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ABSTRACT 
 
Four hundred fine particulate matter samples from two sites in the Los Angeles Basin were 
analyzed for molecular marker source tracers, and the results were used in three source 
apportionment models to obtain daily, monthly and the annual average source contributions to 
fine particle organic carbon (OC).  Good agreement between the source contribution from mobile 
sources and biomass burning for the chemical mass balance (CMB) model and the positive 
matrix factorization (PMF) models were obtained and provide additional weight of evidence that 
these source apportionment techniques aresufficiently accurate for policy development.  
However, the CMB model did not quantify primary biogenic emissions, which were quantified 
by the PMF model, and were included in other sources with secondary organic carbon (SOC) in 
the CMB model.  The PMF apportionment results demonstrate seasonal patterns in the split 
between SOC and primary organic carbon (POC), which emphasize the biases that can result 
from previous short term intensive studies used to represent the annual average source 
contributions as well as source contributions in other seasons than those examined.  The PMF 
model also provided new insight into the differences in composition and impacts of forest fires 
and high wintertime wood burning events.  PMF and a second multi-variant receptor model 
(UNMIX) were unable to separate source contributions from diesel and gasoline engines. 
However, a new multi-variant receptor model, Interactive Confirmatory Factor Analysis (ICFA) 
was able to separate mobile sources into diesel, gasoline and smoking engines.   
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EXECUTIVE SUMMARY 
Background  
Molecular marker source apportionment models have been applied in the LA Basin in the past, 
but only two such studies have been implemented that address the seasonal trends and annual 
average source contributions to fine particle matter organic carbon (OC) and these studies were 
based on samples collected in 1982 and 1993.  In recent years there has been a number of PM2.5 
source apportionment studies conducted in the LA Basin, but most are based on short-
term,intensive studies that do not provide a good estimate of seasonal trends and averages.  Some 
of these studies have estimated that secondary organic carbon (SOC) contributes up to 75% of 
the organic aerosol, which is inconsistent with earlier annual average estimates.  Additionally, 
two multi-year studies conducted in the LA Basin in the mid-2000s were unable to provide 
reliable estimatesof SOC.   
In the past several years, laboratory and pilot studies have been conducted that raise questions 
about the utility of specific molecular markers and offer new opportunities for molecular marker 
chemical mass balance (CMB) studies.  The current study provides a contemporary assessment 
of OC sources in the LA Basin and provides a unique data set to further evaluate and test 
molecular marker CMB apportionment models.  It further demonstrates the added information 
that can be obtained with a molecular marker PMF model.           
Methods 
As part of this project, daily carbonaceous aerosol measurements were obtained for a full year at 
a site in Central Los Angeles,whichincludes fine particulate matter (PM2.5), elemental and 
organic carbon (ECOC), PM2.5 water-soluble organic carbon (WSOC), PM2.5 water-soluble 
inorganic carbon, PM2.5 water-soluble organic nitrogen (WSON), and 100 particle-phase 
organic compounds often referred to as molecular markers.  Parallel measurements were 
conductedover the same time period every sixth day at a site in Riverside.  The results were used 
to examine seasonal and spatial trends and were used in four receptor models: CMB, Positive 
Matrix Factorization (PMF), UNMIX, and Interactive Confirmatory Factor Analysis (ICFA).   
The comparison of the source apportionment models was focused on the CMB and PMF results.  
ICFA was used in conjunction with UNMIX to assess its ability to provide a split between 
emissions from gasoline and diesel engines.  The entire measurement data set is provided with 
this report to allow other researchers to examine additional trends and utilize the data for new 
and more advanced source apportionment models.   
Results 
Four hundred fine particulate matter samples from two sites in the LA Basin were analyzed for 
molecular marker source tracers, and the results were used in four source apportionment models 
(MM-CMB, MM-PMF, MM-UNMIX, and MM-ICFA) to obtain daily, monthly and annual 
average source contributions to fine particle organic carbon (OC).   
Southern California experiences a number of days with very high OC concentrations that result 
from local biomass burning, forest fires, and secondary organic aerosols.  During the one year 
sampling program, thirteen days had OC concentrations greater than 8.0 µg per cubic meter of 
OC, which equates to approximately14-16 µg per cubic meter of organic compounds with an 
assumed organic  mass to organic compound ratio of 1.75-2.0 [Bae et al., 2006].  Of 
thesethirteen days, eight were determined to be high wood smoke days, three were impacted by 
forest fires, and only two of these days were not associated with forest fires or high wood smoke 
events.  Although forest fires can be considered outside the scope of local air quality regulation, 
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the extreme events due to residential wood burning need to be better tracked and mitigatedin 
Southern California.  These occasional emission events can be challenging for speciation models 
to correctly allocate.   
On an annual average, the MM-CMB and MM-PMF models show good agreement for the 
contribution of mobile sources and biomass smoke to PM2.5 OC of 30% and 10%, respectively.  
However, the remaining 60% of the OC was distributed differently in the two models.  
MM-CMB modeling results show that SOC dominates the remaining OC, while on an annual 
average the MM-PMF model shows 40% of the remaining OC is from SOC and 20% from 
primary biogenic material (e.g. forest fires and food cooking).  It is important to note that the 
primary biogenic source, which peaks in days with large forest fires, is very different from the 
biomass burning source.  The SOC estimates from the MM-PMF model were in good agreement 
with non-biomass burning water soluble organic carbon (WSOC), which has been shown to be a 
robust estimate of SOC.  In addition, the MM-CMB model was able to quantify vegetative 
detritus, which was only a very small component of the primary biogenic source.   
Although the total mobile source contribution is similar between both models, the split between 
gasoline and diesel engine exhaust emissions within the mobile source contribution is important 
to better understand.  A key finding of the DOE Gasoline/Diesel PM Split study 
(http://www.nrel.gov/vehiclesandfuels/nfti/feat_split_study.html) was that the CMB modeling 
split between gasoline and diesel engine exhaust emissions is very sensitive to the input profiles 
used in the CMB model but the total mobile source contribution was reasonably stable.  Similar 
results were seen in the current study and the multi-variant receptor models (MM-CMB and 
MM-PMF) were used to further investigate the drivers of model sensitivity.  In the current study, 
MM-CMB, MM-PMF and two additional receptor models (MM-UNMIX and MM-ICFA) were 
investigated as a means to split the mobile source contributions between gasoline and diesel 
engines.  All showed good agreement for contribution from mobile sources but only MM-ICFA 
was able to differentiate gasoline and diesel emissions.  Although it is not possible to fully 
evaluate the accuracy of the MM-ICFA split between gasoline and diesel emissions at this time, 
the results demonstrate a potential new strategy to understand the relative contributions of 
gasoline and diesel emissions to organic aerosol concentrations.   Previous MM-CMB models 
have differentiated tailpipe emissions from diesel engines, gasoline engines and smoking engines 
with the use of EC, hopanes, steranes and polycyclic aromatic hydrocarbons (PAH) as tracers.  
The current study demonstrated with principal component analysis (PCA) and MM-PMF that 
PAH concentrations in the LA Basin are significantly impacted by biomass burning as well as 
tailpipe emissions.   
The PMF model demonstrates a seasonal trend in SOC concentrations, with its maximum 
contribution to OC in April of about 73% and a minimum in December of approximately 21%.  
The MM-PMF model identified two SOC sources with different seasonal trends.  One of the 
SOC sources, which had more biogenic components, dominated SOC concentrations in winter 
and spring.  The second SOC source, which had more anthropogenic components, was higher in 
the late spring and summer.  In late spring and summer, the anthropogenic SOC constituted 
approximately 51-68% of the total SOC and from December through March, it only contributed 
approximately 17-21% of the total SOC in Central LA.  SOC products of isoprene oxidation 
were much greater in the springtime, which has also been observed in other regions.     
Trends in water-soluble organic nitrogen (WSON) at both sites were compared with trends in 
water-soluble inorganic nitrogen (Nx), OC, WSOC, and source contribution factors derived from 
the MM-PMF model.  WSON typically represented about 20% of the total water-soluble 
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nitrogen (TN) at both sites but a few events were observed in winter months in which WSON 
made up more than 50% of the TN.  While WSON was significantly correlated with Nx across 
nearly all seasons at both sites, correlations between the MM-PMF SOC source contribution 
factors were only significant during summer and winter months, suggesting divergent sources of 
secondary organic nitrogen may contribute to WSON concentrations. 
In summary, the MM-PMF modeling is able to better apportion SOC, and the CMB model is 
biased as it includes primary biogenic emissions with SOA.  The MM-PMF apportionment 
results demonstrate seasonal patterns in the split between SOC and primary OC, which were not 
previously shown because of the short-term intensive nature of previous studies.  The 
resultsdemonstratethe importance of this unique year-long data set.  The MM-PMF model also 
provided new insight into the differences in composition and impacts of forest fires and high 
wintertime wood burning events.  However, all the studied receptor models were unable to 
separate PM source contributions between diesel and gasoline engines.   
Overall this study demonstrates: 1) the importance of year-long data sets toaccurately quantify 
OC emissions and source apportionment, particularly seasonal trends, 2) source apportionment 
techniques are sufficiently accurate for policy development but model results vary substantially 
for some source categories, and 3) the diesel and gasoline exhaust PM2.5 split remains difficult 
to accurately quantify but new models have the potential of improving the split between gasoline 
and diesel emissions. 
 
