more work apsences appeared to be greater among those not taking daily medication except for PM_{2.5} exposure and odds of ED visits and having two or more work apsences appeared to be greater among those not taking daily medication except for PM_{2.5} exposure and odds of ED visits and having two or more work apsences appeared to be greater among those not taking daily medication use could modify exposure and odds of ED visits. However, all confidence intervals for the stratified odds ratios exposure and odds of that association except for PM_{2.5} exposure and odds of ED visits and having two or more work and exposure and odds of ED visits and having two or more work apsences absences the null. Therefore, the results suggested that asthma medication use could modify excessed the null. Therefore, the results suggested that asthma medication use could modify adverse effects of air pollutant exposures, but no firm conclusions could be drawn due to a lack of saverse effects of air pollutant exposures, but no firm conclusions could be drawn due to a lack of satisficial power to formally test the differences.

Table 41. Associations (OR (95% CI) between 12-month pollutant averages and ED visits stratified by asthma medication use in CHIS 2003 adults with current asthma^a

						Daily Asthm	a Medica	tion								Overall		
				Yes						No						Overall		
		Non-	Crude		Adj.			Non-	Crude		Adj.			Non-	Crude		Adj.	
Pollutant	Cases	Cases	OR	95% C.I.	OR ^b	95% C.I.	Cases	Cases	OR	95% C.I.	OR ^b	95% C.I.	Cases	Cases	OR	95% C.I.	OR ^b	95% C.I.
O ₃ (per 10 ppb)	176	639	1.03	[0.81, 1.33]	1.08	[0.83, 1.40]	69	733	1.22	[0.84, 1.77]	1.23	[0.84, 1.80]	245	1372	1.14	[0.93, 1.41]	1.19	[0.96, 1.47]
PM_{10} (per 10 µg/m ³)	156	503	1.27	[1.03, 1.58]	1.14	[0.90, 1.44]	56	589	1.26	[0.95, 1.67]	1.23	[0.90, 1.68]	212	1092	1.29	[1.09, 1.52]	1.20	[1.00, 1.43]
$PM_{2.5}$ (per 5 µg/m ³)	116	378	1.35	[1.02, 1.79]	1.20	[0.88, 1.62]	44	452	1.21	[0.81, 1.81]	1.09	[0.71, 1.65]	160	830	1.36	[1.09, 1.71]	1.22	[0.96, 1.56]

^a For CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included. ^bAdjusted for age, race, poverty, and sex

Table 42. Associations (OR (95% CI) between 12-month pollutant averages and missing two or more days of work stratified by asthma medication use in CHIS 2003 adults with current asthma^a

						Daily Asthm	a Medica	ation								O11		
				Yes						No						Overall		
		Non-	Crude		Adj.			Non-	Crude		Adj.			Non-	Crude		Adj.	
 Pollutant	Cases	Cases	OR	95% C.I.	OR ^b	95% C.I.	Cases	Cases	OR	95% C.I.	OR ^b	95% C.I.	Cases	Cases	OR	95% C.I.	OR ^b	95% C.I.
O ₃ (per 10 ppb)	106	551	1.06	[0.79, 1.41]	1.00	[0.73, 1.36]	70	657	1.07	[0.75, 1.54]	1.20	[0.84, 1.72]	176	1208	1.09	[0.88, 1.37]	1.15	[0.91, 1.46]
PM_{10} (per 10 µg/m ³)	88	446	1.26	[0.96, 1.65]	1.15	[0.85, 1.56]	54	531	1.46	[0.98, 2.18]	1.47	[0.93, 2.32]	142	977	1.36	[1.08, 1.72]	1.28	[1.00, 1.65]
$PM_{2.5}$ (per 5 µg/m ³)	68	336	1.19	[0.84, 1.69]	1.09	[0.76, 1.56]	50	407	1.47	[1.00, 2.17]	1.26	[0.83, 1.92]	118	743	1.34	[1.03, 1.74]	1.23	[0.94, 1.60]

^a For CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included. ^bAdjusted for age, race, poverty, and sex

IV. DISCUSSION

In this study, we linked ambient air monitoring and traffic data to California Health Interview Survey data. This study tested the hypotheses: 1) Among those with asthma or asthma-like symptoms, vulnerable sub-populations in California (e.g., racial/ethnic minorities and low-income individuals) have higher exposures to air pollution; 2) Individuals with asthma exposed to higher levels of air pollution are more likely to report adverse asthma outcomes, such as: asthma attacks or episodes, asthma emergency department (ED) visits, use of daily medication to control asthma, school or work absences, and daily/weekly asthma symptoms. Individuals with asthma-like symptoms (defined here as individuals without physiciandiagnosed asthma who reported wheezing) and exposed to higher levels of air pollution are more likely to report: wheezing or whistling sound in the chest, attacks of wheezing or whistling, seeking medical care for such symptoms, and work/school days missed due to such symptoms; 3) Air pollution exposures, low socioeconomic status (SES), and certain "vulnerability factors" associated with low SES, exert independent adverse effects on individuals with asthma or asthma-like symptoms. The vulnerability factors examined were: comorbidity (such as diabetes or heart disease); access to care (health insurance status, usual source of care); disease management/asthma severity (taking daily medication to control asthma, receiving an asthma management plan); health behaviors (being overweight/obese, smoking, walking outdoor, engaging in physical activity); exposure to indoor triggers (environmental tobacco smoke and indoor allergens, cockroaches, dogs and cats); and housing conditions (single family dwelling or apartment, crowding); and 4) Higher pollutant exposures interact with these vulnerability factors resulting in greater air pollution impacts on asthma in vulnerable sub-populations (racial/ethnic minorities, low-income individuals). The findings supported these hypotheses. In the following sections we discuss the strengths and limitations of our study and compare our results to relevant findings in the literature.

Disparities in Exposure to Air Pollutants among Californians with Asthma

In general, we observed that respondents living below 200% of the federal poverty level (FPL) and minority respondents had higher estimated pollutant exposures and lived nearer to highways or major roadways and in areas of higher traffic density. Adults and children with current asthma living below 200% of the federal poverty level (FPL) had higher annual average exposures to NO₂, PM₁₀, and PM_{2.5} than those living at or above 400% of the FPL. Racial/ethnic minorities, such as Latinos, African Americans and Asian/Pacific Islanders/others had higher PM_{2.5}, PM₁₀, and NO₂ exposures than whites; however, white adults and children had higher exposures to ozone than respondents in either of these three minority groups. Mean traffic density measures were higher for both Latino and African American children than for white children.

Our findings of disparities across pollutant and traffic exposures are similar to those reported by previous investigators. Gunier et al. (2003) reported that Californians in the lowest quartile of median family income were more likely to live in high-traffic areas than those in the highest income quartile. Children of color have also been previously shown to be more likely to live in high traffic areas than white children (Gunier, Hertz et al. 2003; Houston, Wu et al. 2004). Green et al. (2004) reported elementary schools in California with high proportions of economically-disadvantaged and non-white children were more likely to be located within

proximity to roadways with high traffic counts (Green, Smorodinsky et al. 2004). Other studies in Southern California using air toxics emission inventory data found that transportation sources were the most important sources for lifetime cancer risk, especially for racial minorities (Morello-Frosch, Pastor et al. 2001; Pastor, Morello-Frosch et al. 2005). Limited numbers of studies have used air monitoring data to assess disparities in exposures. A study in Sweden reported inverse relationships between NO₂ exposures at residences and schools and children's economic statuses (Chaix, Gustafsson et al. 2006).

Disparities in air pollution exposures that we and other investigators have observed stem from a long history of social and economic injustice, including racial segregation, housing discrimination, and land-use inequities (Houston, Wu et al. 2004). For instance, Jerrett et al. (2001) reported lower housing values in Hamilton, Canada were strongly associated with higher concentrations of particulate pollution(Jerrett, Burnett et al. 2001). Our observations related to O_3 were also consistent with previous studies. For example, O_3 levels were substantially higher in southern Mexico City, a higher socioeconomic status area, compared to the lower SES northern city (Checkley, West et al. 2011). Similarly, respondents in our study living farther from urban areas, such as in suburbs, had higher levels of annual exposure to O_3 . This could be explained by the fact that it takes time for O_3 to form through photochemical reactions. O_3 is usually higher in areas downwind of sources of NO_X and VOCs; for example, the highest levels in the LA Basin are in eastern areas/suburbs. O_3 can also be lower in areas closer to heavy traffic due to scavenging by NO from traffic (Godish 1991).

Pollutant Effects on Asthma Outcomes

Among adults, we observed associations between annual average pollutant exposures and several asthma outcomes: frequent asthma symptoms (daily/weekly symptoms), asthma attacks or episodes, use of daily medication to control asthma, school or work absences due to asthma, and asthma ED visits, in the 12 months prior to the CHIS 2003 interview. In line with previous studies, asthma attacks were associated with higher exposures to O₃ among adults in our study (Slaughter, Lumley et al. 2003). Also for adults, ED visits, using daily asthma medication, and missing 2 or more days of work due to asthma were associated with higher exposures to three of the four pollutants in the study (O₃, PM₁₀, PM_{2.5}). These findings are consistent with previous literature showing a relationship between ED visits and higher levels of O₃ (Romieu, Meneses et al. 1995; Tolbert, Mulholland et al. 2000; Friedman, Powell et al. 2001), PM₁₀ (Meng, Rull et al. 2010) and PM_{2.5} (Norris, YoungPong et al. 1999) and between daily/weekly asthma symptoms and higher exposures to PM_{2.5} in adults (Ward and Ayres 2004; Meng, Rull et al. 2010).

Since much of the literature on the effects of air pollution on asthma has focused on children, our study will help to fill gaps in the literature for adult asthma. Our findings, which show an association between air pollution and missed work days due to asthma, are an important contribution to the literature since to the best of our knowledge there are few previous studies showing this association. As fewer studies have been conducted on asthma medication use and air pollution, our results will support and add to existing studies supporting an association (Thurston, Lippmann et al. 1997; Gent, Triche et al. 2003; Slaughter, Lumley et al. 2003; Gent, Koutrakis et al. 2009).

Associations between NO₂ and asthma outcomes were more clearly seen among children. Among children in our study, daily asthma medication and missing 2 or more days of school/day care were associated with higher exposures to NO₂. This is consistent with prior studies linking NO₂ to asthma medication use in children (Gauderman, Avol et al. 2005; Schildcrout, Sheppard et al. 2006) and missed school days due to asthma (O'Connor, Neas et al. 2008).

With regard to days of exceedance of state or federal standards, we found associations with asthma outcomes in adults and children, primarily for respondents in the highest quartiles of exceedance days. Among adults, exceedances of state O₃ standards were associated with increased odds for asthma attacks, visiting the ED, and using a daily asthma medication. We also found exceedances of the state PM₁₀ standard were associated with increased odds of asthma ED visits in adults. Exceedances of the federal PM_{2.5} standard were associated with increased odds of ED visits and daily/weekly asthma symptoms. Among children, O₃ exceedances (state 1-hr standard) were associated with increased odds of missing 2 or more days of school. In previous studies, the number of exceedance days of state or federal standards is often used to examine short-term exposure effects; however our findings add to the existing knowledge that many days of exceedance of the standards may also have chronic effects on individuals with asthma, which confirms the importance of maintaining federal and state standards to protect the respiratory health of California's population.

Based on these latest analyses using CHIS 2003 data, we only observed few consistent positive associations between traffic density and residential proximity to traffic and asthma outcomes among respondents with current asthma or respondents with asthma-like symptoms. These findings are in contrast to our earlier studies in which we estimated strong positive associations between residential traffic density and asthma symptoms for CHIS 2001 respondents living in Los Angeles and San Diego Counties. For example, in our previous studies we estimated approximately two-fold greater odds of daily or weekly asthma symptoms (OR=2.11; 95% CI=1.38–3.23) in adult respondents with a lifetime asthma diagnosis, comparing individuals in the highest to the lowest quintile of traffic density (Meng, Wilhelm et al. 2007). Similarly, children with a lifetime diagnosis of asthma and in the highest quintile of traffic density were estimated to have 3 times higher odds of ED visits or hospitalizations (OR=3.27, 95% CI=1.08–9.89) than children in the lowest quintile of traffic density (Meng, Wilhelm et al. 2007; Wilhelm, Meng et al. 2008). The discrepancies in results may be due to several factors. First, our CHIS 2001 analyses focused on Los Angeles and San Diego Counties, as those were the two counties where residential cross-street information was collected from respondents. The mean and maximum traffic density values for subjects residing in those two highly urbanized areas were slightly higher than the traffic density values estimated here for respondents throughout the entire state of California. When we isolated our current analyses to LA and SD counties, we still did not observe associations with daily or weekly asthma symptoms in adults. However, we observed a 15% increase in odds of asthma ED visits in adults per interguartile increase in traffic density (OR=1.15, 95% CI=1.03-1.28) and an approximately 2-fold increase in odds of ED visits for those in the highest compared to lowest traffic density exposure quartile (OR=2.34, 95% CI=1.15-4.78). We did not observe associations between traffic density and odds of ED visits in children, even after restricting analyses to LA and SD Counties, but the sample size available was smaller than in our previous CHIS 2001 study, since previously we included all

respondents with lifetime asthma and here we include only current asthma. Also, the CHIS 2003 sample is smaller than CHIS 2001 in general (42,000 versus 55,000 households, respectively).

Second, previously we used Highway Performance Monitoring System (HPMS) traffic count data obtained directly from Caltrans to estimate traffic density and did not impute values to un-counted roadway segments. For this study, the Caltrans roadmap with linked HPMS data was no longer available and therefore we used TeleAtlas Dynamap traffic data and imputed values to roadway segments with missing traffic counts. By assigning the median traffic count for a given roadway category to roadway segments within the same roadway category without traffic counts across the entire state, we may have introduced additional error into our traffic density measures. Further investigation is needed to identify a better method for assessing traffic exposures for all Californians.

Pollutant and Asthma Outcome Relationships after Adjusting for Vulnerability Factors

In addition to pollutant exposures, several other characteristics were related to increased odds of asthma outcomes (ED visits, taking a daily asthma medication, or missing 2 or more days of work). Odds of having these asthma outcomes were higher among African Americans and Latinos compared to whites. ED visits were more likely among respondents living below 200% of the FPL compared to those living at or above 400% of the FPL, asthma medication use was more likely among respondents ages 65 or older, and missing 2 or more days of work was more likely among women than men.

Other vulnerability factors, such as having heart disease and having adult onset of asthma, increased the odds of ED visits and asthma medication use among adults with current asthma. Also, having health insurance, having a usual source of care, or being a previous or current smoker increased the possibility of taking daily medications for asthma. Other factors, such as no secondhand smoking at home decreased the possibility of missing at least 2 days of work due to asthma.

Among children, those living below 200% and between 200-399% of the FPL consistently had higher odds of using daily asthma medication than those living at or above 400% of the FPL. Living in a mobile home increased the odds of using a daily asthma medication.

These findings contribute to the existing literature that, in addition to pollutant exposures, vulnerability factors, such as access to care (Meng, Babey et al. 2006) and other behavioral risk factors such as smoking or secondhand smoking (Silverman, Boudreaux et al. 2003), are associated with severe asthma. Our findings were consistent with other studies that suggest that comorbidities, especially cardiovascular disease, may also contribute to increases in negative health outcomes related to asthma (Gouveia and Fletcher 2000; Aga, Samoli et al. 2003; Anderson, Atkinson et al. 2003; Sandstrom, Frew et al. 2003; Filleul, Rondeau et al. 2004; Gauderman, Avol et al. 2004; Meng, Wilhelm et al. 2007).

There are some counterintuitive findings, such as the increased odds of an ED visit for those with an asthma management plan or a daily asthma medication. This may be related to the fact that CHIS is a cross-sectional survey, which introduces temporal ambiguity between outcomes and adjustment variables. In this case, individuals may be more likely to take daily medication or receive a disease management plan after an ED visit. Also, these findings could be due to the fact that these two measures may be indicators of disease severity, which is highly correlated with ED visits. The other counterintuitive findings, such as the presence of cockroaches in the home and experiencing delays in care for any medical reason decreasing the odds of having daily medication or missing 2 or more work days, may be explained by the observation that these respondents were likely to be low-income populations; therefore, they may not have been able to afford medication nor had paid sick days, so they could not afford to miss work.

Pollutant Interactions with Poverty and Race/Ethnicity for Asthma Outcomes

Another major contribution of this study is the detection of significant interactions for poverty and race/ethnicity, indicating that some racial/ethnic and income groups may be more vulnerable to the effects of air pollutant exposures on asthma outcomes. African American and Asian/Pacific Islander adults may be more vulnerable to the effects of NO₂ on respiratory health. Also, minority children appeared to have increased vulnerability to NO₂ and PM₁₀. Specifically, for the same increase in NO₂ exposure, African American and Asian/PI/other adults had greater increases in odds of two or more missed days of work due to asthma compared to white adults. African American adults also had a greater increase in odds of daily/weekly asthma symptoms for a similar increase in NO₂ exposure. American Indian/Alaska Native and Asian/PI/other children had greater increases in odds of daily/weekly symptoms than white children with similar exposure to NO₂. For children we also observed significant interactions between race/ethnicity and PM₁₀, with Latino children having a greater increase in odds of using daily asthma medication for the same increase in PM₁₀ levels, and African-American and Asian/PI/other children having greater increases in odds of experiencing daily/weekly symptoms for the same increase in PM₁₀ exposure compared to white children. Additionally, we found significant interactions for household poverty level and NO₂ exposure; among children we found a greater increase in odds of ED visits among those living below 200% of the FPL compared to those living at or above 400% of the FPL for the same increase in NO_2 exposure.

As Lipfert (2004) and others have pointed out, low socioeconomic status is a doubleedged sword that fosters living in areas of increased pollution and also makes individuals more vulnerable to pollutant effects (Sexton and Adgate 1999; O'Neill, Jerrett et al. 2003; Lipfert 2004). Although a limited number of studies have addressed whether SES modifies the health effects of air pollution among those in disadvantaged circumstances, some of these studies provide support for our findings. In a study of chronic effects, neighborhood income level modified the health effects of air pollution (Finkelstein, Jerrett et al. 2003). They found that people with low incomes and high exposure were 2.3 times more likely to die from causes associated with air pollution exposures than those in the same exposure groups with high incomes. Our previous study using CHIS 2001 also had similar findings. We found greater estimated traffic effects for those with asthma in poverty, whereas the estimates for those with asthma above the poverty level moved closer toward the null (Meng, Wilhelm et al. 2008).

The increased vulnerability of these low SES sub-populations may result from many factors. In addition to pollutant exposures, these lower SES groups suffer from the burden of reduced health from material deprivation and psychosocial stress. Given the potential financial burden of needing daily asthma medication, it may be harder for respondents with low SES to obtain prescribed asthma medications. Without medication to temper their asthma symptoms, low SES individuals may also be more likely to experience severe asthma outcomes. A previous study by Ungar et al., reported a 14% increase in asthma exacerbations, defined as hospital or

ED visits, for each percentage point increase in the proportion of out-of-pocket household income spent on asthma medications (p<.001) (Ungar, Paterson et al. 2011). The results of our sensitivity analyses similarly suggested that respondents not taking a daily asthma medication may be more affected by pollutant exposures and be more likely to experience severe asthma outcomes, such as ED visits or missing two or more days of school/work. Additionally, previous literature has demonstrated that low SES individuals may be more likely to use EDs as the first source of care, even for non-emergencies, further inflating the disparity in ED visit use between those of high and low SES (O'Brien, Stein et al. 1997; Hong, Baumann et al. 2007). Nutrition can also play a role, as a lower consumption of anti-oxidants and nutrients to prevent inflammation among these sub-populations may be a contributing factor (Sienra-Monge, Ramirez-Aguilar et al. 2004). Moreover, low SES groups often live in older housing, which may not be well insulated, and thus have potentially higher intrusion of outdoor pollutants, such as motor vehicle exhaust (Houston, Wu et al. 2004). Additionally, exposures to other indoor allergens, such as dust mites and fungal spores that are believed to induce asthma symptoms (Zhong 1996) are more common in households with low SES status (Sarpong, Hamilton et al. 1996). Psychosocial stress has been linked to asthma morbidity (Wright and Steinbach 2001; Wright, Mitchell et al. 2004; Clougherty, Levy et al. 2007) and was also found to be higher among lower SES individuals than higher SES individuals with asthma (Chen, Fisher et al. 2003). Our findings contribute to the existing literature since these interactions have not been demonstrated in other studies. However, further studies are needed to better explore these relationships and to determine factors contributing to these differential effects.

Asthma-like Symptoms among Californians

Exposure disparities among respondents with asthma-like symptoms were overall very similar to those found for respondents with current asthma. In general, adults and children living below 400% of the FPL had higher pollutant exposures with some exceptions, notably O₃ for children and adults and PM₁₀ for children. Latinos had higher annual average pollutant concentrations for all pollutants except O₃. We observed associations for wheeze and some pollutants, and our results are suggestive of associations between pollutants and two or more wheeze attacks as well as seeking medical help for wheezing. On average, associations for wheeze outcomes and pollutants appeared weaker than those for the asthma outcomes. This may be due to outcome misclassification, since wheezing is a broad outcome that may include people with undiagnosed asthma, viral illnesses, chronic conditions, or other respiratory issues. Respondents who mentioned COPD, emphysema, or bronchitis when asked about wheezing or whistling sounds in their chest in the past year were excluded from the wheeze outcomes, but this was only if they mentioned having one of these conditions. The literature on asthma-like symptoms is sparse. One study found environmental tobacco smoke and low-socioeconomic status to be associated with asthma-like symptoms (Yeatts, Davis et al. 2003).