Conclusion 
The current study provides a comprehensive and updated source apportionment analysis of the 
organic aerosols in the LA Basin.  The study demonstrates that past source apportionment results 
from short,intensive studies are not able to represent the annual average source contributions and 
the seasonal trends.  This study demonstrates the bias of current molecular marker CMB model 
estimates of SOC, which result from the inability of the models to accurately represent primary 
biogenic materials.  The PMF results of the study are able to effectively capture a lumped 
primary biogenic source which includes forest fires.  However, additional research is needed to 
better trace these sources since together they account for approximately20% of the PM2.5 OC in 
the LA Basin.  The three multi-variant models used in the study were unable to separate the 
mobile source contributions to gasoline/diesel subcategories, but the data generated in the study 
provide a unique data set to further test new multi-variant receptor models in the future. 



1 
 

PROJECT REPORT 
 
1. Introduction 
Historically, source apportionment models for atmospheric particulate matter have been directed 
at understanding the sources of particle mass to support regulatory compliance efforts [Kim et 
al., 2010].   The monitoring and modeling efforts of these traditional source apportionment 
models have been optimized to allow sufficient understanding of the key sources of particulate 
matter but are not well suited for understanding the source of specific components of 
atmospheric particulate matter [Christensen and Schauer, 2008].  As health studies are 
demonstrating that carbonaceous particulate matter and specific components of carbonaceous 
particulate matter concentrations in the atmosphere are linked with adverse health outcomes and 
adverse health indicators [Delfino et al., 2010a, 2010b; Janssen et al., 2011], there is a need to 
better understand the sources of organic and elemental carbon in atmospheric particulate matter 
as well as the specific components of particulate matter carbon that have been linked to adverse 
health effects.   

Molecular markers andparticle-phase organic compounds that have specificity for air pollution 
source emissions were originally used for source apportionment in the Los Angeles Basin in the 
1990s [Schauer et al., 2002, 1996].  These original models relied heavily on Chemical Mass 
Balance (CMB) models that require source profiles whichshould be representative of local 
sources.  Since their development, the application of molecular marker CMB models has been 
widely adoptedthroughout the US and in other regions of the world for atmospheric particulate 
matter source apportionment. They have been used in a number of health studies to apportion 
personal exposure to particulate matter [Delfino et al., 2010b; Spira-Cohen et al., 2011] and 
there is a great need to assess the accuracy and identify the limitations of molecular marker usage 
for source apportionment. 

Two concerns about molecular marker CMB models have been raised in the past several years: 
1) the source profiles used in the studies are not representative of local sources, and 2) the 
molecular markers used in the model are not stable enough in the atmosphere to be used as 
tracers.  There have been a number of studies that have partially addressed these 
concerns,including sensitivity analyses [Lough and Schauer, 2007; Rutter et al., 2011; Sheesley 
et al., 2007] and intercomparison studies [Bhave et al., 2007; Docherty et al., 2008].  
Independent laboratory studies suggest some key molecular markers are not sufficiently stable in 
the atmosphere, while field based assessment of molecular marker source apportionment models 
suggests that the models are accurate enough to support health studies and the development of 
control strategies[Robinson et al., 2006a, 2006b, 2006c].  Nonetheless, given the importance of 
carbonaceous aerosols for human health, climate change and compliance with air quality 
standards, there is additional need to evaluate molecular markers and their use in source 
apportionment models.   

An important strategy to evaluate molecular marker source apportionment models and the 
sources and stability of molecular markers is to directly compare molecular marker CMB model 
results with those from a multi-variant receptor model, utilizing the same molecular marker 
dataset.  This allows a comparison of the sources apportionment results as well as a direct 
comparison of the sources of key tracers.  However, to perform such an analysis, a very large 
data set of molecular markers is required.  The first analysis of this nature was conducted in St. 
Louis, MO using data obtained from the US EPA Midwest Supersite [Jaeckels et al., 2007].  In 
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the St. Louis analysis, Positive Matrix Factorization (PMF) was used as the multi-variant source 
receptor model and demonstrated there were a number of local industrial and point sources of 
fine particle organic carbon not captured by the CMB analysis and the source profile for 
resuspended road dust was not representative of local sources.  The point sources adversely 
impacted the source attribution of vegetative detritus, but good agreement between the two 
models was observed for the apportionment of mobile sources and biomass burning.  Given the 
results in the St. Louis Molecular Marker study, there has been great interest in conducting a 
similar study in the Los Angeles Basin to confirm the absence of local and industrial sources of 
organic aerosols, to further study the abilities of molecular marker source apportionment models 
to quantify mobile sources, biomass smoke, secondary organic aerosol, and to distinguish the 
contributions from diesel and gasoline engines.    

In the past decade, there have been a few source apportionment studies conducted in the Los 
Angeles Basin that have been directed at understanding the seasonal and annual average sources 
of fine particulate matter [Kim et al., 2010; SCAQMD, 2008], but neither of these studies 
quantified secondary organic aerosol and therefore provide limited insight into the annual 
average and seasonal trends in organic aerosols.  The current study seeks to advance the use of 
molecular markers for source apportionment and provide a more contemporary assessment of the 
source of fine particulate organic matter in the Los Angeles Basin. 
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2. Materials and Methods 
2.1 Sample Collection 

Integrated 24-hour PM2.5 samples were collected on an every-day schedule at the Universityof 
Southern California (USC) in Central Los Angeles and on a 1-in-6 day schedule at the University 
of California in Riverside (UCR), as a site downwind of the LA Basin, from May 2009 through 
April 2010. PM2.5 samples were collected on pre-baked 90 mm quartz-fiber filters (Pall 
Gellman, Ann Arbor, MI) at each site by a URG-3000B medium volume sampler (URG, Chapel 
Hill, NC) equipped with 92 lpm PM2.5 cyclones. The sites selected for the project have been 
used for a large number of atmospheric aerosol studies in the past.  The Riverside site was 
located at the Air Pollution Research Center (APRC) on the University of California-Riverside 
campus (33°58′18.40′′N, 117°19′21.41′′W), and the Central LA site was located at the Particle 
Instrumentation Unit (PIU) on the campus of the University of Southern California (34° 
1'9.12"N, 118°16'38.41"W).   