Study Strengths and Limitations

Currently, California only has surveillance capacity for asthma hospitalizations and ED visits, therefore, only reflecting severe asthma outcomes. CHIS provides a representative sample of Californians and the ability to examine air pollution associations with many other outcome measures among those with current asthma that affect a much larger population than

asthma mortality and hospitalizations/ED visits, such as medication use, frequency of symptoms, and school/work days missed while adjusting for many potential confounders. For instance, we had information on many potential confounding risk factors for asthma such as socioeconomic status, asthma disease management, behavior-related factors (e.g., smoking), access to health care, housing conditions and indoor air pollution exposures (e.g., secondhand smoking), and co-morbidities. Thus, this study provided an opportunity to examine the independent, as well as combined, effects of these factors on health outcomes. In addition to asthma outcomes, the study also evaluated associations with the prevalence of asthma-like symptoms among Californians with undiagnosed asthma or other respiratory diseases.

California has a large, ethnically diverse populations and covers geographic areas with both high and low air pollution levels in comparison to the rest of the nation. Therefore, it is very important to address a major goal of CARB's Environmental Justice Policy "to better characterize air pollution exposures in communities and to better assess health impacts, especially non-cancer effects, cumulative effects, and effects from long-term low-level exposures on vulnerable populations." To our knowledge, this is the first study to test the following hypotheses: 1) Among those with asthma or asthma-like symptoms, vulnerable subpopulations in California (e.g., racial/ethnic minorities and low-income individuals) have higher exposures to air pollution; 2) Individuals with asthma or asthma-like symptoms exposed to higher levels of air pollution are more likely to report adverse health outcomes; 3) Air pollution exposures, low socioeconomic status, and certain vulnerability factors exert independent adverse effects on individuals with asthma or asthma-like symptoms; and 4) Higher pollutant exposures interact with vulnerability factors, resulting in greater air pollution impacts on asthma in vulnerable sub-populations.

Some limitations associated with using CHIS data should be noted. First, this study is based on one year of CHIS survey data (2003) with a limited sample of Californians with asthma or asthma-like symptoms. Therefore, cautions need to be taken when generalizing the findings to the entire state population and to the impact of air pollution over years. Also, CHIS is a crosssectional survey, which may raise concerns regarding temporal ambiguity between our outcome and pollutant measures. Because the CHIS 2003 survey collected information on duration of residence in the same house and neighborhood, we used 12-month pollutant data prior to the interview date and limited our study sample to those living in the same neighborhood for at least 9 months. Thus, even though we were not able to ascertain whether exposures occurred before outcome events in some cases (e.g. ED visits), we were able to assure that the exposure measurement periods were contemporaneous with the outcome measurement periods. Another limitation to note is that the study outcomes (such as prior asthma diagnosis) were self-reported and not verified by objective clinical measures. While clinical measurements of airway responsiveness appear to reflect the activity and severity of asthma at the time of measurement, it is generally accepted that data on long-term prevalence of symptoms and exacerbations may be better obtained by questionnaires (Eder, Ege et al. 2006).

There may also be concerns regarding selection bias due to non-response. For instance, Californians with low-SES may be less likely to respond to the survey. Selection bias usually occurs when the exposure could systematically influence the selection/response of cases and/or controls. For example, bias may result from a higher or lower response rate in exposed cases than exposed controls. However, we believe that it is unlikely that CHIS respondents were aware of their personal exposure status in order to self-select differentially i.e. that it is most likely both cases and controls were selected independently of their knowledge of exposure status, since exposure status was not determined by interview retrospectively (vulnerable to recall bias), but calculated from routinely collected air monitoring and traffic data. In a subsequent survey (CHIS 2007), CHIS has conducted a special survey procedure in which follow up could be done with persons who were selected for the sample but did not respond to attempts to interview them as part of the telephone survey to try to assess the non-response bias. This survey found relative to the responders, that non-responders were more likely to be younger, Latino, tended to live in households with children, tended to be less educated, and have lower income. When low-SES Californians are the least likely to respond to the survey and also the most likely to be exposed, it will indirectly lead to differential bias by exposure status. Furthermore, people with health problems may also be more or less likely to respond for various reasons. Though selection bias is particularly relevant in case-control studies, even when the design is population-based like CHIS, it could still be an important issue for the reasons mentioned above.

Since most of the questions relevant to the study in CHIS asked respondents to recall what happened in the previous 12 months, there might be recall bias or error in the self-reported asthma morbidity indicators. Errors in recall might lead us to categorize some cases and non-cases improperly. Previous studies have shown that people are able to recall frequent events (such as frequent asthma symptoms) or rare but clinically significant episodes (such as ED visits or being diagnosed with asthma) very well (Pless and Pless 1995). However, this might not be true for certain measures, for instance, respondents might not be able to recall the number of days of school/work missed due to asthma accurately for more than the proximate past. As a result, we decided to use the measure of 2 or more school days missed instead of number of work/school days missed, which may be more error prone. We would expect this error to be similar for exposed and unexposed cases, i.e., non-differential with regard to exposure status.

Since CHIS is a telephone-based survey, the rapid growth of cellular telephone use over the past decade may create coverage problems for CHIS. Cell phones may generate two issues that may lead to non-coverage bias in telephone surveys. To assess non-coverage bias in CHIS, the landline RDD sample was supplemented with a sample of adults living in households with only cell phones in 2007. For the cell-phone-only sample, a sample of telephone numbers designated for cellular use was drawn and screened; only cell phone users that did not have a landline telephone at home were eligible to complete the adult survey. CHIS found relative to the landline sample, the cell-phone-only sample had a slightly higher proportion of non-Latino African Americans and a lower proportion of non-Latino whites than the landline sample. The household income of the cellular phone respondents is lower, perhaps reflecting a higher likelihood of having lower education and being single. The cell-phone-only sample is less likely to be unemployed by 11.7 percentage point. Again, if we believe the patterns of cell-phoneonly households applies to CHIS 2003, it will indirectly lead to differential bias by exposure status when low-SES Californians are the least likely to be included in the survey and also the most likely to be exposed.

We mainly relied on residence-based air pollution exposure estimates and therefore lack personal exposure measures. CHIS did not collect information on respondents' work locations. Thus, our exposure measures did not take into account inter-individual variability in exposures due to personal mobility, and indoor, commuting and occupational exposures, and other factors, especially for non-elderly adults. However, previous cohort studies that included multiple communities assigned exposure based on community-average pollution concentrations and considered long-term health effects have shown that the results are relatively unaffected by a lack of personal exposure measures (Neuman, Graham et al. 2011). We did a sensitivity analysis, as recommended by the Research Screening Committee, to examine the potential importance of the resulting exposure misclassification on our air pollution effect estimates. Based on stratified analyses, we observed that the association between PM₁₀ and increased odds of ED visits in adults with asthma appeared isolated to employed individuals (Table 37), which is the opposite of what one would expect if exposure measures were less misclassified for unemployed individuals and this misclassification is nondifferential. Employed individuals could have other risk factors (e.g., co-morbidities) that make them more vulnerable to PM₁₀ effects. Or associations in employed individuals may reflect, in part, time spent commuting, since in-vehicle air pollution exposures have been shown to be higher than ambient exposures (Fruin et al., 2004, Westerdahl et al., 2005, Zhu et al., 2007).

People in developed countries tend to spend the majority of their time indoors, and thus exposure to outdoor air pollution is modified by time spent indoors. One important factor influencing indoor and personal exposures to pollutants is the fraction of outdoor air that penetrates indoors, which is a function of pollutant type and home ventilation characteristics, including use of air conditioning. CHIS did not ask questions about the age of housing structures and use of air conditioning. The American Housing Survey (AHS) collected such data for a limited number of metropolitan cities, and we could not link that data to CHIS respondents. We originally planned to use these data to identify certain characteristics of people that have air conditioning (e.g., high SES) so that we could use those characteristics to extrapolate air conditioning use information to the CHIS population for stratified analyses. However, since the use of air conditioning also depends heavily on meteorology and topographic conditions of an area, e.g. residents of coastal areas are less likely to use air conditioning, we decided not to use the AHS data for extrapolating air conditioning use. Indoor pollutant exposures may be elevated in low income housing due to multiple sources, such as cigarette smoking, mold, and gas appliance combustion and small apartment sizes (Zota, Adamkiewicz et al. 2005). For example, levels of NO₂ and CO have been found to be substantially higher in low income, inner-city residences relative to the U.S. average (Schwab 1990). Also, subjects living in source and receptor areas of O_3 may experience different health effects, especially among those low-income subjects who receive higher O_3 exposures. Additionally, exposures to cockroaches, dust mites, and fungal allergens that are believed to induce asthma symptoms (Zhong 1996) are more common in households with generally poor living conditions (Sarpong, Hamilton et al. 1996). In addition to adult and adolescent active smoking habits, CHIS 2003 asked if anyone smokes cigarettes, cigars, or pipes anywhere inside the home, and if yes, about how many days per week. CHIS 2003 also ascertained if any dogs/cats are allowed inside the home and whether any cockroaches were present inside the home in the past 12 months, as well as type of housing. Thus we assessed exposures to these indoor pollutants and controlled for them as potential

confounders in our analyses. However, CHIS did not ask questions about all the other possible asthma triggers, such as age of housing, mold, dust mites, and use of gas appliances. As a result, we could not control for these possible triggers in this study.

V. SUMMARY AND CONCLUSIONS

Although several studies have linked air pollution to asthma morbidity, studies are still needed to identify vulnerable sub-populations with a higher burden of asthma and to investigate whether higher pollutant exposures and possibly increased vulnerability to pollutants among these sub-populations contribute to the excess burden. Linking existing air pollutant data from ambient monitors, traffic data, and California Health Interview Survey (CHIS) 2003 data allowed us to conduct a study to address these issues. This study furthers the California Air Resources Board's (CARB) Vulnerable Population Research Program that aims to protect all California residents, particularly individuals considered especially susceptible, from the adverse effects of air pollution.

To investigate the effects of air pollution on those with asthma and asthma-like symptoms in California and to identify potentially vulnerable subgroups, we conducted a crosssectional study linking California Health Interview Survey (CHIS) 2003 data to existing air pollutant and traffic data. We considered three populations in our analyses, CHIS 2003 respondents with lifetime asthma (N=5,620 adults and 1,889 children), current asthma (N=3,587 adults and 1,224 children), and those not diagnosed with asthma who experienced asthma-like symptoms (N=4,413 adults and 1,109). Respondents living in their current neighborhood for less than nine months were excluded. Using Geographic Information System (GIS) software, we linked these respondents' residential addresses to the nearest government air monitoring stations for each of four criteria pollutants (O₃, PM₁₀, PM_{2.5}, and NO₂). We then calculated annual pollutant averages for the 12-month period prior to respondents' interview dates. Additionally, we calculated the number of days concentrations measured at the nearest air monitor exceeded federal and state standards for these pollutants. To capture exposure to traffic pollutants, we assessed traffic density and distance to roadway as proxies for traffic exposure based on residential address. Once the exposures were calculated for respondents, we performed logistic regression analyses on respondents with asthma and respondents with asthma-like symptoms, separately for children and adults. Logistic regressions and interaction terms were used to evaluate increased vulnerability to pollutants among sub-populations. We also conducted pollutant-outcome analyses adjusting for several potential confounders related to vulnerability, such as smoking, obesity, heart disease, and having a usual source of health care.

In conclusion, we observed disparities in exposure to air pollutants by federal poverty level, and race/ethnicity among Californians with current asthma. In general, higher annual average exposures were observed for lower income groups and racial/ethnic minorities for NO₂, PM₁₀, and PM_{2.5}. In contrast, annual average O₃ exposure was generally lower or the same in these groups compared to higher income individuals and whites. Similar exposure disparities were observed for respondents with asthma-like symptoms. Among adults, we observed increases in odds of having asthma attacks, using daily asthma medication, missing 2 or more work days due to asthma, and asthma-related emergency department visits with increasing annual average pollutant concentrations for O₃, PM₁₀, and PM_{2.5}. Among children, use of daily

asthma medication and school/day care absences were associated with higher exposures to annual average NO₂ concentration. We also observed associations with the number of days exceeding federal or state standards for O₃, PM₁₀, and PM_{2.5}. We observed few consistent associations between residence-based measures of traffic and asthma outcomes in adults. We also were able to adjust for several potential confounders in our analyses and found that pollutant associations remained. Some of the novel findings of this work are the interaction between race/ethnicity and household federal poverty level with annual average pollutant exposures for NO₂ and PM₁₀, suggesting that racial/ethnic minority and low-income groups have greater increases in adverse health effects at the same level of increase in exposures. In respondents with undiagnosed asthma, positive associations were observed between asthmalike symptoms and annual air pollutant averages and exceedance measures, and again only a few associations were seen with traffic density and distance roadway measures.

VI. RECOMMENDATIONS

Our results provide much needed information on the effects of long-term air pollution exposure on chronic severe asthma and asthma-like symptoms in uniquely vulnerable populations, such as racial/ethnic minorities, and low-income Californians. The results of this project indicated that current air quality in California needs to be further improved in order to protect sensitive populations, such as those suffering from asthma or asthma-like symptoms; also, more actions need to be taken to protect vulnerable sub-populations.

Further regulatory efforts are needed to reduce emissions and identify contributing sources and toxic constituents of air pollution. In addition to regulatory interventions to reduce emissions, interventions at the community level should also be given attention, for example, by requiring minimum distances to pollutant sources, e.g. freeways. Locating schools, day care centers, work places, homes, sports fields and parks away from busy roadways and other emission sources should be part of the requirements for community development. Additional monitoring of air pollution from mobile sources, for example near freeways and major roads, would be a tremendous asset in assessing the health effects of traffic related pollution. Individual level interventions are also needed to modify pollutant exposure and/or dose and to help individuals mitigate the health effects of air pollution. For instance, information on control of air pollution exposures, such as reducing outdoor activities when the air quality index is in the unhealthy range and exercising away from major roadways should be widely spread. Our study also indicates that further studies are needed to explore the relationships of socioeconomic status and race with air pollution and respiratory health effects. Other important areas for future work include research identifying factors that may increase vulnerability to pollutant effects and the testing of innovative strategies to reduce individual exposures and vulnerability to air pollution through community-based or family-focused interventions.

VII. REFERENCES

- Aga, E., E. Samoli, et al. (2003). "Short-term effects of ambient particles on mortality in the elderly: results from 28 cities in the APHEA2 project." <u>Eur Respir J Suppl</u> **40**: 28s-33s.
- Anderson, H. R., R. W. Atkinson, et al. (2003). "Particulate air pollution and hospital admissions for cardiorespiratory diseases: are the elderly at greater risk?" <u>Eur Respir J Suppl</u> **40**: 39s-46s.
- Anderson, H. R., A. Ponce de Leon, et al. (1998). "Air pollution, pollens, and daily admissions for asthma in London 1987-92." <u>Thorax</u> **53**(10): 842-848.
- Arcus-Arth, A. and R. J. Blaisdell (2007). "Statistical distributions of daily breathing rates for narrow age groups of infants and children." <u>Risk Anal</u> **27**(1): 97-110.
- Babey, S. H., T. A. Hastert, et al. (2007). "Low-income Californians bear unequal burden of asthma." <u>Policy Brief UCLA Cent Health Policy Res(PB2007-1)</u>: 1-7.
- Babey, S. H., Y. Y. Meng, et al. (2006). "Nearly six million Californians suffer from asthma symptoms or asthma-like breathing problems." <u>Policy Brief UCLA Cent Health Policy Res</u>(PB2006-5): 1-7.
- Barnett, A. G., G. M. Williams, et al. (2005). "Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand." <u>Am J Respir Crit Care Med</u> **171**(11): 1272-1278.
- Bateson, T. F. and J. Schwartz (2008). "Children's response to air pollutants." <u>J Toxicol Environ Health A</u> **71**(3): 238-243.
- Burra, T. A., R. Moineddin, et al. (2009). "Social disadvantage, air pollution, and asthma physician visits in Toronto, Canada." <u>Environ Res</u> **109**(5): 567-574.
- Castellsague, J., J. Sunyer, et al. (1995). "Short-term association between air pollution and emergency room visits for asthma in Barcelona." <u>Thorax</u> **50**(10): 1051-1056.
- Chaix, B., S. Gustafsson, et al. (2006). "Children's exposure to nitrogen dioxide in Sweden: investigating environmental injustice in an egalitarian country." <u>J Epidemiol Community Health</u> **60**(3): 234-241.
- Checkley, W., K. P. West, Jr., et al. (2011). "Supplementation with vitamin A early in life and subsequent risk of asthma." <u>The European respiratory journal : official journal of the European Society for</u> <u>Clinical Respiratory Physiology</u>.
- Chen, E., E. B. Fisher, et al. (2003). "Socioeconomic status, stress, and immune markers in adolescents with asthma." <u>Psychosom Med</u> **65**(6): 984-992.
- Clark, N., R. Brown, et al. (1999). "Childhood asthma." Environ Health Perspect 107(3): 421-429.
- Clougherty, J. E., J. I. Levy, et al. (2007). "Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology." <u>Environ Health Perspect</u> **115**(8): 1140-1146.
- Delfino, R. J., H. Gong, et al. (2003). "Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air." <u>Journal of exposure analysis and environmental epidemiology</u> **13**(5): 348-363.
- Delfino, R. J., A. M. Murphy-Moulton, et al. (1998). "Emergency room visits for respiratory illnesses among the elderly in Montreal: association with low level ozone exposure." <u>Environ Res</u> **76**(2): 67-77.
- Delfino, R. J., R. S. Zeiger, et al. (1998). "Symptoms in pediatric asthmatics and air pollution: differences in effects by symptom severity, anti-inflammatory medication use and particulate averaging time." <u>Environ Health Perspect</u> **106**(11): 751-761.
- Eder, W., M. J. Ege, et al. (2006). "The asthma epidemic." <u>N Engl J Med</u> **355**(21): 2226-2235.
- Filleul, L., V. Rondeau, et al. (2004). "Do subject characteristics modify the effects of particulate air pollution on daily mortality among the elderly?" <u>J Occup Environ Med</u> **46**(11): 1115-1122.
- Finkelstein, M. M., M. Jerrett, et al. (2003). "Relation between income, air pollution and mortality: a cohort study." <u>Can Med Assoc J.</u> **169**(5): 397-402.

- Friedman, M. S., K. E. Powell, et al. (2001). "Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma." Jama **285**(7): 897-905.
- Gauderman, W. J., E. Avol, et al. (2004). "The effect of air pollution on lung development from 10 to 18 years of age." <u>N Engl J Med</u> **351**(11): 1057-1067.
- Gauderman, W. J., E. Avol, et al. (2005). "Childhood asthma and exposure to traffic and nitrogen dioxide." <u>Epidemiology</u> **16**(6): 737-743.
- Gent, J. F., P. Koutrakis, et al. (2009). "Symptoms and medication use in children with asthma and trafficrelated sources of fine particle pollution." <u>Environ Health Perspect</u> **117**(7): 1168-1174.
- Gent, J. F., E. W. Triche, et al. (2003). "Association of low-level ozone and fine particles with respiratory symptoms in children with asthma." Jama **290**(14): 1859-1867.
- Gilliland, F. D., K. Berhane, et al. (2001). "The effects of ambient air pollution on school absenteeism due to respiratory illnesses." <u>Epidemiology</u> **12**(1): 43-54.
- Gilliland, F. D., R. McConnell, et al. (1999). "A theoretical basis for investigating ambient air pollution and children's respiratory health." <u>Environ Health Perspect</u> **107 Suppl 3**: 403-407.
- Godish, T. (1991). <u>Air Quality</u>. Chelsea, MI: Lewis Publishers.
- Gouveia, N. and T. Fletcher (2000). "Time series analysis of air pollution and mortality: effects by cause, age and socioeconomic status." <u>J Epidemiol Community Health</u> **54**(10): 750-755.
- Green, R., S. Smorodinsky, et al. (2004). "Proximity of California public schools to busy roads." <u>Environ</u> <u>Health Perspect 112(1)</u>: 61-66.
- Gunier, R. B., A. Hertz, et al. (2003). "Traffic density in California: socioeconomic and ethnic differences among potentially exposed children." <u>Journal of exposure analysis and environmental</u> <u>epidemiology</u> **13**(3): 240-246.
- Gunier, R. B., A. Hertz, et al. (2003). "Traffic density in California: socioeconomic and ethnic differences among potentially exposed children." J Expo Anal Environ Epidemiol **13**(3): 240-246.
- Gwynn, R. C. and G. D. Thurston (2001). "The burden of air pollution: impacts among racial minorities." <u>Environ Health Perspect</u> **109 Suppl 4**: 501-506.
- Hong, R., B. M. Baumann, et al. (2007). "The emergency department for routine healthcare: race/ethnicity, socioeconomic status, and perceptual factors." <u>The Journal of emergency</u> <u>medicine</u> **32**(2): 149-158.
- Houston, D., J. Wu, et al. (2004). "Structural Disparities of Urban Traffic in Southern California: Implications for Vehicle Related Air Pollution Exposure in Minority and High-Poverty Neighborhoods." Journal of Urban Affairs **26**(5): 565–592
- Jerrett, M., R. Burnett, et al. (2001). "A GIS-environmental justice analysis of particulate air pollution in Hamilton, Canada." <u>Environment and Planning A</u> **33**: 955-973.
- Kerkhof, M., D. S. Postma, et al. (2010). "Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma." <u>Thorax</u> **65**(8): 690-697.
- Korc, M. (1996). "A Socioeconomic assessment of human exposure to ozone in the south coast air basin of California." J Air Waste Manag Assoc **46**: 547-557.
- Lin, M., Y. Chen, et al. (2003). "Effect of short-term exposure to gaseous pollution on asthma hospitalisation in children: a bi-directional case-crossover analysis." <u>J Epidemiol Community</u> <u>Health</u> **57**(1): 50-55.
- Lin, S., X. Liu, et al. (2008). "Chronic exposure to ambient ozone and asthma hospital admissions among children." <u>Environ Health Perspect</u> **116**(12): 1725-1730.
- Lipfert, F. W. (2004). "Air pollution and poverty: does the sword cut both ways?" J Epidemiol Community Health **58**(1): 2-3.