Samples were collected from midnight to midnight PST.  Sampler flow rates were controlled by 
needle valves and measured before and after sample collection using a calibrated rotameter.  
After sample collection, samples were shipped in insulated coolers with blue ice to the 
Wisconsin State Laboratory of Hygiene and stored at or below -5° C until analyzed.  Field blanks 
were collected at both sites by loading filters into the samplers and unloading without sample 
collection to account for any contamination associated with filter handling.  The field blanks 
were handled and analyzed in the same manner as the samples to allow for blank corrections for 
all chemical measurements.   

2.2 Chemical Analysis 

All samples and field blanks were analyzed at the Wisconsin State Laboratory of Hygiene for 
organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and organic 
molecular marker compounds by gas chromatography mass spectrometry (GCMS).  Organic 
markers included n-alkanes, cycloalkanes, alkanoic acids, resin acids, aromatic diacids, 
alkanedioic acids, steranes, hopanes, PAHs, oxy-PAHs, phtalalates, and levoglucosan.  In 
addition, samples collected at the Central LA and the Riverside sites on the 1-in-6 schedule were 
analyzed for water-soluble nitrogen (TN) and water-soluble inorganic nitrogen (Nx).  All data 
was blank corrected using the measurements from the field blank samples.  Uncertainties were 
estimated using the standard deviation of field blanks and the analytical uncertainty.  Details of 
these methods are provided below.   

Water insoluble organic carbon (WIOC) was calculated as the difference between OC and 
WSOC.  Water-soluble organic nitrogen was calculated as the difference between TN and water-
soluble inorganic nitrogen, which was estimated as nitrate ion plus ammonium ion.    

2.2.1 Elemental and Organic Carbon (ECOC) 
Samples and field blanks were analyzed for organic carbon (OC) and elemental carbon (EC) 
using the ACE-Asia method [Schauer et al., 2003] and a thermal-optical analyzer (Sunset Labs, 
Tigard, OR).  A 1.5 cm2punch was used for the ECOC analysis.   

2.2.2 Water Soluble Carbon and Water Soluble Organic Nitrogen 
Samples and blanks were analyzed for water-soluble organic carbon (WSOC) and water-soluble 
nitrogen (TN) content by extracting a 1.5 cm2 punch from each filter. Filter punches were placed 
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in acid-washed centrifuge tubes along with purified water and agitated on a shaker table for two 
hours at room temperature. Samples were then filtered through an acid-washed, 0.2 μm 
polypropylene syringe filter and split into 2 aliquots. One aliquot was analyzed for organic 
carbon and total nitrogen using a Shimadzu TOC-5000A total organic carbon analyzer, which 
utilizes a high temperature combustion technique [Wangersky, 1993] coupled with a Shimadzu 
TNM-1 chemiluminescence detector and the second aliquot was analyzed for water soluble ions.   
2.2.3 Water Soluble Ions 
Water-soluble inorganic nitrogenwas measured using a LachatAutoanalyzer (Lachat Instruments, 
Milwaukee, WI). Water-soluble organic nitrogen (WSON) was calculated as the difference 
between total water-soluble nitrogen and inorganic nitrogen (WSON = TN – Nx). 

2.2.4 Molecular Marker Analysis 
Half of each 90mm quartz filter sample and blank filter was placed separately into soxhlet tubes, 
which were attached to 500mL receiving flasks.  Each sample was then spiked with 100µL of 
internal standard: pyrene-D10, benz(a)anthracene-D12, coronene-D12, cholestane-D4, 
pentadecane D32, eicosane-D42, tetracosane-D50, triacontane-D62, dotriacontane-D66, 
hexatriacontane-D74, decanoic acid-D19, tetradecanoic acid-D27, heptadecanoic acid-D33, 
eicosanoic acid-D39, tetracosanoic acid-D59, and decanedioic acid-D16, andplaced in a 250mL 
mixture of 50:50 methylene chloride (DCM)/acetone.  Samples and field blanks were 
individually extracted in batches of ten extractionsalong with a lab blank (a clean quartz fiber 
filter stored in the laboratory) and a spikedsample, which was a blank filter spiked with a known 
amount of matrix standard.  Each batch was extracted for 24 hours with approximately 7 solvent 
cycles per hour.   

After extraction, the samples were rotovapped down to 3-4mL and quantitatively transferred 
with DCM to a 15mL centrifuge tube.  Samples were then blown down under nitrogen to 1-2mL 
and filtered using a syringe filter. Samples were then further blown down to 0.1mL and 
transferred into an appropriately labeled auto-sampler vial.  The final volume for each sample 
was adjusted to 100 µLthen split into two aliquotsfor chemical analysis.  One aliquot was 
silylated before analysis and the remainingaliquot was methylated with 50µL of fresh 
diazomethane derivatization reagent.  

The methylated aliquot was analyzedusing gas chromatography electron impact mass 
spectrometry (GC-EI-MS) using a HP5-MS (30m x .25mm x .25µm) column inside a 6890N GC 
oven attached to a 5973 inert MSD run in scan mode.  The temperature of the inlet and the 
transfer line was held at 300°C.  At injection the oven was held at 65°C for 10 minutes, then 
ramped to 300°C at 10°C/minute (33.5 minutes ramp time) and then held at 300°C for 26.5 
minutes for a run time of one hour.   

Calibration curveswere generated for each batch of samples using six point calibration curves for 
more than 100 organic compounds.  Calibration curves for each compound were calculated by 
normalizing to the appropriate deuterated and carbon-13 labeled reference compounds in the 
internal standard.  Each sample, blank, and spike were then quantified using these calibration 
curves and the final concentrations were reported in nanograms of compound per filter, 
accounting for the fact that only half of the filter was analyzed.   

Levoglucosan and the secondary organic carbon (SOC) tracers were analyzed using the 
unmethylated cut of the extract.  A 25µL aliquot of the sample was transferred into a labeled 
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auto-sampler vial then blown down to dryness with nitrogen.  Twenty-five µLof pyridine 
wereadded followed by 50µL of BSTFA (silylating reagent) to each vial, which was then 
capped.  Samples were baked in a 70°C oven for two hours.  After baking, the samples were 
analyzed using gas chromatography positive chemical ionization mass spectrometry (GC-PCI-
MS)using an HP5-MS (30m x .25mm x .25µm) column inside a 6890N GC oven attached to a 
5973 MSD.  The temperature of the inlet was 310°C and the transfer line was 325°C.  To attain 
the proper reaction inside the MS chamber,ultra-high purity (UHP) methane wasset at 20% of the 
maximum flow for the MSD.  At the time of the injection, the oven was held at 90°C for 1 
minute.  Following this initial hold time, the temperature was ramped up 10°C/minute until 
320°C was reached and was held for a total run time of 34 minutes. 

Levoglucosan was quantified using C-13 labeled levoglucosan and authentic quantification 
standards.  Because authentic standards are not available for SOC tracers, these compounds were 
quantified using ketopinic acid (KPA) as the internal standard and pinonic acid as the 
quantification reference[Kleindienst et al., 2007; Stone et al., 2010].  These concentrations were 
reported in the same manner as the compounds quantified from the methylated aliquot analysis.   

The original extraction methods used for the analysis of molecular markers developed in the 
1990s used a solvent mixture of benzene, hexane and isopropyl alcohol [Schauer et al., 1996].  
Due to changes in high purity benzene manufacturing in the late 1990s, commercial benzene 
with suitable purity was no longer available.  To avoid the need to distil commercial benzene 
before extraction and to migrate to a more volatile solvent to improve recoveries of semi-volatile 
organic compounds, most research groups started using methylene chloride or a solvent mixture 
of methylene chloride and methanol for molecular marker analysis in the early 2000s.  To assure 
better recovery of polar compounds, the University of Wisconsin-Madison examined the use of 
methylene chloride and acetone as the mixed solvent for molecular marker analysis and 
determined this mixture was far superior to the solvents used in the past.  Figure 1ab shows a 
summary of performance measures used to evaluate the DCM and acetone solvent mixture.  
Given the excellent performance of DCM and acetone mixture, this solvent was used for the 
present study.       

Table 1 lists all of the aerosol components measured for thestudy samples along with the average 
concentrations and the standard errorsof the concentrations for the Central Los Angeles sampling 
site.   
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Figure 1ab– Evaluation of the methylene chloride (DCM) and acetone mixed solvent for 
molecular marker analysis: a) spike recoveries for polar and non-polar compounds and b) results 
from an intercomparison study of two different solvents for non-polar compounds 
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2.3 Data Analysis 

A total of 345 samples were collected at the Central LA site and 61 samples at the Riverside site, 
which representsapproximately 95% annual completion at the Central site and 100% completion 
at the Riverside site.  Five additional samples from the Central LA site were deemed invalid after 
review of the sample collection log sheets.  A summary of the samples that were not collected or 
analyzed isprovidedin Table 21. In addition, due to analytical problems, some of the water-
soluble nitrogen samples (collected in May 2009 and some in April of 2010 at the Central LA 
site) were deemed invalid for WSON and excluded from the analysis.A list of extreme events 
that were removed from trend averages are shown in Table 2, as noted in the report.  EC and 
WIOC values that were not statistically different from zero are noted in Table 2 and were 
removed from the analysis that used EC and WIOC data as a denominator in a ratio calculation. 

All measured organic molecular markers along with EC and WSOC at the Central LA site were 
used to investigate the different chemical classes, which share similar source categories by 
applying Principle Component Analysis (PCA).  PCA was conducted using SAS (version 9.2), 
with varimax rotation and the maximum likelihood extraction method.  Significant factors 
defined as factors with eigenvalues greater than 1.0 are presented in Table 3.  Thirteen factors 
account for 86.5% of the variance in the dataset with 22%, 18%, and 14% accounted for by 
factor 1, factor 2, and factor 3, respectively.  The first factor accounted for 22% of the variance 
and appears to represent mobile impacts at the Central LA site due to a high correlation with EC 
and hopanes.  The second factor represents 18% of the data set variance and is significantly 
correlated with levoglucosan and PAHs, indicating biomass burning impacts.  In general, heavy 
PAHs are used as indicators for tailpipe emissions and are used in CMB models to help split 
mobile source emissions into gasoline and diesel vehicles. However, this PCA-deduced factor 
indicates that PAHs concentrations are strongly correlated with levoglucosan emitted by biomass 
smoke, suggesting that the use of PAHs to differentiate gasoline and diesel emissions from 
mobile sources can lead to a biased estimate in cases when heavy PAH are also associated with 
biomass burning.  The third factor accounted for 14% of the data variance and can be represented 
by vegetative detritus and other primary biogenic sources, due to its strong correlation with odd-
numbered alkane (i.e., nonacosane and hentriacontane) and n-alkanoic acids[Rogge et al., 
1993a].  Other minor factors shown in Table 3 can be interpreted based on their correlations with 
key markers species, including a biogenic related SOC that is associated with isoprene derived 
methylthrietols (Factor 11), anα-pinene-derived SOC with pinic and pinonic acids (Factor 7), 
phthalic acid related SOC (Factor 4), and a toluene related SOC (Factor 8).  The PCA analysis 
was largely used as a reference point and consistency check for the source apportionment models 
discussed below.  

2.3.1 Chemical Mass Balance Model 
Sources of the PM2.5 OC were apportioned using the publically available CMB software (EPA 
CMB v8.2) developed by the U.S. Environmental Protection Agency (EPA). The CMB program 
solves for an effective-variance-least-squares solution to the linear combination of the product of 
the source contribution and its concentration [Watson et al., 1984].  Molecular marker species 
employed in this analysis were assumed to be stable during transport from source to receptor and 
were selected based on previous studies.   

The source profiles used in the optimized analysis (as described below) for both sites are as 
follows: US west coast biomass burning [Sheesley et al., 2007]; natural gas combustion [Rogge 
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et al., 1993b]; diesel exhaust [Lough et al., 2007]; gasoline engines [Lough et al., 2007]; 
smoking gasoline vehicles [Lough et al., 2007]; and vegetative detritus [Rogge et al., 1998].  

The natural gas combustion source profile was not statistically significant in any of the CMB 
model runs for Riverside and was only statistically significant in a small fraction of the model 
runs for Central LA.  For this reason, natural gas combustion was not included in the model.  In 
the Central LA model runs, the model was able to include all three mobile source profiles (diesel, 
gasoline and smoking vehicles) with statistical significance.  All three profiles were included in 
the model, but as shown by Lough et al. [2007], the gasoline and diesel splits have significant 
uncertainty and should be viewed as a rough estimate.  Although there is uncertainty of the split 
between gasoline and diesel emissions, the sum of these source contributions, which represent 
mobile sources, is reasonably stable and is not very sensitive to changes in source profiles 
(Lough et al. [2007]).  In the Riverside CMB model, inclusion of all three mobile source profiles 
led to co-linearity problems.  The model was rerun with only diesel engines and smoking 
vehicles, and the result was not statistically different from the co-linearity cluster of the three 
mobile source profiles when all three were included in the model.  As a result, the mobile source 
contributions were estimated from the sum of diesel and smoking vehicle source contributions in 
the model runs that only included these two mobile source profiles, where the smoking vehicle 
source includes the gasoline vehicle emissions. 

2.3.2 Positive Matrix Factorization Model 
PMF [Paatero and Tapper, 1994] is an advanced factor analysis technique based on a weighted 
least-squares fit and error estimates of the measured data. Detailed principles and applications 
have been previously described elsewhere in literature [Heo et al., 2009; Jaeckels et al., 2007]. 
Briefly, PMF is based on the assumption of mass conservation of atmospheric pollutants from 
emission sources to receptor sites.  A mass balance approach is employed to the analysis of 
multivariate pollutant data in which non-negativity constraints on the factor computational 
process can be imposed. Although EPA’s versions of PMFs have been well applied in source 
apportionment studies using organic molecular makers, these versions of PMF still have a very 
limited error model [Hopke, 2010; Paatero and Hopke, 2009]. Thus, the two-way factor analytic 
model PMF2 was used in this study.  