- Mar, T. F., J. Q. Koenig, et al. (2010). "Associations between asthma emergency visits and particulate matter sources, including diesel emissions from stationary generators in Tacoma, Washington." <u>Inhal Toxicol</u> 22(6): 445-448.
- McConnell, R., K. Berhane, et al. (2003). "Prospective Study of Air Pollution and Bronchitic Symptoms in Children with Asthma." <u>Am J Respir Crit Care Med</u> **168**(7): 790-797.
- Meng, Y. Y., S. H. Babey, et al. (2006). "Emergency department visits for asthma: the role of frequent symptoms and delay in care." <u>Ann Allergy Asthma Immunol</u> **96**(2): 291-297.
- Meng, Y. Y., S. H. Babey, et al. (2007). "California's racial and ethnic minorities more adversely affected by asthma." <u>Policy Brief UCLA Cent Health Policy Res(PB2007-3)</u>: 1-7.
- Meng, Y. Y., R. P. Rull, et al. (2010). "Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California." J Epidemiol Community Health **64**(2): 142-147.
- Meng, Y. Y., M. Wilhelm, et al. (2008). "Are frequent asthma symptoms among low-income individuals related to heavy traffic near homes, vulnerabilities, or both?" <u>Ann Epidemiol</u> **18**(5): 343-350.
- Meng, Y. Y., M. Wilhelm, et al. (2007). "Traffic and outdoor air pollution levels near residences and poorly controlled asthma in adults." <u>Ann Allergy Asthma Immunol</u> **98**(5): 455-463.
- Moore, K., R. Neugebauer, et al. (2008). "Ambient ozone concentrations cause increased hospitalizations for asthma in children: an 18-year study in Southern California." <u>Environ Health Perspect</u> **116**(8): 1063-1070.
- Morello-Frosch, R., M. Pastor, Jr., et al. (2001). "Environmental Justice and Southern California's "Riskscape": The Distribution of Air Toxics Exposures and Health Risks among Diverse Communities." Urban Affairs **36**(4): 551-578.
- Mortimer, K. M., L. M. Neas, et al. (2002). "The effect of air pollution on inner-city children with asthma." <u>Eur Respir J</u> **19**(4): 699-705.
- Neuman, M. I., D. Graham, et al. (2011). "Variation in the use of chest radiography for pneumonia in pediatric emergency departments." <u>Pediatric emergency care</u> **27**(7): 606-610.
- Neumann, C. M., D. L. Forman, et al. (1998). "Hazard screening of chemical releases and environmental equity analysis of populations proximate to toxic release inventory facilities in Oregon." <u>Environ Health Perspect</u> **106**(4): 217-226.
- Norris, G., S. N. YoungPong, et al. (1999). "An association between fine particles and asthma emergency department visits for children in Seattle." <u>Environ Health Perspect</u> **107**(6): 489-493.
- O'Brien, G. M., M. D. Stein, et al. (1997). "Use of the ED as a regular source of care: associated factors beyond lack of health insurance." <u>Annals of Emergency Medicine</u> **30**(3): 286-291.
- O'Connor, G. T., L. Neas, et al. (2008). "Acute respiratory health effects of air pollution on children with asthma in US inner cities." J Allergy Clin Immunol **121**(5): 1133-1139 e1131.
- O'Neill, M. S., M. Jerrett, et al. (2003). "Health, wealth, and air pollution: advancing theory and methods." <u>Environ Health Perspect</u> **111**(16): 1861-1870.
- Ostro, B., M. Lipsett, et al. (2001). "Air pollution and exacerbation of asthma in African-American children in Los Angeles." <u>Epidemiology</u> **12**(2): 200-208.
- Pastor, M., Jr., R. Morello-Frosch, et al. (2005). "The Air is Always Cleaner on the Other Side: Race, Space, and Ambient Air Toxics Exposures in California." <u>Journal of Urban Affairs</u> **27**(2): 127-148.
- Perera, F. P., S. M. Illman, et al. (2002). "The challenge of preventing environmentally related disease in young children: community-based research in New York City." <u>Environ Health Perspect</u> **110**(2): 197-204.
- Pless, C. E. and I. B. Pless (1995). "How well they remember. The accuracy of parent reports." <u>Arch</u> <u>Pediatr Adolesc Med</u> **149**(5): 553-558.
- Pope, C. A., 3rd, D. W. Dockery, et al. (1991). "Respiratory health and PM10 pollution. A daily time series analysis." <u>Am Rev Respir Dis</u> **144**(3 Pt 1): 668-674.

- Reynolds, P., J. Von Behren, et al. (2004). "Residential exposure to traffic in California and childhood cancer." <u>Epidemiology</u> **15**(1): 6-12.
- Romieu, I., F. Meneses, et al. (1995). "Effects of urban air pollutants on emergency visits for childhood asthma in Mexico City." <u>Am J Epidemiol</u> **141**(6): 546-553.
- Sandstrom, T., A. J. Frew, et al. (2003). "The need for a focus on air pollution research in the elderly." <u>Eur</u> <u>Respir J Suppl</u> **40**: 92s-95s.
- Sarpong, S. B., R. G. Hamilton, et al. (1996). "Socioeconomic status and race as risk factors for cockroach allergen exposure and sensitization in children with asthma." J Allergy Clin Immunol **97**(6): 1393-1401.
- Schildcrout, J. S., L. Sheppard, et al. (2006). "Ambient air pollution and asthma exacerbations in children: an eight-city analysis." <u>Am J Epidemiol</u> **164**(6): 505-517.
- Schwab, M. (1990). "An examination of the intra-SMSA distribution of carbon monoxide exposure." <u>J Air</u> <u>Waste Manage Assoc</u> **40**(3): 331-336.
- Schwartz, J. (2004). "Air pollution and children's health." Pediatrics 113(4 Suppl): 1037-1043.
- Schwartz, J., D. Slater, et al. (1993). "Particulate air pollution and hospital emergency room visits for asthma in Seattle." <u>Am Rev Respir Dis</u> **147**(4): 826-831.
- Sexton, K. and J. L. Adgate (1999). "Looking at environmental justice from an environmental health perspective." J Expo Anal Environ Epidemiol **9**(1): 3-8.
- Sienra-Monge, J. J., M. Ramirez-Aguilar, et al. (2004). "Antioxidant supplementation and nasal inflammatory responses among young asthmatics exposed to high levels of ozone." <u>Clin Exp</u> <u>Immunol</u> **138**(2): 317-322.
- Silverman, R. A., E. D. Boudreaux, et al. (2003). "Cigarette smoking among asthmatic adults presenting to 64 emergency departments." <u>Chest</u> **123**(5): 1472-1479.
- Slaughter, J. C., T. Lumley, et al. (2003). "Effects of ambient air pollution on symptom severity and medication use in children with asthma." <u>Ann Allergy Asthma Immunol</u> **91**(4): 346-353.
- Sunyer, J., X. Basagana, et al. (2002). "Effect of nitrogen dioxide and ozone on the risk of dying in patients with severe asthma." <u>Thorax</u> **57**(8): 687-693.
- Thurston, G. D., M. Lippmann, et al. (1997). "Summertime haze air pollution and children with asthma." <u>Am J Respir Crit Care Med</u> **155**(2): 654-660.
- Tolbert, P. E., J. A. Mulholland, et al. (2000). "Air quality and pediatric emergency room visits for asthma in Atlanta, Georgia, USA." <u>Am J Epidemiol</u> **151**(8): 798-810.
- Trasande, L. and G. D. Thurston (2005). "The role of air pollution in asthma and other pediatric morbidities." <u>J Allergy Clin Immunol</u> **115**(4): 689-699.
- Ungar, W. J., J. M. Paterson, et al. (2011). "Relationship of asthma management, socioeconomic status, and medication insurance characteristics to exacerbation frequency in children with asthma." <u>Annals of allergy, asthma & immunology : official publication of the American College of Allergy,</u> <u>Asthma, & Immunology</u> **106**(1): 17-23.
- Villeneuve, P. J., L. Chen, et al. (2007). "Outdoor air pollution and emergency department visits for asthma among children and adults: a case-crossover study in northern Alberta, Canada." <u>Environ</u> <u>Health</u> **6**: 40.
- Ward, D. J. and J. G. Ayres (2004). "Particulate air pollution and panel studies in children: a systematic review." <u>Occup Environ Med</u> **61**(4): e13.
- White, M. C., R. A. Etzel, et al. (1994). "Exacerbations of childhood asthma and ozone pollution in Atlanta." <u>Environ Res</u> **65**(1): 56-68.
- Wiley, J. A., J. P. Robinson, et al. (1991). Study of children's activity patterns. Sacramento, CA, University of California, California Air Resources Board: Final report contract no. A733-149.

- Wiley, J. A., J. P. Robinson, et al. (1991). Activity patterns of California residents. Sacramento, CA, Survey Research Center, University of California, California Air Resources Board: Final report contract no. A6-177-133-149.
- Wilhelm, M., Y. Y. Meng, et al. (2008). "Environmental Public Health Tracking of Childhood Asthma Using California
- Health Interview Survey, Traffic, and Outdoor Air Pollution Data." <u>Environ Health Perspect</u> **116**(9): In Print.
- Wright, R. J., H. Mitchell, et al. (2004). "Community violence and asthma morbidity: the Inner-City Asthma Study." <u>Am J Public Health</u> **94**(4): 625-632.
- Wright, R. J. and S. F. Steinbach (2001). "Violence: an unrecognized environmental exposure that may contribute to greater asthma morbidity in high risk inner-city populations." <u>Environ Health</u> <u>Perspect</u> 109(10): 1085-1089.
- Yang, I. A., O. Holz, et al. (2005). "Association of tumor necrosis factor-alpha polymorphisms and ozoneinduced change in lung function." <u>Am J Respir Crit Care Med</u> **171**(2): 171-176.
- Yeatts, K., K. J. Davis, et al. (2003). "Who gets diagnosed with asthma? Frequent wheeze among adolescents with and without a diagnosis of asthma." <u>Pediatrics</u> **111**(5 Pt 1): 1046-1054.
- Zhong, N. S. (1996). "New insights into risk factors of asthma." <u>Respirology</u> 1(3): 159-166.
- Zota, A., G. Adamkiewicz, et al. (2005). "Ventilation in public housing: implications for indoor nitrogen dioxide concentrations." Indoor Air **15**(6): 393-401.

VIII. LIST OF INVENTIONS REPORTED AND COPYRIGHTED MATERIALS PRODUCED

Not applicable.

IX. GLOSSARY OF TERMS, ABBREVIATIONS, AND SYMBOLS

µg- microgram μm- micrometer AADT- annual average daily traffic Al-American Indian AN- Alaska Native BMI- body mass index **BRFSS-** Behavioral Risk Factor Surveillance System CARB- California Air Resources Board CHIS- California Health Interview Survey CI- confidence interval CO- carbon monoxide COPD- Chronic Obstructive Pulmonary Disorder ED- emergency department **EPA-** Environmental Protections Agency FPL- federal poverty level ft- feet **GIS-** Geographic Information System HPMS- Highway Performance Monitoring System hr-hour km- kilometer L- length m- meter NHIS- National Health Interview Survey NO₂- nitrogen oxide NTAD- National Transportation Atlas Database O₃- ozone OR- odds ratio PAR- population attributable risk PI- Pacific Islander PM- particulate matter PM_{10} - particulate matter less than 10 μ m in aerodynamic diameter PM_{2.5}- particulate matter less than 2.5 µm in aerodynamic diameter ppb-parts per billion RDD- random-digit dial SES- socioeconomic status SO₂- sulfur dioxide std. error- standard error TD- traffic density UC- University of California VMT- Vehicle Meters Traveled

X. APPENDIX

Table 6. Weighted distributions of annual pollutant averages, exceedance days, and traffic density (within 750 feet) for CHIS
2003 adults and children with current asthma ^a

				Adult	s (≥18	years)						Childr	en (< 18	8 years)		
	n	Missing	Min	Max	Mean	Std Error of Mean	Median	95th Percentile	n	Missing	Min	Max	Mean	Std Error of Mean	Median	95th Percentile
Pollutant Averages																
O ₃ (ppb)	1,617	242	22.8	63.5	41.6	0.27	40.1	54.7	537	62	23.0	64.2	41.3	0.49	39.5	54.4
$PM_{10} (\mu g/m^3)$	1,304	224	12.3	80.1	28.6	0.34	27.0	45.2	436	67	13.0	80.1	30.0	0.61	29.6	46.2
$PM_{2.5} (\mu g/m^3)$	990	703	4.1	27.5	16.0	0.18	15.4	23.4	335	216	7.4	26.2	16.8	0.34	17.8	23.5
NO ₂ (ppb)	1,315	482	1.5	36.1	21.1	0.27	20.0	35.0	469	127	1.6	36.0	22.0	0.48	21.3	35.1
Exceedances (in days)															
O ₃ 1-Hr (State)	1,621	236	0	122	22.4	0.87	9.8	75.3	540	59	0	122	24.9	1.63	11.7	70.9
O ₃ 8-Hr (State)	1,617	242	0	153	31.1	1.11	16.0	97.9	537	62	0	153	33.5	2.10	16.7	98.6
O ₃ 8-Hr (Federal)	1,617	242	0	114	16.8	0.77	4.0	65.1	537	62	0	114	18.4	1.39	4.7	63.8
PM ₁₀ (State)	1,304	224	0	66	7.2	0.37	2.9	25.6	436	67	0	65	7.8	0.65	3.1	26.7
PM10 (Federal)	1,304	224	0	4	0.1	0.02	0.0	0.0	436	67	0	4	0.1	0.02	0.0	0.7
PM _{2.5} (Federal)	990	703	0	54	15.5	0.49	12.8	41.3	335	216	0	54	17.5	0.99	14.2	48.1
Traffic density (VMI	//day/n	neter ²)														
750 feet buffer ^b	2940	1	0.1	583.0	66.0	2.29	47.4	195.2	1018	0	1.1	793.4	70.1	4.06	45.7	284.4

^a For CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bBased on imputed Tele Atlas traffic data.

Table 7. Frequencies for distance to roadway measures for CHIS 2003 adults and children with current asthma^a

	Adults	$(\geq 18 \text{ years})$	Children	(<18 years)
		%		%
Roadway Measure ^b	n	(Weighted)	n	(Weighted)
<300 m from a State Highway	134	5.4	45	5.4
<300 m from an Interstate Highway	281	9.9	102	12.1
<50 m from a Major Road	584	20.5	172	19.1
<50 m from a Minor Road	2,546	87.1	894	90.2

^a For CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived in the same home or neighborhood for at least 9 months and geocoded based on address and nearest cross-streets were included.

^bBased on imputed Tele Atlas data.

[Distance to									
					Traffic Density	State	Distance to	Distance to	Distance to	O ₃ 1-Hr	O3 8-Hr	O ₃ 8-Hr	PM_{10}	PM_{10}	PM _{2.5}
	O ₃	PM_{10}	PM _{2.5}	NO_2	(750 ft buffer)	Highway	Interstate	Major Roads	Minor Roads	(State)	(Federal)	(State)	(Federal)	(State)	(Federal)
	(ppb)	$(\mu g/m^3)$	$(\mu g/m^3)$	(ppb)	(VMT/day/meters ²)	(meters) ^b	(meters) ^b	(meters) ^b	(meters) ^b	(days)	(days)	(days)	(days)	(days)	(days)
O ₃ (ppb)	1														
PM ₁₀ (μg/m ³)	0.49	1													
$PM_{2.5} (\mu g/m^3)$	0.39	0.78	1												
NO ₂ (ppb)	0.04	0.56	0.72	1											
Traffic Density (750 ft buffer)	-0.06	0.03	0.05	0.13	1										
(VMT/day/meters ²) ^b	-0.00	0.05	0.05	0.15	I										
Distance to State Highway (meters) ^b	0.21	-0.02	-0.10	-0.18	0.06	1									
Distance to Interstate (meters) ^b	0.14	-0.02	-0.12	-0.18	-0.26	-0.01	1								
Distance to Major Roads (meters) ^b	0.05	0.01	-0.06	-0.06	-0.22	-0.05	0.22	1							
Distance to Minor Roads (meters) ^b	0.00	-0.04	-0.04	-0.05	0.01	0.04	0.14	-0.04	1						
O ₃ 1-Hr (State) (days)	0.82	0.59	0.49	0.25	-0.01	0.22	0.06	0.02	0.01	1					
O3 8-Hr (Federal) (days)	0.83	0.56	0.45	0.13	-0.03	0.23	0.10	0.03	0.01	0.98	1				
O ₃ 8-Hr (State) (days)	0.89	0.56	0.43	0.12	-0.05	0.23	0.13	0.04	0.01	0.95	0.97	1			
PM ₁₀ (Federal) (days)	0.19	0.43	0.06	-0.02	-0.04	-0.04	0.10	0.05	-0.01	0.15	0.16	0.15	1		
PM ₁₀ (State) (days)	0.44	0.81	0.49	0.22	-0.02	0.02	0.03	0.03	-0.02	0.56	0.56	0.54	0.60	1	
PM _{2.5} (Federal) (days)	0.15	0.51	0.69	0.45	0.05	-0.05	-0.11	-0.09	-0.07	0.20	0.17	0.19	-0.04	0.32	1

Table 8. Pearson correlations between annual average air pollutant concentrations, exceedance measures, distance to roadway measures and traffic density^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station, lived in the same home or neighborhood for at least 9 months, and geocoded by address or nearest cross streets were included. ^bBased on imputed Tele Atlas traffic data or Tele Atlas Dynamap 2000 roadway map.

		Adults			Children	
			%			%
	n	Pop. N	(wtd.)	n	Pop. N	(wtd.)
Sex Male	960	591,941	34.7	658	491,096	58.4
Female	2,383	1,115,836	65.3	495	350,513	41.6
Age (yr)	2,385	1,115,650	05.5	493	550,515	41.0
0-5				222	177,434	21.1
6-11	_	-	-	469	315,611	37.5
12-17	_	_		462	348,564	41.4
18-34	664	491,308	28.8		-	-
35-64	1,964	939,448	55.0	_	_	-
65+	715	277,021	16.2	_	-	-
Race/Ethnicity	,10	277,021	1012			
Latino	368	294,678	17.3	245	226,661	26.9
American Indian/Alaska Native	73	34,409	2.0	31	24,224	2.9
Asian/Other	286	205,060	12.0	139	101,540	12.1
African American	282	143,060	8.4	125	122,906	14.6
White	2,334	1,030,571	60.3	613	366,277	43.5
Education ^b	,	,			,	
Less than 25 Years of Age	225	194,646	11.4	_	-	-
High School Education or Less	1,035	585,913	34.3	404	322,053	38.3
College or Vocational School	1,604	734,275	43.0	595	421,236	50.
Graduate School	479	192.942	11.3	154	98,319	11.
Work Status	477	172,742	11.5	134	70,517	11.
Employed	1,945	1,051,873	61.8	-	-	-
Unemployed	1,385	649,135	38.2	_	_	_
Federal Poverty Level	1,505	049,155	50.2			
0-199%	1,041	555,437	32.5	365	323,103	38.4
200-399%	837	407,082	23.8	376	259,102	30.8
≥400%	1,465	745,258	43.6	412	259,404	30.8
Insurance Status	,	,			, .	
Uninsured All/Part of the Year	393	274,915	16.1	71	41,168	4.9
Insured All of the Year	2,950	1,432,862	83.9	1,082	800,440	95.
Usual Source of Care						
Yes	3,108	1,541,916	90.3	1,061	761,728	90.
No	235	165,861	9.7	92	79,881	9.
Delay in Needed Care in Last 12 Months						
Yes	723	359,191	21.0	101	68,460	8.
No	2,620	1,348,586	79.0	1,052	773,148	91.9
Number of Doctor Visits in the Past Year						
0-1	587	345,241	22.1	251	181,385	22.9
2-5	1,361	708,038	45.4	664	481,506	60.
6+	1,088	506,905	32.5	173	128,836	16.
Age at Asthma Diagnosis						
0-11	985	578,871	33.9	1,050	761,521	90.
12-17	309	186,378	10.9	103	80,087	9.:
18-64	1,824	850,537	49.8	-	-	-
65+	225	91,991	5.4	-	-	-
Daily Asthma Medication						
Yes	1,653	813,586	47.6	421	311,250	37.
No	1,690	894,190	52.4	732	530,358	63.0
Asthma Management Plan						
Yes	1,326	642,716	37.6	527	342,473	40.
No	2,017	1,065,060	62.4	626	499,136	59.3

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only those who lived in the same home or neighborhood for at least 9 months were included.