Allocating appropriate uncertainties to the observed data is an important part of the analysis 
because the application of the PMF model depends mainly on the estimated uncertainties. The 
uncertainties for each organic species analyzedwerecalculated by taking the square root of the 
sum of squares of the sample values multiplied by the coefficient of variation for the spike data 
and the maximum of either standard deviation of blanks or analytical detection limit values. 
Values below the methods detection limits (MDLs) were replaced by half of the MDLs, and their 
overall uncertainties were set at 5/6 of the MDLs [Polissar et al., 1998]. Several WSOC data 
points were missing and were replaced by the geometric mean of the measured WSOC as 
observed values, and associated uncertainties were set at four times the geometric mean [Polissar 
et al., 1998].  

The signal-to-noise (SN) ratio was reviewed for the concentration statistics of each chemical 
species to determine if any species had high noise that could potentially distort the model fitting 
[Paatero and Hopke, 2003]. In this study, SN ratio was categorized according to three different 
ranges determined by Jaeckels et al. [2007].  There were no bad or weak species for the current 
data set and no compounds were down-weighted or removed for poor SN. 
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The PMF model was run with different numbers of factors to achieve the best solution.  Different 
pseudorandom numbers were examined for the initial values in the iterative fitting process to 
secure the global optimal PMF solutions. The robust mode was used to reduce the effects of 
extreme values in the analysis and the FPEAK parameter along with FKEY values [Paatero et 
al., 2002] were applied to control the rotational ambiguity. In order to address the mass closure 
issue, the measured OC, EC, and WSOC concentrations were included in the PMF analysis as 
input variables, then the apportioned OC, EC, and WSOC contributions for each source were 
calculated according to its temporal variation. 

2.3.3 UNMIX Model 
UNMIX model is another transformed multivariate receptor model based on the PCA analysis. 
This modeluses a geometric approach of self-modeling curve resolution technique to derive 
meaningful factors that obey (to within error) the non-negative constraints on source composition 
and contributions [Miller et al., 2002]. Uncertainties for each measured chemical species in the 
data are not considered by UNMIX model, which implicitly assumes a certain standard of 
accuracy in the data for a good model fit[Henry, 2003].  

The EPA UNMIX version 6.0 was used to investigate source apportionments of PM2.5 OC and 
to compare source contributions deduced from UNIMX with those of PMF resolved sources. 
Like CMB, the user must select which input fitting species are to be used to generate meaningful 
source profiles and source contribution estimates in the UNMIX model. For this study, UNMIX 
was run with the same observations and molecular markers as those applied in the PMF model. 
Although this approach was needed to directly compare the two model’s results, there were no 
feasible solutions provided from UNMIX. As seen in Table 3, organic molecular markers that 
were considered key markers in source characterization were finally selected and thus provided 
reasonably stable solutions. 

2.3.4 Iterated Confirmatory Factor Analysis 

The third multivariate receptor model applied in the study was Iterative Confirmatory Factor 
Analysis (ICFA).  Algorithm and application of the ICFA have been detailed in a previous 
study [Christensen et al., 2006].  Briefly, if there is knowledge of the source profiles, then the 
ICFA approach can be solved by integrating aspects of CMB analysis by allocating varying 
degrees of constraints for each chemical species in the source profiles.  In contrast, when there 
is little knowledge of source profiles or sources with unknown source profiles present, the 
ICFA method can incorporate aspects of confirmatory factor analysis and exploratory factor 
analysis.  In order to solve the source apportionment matrix problems, ICFA utilizes a 
Bayesian approach that has a low computational burden.  The Bayesian approach can be fit 
using prior distributions on elements of source profiles and contributions to allow both source 
profiles and source contributions to be estimated.  In earlier work, Moussaoui et al. [2004] 
applied a Bayesian method with independent Gamma distributions for both source profiles and 
contributions, and independent and identically normal distribution for error term in order to 
produce non-negative source profiles and contributions.  More recently, Lingwall et al. [2008] 
investigated a Bayesian method using the Dirichlet distribution as a prior distribution on 
source profiles with Markov chain Monte Carlo methods (MCMC) and identified greater 
flexibility of this method in specifying the error structure within the profile.  In this study, a 
Bayesian method is applied to identify source contributions to the PM2.5 OC at the Central 
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LA site, with the Dirichlet distributions using MCMC on elements of source profiles from 
CMB model and PMF model. 

2.3.5 Potential Source Contribution Function 

In order to help interpret and validate the PMF resolved factor contributions and to help identify 
the source regions of these factor contributions, backward trajectories of air parcels can be 
ensemble with daily source contributions for each factor to map the source regions for each 
factor.  A relatively simple trajectory analysis, named the Potential Source Contribution Function 
(PSCF), has been used in the past with PMF model results to further investigate and assess PMF 
results[Kim et al., 2005; Lee and Hopke, 2006; Zhao and Hopke, 2006].  In the present study,the 
PSCF model was applied and evaluated to identify the potential source regions for each of the 
PMF-resolved OC source factors. Due to the limited data available at the Riverside site, we 
considered only the daily source contributions at the Central LA site.  For the application of the 
PSCF model, backward trajectories associated with each of the daily source contributions were 
calculated with the Hybrid Single-Particulate Lagrangian Integrated Trajectory model 
(HYSPLIT 4.9 version) using EDAS 40 km gridded meteorological data [Draxler and Rolph, 
2012] from May 2009 through April 2010.  Five-day back trajectories arriving at heights of 500 
m above ground level at the Central LA site with an every hour interval were calculated using a 
vertical velocity model for each of the estimates of source contributions.  Grid cells of 0.5º × 0.5º 
geographical coordinates (latitude and longitude) representing 2,400 cells were assigned by the 
daily source contributions along the corresponding back trajectories, in which an average of 46 
trajectory endpoints were located.  The high PSCF values representing the potential source 
locations were then calculated with the equation; PSCFij = mij/nij, where nij is the total number of 
endpoints that pass through the grid cell (i, j), and mij is the number of endpoints related to the 
samples that exceed the threshold criterion value in the same grid cell. In this study, an average 
of each of the source contributions was used as the threshold criterion.  Specific grid cells with 
small numbers of endpoints are often biased in the PSCF analysis.To reduce this bias, the PSCF 
values were down-weighted using an arbitrary weight function W(nij) [Polissar et al., 2001] for 
the grid cells which had total endpoints less than three times the average of endpoints per 
cell.See example below: 

W�nij� =  

⎩
⎪
⎨

⎪
⎧1.0,                    138 < nij

0.7,         46 < nij ≤ 138
0.4,            23 < nij ≤ 46
0.2,                      nij ≤ 23
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3. Results and Discussion 
3.1 Trend Analysis 

3.1.1 Carbonaceous Aerosol 
Figure 2abcd (EC and EC/OC), Figure 6abcd (WSOC), and Table 4 present the monthly average 
concentrations of EC, WSOC, WIOC and EC/OC for the two sites.  The annual average PM2.5 
EC and WIOC concentrations at the Central LA site were approximately 50% higher than the 
PM2.5 EC and WIOC concentrations at the Riverside site.  In contrast, the WSOC levels at the 
Riverside site were approximately 20% higher than the annual average concentration at the 
Central LA site.  The annual average fractions of OC that were water-soluble were 45% and 60% 
for the Central LA and the Riverside site, respectively.  As seen in Figure 2ab, smooth seasonal 
trends were observed for the Central LA site but clear trendsappear absent for the Riverside site.  
This is in part due to the fact that the Central LA site includes daily samples for the entire year, 
whiletheRiverside site only includes one sixth of the days in the year or about 4-6 days per 
month.  A plot of the one-in-six data from the Central LA sites appears very similar to the daily 
sampling averages shown in Figure 2a.  This suggests that the smoother trends in the Central LA 
site are not solely due to the frequency of sampling. It appears the monthly average carbonaceous 
aerosol concentration at the Riverside site is sensitive to daily changes in local emissions and/or 
meteorology.  As seen in Figure 2cd, the annual trends for the EC/OC ratio are similar with 
minimums in July and August, which are associated with higher SOC and lower impacts from 
biomass burning.   