^bRepresentative of educational attainment level of the adult respondent or adult responding on behalf of the child.

		Adults		Children					
			%			%			
	n	Pop. N	(wtd.)	n	Pop. N	(wtd.			
Self-reported Health Status									
Good/Very Good/Excellent	2,258	1,147,937	67.2	969	683,856	81.3			
Poor/Fair	1,085	559,840	32.8	184	157,753	18.7			
Heart Disease (Adults)									
Yes	477	193,285	11.3	-	-	-			
No	2,866	1,514,491	88.7	-	-	-			
Congestive Heart Failure (Adult)									
Yes	96	26,817	31.7	-	-	-			
No	132	57,865	68.3	-	-	-			
Diabetes									
Yes	324	162,681	9.5	-	-	-			
No	2,979	1,528,892	89.5	-	-	-			
Borderline	40	16,204	1.0	-	-	-			
Body Mass Index (Adult)									
Underweight/Normal	1,267	654,162	38.3	-	-	-			
Overweight/Obese	2,076	1,053,615	61.7	-	-	-			
Body Mass Index (Teen)									
Underweight/Normal	-	-	-	290	221,431	63.5			
Overweight/Obese	-	-	-	172	127,133	36.5			
Smoking Status (Adult)									
Current/Previous Smoker	1,625	773,413	45.5	-	-	-			
Never Smoker	1,705	927,596	54.5	-	-	-			
Smokers in the Home	,	,							
Yes	358	190,362	11.1	69	64,252	7.6			
No	2,985	1,517,415	88.9	1,084	777,356	92.4			
Walking for Transportation or Leisure	_,,	-,,		-,	,				
Yes	2,291	1,192,768	71.1	-	_	-			
No	976	484,724	28.9	-	_	-			
Dogs/Cats in the Home	210	101,721	20.9						
Yes	1,669	815,216	47.7	533	344,173	40.9			
No	1,674	892,560	52.3	620	497,436	59.1			
Cockroaches in the Home	1,074	072,500	52.5	020	ч77,ч30	57.1			
Yes	324	209,029	12.2	156	130,013	15.4			
No	3.019	1,498,748	87.8	997	711,596	84.6			
Rural/Urban	5,019	1,490,740	07.0	371	/11,590	04.0			
	1 208	682 214	39.9	402	312 172	40.7			
Urban 2nd City	1,208	682,214		402	342,472 235,309	40.7			
	956 549	470,474	27.5	384					
Suburban		338,098	19.8	200	176,753	21.0			
Town/Rural	630	216,991	12.7	167	87,075	10.3			
Time at Current Address/Neighborhood	47	00 001	1 7	21	15 660	1 /			
9 months-<1 yr	47	29,301	1.7	21	15,668	1.9			
1-<3 yr	529	313,186	18.3	232	181,218	21.5			
3+ yr	2,767	1,365,290	79.9	900	644,722	76.6			
Housing Type									
House	2,237	1,138,493	66.7	877	597,592	71.0			
Apartment, Duplex, or Mobile Home	1,106	569,284	33.3	276	244,017	29.0			
Household Crowding (CHIS 2003)									
Yes	319	277,822	16.3	279	280,846	33.4			
No	3,024	1,429,955	83.7	874	560,762	66.6			

Table 10: Characteristics of CHIS 2003 children and adults with current asthma^a (continued)

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only those who lived in the same home or neighborhood for at least 9 months were included.

^bRepresentative of educational attainment level of the adult respondent or adult responding on behalf of the child.

		NO ₂ annual a	werage (ppb)	O ₃ annual a	verage (ppb)	PM ₁₀ annual a	verage ($\mu g/m^3$)	$PM_{2.5}$ annual average ($\mu g/m^3$)			
Demographics		Adult mean	Child mean	Adult mean	Child mean	Adult mean	Child mean	Adult mean	Child mean		
Household Federal	0 - 199 % FPL	22.4***	24.1***	41.1	41.0	29.9**	30.6*	16.7***	17.5**		
Poverty Level (FPL)	200 - 399 % FPL	20.7	20.6	42.1	42.0	28.1	31.3**	16.4**	16.9*		
	≥ 400% FPL†	20.1	20.2	41.8	41.1	27.8	28.0	15.0	15.3		
Race/ethnicity	Latino	24.2***	23.9***	41.1*	40.6*	31.3***	30.8	17.9***	17.2*		
	American Indian /										
	Alaska Native	19.2	23.9	42.0	47.0	29.4	32.1	15.3	19.3		
	Asian / Pacific Islander /										
	Other	22.6***	23.8**	40.4*	38.1***	28.8	28.8	16.2	16.6		
	African American	21.0	22.1*	39.3***	40.0*	29.3	31.7	16.2*	17.8*		
	White†	19.6	19.7	42.5	43.1	27.6	29.1	15.1	15.7		
Urban/Rural	Urban†	24.4	25.1	38.9	37.8	28.6	29.3	16.2	17.0		
	Second City	17.4***	18.7***	42.8***	44.3***	28.2	28.8	15.1**	15.6		
	Suburban	20.1***	19.6***	44.6***	45.5***	30.2*	33.7**	17.1	17.9		
	Town/ Rural	10.6***	13.7***	47.6***	43.5**	27.7	28.6	10.8***	13.9***		
Sex	Male	20.8	22.6	41.2	41.4	27.7*	30.9	15.7	17.4*		
	Female†	21.2	21.1	41.9	41.2	29.1	28.9	16.2	15.9		
Age (in years)	0-5		22.7		41.9		31.5		17.8		
- · • ·	6-11		22.3		40.7		29.6		16.5		
	12-17†		21.2		41.6		29.8		16.6		
	18-34	22.0*		41.4		29.6*		16.5			
	35 - 64	21.0		41.8		28.3		15.8			
	65 and above†	19.9		41.6		27.8		15.6			

Table 11 (Detailed). Disparities in weighted mean annual pollutant concentrations by various demographic characteristics in CHIS 2003 children and adults with current asthma using bivariate analysis^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

†Reference Group

*p < 0.05, **p < 0.01, ***p < 0.001

Table 12. Disparities in traffic and distance to roadways by various demographic characteristics in CHIS 2003 children and adults with current asthma using bivariate analysis^a

	· ·			T		1		1		
		Within	Traffic Density 750-ft Buffer 'day/meter ²) ^b	State Hi			e Highway 00 m ^b	Major Road < 50 m ^b		
		Adult	Child	Adult	Child	Adult	Child	Adult	Child	
Demographics		mean	mean	%	%	%	%	%	%	
Household	0 - 199 % FPL	66.6	84.6***	7.0	9.5*	9.2	16.4**	26.4***	24.7*	
Federal Poverty	200 - 399 % FPL	68.6	70.2*	5.2	3.3	11.0	12.8	23.7 *	20.7	
Level (FPL)	≥400% FPL†	64.1	52.7	4.3	2.6	9.8	6.3	17.5	15.3	
Race/Ethnicity	Latino	67.0	93.6***	6.3	€	7.5	18.1*	24.2	19.9	
2	American Indian /									
	Alaska Native	58.6	93.0	€	€	€	€	27.1	€	
	Asian / Pacific Islander /									
	Other	88.9	54.3	€	€	12.2	€	19.5	17.3	
	African American	76.6*	89.8**	€	€	13.6	€	22.8	26.0	
	White [†]	60.2	53.2	4.7	4.1	9.8	8.5	21.3	19.8	
Urban/Rural	Urban†	80.6	84.6	4.4	4.7	10.9	11.3	22.9	27.1	
	2nd City	59.4***	57.4**	4.5	4.8	8.9	9.0	22.5	14.2**	
	Suburban	59.5**	68.8	4.1	2.8	10.3	18.0	17.3	18.1	
	Town/Rural	40.6***	46.4***	13.3***	14.1	6.9*	10.8	24.0	15.6*	
Sex	Male	65.3	68.3	3.3**	5.3	9.0	12.1	23.0	18.6	
	Female [†]	66.4	72.7	6.5	5.4	10.4	12.0	21.2	23.3	
Age	0-5		74.1		6.9		13.4		15.5	
	6-11		73.1		6.9		14.9		22.4	
	12-17†		65.7		3.3		8.9		21.5	
	18-34	64.4		7.2		8.9		22.4		
	35 - 64	65.8		4.2		10.0		22.6		
	65 and above†	69.1		6.7		11.3		18.1		

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included.

^bBased on imputed Tele Atlas data or Tele Atlas Dynamap 2000 roadway map.

+Reference Group

€ Unstable values (CV > 30%)

* p < 0.05, ** p < 0.01, *** p < 0.001

	1.85		€		E'L9		13.1		6.65	† svods bns 2∂	
	*5.25		8.61		***4.84		*7.81		2.85	t9 - SE	
	\$***.02		6.61		***2.2E		6.61		Ľ67	18-34	
1.91		-		L'SE		8.2		53.4		12-17 +	
*6'8		45.9		1.85		***L'97		***[.[4		11-9	
		51.2		L'LE		***E`77		***2.25		5-0	əgA
12.8	<i>L</i> .IE	43.4	14°.7	38.5	8.84	0.01	8.71	5.25	41.8	Female †	
6.01	*1.62	₹ <i>1</i> .2	*6.01	6.25	45.4	L.EL	* 8.61	9.9£	***6`52	Male	xəS
15.6	*£.25	*2.62	*9'6	*L ⁻ LZ	5:74	***L [`] 6	15.2	8.9£	0.8£	Town and Rural	
6.8	1.82	6.93	13.2	8.25	1.94	54.2	5.91	s.re	5.95	Suburban	
15.4	2.15	1.64	*6.11	S.TE	9.12	9.61	6.2I	£'9E	34.8	Second City	
10.4	L°.L7	1.24	9.21	9.65	8.24	55.0	0.71	0.25	2.55	Urban †	Urban/Rural
9.11	L.2E	45°.1	8.8	2.15	48.0	8.81	17.7	6°.LE	9.25	† əiidW	
-	30.2	48.8	**⁄.6I	9 [.] LE	**7 [.] 65	*5.25	£.91	7.44.2	34'3	African American	
0.77		0122	/10.7	2170	0171	-	0107	010.0	010.0		
15.8	*2.2*	0°SE	* <i>L</i> '91	32.5	41.0	€	0.81	8.9£	8.9£	\ Other	
										render / Racific Islander	
€	34.0	€	€	€	2.92	€	€	0.85	4.74	Alaska Vative	
										American Indian /	
2.11	\$75.2**	54.1	***6.12	**7.24	5.44.5	5.52	***8.85	*8.62	9.25	Latino	Race/ethnicity
0.6	52.2	33.2	8.11	<i>L</i> .82	L.E4	14°.7	15.6	40.4	6.25	=\top_tom_tom_tom_tom_tom_tom_tom_tom_tom_tom	Level (FPL)
15.9	*0.1£	*21.74	6.61	34.4	7.94	\$3.0*	15.8	1.76	9.25	200 - 399 % FPL	Federal Poverty
15.9	***0.25	***£'tS	14.6	***L`Sヤ	***8.62	se [.] 4**	54.1 ***	¥I.2E	***£.04	7d县 % 661 - 0	plodsuoH
%	%	%	%	%	%	%	%	%	%		Demographics
Children	stlubA	Children	stlubA	Children	stlubA	Children	stlubA	Children	stlubA		
smot	duuƙs	scpool _c	of work/	noites	oibəM	sti si ⁷	ED A	Attack ^b	s mdtsA		
kiy asthma	Daily/weel	syab 2≤	bəsziM	sthma	A ylisΩ						
L				1				1		sisyiene ateite	vid gnisu emdtse

Table 13. Disparities in weighted prevalence of asthma outcomes by various demographic characteristics in CHIS 2003 children and adults with current asthma using bivariate analysis^a

³For CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only those who lived in

the same home or neighborhood for at least 9 months were included.

Respondents ever diagnosed with asthma who lived in the same home or neighborhood for at least 9 months were included.

^cData not collected for teen respondents

+Reference Group

€ Unstable values (CV > 30%)

100.0 > q*** ,10.0 > q** ,20.0 > q*

			As	thma Attack	b				ED V	ïsit for Asth	ma		Daily Asthma Medication						
		Non-	Crude		Adj.			Non-	Crude		Adj.			Non-	Crude		Adj.		
Pollutant	Cases	Cases	OR	95% C.I.	OR ^d	95% C.I.	Cases	Cases	OR	95% C.I.	OR ^d	95% C.I.	Cases	Cases	OR	95% C.I.	OR ^d	95% C.I.	
Adults																			
O ₃ (per 10 ppb)	965	1582	1.20	[1.06, 1.36]	1.20	[1.05, 1.36]	245	1372	1.14	[0.93, 1.41]	1.19	[0.96, 1.47]	815	802	1.21	[1.03, 1.41]	1.22	[1.04, 1.43]	
PM_{10} (per 10 µg/m ³)	770	1272	1.07	[0.94, 1.21]	1.04	[0.92, 1.18]	212	1092	1.29	[1.09, 1.52]	1.20	[1.00, 1.43]	659	645	1.10	[0.95, 1.28]	1.12	[0.96, 1.30]	
$PM_{2.5}$ (per 5 µg/m ³)	592	974	1.09	[0.95, 1.27]	1.07	[0.93, 1.24]	160	830	1.36	[1.09, 1.71]	1.22	[0.96, 1.56]	494	496	1.19	[1.00, 1.42]	1.26	[1.05, 1.52]	
NO ₂ (per 10 ppb)	782	1313	1.01	[0.87, 1.18]	0.99	[0.84, 1.15]	200	1115	1.33	[1.06, 1.69]	1.18	[0.92, 1.50]	667	648	1.01	[0.85, 1.21]	1.08	[0.90, 1.30]	
Children																			
O ₃ (per 10 ppb)	315	515	0.91	[0.72, 1.14]	0.88	[0.69, 1.12]	120	417	0.86	[0.61, 1.20]	0.80	[0.55, 1.17]	192	345	0.87	[0.65, 1.15]	0.88	[0.66, 1.17]	
PM_{10} (per 10 µg/m ³)	245	430	0.97	[0.79, 1.19]	0.97	[0.77, 1.22]	97	339	1.13	[0.89, 1.43]	1.00	[0.74, 1.34]	154	282	1.04	[0.81, 1.33]	0.97	[0.75, 1.26]	
$PM_{2.5}$ (per 5 µg/m ³)	196	318	0.99	[0.76, 1.28]	0.96	[0.74, 1.26]	73	262	1.19	[0.84, 1.68]	1.01	[0.69, 1.49]	132	203	1.29	[0.94, 1.78]	1.20	[0.87, 1.65]	
NO ₂ (per 10 ppb)	282	430	0.93	[0.72, 1.19]	0.97	[0.74, 1.27]	113	356	1.23	[0.86, 1.75]	1.17	[0.81, 1.69]	171	298	1.46	[1.07, 2.00]	1.36	[0.99, 1.87]	

Table 14 (Detailed). Associations (OR (95% CI)) for 12-month pollutant averages and respiratory outcomes in CHIS 2003 adults and children with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included

^bRespondents ever diagnosed with asthma who lived within 5 miles of an air monitoring station and in the same home or neighborhood for at least 9 months were included.

^CData not collected for teen respondents.

^dAdjusted for age, race, poverty level, and sex.

Table 14 (Detailed). Associations (OR (95% CI)) for 12-month pollutant averages and respiratory outcomes in CHIS 2003 adults and children with current asthma^a (continued)

	Mi	ssed ≥ 2	School/	Work Days	Due to	Asthma ^c	Daily/Weekly Asthma Symptoms								
		Non-	Crude		Adj.			Non-	Crude		Adj.				
Pollutant	Cases	Cases	OR	95% C.I.	OR ^d	95% C.I.	Cases	Cases	OR	95% C.I.	OR ^d	95% C.I.			
Adults															
O ₃ (per 10 ppb)	176	1208	1.09	[0.88, 1.37]	1.15	[0.91, 1.46]	504	1113	1.06	[0.90, 1.25]	1.03	[0.87, 1.22]			
PM_{10} (per 10 µg/m ³)	142	977	1.36	[1.08, 1.72]	1.28	[1.00, 1.65]	415	889	1.00	[0.86, 1.17]	1.03	[0.89, 1.20]			
$PM_{2.5} (per 5 \mu g/m^3)$	118	743	1.34	[1.03, 1.74]	1.23	[0.94, 1.60]	316	674	1.07	[0.89, 1.28]	1.15	[0.96, 1.39]			
NO ₂ (per 10 ppb)	147	985	1.41	[1.07, 1.86]	1.24	[0.93, 1.65]	410	905	0.96	[0.80, 1.16]	1.03	[0.85, 1.25]			
Children															
O ₃ (per 10 ppb)	152	184	1.22	[0.87, 1.71]	1.18	[0.83, 1.68]	60	477	0.84	[0.51, 1.37]	0.77	[0.48, 1.21]			
PM_{10} (per 10 µg/m ³)	121	139	1.16	[0.83, 1.62]	1.07	[0.77, 1.49]	50	386	0.93	[0.67, 1.29]	0.89	[0.63, 1.25]			
$PM_{2.5}$ (per 5 µg/m ³)	96	109	1.25	[0.88, 1.79]	1.17	[0.80, 1.70]	44	291	1.45	[0.91, 2.30]	1.32	[0.85, 2.05]			
NO ₂ (per 10 ppb)	132	166	1.40	[0.98, 1.98]	1.35	[0.94, 1.96]	51	418	1.17	[0.73, 1.87]	1.13	[0.72, 1.75]			

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?";

only respondents who lived within 5 miles of an air monitoring station and lived in the same neighborhood for at least 9 months were included

^bRespondents ever diagnosed with asthma who lived within 5 miles of an air monitoring station and in the same home or neighborhood for at least 9 months were included.

^cData not collected for teen respondents.

^dAdjusted for age, race, poverty level, and sex.

			Asth	ma Atta	ack ^b		ED visit	for ast	hma	Da	aily Astł	edication	Mis	sed ≥2 s due t	work days ma ^c	Daily/weekly asthma symptoms					
			Non-	opd	0.504 .01		Non-	opd	0504 G.L	<i></i>	Non-	opd	0.504 .017		Non-	opd	0.5% (3.1		Non-	opd	05% 01
Excee	edances in days	Cases	Cases	OR ^d	95% C.I.	Cases	Cases	OR ^d	95% C.I.	Cases	Cases	OR ^d	95% C.I.	Cases	Cases	OR ^d	95% C.I.	Cases	Cases	OR ^d	95% C.I.
Adults																					
O ₃ 1-	-Hr (State) - Ref: < 0.8 days																				
	0.8 days - < 8.7 days	271	470	1.11	[0.82, 1.51]	67	400		[0.64, 1.89]		245	0.86	[0.59, 1.25]	53	354	1.26	[0.67, 2.35]	128	339	0.56	[0.38, 0.82]
	8.7 days - < 36.7 days	257	413	1.35	[0.98, 1.84]	63	370		[0.75, 2.16]	-	217	1.17	[0.80, 1.70]	45	325	1.65	[0.89, 3.06]	134	299	0.80	[0.54, 1.19]
	\geq 36.7 days	256	376	1.40	[1.03, 1.91]	76	318	1.91	[1.14, 3.18]	217	177	1.52	[1.03, 2.24]	52	281	1.59	[0.87, 2.92]	135	259	0.96	[0.65, 1.42]
O ₃ 8-	Hr (State) - Ref: < 1.9 days																				
	1.9 days - < 14.3 days	260	425	1.19	[0.89, 1.61]	56	383	0.79	[0.46, 1.36]	212	227	0.90	[0.63, 1.31]	43	338	0.88	[0.47, 1.64]	122	317	0.55	[0.38, 0.81]
	14.3 days - <51.2 days	222	392	1.19	[0.87, 1.62]	57	325	1.07	[0.64, 1.78]	195	187	1.18	[0.81, 1.71]	47	282	1.30	[0.73, 2.31]	120	262	0.79	[0.54, 1.17]
	\geq 51.2 days	285	402	1.44	[1.07, 1.94]	82	355	1.42	[0.88, 2.28]	238	199	1.50	[1.04, 2.18]	50	319	1.24	[0.70, 2.20]	145	292	0.87	[0.59, 1.27]
PM_{10}	(State) - Ref: < 1.6 days																				
	1.6 days - < 3.5 days	193	300	1.29	[0.92, 1.80]	49	276	1.50	[0.86, 2.60]	160	165	0.83	[0.56, 1.23]	32	245	1.02	[0.52, 2.00]	97	228	0.71	[0.47, 1.09]
	3.5 days - < 6.6 days	140	230	1.25	[0.86, 1.79]	43	189	1.58	[0.89, 2.79]	106	126	0.93	[0.62, 1.39]	27	181	1.74	[0.89, 3.40]	70	162	1.03	[0.66, 1.61]
	\geq 6.6 days	223	347	1.19	[0.86, 1.66]	74	289	1.77	[1.05, 2.97]	197	166	1.16	[0.79, 1.72]	50	262	1.70	[0.91, 3.18]	118	245	0.95	[0.63, 1.43]
PM _{2.4}	5 (Federal) - Ref: 4.8 days																				
	4.8 days - < 12.0 days	105	201	0.75	[0.50, 1.12]	24	169	0.88	[0.43, 1.78]	103	90	1.11	[0.70, 1.79]	11	147	0.31	[0.12, 0.80]	61	132	1.20	[0.73, 1.97]
	12.0 days - < 23.9 days	205	294	1.08	[0.75, 1.55]	58	268	1.22	[0.67, 2.22]	155	171	0.95	[0.61, 1.46]	40	248	0.90	[0.46, 1.75]	96	230	1.02	[0.66, 1.59]
	\geq 23.9 days	133	222	1.06	[0.72, 1.56]	46	168	2.01	[1.10, 3.68]	114	100	1.49	[0.92, 2.39]	37	148	1.69	[0.85, 3.35]	76	138	1.66	[1.02, 2.68]
Children																					
O3 1-	-Hr (State) - Ref: < 0.8 days																				
	0.8 days - < 8.7 days	89	150	0.64	[0.33, 1.25]	40	116	1.85	[0.74, 4.61]	55	101	0.62	[0.31, 1.26]	47	50	2.73	[1.09, 6.84]	14	142	0.87	[0.31, 2.44]
	8.7 days - < 36.7 days	90	143	0.68	[0.35, 1.34]	35	112	1.48	[0.56, 3.88]	49	98	0.70	[0.34, 1.43]	40	50	1.98	[0.78, 5.02]	19	128	0.68	[0.25, 1.86]
	\geq 36.7 days	80	143	0.73	[0.37, 1.43]	30	113	1.09	[0.41, 2.90]	55	88	0.87	[0.43, 1.78]	45	50	3.00	[1.20, 7.51]	15	128	0.65	[0.23, 1.79]
O3 8-	Hr (State) - Ref: < 1.9 days																				
	1.9 days - < 14.3 days	84	134	0.95	[0.53, 1.69]	33	118	0.76	[0.36, 1.60]	57	94	0.86	[0.44, 1.70]	42	48	1.97	[0.85, 4.59]	14	137	0.48	[0.18, 1.32]
	14.3 days - <51.2 days	76	134	0.56	[0.31, 1.02]	27	103	0.67	[0.30, 1.49]	46	84	0.83	[0.40, 1.71]	40	43	1.97	[0.81, 4.81]	15	115	0.45	[0.17, 1.25]
	\geq 51.2 days	87	152	0.86	[0.48, 1.54]	34	116	0.66	[0.30, 1.47]	54	96	0.93	[0.48, 1.80]	43	54	1.89	[0.81, 4.43]	19	131	0.63	[0.25, 1.57]
PM_{10}	(State) - Ref: < 1.6 days																				
-10	1.6 days - < 3.5 days	53	108	0.68	[0.36, 1.31]	18	86	1.12	[0.44, 2.85]	38	66	1.01	[0.49, 2.11]	28	35	1.10	[0.42, 2.89]	9	95	1.50	[0.56, 4.06]
	3.5 days - < 6.6 days	50	85	0.77	[0.41, 1.46]	22	66		[0.72, 4.07]		56	0.96	[0.45, 2.05]	23	30	1.13	[0.43, 3.00]	10	78	1.01	[0.36, 2.79]
	\geq 6.6 days	79	140	0.79	[0.43, 1.46]	35	99		[0.44, 2.64]	-	83	0.82	[0.41, 1.66]	43	39	1.61	[0.64, 4.03]	19	115	1.41	[0.55, 3.61]
PM ₂	5 (Federal) - Ref: 4.8 days								,,								[,]				[,]
2	4.8 days - < 12.0 days	31	51	1.01	[0.45, 2.29]	12	39	0.46	[0.14,1.54]	16	35	0.72	[0.27, 1.92]	14	19	0.53	[0.16, 1.78]	2	49	0.49	[0.09, 2.62]
	12.0 days - < 23.9 days	63	99	0.97	[0.48, 1.93]	12	81		[0.30, 2.05]	49	51	2.09	[0.93, 4.68]	24	37	0.35	[0.17, 1.17]	16	84	1.68	[0.58, 4.86]
	\geq 23.9 days	55	82	0.94	[0.47, 1.89]	25	70		[0.38, 2.23]		57	1.35	[0.61, 2.99]	28	31	0.45	[0.32, 2.08]	14	81	1.11	[0.41, 2.97]

Table 15. Associations (OR (95% CI)) between air pollution exceedance days and asthma outcomes in CHIS 2003 adults and children with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included. The categories represent the distribution of days over the exceedance measured across quartiles.

^bRespondents ever diagnosed with asthma who lived within 5 miles of an air monitoring station and in the same home or neighborhood for at least 9 months were included.

^cData not collected for teen respondents.

^dAdjusted for age, race, poverty level, and sex.

		Asthm	na Atta	ack ^b	ED Visit for Asthma				Daily Asthma Medication				Misso	ed ≥2 Sc Due to	Work Days 1ma ^c	Daily/Weekly Asthma Symptoms				
Exposure	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.
Adults															<u> </u>				<u> </u>	
Tele Atlas Traffic < 750ft Continuous	1,733	2,858	1.03	[0.97,1.09]	438	2,502	1.08	[0.97,1.21]	1455	1,485	1.02	[0.95,1.09]	294	2,205	1.05	[0.95,1.16]	929	2,011	1.00	[0.93,1.07]
Tele Atlas Traffic < 750ft (25th < 50th percentile) ^{e,f}	437	736	1.05	[0.84, 1.33]	91	640	0.89	[0.59, 1.36]	352	379	0.92	[0.69, 1.22]	70	547	1.19	[0.74, 1.92]	227	504	1.05	[0.78, 1.42]
Tele Atlas Traffic < 750ft (50th < 75th percentile) ^{e,f} Tele Atlas Traffic < 750ft	433	686	1.08	[0.86, 1.37]	120	618	1.48	[1.02, 2.16]	359	379	0.98	[0.74, 1.31]	77	549	1.24	[0.77, 1.98]	238	500	1.06	[0.79, 1.43]
(≥75th percentile) ^{e,f}	408	653	1.07	[0.84, 1.35]	111	571	1.05	[0.70, 1.58]	350	332	0.89	[0.66, 1.19]	71	510	0.91	[0.58, 1.45]	219	463	0.99	[0.74, 1.34]
State Highway < 300 m ^f	83	132	0.82	[0.55, 1.23]	25	109	0.77	[0.42, 1.41]	73	61	0.91	[0.55, 1.52]	12	102	0.73	[0.32, 1.66]	96	185	1.16	[0.80, 1.68]
Interstate Highway < 300 m ^f	172	248	1.06	[0.79, 1.43]	54	227	1.51	[0.91, 2.48]	159	122	1.34	[0.95, 1.90]	30	209	1.10	[0.64, 1.91]	195	425	0.89	[0.67, 1.17]
Major Road $< 50 \text{ m}^{\text{f}}$	369	563	1.10	[0.90, 1.35]	97	523	1.02	[0.69, 1.50]	308	312	0.96	[0.75, 1.24]	57	486	0.66	[0.44, 0.99]	832	1,830	0.82	[0.55, 1.24]
Children Tele Atlas Traffic < 750ft Continuous	589	990	1.03	[0.93,1.14]	203	815	0.98	[0.88,1.09]	372	646	1.04	[0.94,1.16]	258	347	1.08	[0.94,1.24]	112	906	0.93	[0.76,1.15]
Tele Atlas Traffic < 750ft (25th < 50th percentile) ^{e,f}	159	273	0.95	[0.62, 1.45]	59	202	0.97	[0.50,1.87]	104	157	1.17	[0.69, 1.97]	72	94	1.37	[0.72, 2.60]	34	227	0.93	[0.42, 2.04]
Tele Atlas Traffic < 750ft (50th < 75th percentile) ^{e,f}	140	246	0.91	[0.60, 1.40]	46	200	0.93	[0.48,1.81]	93	153	1.58	[0.94, 2.66]	60	80	1.23	[0.63, 2.43]	22	224	0.94	[0.42, 2.12]
Tele Atlas Traffic < 750ft (≥75th percentile) ^{e,f}	130	208	0.92	[0.59, 1.44]	51	175	0.92	[0.49,1.73]	88	138	1.43	[0.83, 2.47]	71	77	1.59	[0.84, 3.02]	24	202	0.93	[0.38, 2.30]
State Highway < 300 m ^f	26	45		[0.36, 1.60]	9	36	0.73	[0.19, 2.74]	16	29	0.45	[0.17, 1.22]	11	17	0.80	[0.27, 2.34]	No cases			s
Interstate Highway < 300 m ^f	63	88	1.18	[0.67, 2.07]	25	77	1.13	[0.54, 2.37]	39	63	0.79	[0.42, 1.50]	28	39	1.23	[0.60, 2.52]	9	93	0.87	[0.32, 2.37]
Major Road $< 50 \text{ m}^{\text{f}}$	100	190	0.98	[0.67, 1.42]	34	150	0.95	[0.55, 1.62]	68	116	1.24	[0.78, 1.97]	50	57	1.34	[0.77, 2.33]	15	169	0.73	[0.33, 1.61]

Table 16. Associations (OR (95% CI)) for traffic density/distance to roadway and asthma outcomes in CHIS 2003 adults and children with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bRespondents ever diagnosed with asthma who lived within 5 miles of an air monitoring station and in the same home or neighborhood for at least 9 months were included.

^cData not collected for teen respondents.

^dAdjusted for age, race, poverty level, and sex ^eReference: < 25th percentile; Units: vehicles per meter/day/meter²

^fBased on imputed Tele Atlas data or Tele Atlas Dynamap 2000 roadway map.

				O3 (pe	er 10 p	pb)							PM ₁₀ (p	oer 10 j	µg/m ³)					I	$PM_{2.5}$ (per 5 p	ug/m ³)		
	M	odel 1 ^t	ь	М	odel 2 ⁱ	ь	N	1odel 3	3 ^b	М	odel 1 ¹	ь	М	odel 2 ^t	•	N	Iodel 3	ь	М	lodel 1	l _P	N	Aodel	2 ^b	N	Aodel	3 ^b
		5, 1372			5, 1365			40, 133			2, 1092			2, 1085			9, 1058			50, 830			60, 82			57, 80	
Vulnerability Characteristic	OR		, C.I.	OR		C.I.		95%		OR	95%		OR	95%		OR	95%		OR		" 6 C.I.	OR		5) 5 C.I.	OR		6 C.I.
		-	_	-			_	-						-								1	1		1		
12-Month Pollutant Average ^d	1.19	0.96	1.47	1.18	0.95	1.47	1.15	0.91	1.45	1.20	1.00	1.43	1.18	0.99	1.42	1.25	1.03	1.51	1.22	0.96	1.56	1.21	0.95	1.54	1.20	0.92	1.56
Age (Ref. ≥65)																											
18 - 34	1.09		1.93				2.05		4.20	1.00		1.88	1.44		2.90		0.88	4.16	0.94							0.57	
35 - 64	1.91	1.15	3.20	2.26	1.30	3.94	2.33	1.29	4.19	1.76	0.99	3.13	2.19	1.20	4.00	2.29	1.19	4.41	1.64	0.86	3.15	2.20	1.13	4.26	1.88	0.94	3.76
Race (Ref. White)	1.04	1.04	0.00	1.74	0.07	0.00	1.40	0.52	0.00	1.10	0.54	0.71	1.20	0.67	0.50		0.50	0.00	1.02	0.00	0.51	1.05	0.00	0.07	1.00	0.71	0.67
African American	1.86	1.04	3.32	1.76	0.97	3.20	1.40	0.73	2.68	1.42	0.74	2.71	1.30	0.67	2.53	1.16	0.58	2.29	1.92	0.99	3.71	1.95	0.98	3.87	1.38	0.71	2.67
American Indian / Alaska Native	1.51	0.42	5.29	1.46	0.42	516	0.96	0.20	3.16	1.36	0.29	4.93	1.27	0.22	4.88	0.83	0.24	2.91	0.97	0.16	5.05	0.80	0.14	E E 0	0.50	0.10	2.24
Asian / Pacific Islander /	1.51	0.45	3.29	1.40	0.42	5.10	0.90	0.29	5.10	1.50	0.38	4.95	1.27	0.55	4.00	0.85	0.24	2.91	0.97	0.10	5.95	0.89	0.14	5.58	0.39	0.10	5.54
other	1.26	0.71	2.26	1.38	0.77	2.47	1.41	0.79	2.51	0.80	0.42	1.54	0.84	0.44	1.59	0.90	0.45	1.79	0.96	0.47	1.96	1.09	0.52	2.22	0.02	0.46	1.94
Latino	2.03		3.23	2.08				1.32		2.42		4.00	2.46		4.12		1.37	4.22	2.03							1.09	
	2.05	1.27	5.25	2.08	1.50	3.35	2.23	1.32	3.78	2.42	1.40	4.00	2.40	1.47	4.12	2.40	1.57	4.22	2.03	1.10	3.49	2.36	1.55	4.22	2.05	1.09	5.66
Poverty (Ref. ≥400% FPL) ^e	1.02	1.00	2.07	1.02	1.02	2.57	1.00	1.10	2.05	2.02	1.07	2.20	1.70	1.00	2.80	1.05	1.10	2.21	1.04	1.1.1	2.02	1.61	0.00	2.54	1.64	0.02	2.00
0 - 199% FPL 200 - 399% FPL	1.93		2.97	1.62				1.12	2.95	2.02		3.20	1.72	1.06		1.95	1.15	3.31	1.84		3.03					0.93	
200 - 399% FPL Sex	1.14	0.69	1.89	1.07	0.64	1.80	1.11	0.68	1.83	1.34	0.79	2.27	1.31	0.76	2.25	1.37	0.79	2.39	1.09	0.57	2.06	1.09	0.58	2.05	0.98	0.51	1.90
Female vs. Male	1.45	0.07	2.18	1.46	0.07	2.21	1.37	0.80	2.10	1.28	0.83	1.07	1.23	0.80	1.88	1.25	0.80	1.96	1.45	0.80	2 37	1.50	0.01	2.45	1.51	0.89	2.55
Currently Insured	1.45	0.97	2.10	1.40	0.97	2.21	1.37	0.89	2.10	1.20	0.85	1.97	1.23	0.80	1.88	1.25	0.80	1.90	1.45	0.89	2.37	1.50	0.91	2.45	1.51	0.89	2.55
Yes vs No				0.95	0.57	1.57							1.06	0.60	1.89							1.31	0.68	2.52			
Obese				0.75	0.57	1.57							1.00	0.00	1.07							1.51	0.00	2.52			
No vs Yes				0.80	0.55	1.15							0.70	0.47	1.03							0.83	0.53	1.30			
Heart Disease				0.00	0.55	1.15							0.70	0.17	1.05							0.05	0.55	1.50			
Yes vs No				1.69	1.01	2.84							2.07	1.22	3.52							2.12	1.20	3.73			
Smoker																											
Ever vs Never				1.26	0.87	1.81							0.94	0.64	1.38							1.47	0.93	2.32			
Work Status																											
Employed vs. Unemployed				0.81	0.54	1.21							0.76	0.50	1.17							0.67	0.41	1.11			
Urban/Rural (Ref. Town/ Rural)																											
Urban							0.84	0.41	1.70							0.72	0.36	1.46							0.84	0.20	3.53
Second City							0.98	0.49	1.96							0.72	0.36	1.41							1.06	0.27	4.19
Suburban							0.83	0.39	1.74							0.62	0.29	1.32							0.71	0.16	3.11
Usual Source of Care																											
Yes vs No							0.95	0.50	1.79							0.98	0.48	1.99							0.72	0.33	1.56
Delay in Care																											
Yes vs No							1.30	0.85	1.99							1.32	0.83	2.12							0.94	0.54	1.64
Onset of Asthma																											
Adult vs Child							1.65	1.08	2.54							1.50	0.94	2.39							1.28	0.78	2.09
Daily Asthma Medication							0.05	0.05	0.55							0.00	0.00	0.45							0.07	0.1=	0.47
No vs Yes							0.35	0.23	0.52							0.30	0.20	0.47							0.29	0.17	0.49
Asthma Management Plan No vs Yes							0.52	0.36	0.76							0.56	0.37	0.84							0.62	0.40	1.00
No vs Yes Household Smoking							0.52	0.36	0.76							0.56	0.37	0.84							0.63	0.40	1.00
No vs Yes							0.85	0.46	1.55							1.28	0.66	2.46							1.10	0.54	2 27
Dog or Cat in Home							0.85	0.40	1.55							1.28	0.00	2.40							1.10	0.54	2.21
No vs Yes							1.01	0.67	1.50							1.01	0.66	1.57							1.18	0.72	1.93
Cockroaches							1.51	0.07	1.50							1.01	0.00	1.57								0.72	
Yes vs No							0.89	0.50	1.60							0.99	0.53	1.85							0.90	0.47	1.73
Housing Type (Ref. House)							5.05	5.50	1.00							0.77	0.00	1.05							0.50	0.17	1
Duplex or Apartment							0.77	0.37	1.61							0.94	0.46	1.96							0.82	0.30	2.24
Mobile Home							0.58	0.28	1.19							0.80	0.41	1.59								0.23	
Household Crowding																											
No vs Yes							1.16	0.68	2.00							1.11	0.60	2.04							1.20	0.63	2.27
Diabetes (Ref. Pre-Diabetes/																											
Yes							1.72	0.18	16.51							1.32	0.14	12.48							0.81	0.08	8.32
No							0.87	0.10								0.63	0.07	5.61							0.45	0.05	4.19
Walking																											
Yes vs No							0.75	0.51	1.11							0.87	0.57	1.34							0.99	0.61	1.61

Table 17 (Detailed). Associations between ED visits and pollutants (O₃, PM₁₀, and PM_{2.5}) adjusting for vulnerability characteristics among CHIS adults with current asthma^a

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bOnly variables with listed values are included for each model.

^c(Cases, Non-cases)

^dRefers to the criteria pollutant noted in the column heading.

^eFPL = Federal Poverty Level

Table 18 (Detailed). Associations between daily asthma medication and pollutants (O₃, PM₁₀, and PM₂₀, adjusting for vulnerability characteristics among