Figures 3-8 examine trends in the monthly averages and ratios of key source tracers at the 
Central LA site to provide insight into the trends of POC and SOC sources.  The parallel trends 
for the Riverside site are very sporadic and difficult to interpret, preventing a clear intrepation of 
the results.Figures 3-5 show monthly and day of the week trends at the Central LA site forthe 
molecular marker tracers associated with mobile source emissions and biomass burning.  Figures 
6-8 show monthly trends in Central LA for indicators for SOC. 

PM2.5 hopanes concentrations in the LA Basin are dominated by emissions from mobile 
sources.  The monthly trends in the dominant hopanes are presented in Figure 3a and show a 
summertime minimum and a wintertime maximum.  Some researchers have interpreted these 
trends to indicate hopanes are undergoing enhanced oxidation in the summer months and suggest 
that these compounds degrade rapidly in the atmosphere[Robinson et al., 2006a; Subramanian et 
al., 2006].  Figure 3bcd shows the monthly average ratio of hopanes to EC, OC and WIOC.  It is 
interesting to note that these ratios are fairly constant across all months and suggest that the 
trends observed for hopane concentrations are due to meteorological dispersion and not chemical 
oxidation.  Although researchers have shown that in laboratory smog chambers, hopanes can be 
oxidized reasonablyquickly, the data presented in Figure 3abcd suggests that these laboratory 
experiments are likely not representative of the atmosphere in Los Angeles.  To further examine 
the stability of the hopanes in the LA atmosphere, Figure 4ab examines the annual averages of 
EC and the hopanes/EC ratios calculated by six different one-in-six day measurements for the 
Central LA site.  Since measurements were made every day during the year, the data allow six 
representations of the one-in-six average.  As can been seen by these figures, the averages are the 
same and there is no evidence that extreme events are dominating the averages.  Along these 
lines, Figure 4cd shows the same averages for the day of the week.  Although the averages for 
Monday through Friday are very similar, the weekend averages are very different, which suggest 
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the hopane-to-EC ratios are largely controlled by changes in emissions and not chemical 
oxidation as suggested by other researchers.   

Figure 5abcd presents the monthly average concentrations for levoglucosan, hopanes, and 
polycyclic aromatic hydrocarbons (PAH) for the Central LA site.  Levoglucosan is a key tracer 
for biomass smoke and makes up approximately 20% of particulate matter from biomass 
combustion.  As seen in Figure 5a, there is a very strong seasonal pattern for biomass smoke 
with much higher concentrations of levoglucosan in winter than during summer months.  As 
discussed above, fine particle hopanes in the LA basin are tracers for mobile sources.  PAH are 
generic tracers for combustion and are largely from mobile sources and biomass burning in the 
LA basin.  Peak winter concentrations of hopanes were approximately twice the concentration 
observed in the summer, while levoglucosan levels were more than ten times higher in winter 
than summer months.  PAH levels in the winter were also approximately 5-10 times higher in 
winter than summer, suggesting the importance of the contribution of biomass burning to PAH 
concentrations.   

The dominant sources of WSOC in PM2.5 are biomass smoke and SOC[Snyder et al., 2009].  
Figure 6abcd presents the trends in WSOC and non-biomass burning WSOC for the Central LA 
and Riverside sites.  Non-biomass burning WSOC is calculated by subtracting the WSOC 
associated with biomass burning using the atmospheric concentration of levoglucosan and the 
ratio of levoglucosan to WSOC in biomass smoke [Snyder et al., 2009].  Comparing the trends in 
WSOC and non-biomass burning WSOC, WSOC in the Los Angeles basin is dominated by 
SOCdue to only minor differences in these graphs.  It is important to note that the WSOC and 
non-biomass burning WSOC concentrations at the Riverside site have sharp peaks in August and 
September, which are absent in Central Los Angeles site.  The annual average WSOC 
concentration was1.71 µg m-3at the Central LA site and 2.05 µg m-3at the Riverside site.  
Excluding the extreme peaks in WSOC during August and September, the WSOC levels at both 
sites are very similar.     

A number of tracers and indicators for SOC and specific sources of SOC have been proposed in 
the past and include methylthreitrols, aromatic diacids, n-alkanoic acids and low molecular 
weight diacids.  Figures 7abcd and 8abcd show the monthly average trends in these potential 
SOC indicators and tracers for the Central LA and Riverside sites, respectively.  Most 
importantly, none of these tracers show the pattern observed for non-biomass burning SOC 
shown in Figure 6d for the Riverside site.  The lack of association suggests that these tracers are 
not good indicators of the SOC impacting Riverside during the peak SOC season, or these 
compounds are formed on a different time scale than the SOC in Riverside in August and 
September.  Another important feature of the trends in Figures 7abcd and 8abcd is the peak of 
the methylthreitrols in late spring and early summer at both sites and very low levels in late 
summer when SOC peaks in Riverside.  These compounds are largely believed to be derived 
from the oxidation of isoprene and suggest isoprene-derived SOC does not have a maximum 
during periods of maximum SOC.  Figure 9abcd examines the relationship of some of these 
potential SOC tracers with non-biomass burning WSOC.  There is very poor correlation amongst 
these components as indicated from the different trends in the methylthreitrols and non-biomass 
burning SOC.  In contrast, there is a moderate correlation between the non-biomass burning SOC 
and adipic acid and phthalic acid that seems to be similar for both sites.      
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Table 1.List of compounds available for possible use in the receptor models for the Central LA 
site 

Compound name 
Data summary Used in receptor model 

Mean Standard Error CMB PMF UNMIX ICFA 
OC 3.92 0.11 Yes Yes Yes Yes 
EC 0.81 0.03 Yes Yes Yes Yes 
fWSOC 1.77 0.05 No Yes Yes Yes 
Fluoranthene 75.4 3 No No No No 
Acephenanthrylene 3.9 0.7 No No No No 
Pyrene 67.1 3.5 No No No No 
Benzo(ghi)fluoranthene 82.2 3.7 No No No No 
Cyclopenta(cd)pyrene 4.7 1.1 No No No No 
Benz(a)anthracene 47.1 3.4 No No No No 
Chrysene 121.1 5.7 No No No No 
1-Methylchrysene 8.4 1.2 No No No No 
Retene 97.9 15 No No No No 
Benzo(b)fluoranthene 160.9 9.2 Yes Yes Yes Yes 
Benzo(k)fluoranthene 98.3 7 Yes Yes Yes Yes 
Benzo(j)fluoranthene 8.5 1.3 No Yes No Yes 
Benzo(e)pyrene 147.4 8.4 Yes Yes Yes Yes 
Benzo(a)pyrene 44.8 4.2 No Yes No Yes 
Indeno(1,2,3-cd)pyrene 127.6 7.6 Yes Yes Yes Yes 
Benzo(ghi)perylene 260 12.3 Yes Yes Yes Yes 
Dibenz(ah)anthracene 4.4 1.1 No No No No 
Picene 2.4 1 No No No No 
Coronene 136.9 6.1 No Yes Yes Yes 
Dibenzo(ae)pyrene 0.9 0.7 No No No No 
17α(H)-22,29,30-Trisnorhopane 49.8 2.3 Yes Yes No Yes 
17β(H)-21α(H)-30-Norhopane 200 7.1 Yes Yes Yes Yes 
17α(H)-21β(H)-Hopane 169.7 5.5 Yes Yes Yes Yes 
22S-Homohopane  110.4 3.7 No Yes Yes Yes 
22R-Homohopane 91.3 3.1 No Yes Yes Yes 
22S-Bishomohopane 46.8 3 No Yes Yes Yes 
22R-Bishomohopane 35.6 2.3 No Yes Yes Yes 
22S-Trishomohopane 9.5 1.6 No Yes No Yes 
22R-Trishomohopane 6.9 1.2 No Yes No Yes 
αββ-20R-C27-Cholestane 35.5 2.2 Yes Yes Yes Yes 
αββ-20S-C27-Cholestane 42.8 2.6 Yes Yes Yes Yes 
ααα-20S-C27-Cholestane 52.7 3.2 No Yes No Yes 
αββ-20R-C28-Ergostane 8.7 1.1 No Yes No Yes 
αββ-20S-C28-Ergostane 9.9 1.3 No Yes No Yes 
αββ-20R-C29-Sitostane 42.4 2.3 Yes Yes No Yes 
αββ-20S-C29-Sitostane 44.1 2.4 Yes Yes No Yes 
Undecane ND ND No No No No 
Dodecane ND ND No No No No 
Tridecane ND ND No No No No 
Tetradecane ND ND No No No No 
Pentadecane ND ND No No No No 
Hexadecane 20.3 5.9 No No No No 
Norpristane ND ND No No No No 
Heptadecane 87 11.9 No No No No 
Pristane ND ND No No No No 
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Table 1 (continued) 