⁶emdtse tnerrus dtiw stlube 2IHD

			82.0	08.0								17.0								ON SA SƏX
																				lk uku
		2.11	80.0	14.0							6.83	£0.0	0.21							oN
		1.63	90.0	25.0							28.0	20.05	0.20							səY
																				rderline Diabetes)
																				betes (Ref. Pre-Diabetes/
		84.1	22.0	88.0							20.1	6.43	<i>L</i> 9'0							səy su on
																				guibword blodeng
		2.25	07.0	1.26								<i>L</i> 9 [.] 0								amoH alidoM
		2.65	87.0	1.43							2.34	07.0	82.1							Duplex or Apartment
		10:0	CC'0	+0.0							00:0	000	000							View Constant (Sef. House)
		28.0	25.0	150							88.0	88.0	850							Kes vs No
		10.1	70.0	67.0							61.1	/0.0	69.0							SƏZ SA ON
		101	250	220							011	290	08.0							g or Cat in Home
		77'I	/#0	9/10							16.1	±C.0	1 8.0							sət sv on
			200	200							101	120	100							gnislom2 blodsau
		09.0	25.0	0.44							19.0	55.0	97.0							səy sv on
																				thma Management Plan
		62.I	68.0	21.15							84.1	68.0	11.1							Adult vs Child
																				set of Asthma
		<i>L</i> 6 [.] 0	74.0	89.0							20.1	22.0	92.0							oN sv soy
																				lay in Care
		3.28	1.05	£8.1							28.5	25.1	2.28							oN sv soy
																				ual Source of Care
																				Suburban
																				Second City
		85.1	570	62.0							09.1	950	\$6.0							Urban (Ref. Town/Rural)
98.0 95.0 82.0					1.12	<i>\$\$</i> .0	87.0							1.02	<i>\$\$</i> .0	57.0				Employed vs. Unemployed
																				sutatus
1.47 1.04 2.06					<i>TT.</i> 1	70.97	15.1							38.1	70.1	14.1				Ever vs Never
																				oker
1.73 1.05 2.84					16.2	1.12	18.1							69.2	91.1	<i>TT.</i> 1				oN sv soy
																				art Disease
11 .00 0.70 0.1					24.1	17.0	10.1							12.1	\$9.0	68.0				səy sv on
11.6 11.1 00.1					CC:7	00:0	741							0017	70.1	001				oN sv ssy
11.5 11.1 98.1					586	98.0	211							88 6	201	951				Mently Insured
SCI 5/10 /01 10	C.I. C.O. 00.I	16.1	/9.0	±6'0	CC.1	17.0	86.0	06.1	60.0	6.0	/ †/ . I	78.0	60.1	841	1 8.0	11.1	84.I	CO.U	71.1	Female vs. Male
	31 320 901	101	230	100	301	120	800	021	020	30.0	211	28.0	001	01 1	180		011	380	011	
75.1 32.0 78.0 08	E.I 22.0 28.0	8E.I	79.0	56.0	8E.I	6.63	76.0	25.1	79.0	76.0	9E.I	89.0	96.0	9E.I	89.0	96.0	9E.I	89.0	96.0	200 - 399% FPL
																				0-166% EPL
																				verty (Ref. ≥400% FPL)°
67.1 87.0 6/.0 90	0.1 04.0 20.0	17.7	08.0	EE.1	06'I	7/.0	/1'T	89.1	99.0	90.1	6£.1	85.0	06.0	9E.I	65.0	06.0	07.1	<i>tS</i> .0	18.0	Latino
																				other
		01 1	0, 0	200	0	21.0	100			020						200	001	5.0		Asian / Pacific Islander /
00.8 72.0 28.1 62	2.8 22.0 28.1	66.E	20.1	74.2	LL [.] 9	<i>L</i> 6 [.] 0	95.2	79 .9	26.0	2.46	4.24	47.0	77.1	4.66	<i>LL</i> .0	<u>68.1</u>	5L.4	47.0	88.1	American Indian / Alaska Native
75.5 00.1 /8.1 +4	8'7 76'0 70'1	+-0.C	77'I	01.2	14.6	CL.I	86.1	61.6	/0'T	CØ.1	16.2	76'0	76.1	677	\$6.0	+C.1	17.7	76'0	67.1	African American
201 201 10		100	CC 1	210		211	301	512	201	20 1	130	200	031	500	200	131	110	200	011	ce (Ref. White)
64.1 22.0 10.0 88	8.0 95.0 92.0	44.0	75.0	05.0	£1.1	97.0	77.0	6/:0	95.0	55.0	74:0	55.0	15.0	21.1	25.0	9/:0	87.0	65.0	55.0	32 - 64
																				18 - 34
																				e (Ref. ≥65)
72. 1.30 1.07 1.57	1.26 1.05 1.5	24.1	1.04	1.23	1.30	96'0	1.12	1.30	96'0	1.12	84.1	20.1	1.24	1.46	20.1	1.23	1.43	40.1	1.22	Month Pollutant Average ^d
																				Inerability Characteristic
	^d LlabolW	9	⁴ £ [abo]						^d r Iabo	//N	9	e tabol	∩N.					^d t labe	-1/1	
	4 4 4 4 7	V = 0 $V = 0$	1033 1101 1101 101 1101 101 1103 101 1103 101 1104 101 1105 1020 1106 1020 1108 1123 1109 1123 1131 1123 1132 1142 1138 1142 1138 1142 1138 1142 1131 1100 1132 1142 1133 1102 1134 111 1135 111 1131 111 1132 111 1133 111 1134 1142 1135 111 1131 111 1132 111 1133 1142 1133 1142 1134 1143 1133 111 1134 1143 1142 <	033 083 073 083 073 083 0743 175 0735 070 0743 175 0743 175 0743 175 0743 175 0743 175 0743 173 0743 173 0744 173 0745 173 0746 173 0747 174 1743 174 1743 174 174 174 174 174 174 174 174 174 175 174 175 174 175 174 176 174 176 174 176 174 176 174 176 174 176 174 176 174 176 174	0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 0.34 & 0.33 & 0.81 \\ 0.74 & 0.33 & 0.82 \\ 0.74 & 0.33 & 0.82 \\ 0.74 & 0.33 & 0.82 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.32 & 0.60 \\ 0.74 & 0.73 & 0.72 \\ 0.75 & 0.75 & 0.76 \\ 0.75 & 0.75 & 0.76 \\ 0.75 & 0.75 & 0.76 \\ 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.75 & 0.75 $	024 033 034 34	6.24 6.23 7.23 <			0388 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.23 0.24 <	0-36 0-36 0-32 <	0 0	0.26 0.26 0.26 0.26 0.27 <t< td=""><td>6.366.366.366.377.37</td><td> <br< td=""><td>111<t< td=""><td> </td><td>1 1<!--</td--></td></t<></td></br<></br></td></t<>	6.366.366.366.377.37	 	111 <t< td=""><td> </td><td>1 1<!--</td--></td></t<>	 	1 1 </td

⁻For CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma

only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

Only variables with listed values are included for each model.

.(Cases, Non-cases) Refers to the criteria pollutant noted in the column heading.

Refers to the criteria pollutant noted in the column heading.

^eFPL = Federal Poverty Level

Table 19 (Detailed). Associations between missing 2 or more days of work pollutants (O₃, PM₁₀, and PM_{2.5}) adjusting for vulnerability characteristics among CHIS adults with current asthma^a

				O3 (p	er 10 p	pb)							PM ₁₀ (per 10	µg/m ²	3)					F	$M_{2.5}$	(per 5 j	ug/m ³)			
	М	odel 1 ^t	,	М	odel 2	ь	N	Aodel 3	3 ^b	М	odel 1	ь	М	odel 2	ь	N	Iodel 3	b	M	Iodel 1	b	N	Model	2 ^b	N	4odel	3 ^b
	(17)	5, 1208)°	07	6, 1208	0°	a	75, 118	5)°		12, 977		(14	12, 977)°	0.	41, 957)°		18, 743		0	118, 74	3)°	a	18, 72	7)°
Vulnerability Characteristic	OR	95%		OR		C.I.	OR	95%		OR	95%		OR		, C.I.	OR	95%		OR		, C.I.	OR		C.I.	OR		5 C.I.
		1						0.88				1.65	-					1.63					0.94				
12-Month Pollutant Average ^d Age (Ref. ≥65)	1.15	0.91	1.46	1.15	0.91	1.44	1.15	0.88	1.44	1.28	1.00	1.65	1.30	1.01	1.68	1.25	0.96	1.65	1.23	0.94	1.60	1.23	0.94	1.60	1.24	0.93	1.66
18 - 34	-	-	-	-				-	-						-	-	-	-		-		-		-			
35 - 64	-	1					-			-	1			1			-		-				1	1			
Race (Ref. White)	-					-	-			-			-				-		-								
African American	3.79	2.02	7.13	3.61	1.92	6 79	3.81	1.82	7.99	3.60	1.73	7.47	3.45	1.69	7.05	3.25	1.43	7.42	4.69	2.24	9.81	4.45	2.11	9.41	5 50	2 35	12.89
American Indian / Alaska	5.17	2.02	7.15	5.01	1.92	0.75	5.01	1.02	1.55	5.00	1.75	7.47	5.45	1.05	7.05	5.25	1.45	7.42	4.07	2.24	2.01	4.45	2.11	2.41	5.50	2.35	12.07
Native	1.73	0.51	5.85	1.62	0.46	5 79	1.86	0.52	6.71	1.83	0.55	6.08	1.67	0.45	6.16	1.93	0.57	6.52	1.13	0.18	7 28	1.01	0.15	6.86	1 34	0.21	8 53
Asian / Pacific Islander /	1.75	0.51	5.65	1.02	0.10	5.75	1.00	0.02	0.71	1.05	0.00	0.00	1.07	0.15	0.10	1.55	0.57	0.02	1.1.5	0.10	7.20	1.01	0.15	0.00	1.01	0.21	0.55
other	2.06	1.07	3.97	1.98	1.01	3.87	2.18	1.11	4.30	1.15	0.49	2.68	1.05	0.46	2.42	1.14	0.47	2.78	1.74	0.82	3.70	1 69	0.78	3 64	1.92	0.91	4.05
Latino	3.42		5.68				3.86		6.64	3.60		6.47	3.51		6.36			7.18	3.28				1.76				
Poverty (Ref. $\geq 400\%$ FPL) ^e	5.12	2.00	5.00	5.50	1.77	5.15	5.00	2.20	0.01	5.00	2.00	0.17	5.51	1.21	0.50	5.02	2.05	7.10	5.20	1.70	0.10	5.51	1.70	0.20		2.12	0.55
	0.57	0.24	0.93	0.59	0.24	1.04	0.45	0.24	0.87	0.58	0.22	1.02	0.07	0.26	1.02	0.54	0.27	1.08	0.37	0.21	0.07	0.20	0.21	0.74	0.26	0.16	0.70
0 - 199% FPL 200 - 399% FPL													0.67		1.23												
200 - 399% FPL Sex	1.13	0.67	1.89	1.16	0.69	1.96	1.25	0.75	2.10	1.30	0.73	2.32	1.47	0.82	2.63	1.53	0.85	2.76	0.92	0.50	1.70	1.00	0.53	1.90	1.17	0.64	2.15
Female vs. Male	2.26	1.39	3.68	2.14	1.31	3.51	2.05	1.24	3.40	2.14	1.25	3.65	1.99	1.16	3.40	2.13	1.20	3.80	2.23	1.24	4.03	2.11	1.15	3.88	2.18	1.18	4.03
Currently Insured																											
Yes vs No				1.28	0.70	2.35							1.70	0.83	3.50							1.55	0.70	3.45			
Obese																											
No vs Yes				0.82	0.53	1.27							0.91	0.56	1.49							0.81	0.47	1.39			
Heart Disease																											
Yes vs No				0.82	0.40	1.69							0.78	0.34	1.78							0.92	0.41	2.06			
Smoker																											
Ever vs Never				0.76	0.49	1.20							0.64	0.39	1.05							0.81	0.47	1.40			
Urban/Rural (Ref. Town/Rural)																											
Urban								0.28								0.50	0.19									0.05	
Second City								0.24								0.48	0.18										1.33
Suburban							0.59	0.22	1.57							0.52	0.17	1.58							0.21	0.04	1.17
Usual Source of Care																											
Yes vs No							1.54	0.71	3.34							2.05	0.76	5.53							1.76	0.72	4.33
Delay in Care																											
Yes vs No							0.89	0.56	1.41							0.71	0.41	1.22							0.47	0.25	0.89
Onset of Asthma																											
Adult vs Child							0.77	0.48	1.22							0.75	0.45	1.25							0.72	0.43	1.20
Daily Asthma Medication																											
No vs Yes							0.44	0.28	0.69							0.44	0.26	0.74							0.49	0.28	0.86
Asthma Management Plan								0.70								0.00										0.70	
No vs Yes							0.76	0.50	1.15							0.89	0.56	1.43							0.97	0.59	1.59
Household Smoking							0.40	0.05	0.04							0.55	0.06	1.15							0.50	0.00	1.10
No vs Yes							0.48	0.25	0.94							0.55	0.26	1.15							0.50	0.23	1.10
Dog or Cat in Home							0.97	0.59	1.00							1.10	0.69	2.06							0.00	0.38	1.02
No vs Yes							0.97	0.59	1.60							1.19	0.69	2.06							0.69	0.38	1.23
Cockroaches Yes vs No							2.10	1.16	2 70							1.46	0.76	2.82							1.46	0.73	2.01
Housing Type (Ref. House)							2.10	1.10	5.79							1.40	0.76	2.62							1.40	0.75	2.91
Duplex or Apartment							0.49	0.19	1.25							0.77	0.23	2.62							164	0.37	7.20
Mobile Home								0.19	1.25							0.65		2.03								0.37	
Household Crowding							0.43	0.18	1.14							0.05	0.21	2.08							1.20	0.29	5.59
No vs Yes							0.96	0.52	1.76							0.98	0.49	1.96							1.05	0.53	2.09
							0.90	0.52	1.70							0.98	0.49	1.90							1.05	0.55	2.09
Diabetes (Ref. Pre-Diabetes/ Borderline Diabetes)																											
									-							1.02	0.00	16.36							0.99	0.05	12.12
Yes No							-	-	-							1.58		21.85									13.04
Walking							-	-	-							1.58	0.11	21.85							1.13	0.10	13.04
Yes vs No							1.00	0.68	1.70							1.10	0.69	2.00								0.60	0.05

^aFor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?";

only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bOnly variables with listed values are included for each model.

^c(Cases, Non-cases) Refers to the criteria pollutant noted in the column heading.

^dRefers to the criteria pollutant noted in the column heading.

^eFPL = Federal Poverty Level

⁶6md<u>tas tn</u>9mu Table 20 (Detailed). Associations between daily asthma medication and PM2.5 adjusting for vulnerability characteristics among CHIS 2003 children with

nom 21 si	noivər	d əqt ı	ri Abet	te emr	ttse ne	s gnith	is repo	e bəniì	3, current asthma is def	For CHIS 200
5.26	<i>L</i> S .0	£1.1							səY sv oN	
									guibwor	o plodosuoH
16.711	1.20	88.11							amoH alidoM	
24.101	† 6.0	<i>SL</i> .6							Duplex or Apartment	
									e (Ref. Mobile Home)	qvi gnizuoH
<i>ST.</i> 0	61.0	85.0							sə¥ sv oN	
									agement plan	Asthma man
t⁄0 [.] 9	\$9.0	66.I							oN sv ssY	
										Delay in care
05.1	† 0.0	6.23							Suburban	
3.12	11.0	62.0							Second City	
2.38	80.0	<i>4</i> 4.0							Urban	
									(IsruA bns nwoT .19A)	Rural/urban
			09.2	0.24	6Ľ0				oN sv soY	
										Currently ins
			2.15	84.0	10.1				səY sv oN	
										Cockroaches
			66.I	65.0	£0.1				səY sv oN	
										ni tso to goU
			2.30	12.0	07.0				səY sv oN	
									gnixlom	s plodəsuoH
69.1	12.0	26.0	97.I	22.0	96.0	27.I	22.0	96.0	Female vs. Male	
										xəS
09 [.] L	99°I	3.56	78.Z	1.40	98.2	41.8	94.I	3.00	700 - 366% ЕБГ	
6E'L	1.40	12.6	95.2	1.14	12.51	5.72	1.22	7.64	0-166% EbF	
									: ≥⊄00% EbГ) _q	Ρονεπy (Ref
3.00	<i>T</i> ट .0	15.1	3.26	89.0	64.I	01.E	99.0	1.43	Latino	
5.29	25.0	98.0	09.2	9£.0	<i>L</i> 6.0	2.46	45.0	26.0	Islander / Other	
									Asian / Pacific	
97.9	11.0	4.0 ± 100	28.8	41.0	11.1	44.8	21.0	11.1	əvits Native	
									American Indian /	
17.2	040	£0.1	70.E	0.43	21.1	26.2	97.0	91.1	African American	
										Race (Ref. W
3.12	<i>4</i> 7.0	12.1	60.2	22.0	70.1	7.07	95.0	70.1	12 - 17	
96.2	97.0	1.04	66.I	040	68.0	66.I	040	68.0	95	
0/17	660	07.1	1017	10:0	07.1	CO.1	00:0	07.1		oq muon 21 Age (Ref. 6-1
92.1	£6'0	82.1	1.64	L8.0	1.20	1.63	88.0	1.20	llutant average	
% CT		0B	CT.	, ləbo l 2 ləbol	OB		%\$6	OB	y Characteristic	tilideranluV
30	ləbolv	L.) (C	132, 20	(N [)		ləbol	ν.		
		(.	u/Brl							
		<u>َ</u>							<u> </u>	

nths or answering yes to the question, "Do you still have asthma?"; only respondents who lived

For CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the dr within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

(casec-noN ,caseC)^d

^cOnly variables with listed values are included for each model.

^dFPL = Federal Poverty Level

əved Ilite u	ov oG" .n	oitsaup ar	1t ot sev	aninewan	e to suffic	om 21 sug	the previc	t ni Abette	emdtse	ne anitroc	iên se bêr	195. current asthma is defir	For CHIS 20
6.0	12.0	44.0	62.I	18.0	1.02	1.12	L4.0	£7.0		-	-	¥hite†	
LE.E	72.0	\$6 .0	4.33	1.13	12.21	96 [.] E	<i>L</i> 8 [.] 0	98.1				African American	
32.52	<i>L</i> S [.] 0	4.52	5.38	174	1.32	19.2	1.32	7.72				Other	
												Asian / Pacific Islander /	
-	-	-	1.52	L0.0	0.33	5.53	6.23	1.13				Native	
												American Indian / Alaska	
5.45	<i>L</i> S.0	81.1	1.03	85.0	69.0	2.03	0.72	1.20				Latino	
												o) by Race	401) ² ON
									1.34	0.33	99.0	≂⊄00% EbΓ÷	
									1.45	14.0	<i>LL</i> .0	700-366% ЕЫГ	
									₹ <i>1</i> .£	1.22	2.14	기러귀 %661-0	
												y po Household FPL	401) ² ON
CT) %\$6	OK	CT	%\$6	OK	CT	%\$6	OK	CT	%\$6	OK		Interaction
	(nərblid))		(stlubA)			(stlubA)			(norblid))		
smotq	εεκιλ 2λμ	W\yligU	smotq	eekly Syn	W\ylig0	Days	≥2 Work	bəssiM		eti siV QƏ			
							a				~~~~		

Table 24. Interaction between mean NO₂ annual exposure and Federal Poverty Level (FPL) or race/ethnicity on odds ratios (OR (95% CI)) of various asthma ^{a,b}

^bfor CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

"Adjusted for age, race, poverty level, and sex.

†Reference group

Table 25. Interaction between mean PM₁₀ annual exposure and race/ethnicity on odds ratios (OR (95% CI)) of various asthma outcomes in CHIS 2003 children and adults with current asthma^{a,b}

Latino Américan Indian / Alaska	1.33	<i>L</i> 8 [.] 0	5.04	15.0	52.0	£0.1
American Indian / Alaska Native	0.43	0.12	02.1	86.0	67.0	76.I
	0.43	0.12	02.1	86.0	67.0	76'I
Asian / Pacific Islander /	c + .0	71.0	00.1	86.0	67.0	7 6'I
Astan / Pacific Istander / Other	95.0	91.0	08.0	<i>L</i> 0 [.] 7	6.0	4'90
African American	1.40	0.54	£9°£	5.48	68.0	16'9
White	<i>t</i> 7.0	12.0	80.I	07.0	0.41	71.I

"For CHIS 2003, current asthma is defined as reporting an asthma attack in the previous 12 months or answering yes to the question, "Do you still have asthma?"; only

respondents who lived borhood for at least 9 more station and lived in the same home or neighborhood for at least 9 months were included.

^bAdjusted for age, race, poverty level, and sex.

⁺Reference group

					Adults							C	hildren			
						Std		95th						Std		95th
	n	Missing	Min	Max	Mean	Error	Median	Percentile	n	Missing	Min	Max	Mean	Error	Median	Percentile
Pollutant Averages																
O ₃ (ppb)	2044	298	22.9	65.7	41.7	0.25	40.1	55.0	441	52	22.9	63.5	42.0	0.56	39.7	55.7
$PM_{10} (\mu g/m^3)$	1614	285	7.9	82.8	30.1	0.34	29.2	47.7	348	54	12.8	82.8	29.9	0.72	28.9	45.1
$PM_{2.5} (\mu g/m^3)$	1253	862	4.1	26.9	16.5	0.17	17.0	23.4	274	167	6.6	26.2	16.5	0.36	16.9	23.4
NO ₂ (ppb)	1687	616	1.4	36.1	22.0	0.22	21.4	34.9	364	107	5.0	36.0	22.3	0.50	21.3	35.0
Exceedance (in days)																
O ₃ 1-Hr (State)	2,045	290	0.0	131.0	23.6	0.84	10.3	77.3	442	50	0.0	122.0	24.6	1.82	11.3	76.7
O ₃ 8-Hr (Federal)	2,044	298	0.0	130.0	17.7	0.73	4.3	64.5	441	52	0.0	114.0	18.5	1.64	4.6	65.9
O ₃ 8-Hr (State)	2,044	298	0.0	160.0	32.1	1.05	16.7	97.7	441	52	0.0	153.0	33.9	2.40	17.2	99.6
PM ₁₀ (Federal)	1,614	285	0.0	4.0	0.1	0.02	0.0	0.6	348	54	0.0	4.0	0.1	0.04	0.0	0.8
PM ₁₀ (State)	1,614	285	0.0	66.0	8.2	0.44	3.2	26.8	348	54	0.0	64.0	7.9	0.99	3.8	26.2
PM _{2.5} (Federal)	1,253	862	0.0	53.6	16.1	0.45	13.6	45.0	274	167	0.0	53.6	16.6	1.23	11.9	46.1
Traffic Density (VMT/	day/mete	\mathbf{r}^2)														
750 feet buffer ^b	3,624	5	1.0	745.3	65.8	1.81	45.6	216.2	831	2	0.5	637.2	64.1	3.96	43.4	226.1

Table 26. Weighted distributions of annual pollutant averages, exceedance days, and traffic density (within 750 feet) for CHIS 2003 adults and children with asthma-like symptoms^a

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included. ^bBased on imputed Tele Atlas traffic data.

Table 27. Frequencies for distance to roadway measures for CHIS 2003 adults and children with asthma-like symptoms^a

	Adults	$(\geq 18 \text{ years})$	Children	(<18 years)
		%		%
Roadway Measure ^b	n	(Weighted)	n	(Weighted)
<300 m from a State Highway	189	6.1	46	5.3
<300 m from an Interstate Highway	344	10.4	81	10.8
<50 m from a Major Road	717	19.7	150	17.8
<50 m from a Minor Road	3,253	89.8	752	90.7

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived in the same home or neighborhood for at least 9 months, and geocoded by address or nearest cross streets were included ^bBased on Tele Atlas Dynamap 2000 roadway map.