Compound name 
Data summary Used in receptor model 

Mean Standard Error CMB PMF UNMIX ICFA 
Octadecane 27.8 4.6 No No No No 
Phytane 0.4 0.4 No No No No 
Nonadecane 207.6 14.9 No No No No 
Eicosane 479.2 27.6 No No No No 
Heneicosane 565.8 31.9 No No No No 
Docosane 1023 39.1 No No No No 
Tricosane 1640.6 61.7 No No No No 
Tetracosane 1680.8 74.8 No Yes No Yes 
Pentacosane 1871.1 78 Yes Yes No Yes 
Hexacosane 1718.9 79.9 Yes Yes No Yes 
Heptacosane 1863.9 82.9 Yes Yes No Yes 
Octacosane 1335.5 60.8 Yes Yes No Yes 
Nonacosane 2060.5 126.7 Yes Yes Yes Yes 
Triacontane 1116.3 45.4 Yes Yes No Yes 
Hentriacontane 1713 66.4 Yes Yes Yes Yes 
Dotriacontane 794.7 35 Yes Yes No Yes 
Tritriacontane 973.5 39 Yes Yes Yes Yes 
Tetratriacontane 557 26.4 Yes Yes No Yes 
Pentatriacontane 474.4 19.7 Yes Yes No Yes 
Hexatriacontane 338.4 20.9 Yes Yes No Yes 
Heptatriacontane 79.1 12.4 No Yes No Yes 
Octatriacontane 59.3 12.2 No No No No 
Nonatriacontane ND ND No No No No 
Tetracontane ND ND No No No No 
Decylcyclohexane ND ND No No No No 
Pentadecylcyclohexane ND ND No No No No 
Hexadecylcyclohexane ND ND No No No No 
Heptadecylcyclohexane ND ND No No No No 
Octadecylcyclohexane ND ND No No No No 
Nonadecylcyclohexane 41.5 3.5 No No No No 
Squalane ND ND No No No No 
Octanoic acid 573.9 100.9 No No No No 
Decanoic acid 427.1 36.4 No No No No 
Dodecanoic acid 1834.3 81.9 No No No No 
Tetradecanoic acid 5010.5 139.3 No No No No 
Pentadecanoic acid 2108.6 54.1 No No No No 
Hexadecanoic acid 51814.6 1873.1 No No No No 
Heptadecanoic acid 2171.6 142.1 No No No No 
Octadecanoic acid 27850 1185.4 No Yes Yes Yes 
Nonadecanoic acid 286.7 13.6 No Yes No Yes 
Pinonic acid 2631.9 97.9 No Yes Yes Yes 
Palmitoleic acid 249.3 43.9 No Yes No Yes 
Oleic acid 7154 792 No Yes No Yes 
Linoleic acid 4276.9 495.9 No Yes No Yes 
Linolenic acid 319.3 43.8 No Yes No Yes 
Eicosanoic acid 1524 79.7 No Yes No Yes 
Heneicosanoic acid 491.6 25.9 No Yes No Yes 
Docosanoic acid 2170.4 163.3 No Yes Yes Yes 
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Table 1 (continued) 

Compound name 
Data summary Used in receptor model 

Mean Standard Error CMB PMF UNMIX ICFA 
Tricosanoic acid 707.6 50.2 No Yes Yes Yes 
Tetracosanoic acid 2371.1 200.3 No Yes Yes Yes 
Pentacosanoic acid 454.7 22.8 No Yes Yes Yes 
Hexacosanoic acid 1123.8 79.6 No Yes Yes Yes 
Heptacosanoic acid 281.1 17.3 No Yes No Yes 
Octacosanoic acid 1067 72.3 No Yes Yes Yes 
Nonacosanoic acid 315.8 21.2 No Yes Yes Yes 
Triacontanoic acid 873.5 66.6 No Yes Yes Yes 
Phthalic acid 10322.4 404.6 No Yes Yes Yes 
Isophthalic acid 1386.4 44.9 No Yes No Yes 
Terephthalic acid 3151.3 366.6 No Yes No Yes 
1,2,4-Benzenetricarboxylic acid 3397.4 144.4 No No No No 
1,2,3-Benzenetricarboxylic acid 102.9 9.3 No No No No 
Methylphthalic acid 3032.7 96.7 No Yes Yes Yes 
Succinic acid 11653.8 581.8 No Yes No Yes 
Glutaric acid 4994.5 189.7 No Yes No Yes 
Adipic acid 2559.2 75.7 No Yes No Yes 
Pimelic acid 1289.6 50 No Yes No Yes 
Suberic acid 1823.9 49 No Yes No Yes 
Azelaic acid 9782.1 240.7 No Yes No Yes 
Sebacic acid 907.1 37.1 No Yes No Yes 
I-1 (2-methylglyceric acid) 16.9 16.9 No No No No 
T-3 (2,3-dihydroxy-4-oxopentanoic acid) 1050.3 105.2 No Yes No Yes 
PNA (pinonic acid) 2710.6 125.9 No Yes Yes Yes 
I-2 (2-methylthreitol) 157.8 26.4 No Yes No Yes 
I-3 (2-methylthreitol) 318.8 43.8 No Yes No Yes 
A-5 (3-hydroxyglutaric acid) 5331.1 383.9 No Yes Yes Yes 
PA (pinic acid) 249 29.9 No Yes No Yes 
A-6 (2-hydroxy-4,4-dimethylglutaric acid 1254.2 114.7 No Yes No Yes 
A-4 (3-acetyl hexanedioic acid) 2141 126.7 No Yes No Yes 
A-3 (2-hydroxy-4-ispropyladipic acid) 5149 220.9 No Yes No Yes 
C-1 (β-carophyllinic acid) 306.9 37.1 No Yes No Yes 
Levoglucosan 51876.8 5277.8 Yes Yes Yes Yes 