	O ₃ (ppb)	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	2	Traffic Density (750 ft buffer) (VMT/day/meters ²) ^b	Distance to State Highway (meters) ^b	Distance to Interstate (meters) ^b		Distance to Minor Roads (meters) ^b	(State)		(State)	(Federal)		(Federal)
O ₃ (ppb)	1														
PM ₁₀ (μg/m ³)	0.48	1													
$PM_{2.5} (\mu g/m^3)$	0.34	0.74	1												
NO ₂ (ppb)	-0.02	0.50	0.71	1											
Traffic Density (750 ft buffer) (VMT/day/meters ²) ^b	-0.11	0.00	0.00	0.05	1										
Distance to State Highway(meters) ^b	0.20	0.01	-0.08	-0.13	-0.01	1									
Distance to Interstate (meters) ^b	0.22	0.03	-0.09	-0.21	-0.25	0.02	1								
Distance to Major Roads (meters) ^b	0.18	-0.01	-0.09	-0.09	-0.16	-0.05	0.19	1							
Distance to Minor Roads (meters) ^b	0.07	-0.01	0.01	-0.05	-0.01	-0.02	0.17	-0.02	1						
O ₃ 1-Hr (State) (days)	0.82	0.57	0.44	0.21	-0.10	0.22	0.14	0.10	0.08	1					
O3 8-Hr (Federal) (days)	0.83	0.54	0.39	0.09	-0.11	0.21	0.19	0.11	0.08	0.98	1				
O ₃ 8-Hr (State) (days)	0.88	0.55	0.39	0.08	-0.12	0.22	0.23	0.13	0.08	0.95	0.97	1			
PM ₁₀ (Federal) (days)	0.20	0.45	0.08	0.00	-0.02	-0.03	0.11	0.01	-0.02	0.17	0.17	0.16	1		
PM ₁₀ (State) (days)	0.45	0.83	0.48	0.20	-0.04	0.04	0.08	0.00	0.00	0.57	0.57	0.55	0.64	1	
PM _{2.5} (Federal) (days)	0.15	0.46	0.71	0.47	0.04	-0.02	-0.09	-0.10	-0.02	0.17	0.13	0.15	-0.03	0.27	1

Table 28. Correlations between annual average air pollutant concentrations, exceedance measures, distance to roadways and traffic density among CHIS 2003 respondents with asthma-like symptoms^a

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived within 5 miles of an air monitoring station, lived in the same home or neighborhood for at least 9 months, and geocoded by address or nearest cross streets were included. ^bBased on imputed Tele Atlas traffic data or Tele Atlas Dynamap 2000 roadway map.

			Adults			Children	
		n	Pop. N	% (wtd.)	n	Pop. N	% (wtd.)
Sex			-				
Ma	le	1,815	1,201,580	50.5	501	382,240	54.9
Fer	nale	2,314	1,176,605	49.5	450	314,279	45.1
Age (yr)							
0-5		-	-	-	388	286,760	41.2
6-1	1	-	-	-	280	198,531	28.5
12-	17	-	-	-	283	211,229	30.3
18-	34	781	672,761	28.3	-	-	-
35-	64	2,502	1,340,825	56.4	-	-	-
65+	-	846	364,599	15.3	-	-	-
Race/Ethnicity	у						
Lat	ino	615	547,086	23.0	270	238,571	34.3
An	erican Indian/Alaska Native	98	54,492	2.3	14	7,356	1.1
As	ian/Other	346	225,489	9.5	111	102,324	14.7
Afi	rican American	264	160,225	6.7	64	51,602	7.4
Wł	nite	2,806	1,390,893	58.5	492	296,666	42.6
Education ^b							
	5 years old	263	244,568	10.3			
	sh School Education or Less	1,614	1,030,693	43.3	381	297,992	42.8
	llege or Vocational School	1,803	897,931	37.8	447	322,239	46.3
	duate School	449	204,993	8.6	123	76,289	11.0
Work Status							
Em	ployed	2,570	1,587,771	67.5	-	-	-
Un	employed	1,530	764,934	32.5	-	-	-
Federal Pover	ty Level						
0-1	99%	1,420	926,384	39.0	344	295,620	42.4
200)-399%	1,072	587,447	24.7	242	164,372	23.6
≥40	00%	1,637	864,354	36.4	365	236,527	34.0
Insurance Sta	tus						
Un	insured All/Part of the Year	777	582,943	24.5	79	70,052	10.1
Ins	ured All of the Year	3,352	1,795,242	75.5	872	626,468	89.9
Usual Source	of Care						
Yes	5	3,611	1,993,423	83.8	871	622,911	89.4
No		518	384,761	16.2	80	73,608	10.6
Delay in Need	ed Care in Last 12 Months (CHIS 2003)						
Yes		1,060	612,860	25.8	125	85,653	12.3
No		3,069	1,765,325	74.2	826	610,866	87.7
	ctor Visits in the Past Year						
0-1		1,161	759,972	33.8	209	161,582	25.0
2-5		1,633	939,624	41.8	542	388,566	60.0
6+		1,054	550,124	24.5	140	97,062	15.0
Self-reported							
	od/Very Good/Excellent	2,753	1,525,954	64.2	845	602,278	86.5
	or/Fair	1,376	852,231	35.8	106	94,241	13.5
Heart Disease							
Yes		571	268,072	11.3	-	-	-
No		3,558	2,110,113	88.7	-	-	-

Table 30. Characteristics of CHIS 2003 children and adults with asthma-like symptoms^a

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived in the same home or neighborhood for at least 9 months were included. ^bRepresentative of educational attainment level of the adult respondent or adult responding on behalf of the child.

	Apartment, Duplex, or Mobile Home	617,1	8 <i>L</i> Z' <i>LL</i> 8	6.9£	560	2112,580	31.2
	əsnoH	01 <i>L</i> '7	700,002,1	1.68	169	6£6'827	8.89
VT gnieuo	əd						
	oN	els'e	1,818,266	5 [.] 9L	189	L00'LE7	<i>L</i> [.] 79
	səY	955	816,928	2.52	0LZ	515,9213	E.TE
plodesuo	Crowding (CHIS 2003)						
	$3+ \lambda r$	3'†19	0\$7'116'1	4.08	769	431'600	0.28
	1-<3 yr	159	454'615	6 ⁻ LI	305	546,010	8.ZE
	9 nonths-<1 yr	79	41,823	8.1	51	609 ' SI	5.2
nuO ts əmi	boorhoddgisV/2227bbA tnor						
	Town or Rural	L18	356,893	<i>L</i> .EI	651	141,28	17.21
	nburban	Ltrs	367' <i>L</i> 8E	£.91	791	141,262	20.3
	גען כוּנא	9†I'I	962'279	7.92	<i>71</i> 2	174,321	52.0
	Urban	619'1	866'6E0'I	L.E4	328	S6L [•] S6Z	5.24
rban/Rura							
	oN	3,525	128,298,1	L'6L	7 <i>LL</i>	250,286	L'7L
	səY	709	785'397	20.3	641	176,233	52.3
ockroache	s in the Home (CHIS 2003)						
	oN	5,184	698'24£'I	L'95	095	430,423	8.18
	səY	St⁄6'I	916,060,1	43.3	168	960'997	38.2
i ets.Vego	n the Home (CHIS 2003)						
	oN	115,1	727,414	1.15	-	-	-
	səY	57745	1,611,122	6.89	-	-	-
alking for	Transportation or Leisure						
	oN	3,421	E9E'0L6'I	6'78	788	0\$1'279	6.26
	səY	80L	701,822	1.71	L9	0/E'67	I.T
nokers in i							
	Never Smoker	855'I	986'956	L.04	-	-	-
	Current/Previous Smoker	5,542	616,966,1	5.92	-	-	-
stZ gnidom	(flubA) suta						
	929dO\thgiaw19vO	-	-	-	83	996'ES	5.25
	Underweight/Normal	-	-	-	500	121,263	5.4.5
eseM ybo	(nsət) (nsət) (nsət)						
	929dO\thgiaw19vO	565'7	1* 4 86'238	62.5	-	-	-
	Inderweight/Mormal	1'234	<i>L</i> †9'I68	5 [.] LE	-	-	-
eseM ybo	(tlubA) xəbnl						
	Borderline	99	681'6E	L'I	-	-	-
	oN	LI <i>L</i> 'E	5,156,359	L'06	-	-	-
	səY	976	969'781	ĽL	-	-	-
sətədsi							
	oN	181	069 ' 9 <i>L</i>	L'85	-	-	-
	səY	115	768'ES	41.3	-	-	-
ovitesgno	Heart Failure (Adult)						
		u	N.qoq	(.btw) %	u	N .qoq	(.btw) %
			stlubA			Children	

Table 30. Characteristics of CHIS 2003 children and adults with asthma-like symptoms^a (continued)

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma ^diagnosis; only respondents who lived in the same home or neighborhood for at least 9 months were included.

^bRepresentative of educational attainment level of the adult respondent or adult responding on behalf of the child.

104

	†əvoda bna 2∂	8.12		4.14		L'67		£'9I	
	7 9 - 55	55.0		8.14		1.05		16.4	
	18-34	77.2		9.14		30.3		8.81	
	12-17†		1.22.1		45.1		5.62		1.61
	11-9		L.E2		43.2		8.15		9.71
ste (in years)	5-0		<i>L</i> .12		41.3		58.9		0.01
	Female†	55.2	8.22	7.14	41.2	7.0E	30.3	8.81	S.81
X	Male	6.12	22.0	L.14	45°.2	*£`67	5.62	16.2	5.91
	Town/Rural	***0.11	**8.81	***[.84	***L`Lヤ	0.92	9.82	***1.01	***2.6
	Suburban	***8.91	***6'6I	***L'77	***£'57	***0.55	*6.55	* <i>L</i> .71	8.71
	Second City	*** ⊅. 8I	***0.81	***2.44	***5.44	*7.05	6.82	6. <i>č</i> I	**9 . 41
lan/Rural	Trban†	54.7	52.6	8.8£	0.65	7.62	0.62	9.91	8.91
	†∋iidW	5.05	£.91	45.4	43.2	9.82	9.82	L'SI	2.21
	nsoin9mA nsoin1A	\$***5.23	54.0*	***6'8E	40.4	35.8**	0.82	**£.71	15.4
	Other	52.4*	21.3	41.0	44.4	1.82	5.72	1.21	14.6
	Asian / Pacific Islander /								
	American Indian / Alaska	2.91	0.61	41.0	9.14	58.4	9.62	14.3	5.91
ce/ethnicity	Latino	54:3***	54.8***	41.4	9.04	***7.EE	¥9.2£	18.2***	**6.71
	>t00% EbF‡	1.12	20.3	41.3	45.3	5.62	2.82	12 [.] 3	15.4
νεπy Level (FPL)	500 - 366 % ŁЬГ	1.12	***8.02	45.0	6.14	35.4*	5.62	**Þ.ðI	1.91
usehold Federal	0 - 166 % EbГ	\$***5.23	54.1	7.14	45.0	35.4***	6.0£	***\$`LI	*I.71
soindergom		usəm	nsəm	mean	nsəm	mean	nsəm	nsəm	nsəm
		stlubA	Children	silubA	Children	stlubA	Children	stlubA	Children
		NO ₂ annual s	tverage (ppb)	na launna ₅ 0	verage (ppb)	a launna ₀₁ MA	verage (µg/m ³)	a launna _{2.5} MA	n\gy)

Table 31. Disparities in weighted mean annual pollutant concentrations by various demographic characteristics in CHIS 2003 children and adults

within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included. ^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived

[†]Reference Group

£00.0 > q *** ,£0.0 > q ** ,₹0.0 > q*

				Misse	ed ≥ 2		9		
				school/w	ork days			Sought m	edical help
		Whe	eeze ^b	due to w	heezing ^c	≥ 2 wheez	e attacks ^c		ng problem
		Adults	Children	Adults	Children	Adults	Children	Adults	Children
Demographics		%	%	%	%	%	%	%	%
Household	0 - 199 % FPL	13.4***	9.4	17.3	45.2	60.4	54.8	41.9	65.1
Federal Poverty	200 - 399 % FPL	11.7**	9.2	15.4	47.9	63.7	56.3	40.0	66.6
Level (FPL)	≥400% FPL†	9.8	11.2	17.3	44.0	62.7	44.3	41.6	65.1
Race/ethnicity	Latino	9.8***	9.0	24.5***	50.7	51.7***	48.6	46.1*	69.1
	American Indian /								
	Alaska Native	26.4***	€	€	€	74.9	€	36.0	€
	Asian / Pacific Islander								
	/ Other	7.2***	10.6	11.6	29.6*	67.7	75.5***	43.0	56.6
	African American	13.2	10.3	17.6	52.5	62.4	€	49.0*	49.7
	White [†]	13.1	10.4	14.3	45.5	64.8	48.1	38.5	68.2
Urban/Rural	Urban†	11.0	9.9	16.8	43.3	62.2	48.9	43.3	65.6
	Second City	12.2*	9.4	18.9	51.4	61.8	62.2*	41.6	66.9
	Suburban	10.0	10.3	14.4	45.9	63.1	48.2	39.5	68.9
	Town/Rural	14.4***	10.1	16.1	40.9	60.9	47.8	36.5*	56.6
Sex	Male	11.6	10.9*	13.6***	42.7	62.9	51.7	32.8***	65.7
	Female [†]	11.3	8.9	20.3	48.6	61.1	51.8	50.3	65.2
Age	0-5		14.0***		44.8		46.7*		82.8***
	6-11		8.0		46.4		59.1		73.6***
	12-17†		8.4		-		-		34.2
	18-34	10.7		18.3		59.2		35.5***	
	35 - 64	12.0		17.0		63.1		42.7	
	65 and above†	11.1		€		64.0		48.6	

Table 32. Disparities in weighted prevalence of asthma-like symptoms by various demographic characteristics in CHIS 2003 children and adults using bivariate analysis^a

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived in the same home or neighborhood for at least 9 months were included.

^bRespondents without an asthma diagnosis who lived within 5 miles of an air monitoring station and had lived in the same home or neighborhood for at least 9 months were included. Respondents with wheezing symptoms were designated as having asthma-like symptoms.

^cData not collected for teen respondents.

†Reference Group

€ Unstable values (CV > 30%)

*p < 0.05, ** p < 0.01, *** p < 0.001

Table 33 (Detailed). Associations (OR (95% CI)) for 12-month pollutant averages and asthma-like outcomes in CHIS 2003 adults and children with asthma-like symptoms^a

			•		Miss	ed ≥2 Sc	Mool	Missed >2 School/Work Days						Sought Medical Heln	A edica	l Heln
		M	Wheeze ^b			Due to Wheezing ^c	Whee,	zing		≥2 Wheeze Attacks ^c	ze Ati	tacks ^c	, ì	for Breathing Problem	hing P1	roblem
Pollutant	Cases	Non- Cases	OR^d	95% C.I.	Cases	Non- Cases	OR^d	Non- Non- <th< td=""><td>Cases</td><td>Non- Cases</td><td>OR^d</td><td>95% C.I.</td><td>Cases</td><td>Non- Cases</td><td>OR^d</td><td>95% C.I.</td></th<>	Cases	Non- Cases	OR^d	95% C.I.	Cases	Non- Cases	OR^d	95% C.I.
Adults																
O ₃ (per 10 ppb)	2,044	2,044 14,824	—	.09 [1.01, 1.18] 258	258	1,296	0.91	1,296 0.91 [0.74, 1.12] 1,121 657 1.11 [0.94, 1.30] 739 1.06 [0.91, 1.24]	1,121	657	1.11	[0.94, 1.30]	739	1,039	1.06	[0.91, 1.24]
$PM_{10} (per 10 \mu g/m^3) 1,614 11,229$	1,614	11,229	-	[1.01, 1.18]	198	1,027	0.84	1.09 [1.01, 1.18] 198 1,027 0.84 [0.66, 1.06] 912	912	488	1.10	488 1.10 [0.94, 1.29] 577	577	823	1.09	823 1.09 [0.94, 1.27]
PM _{2.5} (per $5 \mu g/m^3$) 1,253 9,331 1	1,253	9,331	1.07	.07 [0.97, 1.17] 162	162	797	0.88	797 0.88 [0.69, 1.12] 691	691	396	1.00	396 1.00 [0.83, 1.19] 462	462	625	1.06	625 1.06 [0.89, 1.26]
NO_2 (per 10 ppb)	1,687	12,534	0.93	[0.86, 1.02]	222	1,061	0.73	$1,687 \ 12,534 \ 0.93 \ [0.86, 1.02] \ 222 \ 1,061 \ 0.73 \ [0.56, 0.96] \ 905$	905	566	1.09	566 1.09 [0.91, 1.30] 622	622	849	0.93	849 0.93 [0.78, 1.11]
Children																
O ₃ (per 10 ppb)	441	4,109	1.09	1.09 [0.92, 1.29]	143	167	0.96	0.96 [0.67, 1.36] 157	157	153	1.29	153 1.29 [0.92, 1.81]	295	146	0.99	146 0.99 [0.72, 1.36]
$PM_{10}(per10\mu g/m^3)$	348	3,102	0.95	348 3,102 0.95 [0.80, 1.13] 112	112	129	0.75	129 0.75 [0.53, 1.07] 113	113	128	1.15	128 1.15 [0.82, 1.60] 223	223	125	0.80	125 0.80 [0.58, 1.10]
$PM_{2.5} (per 5 \mu g/m^3)$	274	2,601	0.97	274 2,601 0.97 [0.80, 1.18] 87	87	107	0.90	107 0.90 [0.59, 1.37] 97	97	76	1.25	97 1.25 [0.86, 1.82] 172 102 1.16 [0.73, 1.83]	172	102	1.16	[0.73, 1.83]
NO_2 (per 10 ppb)	364	3,504	0.94	[0.79, 1.11]	113	146	1.25	364 3,504 0.94 [0.79, 1.11] 113 146 1.25 [0.82, 1.90] 134 125 1.02 [0.69, 1.50] 243 121 1.33 [0.90, 1.98]	134	125	1.02	[0.69, 1.50]	243	121	1.33	[0.90, 1.98]
^a For CHIS 2003, having asthma-like symptoms	na-like s	ymptom	is is de	is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents wh	orting w	heezing	z or wh	histling in the	previo	us 12 m	onths	without an a	sthma (diagnosi	is. only	resnonden.

rho lived b within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bRespondents without an asthma diagnosis who lived within 5 miles of an air monitoring station and had lived in the same home or neighborhood for at least 9 months were included. Respondents with wheezing symptoms were designated as having asthma-like symptoms.

 $^{\rm c}$ Data not collected for teen respondents. $^{\rm d}$ Adjusted for age, race, poverty level, and sex.

	Medical Trug Pro	for Brea	1	scks _c	sttA 929			ոճ _շ օւէ Days	Mloodo Wloodo	Due to	īΜ		_q əzəəq/			
95% C.I.	$\mathbf{O}\mathbf{K}_q$	-noN Cases	Cases	93% CT	OB_q	-noN Cases	Cases	95% C.I.	OB_q	-noN Cases	Cases	95% C.I.	OB_q	-noN Cases	Cases	Exceedances in days
																s I-Hr (State) - Ref. < 0.8 day s
24.1,88.0]	86.0	552	681	[£9.1,87.0]	61.1	<i>L</i> 91	LST	[48.1,20.0]	01.1	908	69	[00.1,07.0]	48.0	268,5	687	symbolic >
20.1,22,0]	74	212	£61	[68.1,26.0]	1.32	691	341	[72.1,84.0]	LLL'O	698	9L	[66'0 '02'0]	558.0	4'512	6 <i>L</i> S	syab 7.36 > - syab 7.8
[0.63, 1.30	06.0	560	181	[98.1, 68.0]	62.1	LSI	784	[0.44, 1.23]	£7.0	334	95	[12.1,28.0]	10.1	LLS'E	LOS	≥ 36.7 days
				_								_				s Vab 9.1 \sim 1.9 Hef. $<$ 1.9 day s $_{\rm 5}$ C
82.1,28]	06.0	552	181	[70.1,18.0]	91.1	L91	549	[29.1,82.0]	<i>L</i> 6 [.] 0	L67	69	[20.1,47.0]	88.0	2 <i>51</i> ,£	614	syab E.41> - syab 9.1
11.1,22.0]	87.0	283	180	[40.2,99,2.04]	1.42	125	115	[04.1,22.0]	98.0	988	9 <i>L</i>	[80.1,77.0]	16.0	4,110	685	s үвb 2.12 > - s үвb £.41
85.1 ,76.0]	96.0	062	204	[78.1,16.0]	05.1	174	320	[42.1,54.0]	£7.0	898	69	[8£.1 ,79.0]	91.1	3,526	295	s yab 2.12 ≤
																2 M ₁₀ (State) - Ref. < 1.6 days
[0.64, 1.43	96.0	202	145	[44, 1,44]	96.0	126	812	[46.1,20.0]	01.1	550	53	[22.1 ,48.0]	10.1	2,850	885	syab 2.6 > - syab 3.1
25.1 , 92.0]	<i>L</i> 8'0	146	III	[76.1,68.0]	70.1	83	LLI	[91.1 , 55.0]	19.0	861	40	[11.1,£7.0]	06.0	504,2	105	s үвb д.д> - s үвb д.б
08.1,08.0]	1.20	543	185	[64.1,28.0]	66.0	146	6 <i>L</i> Z	[60.1 , ££.0]	09.0	125	09	[52.1,40.1]	97.1	5,864	067	s (aay s
																$M_{2.5}$ (Federal) - Ref. < 4.8 days
E7.1 ,20.0]	90.I	134	66	[78.1, 68.0]	£1.1	9L	151	[23.1,14.0]	18.0	<i>L</i> 91	67	[94.1 ,10.0]	2I.I	768,1	852	гурь 0.21 > - гурь 8.4
ET.1 ,ET.0]	1.12	061	142	[42.1,94.0]	8 <i>L</i> .0	132	861	[82.1,85.0]	69.0	523	97	[44.1,50.0]	91.I	668,2	168	syab 9.42 > - syab 0.21
27.1 ,07.0]	60.I	123	114	[97.1,76.0]	60.I	06	LLI	[17.1,04.0]	16.0	194	87	[25.1,28.0]	70.1	5,263	105	≥ 24.9 days
																uə
																3 l-Hr (State) - Ref. < 0.8 days
[0.32, 1.54	02.0	40	74	[01.7,01.1]	6 <i>L</i> .2	LE	07	[70.5,02.0]	1.24	45	32	[47.1,18.0]	61.I	9 5 0'I	114	s yeb $7.8 > $ s yeb 8.0
[0.37, 2.00	98.0	74	84	[6.78, 4.53]	78.1	15	07	[77.5 ,07.0]	29.1	Lt	44	[18.1,28.0]	1.24	191'1	158	syab 7.36 > - syab 7.8
[0.41, 2.10	£6 [.] 0	98	<i>₽L</i>	[11.01, 02.1]	86.E	54	55	[29.2,64.0]	1.14	97	55	[£7.1,88.0]	6I.I	690ʻI	110	≥36.7 days
																3 S-Hr (State) - Ref. < 1.9 days
18.2 ,92.0]	62.1	34	9L	[60.5,02.0]	1.25	45	30	[86.2,2.0]	1.24	68	53	[96.1,26.0]	1.34	810,1	110	гувb €.41> - гувb 9.1
[0.57, 2.80	1.26	LE	6L	[£6.£ , <i>2</i> 7.0]	1 <i>L</i> .1	43	45	[74.2,10.1]	SE.2	43	75	[<i>27.1</i> , <i>58.0</i>]	1.20	011,1	911	2.12 - 2.12 - 2.41 sysb
[0.53, 2.38	1.12	74	6L	[02.4,77.0]	08.1	35	55	[61.2, £4.0]	86.0	05	LE	[10.1,10.0]	1.32	980ʻI	153	s yab 2.12 ≤
																2 M 10 (State) - Ref. < 1.6 days
[0.51, 3.26	82.1	58	09	[0.64, 1.44]	96.0	176	812	[0.56, 4.55]	09.1	82	30	[£8.1,08.0]	12.1	769	88	sybb 2.6 > - sybb 3.1
18.1,72.0]	01.0	54	23	[76.1, 2010]	70.1	83	LLI	[80.£ ,04.0]	01.1	35	15	[81.2,78.0]	86.1	159	LL	syab d.d> - syab c.c
[0:56, 1.71	<i>L</i> 9 [.] 0	54	19	[57.1,4.2.0]	\$9.0	LE	34	[94.1,22.0]	95.0	54	97	[70.1,07.0]	80.1	876	901	s \(color b) ≥ 6.6 day s
																$M_{2.5}$ (Federal) - Ref. < 4.8 day s
[0.41, 4.04	82.1	54	55	[78.1, 68.0]	£1.1	9L	151	[01.1, £1.0]	LE.0	52	15	[\$9.2 ,69.0]	1.62	647	LS	гурь 0.21 > - гурь 8.4
[0.67, 4.57	<i>SL</i> .1	53	55	[0.49, 1.24]	82.0	LEI	861	[70.2 ,02.0]	LL'0	33 58	77 72	[20.1,18.0]	1.26	889 892	99 8L	s 24.9 days - < 24.9 days > 24.9 days

Table 34. Associations (OR (95% CI)) for annual days exceeding air pollution standards and asthma-like outcomes comparing quartiles in CHIS 2003 adults and children with asthma-like symptoms^a

^aFor CHIS 2003, having asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived

within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included. ^bRespondents without an asthma diagnosis who lived within 5 miles of an air monitoring station and had lived in the same home or neighborhood for at least 9 months were

included. Respondents with wheezing symptoms were designated as having asthma-like symptoms.

^cData not collected for teen respondents

^aAdjusted for age, race, poverty level, and sex.

Table35. Associations (OR (95% CI)) for traffic density/distance to roadway and asthma-like outcomes in CHIS 2003 adults and children with asthma-like symptoms^a

		W	/heeze	b	Mis	sed ≥2 S Due to		Work Days ezing ^c		≥2 Whe	eze At	ttacks ^c		Sought 1 for Brea		al Help Problem
Exposure	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.	Cases	Non- Cases	OR ^d	95% C.I.
Adults																
Tele Atlas Traffic <750ft Continuous	3624	26356	0.99	[0.96, 1.02]	444	2312	0.97	[0.90, 1.04]	2027	1146	0.99	[0.93, 1.05]	1310	1863	0.96	[0.90, 1.02]
Tele Atlas Traffic < 750ft (25th < 50th percentile) ^{e,f}	967	6,702	1.07	[0.93, 1.22]	122	623	1.22	[0.83, 1.79]	542	320	0.82	[0.62, 1.09]	358	504	1.23	[0.94, 1.62]
Tele Atlas Traffic < 750ft (50th < 75th percentile) ^{e,f}	880	6,328	1.04		116	562		[0.86, 1.90]	500	260	1.02	[0.76, 1.35]	325	435	1.30	
Tele Atlas Traffic < 750ft (≥75th percentile) ^{e,f}	824	6,194	0.98	[0.85, 1.13]	101	535	0.98	[0.65, 1.49]	447	271	0.91	[0.67, 1.22]	297	421	1.07	[0.80, 1.43]
State Highway < 300 m ^g	189	1,158	1.10	[0.89, 1.37]	19	125	0.64	[0.35, 1.18]	111	52	1.13	[0.70, 1.83]	64	99	1.21	[0.79, 1.84]
Interstate Highway < 300 m ^g	344	2,552	1.00	[0.84, 1.19]	41	224	0.75	[0.46, 1.23]	184	119	0.78	[0.55, 1.11]	112	191	0.77	[0.53, 1.12]
Major Road < 50 m ^g	717	4,923	0.99	[0.88, 1.12]	93	451	1.10	[0.77, 1.57]	404	211	1.16	[0.89, 1.51]	251	364	0.93	[0.72, 1.20]
Children																
Tele Atlas Traffic <750ft Continuous	831	7,463	1.00	[0.93, 1.08]	273	301	1.08	[0.94, 1.25]	284	290	1.13	[1.00, 1.27]	561	270	0.94	[0.80, 1.10]
Tele Atlas Traffic < 750 ft (25th < 50 th percentile) ^{e,f}	205	2,036	0.87	[0.65, 1.15]	64	75	1.07	[0.58, 1.99]	79	60	2.15	[1.10, 4.21]	134	71	1.46	[0.74, 2.90]
Tele Atlas Traffic < 750 ft (50th < 75 th percentile) ^{e,f}	205	1,859	0.71	[0.53, 0.93]	68	76	0.89	[0.48, 1.65]	69	75	1.57	[0.84, 2.96]	139	66	0.80	[0.42, 1.50]
Tele Atlas Traffic < 750ft (≥75th percentile) ^{e,f}	187	1,572	0.92	[0.68, 1.23]	64	66	1.20	[0.63, 2.30]	60	70	1.39	[0.72, 2.71]	130	57	0.91	[0.48, 1.73]
State Highway < 300 m ^g	46	310	1.03	[0.65, 1.63]	12	19	0.59	[0.21, 1.65]	14	17	0.62	[0.24, 1.64]	30	16	0.98	[0.41, 2.31]
Interstate Highway < 300 m ^g	81	700	1.09	[0.76, 1.58]	35	24	1.69	[0.76, 3.76]	34	25	2.55	[1.16, 5.57]	53	28	0.51	[0.23, 1.17]
M ajor Road $< 50 \text{ m}^{\text{g}}$	150	1,263	0.93	[0.70, 1.23]	58	51	1.73	[0.98, 3.07]	52	57	0.89	[0.50, 1.57]	107	43	0.85	[0.49, 1.47]

^aFor CHIS 2003, asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived in the same home or neighborhood for at least 9 months, and geocoded by address or nearest cross streets were included. Measures based on Tele Atlas traffic data.

^bRespondents without an asthma diagnosis who lived within 5 miles of an air monitoring station and had lived in the same home or neighborhood for at least 9 months were included. Respondents with wheezing symptoms were designated as having asthma-like symptoms.

^cData not collected for teen respondents

^dAdjusted for age, race, poverty level, and sex.

^eReference: <25th percentile

^fUnits: vehicle meters traveled/day/meter²

^gBased on imputed Tele Atlas traffic data or Tele Atlas Dynamap 2000 roadway map.

characteristics among CHIS adults with asthma-like symptoms ^a
Table 36 (Detailed). Associations between two or more wheeze attacks and O ₃ adjusting for vulnerability

		ymptoms is dei	- pouij						_		
gnixls	oN sv soy								66.0	47.0	1.35
public	oN								<i>\$L</i> .0	0.22	2.53
	səX								79.0	20.0	5.51
anetes (kei. P	re-Diabetes/ Bo	pordernine							290	210	100
u <i>3-u)</i>	səY sv oN	:!FQ							<u>\$6</u> .0	\$9.0	1.40
vorD blode vor									300	390	011
Ont	smoH slidoM	əu							\$9.0	15.0	86.1
	Duplex or Apa								89.0	75.0	1.46
I) əqvi gnizuc									05 0	000	
	oN sv soy								96.0	99.0	1.40
sekroaches											
	sэХ sv oN								28.0	79.0	1.10
H ni 160 ro go	amo										
	sэХ гч оИ								<i>t</i> \$.0	LE.0	6 <i>L</i> '0
om2 blodsau	guido										
	oN sv soY								85.0	0.43	08.0
elay in Care											
	oN sv soY								1.03	07.0	1.53
to source of	f Care										
	urdanduz								22.1	08.0	10.5
	2nd City								1.40	<i>SL</i> .0	79.2
	ոեփՍ								1.63	88.0	3.02
ban/Rural (Re	uA bns nwoT .te	Rural)									
	Unemployed	р				0.52	LE.O	£7.0			
	sv bəyolqmA	S/									
ork Status											
	Ever vs Never	Vêr				1.43	80.1	88.1			
uoket.											
	oN sv soY					1.28	7 8'0	1.94			
sart Disease											
	sэХ ги оИ					76.0	02.0	1.25			
əsəc											
	oN sv soY					17.0	05.0	1.02			
ansul yinanı	pa										
	eM.ev slemsF	alaM	66.0	9 <i>L</i> '0	1.28	96.0	£Ľ.0	1.26	76.0	17.0	1.23
X											
	TOO - 399% FPI	FPL	76.0	<i>L</i> 9 [.] 0	1.27	78.0	09.0	91.I	98.0	29.0	6I.I
	0-166% EbF	Л	20.1	9 <i>L</i> '0	24.I	28.0	85.0	71.1	86.0	69.0	1.40
verty (Ref. \geq	₹00% EbF)q										
	Latino		95.0	65.0	87.0	<i>LS</i> .0	65.0	28.0	t / 9'0	<i>4</i> 4.0	76.0
	Other		1.02	6.63	59.1	80.1	L9'0	£7.1	70.1	79.0	8 <i>L</i> .1
	Asian / Pacific	ific Islander/					•				
	Native		1.83	£Ľ.0	65.4	00.2	8 <i>L</i> .0	71.č	28.1	7 <i>L</i> .0	6 <i>L</i> .4
		adian / Alaska	00.	020	021	000	020	2.2	201	02 0	021
	African Ameri		76.0	<i>LS</i> .0	1.54	<i>L</i> 6 [.] 0	65.0	29.1	20.1	79.0	LL.I
ice (Ref. Whit		•	100	220	121	200	020	05 1	201	05 0	
	32 - 64		1.22	98.0	1.72	1.63	80.1	5.44	86.0	89.0	14.1
	18 - 34		\$8.0	<i>LS</i> .0	1.27	71.1	7 <i>L</i> .0	88.1	£9'0	070	86.0
ge (Ref. ≥65)			200							0, 0	
	verage (per 10 p	(qdd 0	11.1	7 6'0	1.30	1.12	S 6.0	1.32	1.12	\$ 6.0	15.1
	Jharacteristic		OB		I JU	OB		TO	NOK		CT
				59 '17			59 'ST			702°94 102°94	
								-			
			M	lsbol	4 I p	M	ləbol	շ _թ	N	lsbol	3 _p

asthma diagnosis; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or ne tuontiw shtnom SI е

neighborhood for at least 9 months were included. Only variables with listed values are included for each model.

c(Cases, Controls) ^dFPL = Federal Poverty Level

					O ₃ (per 1) ppb)			
					(157, 15	53) ^b			
		N	Iodel	1 ^c	M	lodel	2^{c}	N	Model	3 ^c
Vulnerability	Characteristic	OR	95%	5 C.I.	OR	95%	6 C.I.	OR	95%	6 C.I.
12-Month Av	erage	1.29	0.90	1.84	1.28	0.89	1.83	1.27	0.86	1.89
Age (Ref. 6-1	l years)									
	< 6 years old	0.66	0.35	1.25	0.69	0.37	1.29	0.65	0.34	1.25
Race (Ref. WI	hite)									
	African American	0.32	0.06	1.69	0.26	0.04	1.60	0.38	0.08	1.81
	American Indian / Alaska									
	Native	0.21	0.03	1.54	0.18	0.03	1.16	0.16	0.02	1.53
	Asian / Pacific Islander / Other	2.07	0.77	5.57	1.84	0.69	4.91	2.55	0.88	7.41
	Latino	0.53	0.25	1.15		0.20	1.07	0.75	0.34	1.65
Poverty (Ref	≥400% FPL) ^d									
	0 - 199% FPL	3.44	1.60	7.38	3.62	1.59	8.23	4.88	2.05	11.63
	200 - 399% FPL	2.42	1.06		2.40	1.06	5.47	2.61	1.10	6.23
Sex			1100	0.00		1100	0117			0.20
	Female vs. Male	0.93	0.52	1.69	0.88	0.49	1.59	0.93	0.49	1.75
Household Si		0.70	0.02	1102	0.00	0.15	1107	0.70	0115	1170
110 40 011014 01	No vs Yes				0.55	0.12	2.47			
Dog or Cat in										
	No vs Yes				1.11	0.56	2.22			
Cockroaches										
	Yes vs No				0.73	0.36	1.47			
Currently Inst										
-	Yes vs No				0.38	0.11	1.26			
Urban/Rural (Ref. Town and Rural)									
	Urban							1.20	0.36	3.95
	2nd City							1.19	0.37	3.83
	Suburban							0.92	0.26	3.19
Delay in Care										
	No vs Yes							0.43	0.15	1.20
Housing type	(Ref. House									
0.11	Duplex or Apartment							0.38	0.04	3.71
	Mobile Home							0.59	0.06	6.23
Household C	rowding									
	No vs Yes							2.32	1.02	5.27

Table 37. Associations between two or more wheeze attacks and vulnerability characteristics by O_3 among CHIS children with asthma-like symptoms^a

^a For CHIS 2003, asthma-like symptoms is defined as reporting wheezing or whistling in the previous 12 months without an asthma diagnosis; only respondents who lived within 5 miles of an air monitoring station and lived in the same home or neighborhood for at least 9 months were included.

^bOnly variables with listed values are included for each model.

^c(Cases, Controls)

^dFPL = Federal Poverty Level

Summary of Findings for CHIS 2003 Respondents with Current Asthma

Demographic/Descriptive

- One-third of adults (32.5%) and more than a third of children (38.4%) with current asthma lived below 200% of the FPL.
- About 40% of adults and more than half of children (56.5%) with current asthma were minorities.

Pollutant Exposure Disparities

Adults

- In general, adult respondents with current asthma living below 200% of the FPL had higher estimates of annual average exposure to NO₂, PM₁₀, and PM_{2.5}, than those living at or above 400% of the FPL.
- Adult respondents in minority populations had higher estimated exposures to several criteria pollutants. Specifically, Latino adults had higher estimated exposures to NO₂, PM₁₀, and PM_{2.5}; African American adults had higher estimated exposures to PM_{2.5}; and Asian/PI/Other adults had higher estimated exposures to NO₂ compared to white respondents. However, they all had lower O₃ exposures than their white counterparts.
- African American Adults were more likely to live in areas with higher traffic density than white adults.

Children

- On average, children with current asthma living between 0-199% of the FPL had a higher estimated mean annual exposure to criteria pollutants (NO₂, PM₁₀, and PM_{2.5}) and were more likely to live in places with greater traffic density or live near highways or major roadways than children living at or above 400% of the FPL.
- Minority children had higher estimated mean annual exposures to several criteria pollutants. Specifically, Latino and African American children had higher estimated mean annual exposures to NO₂ and PM_{2.5}, and Asian/PI/Other children had higher estimated exposure to NO₂.
- Mean traffic density measures were higher for both Latino and African American children than for white children.

Associations of Air Pollution Exposure with Asthma Outcomes

Adults

- We observed increased odds of experiencing an asthma attack in the previous year among adults with lifetime asthma.
- We observed increased odds of ED visits, using daily asthma medication, and missing 2 or more days of work due to asthma with the increase in annual average O₃, PM₁₀, and PM_{2.5} among adults with current asthma.

Children

• We observed increased odds of daily asthma medication use and missing 2 or more days of school/day care with the increase of annual average NO₂.

Associations of Exceedance Days with Asthma Outcomes Adults

- Exceedances of state 1-hr O₃ standards (i.e. over 36.7 days per year) were associated with increased odds for asthma attacks among adults with lifetime asthma, and visiting the ED and using a daily asthma medication among adults with current asthma.
- Exceedances of the state 24-hr PM₁₀ standard (i.e. over 6.6 days per year) were associated with increased odds of asthma ED visits.
- Exceedances of the federal 24-hr PM_{2.5} standard (i.e. over 23.9 days per year) were associated with increased odds of ED visits and daily/weekly asthma symptoms.

Children

• O₃ exceedances (state 1-hr standard) were associated with increased odds of missing 2 or more days of school.

Association of Traffic Measures with Asthma Outcomes

- An interquartile increase in traffic density within 750 feet of respondent's homes was associated with an increase in odds of reporting asthma ED visits in the past year among adults with current asthma.
- Living within 300 m of an interstate highway was associated with a suggested increase in the odds of visiting the ED in the past year, as well as a suggested increase in the odds of needing a daily asthma medication among adults.

Vulnerability Factors

Adults

- Positive associations between pollutants (O₃, PM₁₀, and PM_{2.5}) and asthma outcomes (ED visits, taking a daily asthma medication, or missing 2 or more days of work) persisted after adjusting for potential vulnerability factors.
- In addition to pollutant exposures, several other characteristics were related to increased odds of asthma outcomes: being African American or Latino, living below 200% of the FPL, being a smoker, having heart disease and having adult onset asthma.
- Some characteristics, such as, not having an asthma management plan and using daily asthma medication, decreased odds of ED visits or missing 2 or more days of work. :.

Children

- Positive associations between daily asthma medication and PM_{2.5} persisted after adjusting for potential vulnerability factors.
- Children living below 200% and between 200-399% of the FPL consistently had higher odds of using a daily asthma medication than those living at or above 400% of the FPL.
- Not having an asthma management plan decreased odds of using daily asthma medication.

Interactions

Adults

- For the same level of increase in annual average NO₂, African American and Asian/PI/other adults had greater increases in missing two or more days of work due to asthma compared to white adults.
- African American adults had a greater increase in daily/weekly asthma symptoms for the same level of increase in annual average NO₂.

Children

- For the same level of increase in annual average NO₂, American Indian/Alaska Native and Asian/PI/other children had greater increases in daily/weekly symptoms compared to white children.
- Latino children had a greater increase in using daily asthma medication, and African-American and Asian/PI/other children had a greater increase in experiencing daily/weekly symptoms for the same increase in annual average PM₁₀ as white children.
- Children living below 200% of the FPL had a greater increase in ED visits compared to those living at or above 400% of the FPL for the same increase in annual average NO₂.

Summary of Findings for CHIS 2003 Respondents with Asthma-like Symptoms

Demographic/Descriptive

Adults

- 41.5% of adults with asthma-like symptoms were minorities.
- More than one-third (39.0%) of adults with asthma-like symptoms lived below 200% of the FPL.

Children

- 57.4% of children with asthma-like symptoms were minorities.
- Children with asthma-like symptoms fell below 200% of the FPL 42.4% of the time.

Pollutant Exposure Disparities

Adults

- In comparison to those living at 400% of the FPL or above, adults with asthma-like symptoms living below 200% of the FPL had higher estimated average annual exposure to all criteria pollutants except for O_3 .
- Latino and African American adults had higher estimated average annual exposure to all criteria pollutants except for O₃ than white adults.

Children

- In comparison to those living at 400% of the FPL or above, children with asthma-like symptoms living below 200% of the FPL had higher estimated average annual exposure to NO₂ and PM_{2.5}.
- Latino and African American children had higher annual average concentrations of NO₂ than white children.
- Latino children also had higher annual average concentrations of PM₁₀ and PM_{2.5} than white children.

Associations between Air Pollution Exposure and Asthma-like Symptoms Adults

- Increases in O₃, PM₁₀, and PM_{2.5} annual averages were associated with increased odds of wheeze.
- Increases in O_3 and PM_{10} annual averages appeared to be associated with having 2 or more wheeze attacks.

Children

• Increased annual average O₃ appeared to be associated with increased odds of wheeze and having 2 or more wheeze attacks.