- Unit for OC, EC, and WSOC is microgram per cubic meters. Unit for other compounds is picogram per cubic 
meters 

- ND represents that a compound was not detected in the sample or was below the detection limits 
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Figure 2abcd – Monthly trends in PM2.5 organic carbon (OC), elemental carbon (EC), and EC/OC for the Central LA and Riverside 
sites 
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Figure 3abcd – Monthly trends in PM2.5 hopane concentrations and normalized hopane concentrations at Central LA site 
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Figure 4abcd –Comparison of one-in-six day annual averaged and day of the week trends in PM2.5 EC and the PM2.5 hopanes to EC 
ratio at the Central LA site. 
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Figure 5abcd –Trends in the monthly average concentration of key PM2.5 molecular marker tracers at the Central LA site 
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Figure 6abcd –Monthly trends in PM2.5 water soluble organic carbon (WSOC) and non-biomass burning PM2.5 WSOC at the Central 
LA and Riverside sites 
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Figure 7abcd –Monthly trends in PM2.5 polar organic compounds at the Central LA site 
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Figure 8abcd –Monthly trends in PM2.5 polar organic compounds at the Riverside site 



23 
 

Table 2. Summary of invalid samples and data removed for select trend analysis 

Site Invalid data and data removed Date 

Central  
LA 

WSOC measurement invalid All of May 2009 samples 

Extreme sample eventsa) August 25-31 2009. December 23-28 30-31, 2009. January 1-2 2010. 

WIOC not statistically significant May 19, 25 2009. July 31 2009. August 6 2009. September 14 2009.  
October 10 2009. April 12 2009. 

EC not statistically significant July 4-5 2009. October 4 2009. April 4, 10-11 2010. 

Samples Not Collected or Analyzed 
May 7, 22, 24 2009. June 21, 29 2009. October 18-19 2009. November 9-11 2009.  
December 3, 29 2009. January 15, 17, 19, 21 2010. February 5 2010.  
March 10-11, 14-15, 19 2010. April 6, 14, 24 2010. 

Riverside 

WSOC measurement invalid All of May 2009 samples 

WSOC measurements invalid April 8, 14, 20, 26 2010.  

Extreme sample events a) January 2 2010. August 29 2009. December 27 2009. 

WIOC not statistically significant June 6 2009. September 22 2009. October 4 2009. 
a) Represent possible forest fires events and high wood smoke days  
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Table 3.Varimaxrotated factor analysis results for the Central LA site 

Chemical species 
Factor 

Communalities 
1 2 3 4 5 6 7 8 9 10 11 12 13 

EC 0.81  0.42  0.21  0.04  0.10  -0.01  0.00  0.01  0.05  0.06  -0.04  0.03  0.00  0.89  
WSOC 0.32  0.33  0.50  0.51  0.12  0.00  0.12  0.05  0.16  0.15  -0.12  0.03  0.03  0.82  
Fluoranthene 0.63  0.67  0.11  -0.03  0.07  0.02  0.15  0.00  0.01  -0.10  -0.01  0.02  0.01  0.89  
Pyrene 0.64  0.67  0.12  -0.04  0.06  0.00  0.14  0.01  0.00  -0.09  -0.04  0.00  -0.01  0.91  
Benzo(ghi)fluoranthene 0.67  0.62  0.04  -0.07  0.03  0.01  0.18  -0.02  0.01  -0.05  -0.06  -0.06  0.02  0.88  
Benz(a)anthracene 0.38  0.85  0.12  0.01  0.08  0.05  0.04  -0.01  0.02  -0.07  -0.01  0.06  0.05  0.91  
Chrysene 0.52  0.76  0.13  -0.02  0.07  0.06  0.12  -0.07  0.07  0.00  -0.04  -0.05  0.04  0.90  
Retene -0.03  0.88  0.14  0.02  0.07  0.10  0.06  -0.04  0.08  -0.06  -0.01  0.13  -0.01  0.85  
Benzo(b)fluoranthene 0.32  0.86  0.19  0.07  0.13  0.08  -0.05  -0.11  0.08  0.08  -0.02  0.01  0.16  0.95  
Benzo(k)fluoranthene 0.34  0.85  0.18  0.03  0.12  0.06  -0.03  -0.10  0.07  0.12  0.01  -0.07  0.20  0.96  
Benzo(e)pyrene 0.47  0.77  0.19  0.02  0.13  0.06  -0.03  -0.12  0.09  0.14  -0.02  -0.09  0.20  0.96  
Benzo(a)pyrene 0.32  0.78  0.26  -0.03  0.07  0.06  0.07  0.03  0.02  -0.01  -0.04  0.05  0.09  0.80  
Indeno(1,2,3-cd)pyrene 0.41  0.77  0.26  -0.02  0.10  0.03  -0.06  -0.12  0.05  0.15  0.00  -0.12  0.13  0.92  
Benzo(ghi)perylene 0.65  0.64  0.18  -0.03  0.10  0.01  -0.03  -0.09  0.02  0.16  -0.02  -0.10  0.06  0.92  
Coronene 0.65  0.66  0.14  -0.04  0.12  0.04  0.06  -0.10  0.05  0.13  -0.06  -0.03  0.02  0.94  
17α(H)-22,29,30-Trisnorhopane 0.72  0.45  0.20  -0.05  0.10  0.15  0.19  -0.11  0.09  -0.09  -0.06  0.02  -0.10  0.87  
17β(H)-21α(H)-30-Norhopane 0.88  0.28  0.16  0.01  0.16  0.05  0.03  -0.06  0.10  0.02  0.00  0.07  -0.02  0.93  
17α(H)-21β(H)-Hopane 0.89  0.24  0.16  0.02  0.11  0.13  0.01  -0.03  0.14  0.01  -0.03  0.04  0.04  0.93  
22S-Homohopane  0.88  0.32  0.12  0.04  0.13  0.11  -0.02  -0.01  0.07  0.01  -0.04  0.04  0.04  0.93  
22R-Homohopane 0.85  0.34  0.13  0.04  0.13  0.10  0.00  0.00  0.10  0.02  -0.05  0.05  0.05  0.90  
22S-Bishomohopane 0.90  0.24  0.01  0.01  0.09  0.07  -0.03  -0.02  0.05  0.02  -0.05  -0.02  0.04  0.89  
22R-Bishomohopane 0.88  0.23  0.01  0.03  0.11  0.11  -0.02  -0.03  0.05  0.04  -0.04  -0.03  0.05  0.87  
αββ-20R-C27-Cholestane 0.84  0.21  0.04  -0.04  0.11  0.04  0.20  -0.08  0.06  0.03  -0.06  -0.03  0.06  0.82  
αββ-20S-C27-Cholestane 0.86  0.20  0.03  -0.04  0.06  0.02  0.17  -0.08  0.06  0.01  -0.06  -0.02  0.05  0.84  
ααα-20S-C27-Cholestane 0.85  0.16  0.07  -0.03  0.07  0.04  0.17  -0.10  0.10  0.02  -0.06  -0.03  0.06  0.82  
αββ-20R-C29-Sitostane 0.86  0.26  0.07  -0.02  0.08  0.13  0.04  -0.07  0.07  0.07  -0.08  -0.05  0.05  0.86  
αββ-20S-C29-Sitostane 0.87  0.26  0.05  -0.02  0.08  0.18  0.08  -0.08  0.08  0.05  -0.06  -0.05  0.04  0.89  
Nonadecane 0.55  0.59  0.05  -0.10  0.04  0.08  0.34  -0.05  -0.06  -0.07  -0.04  -0.04  -0.06  0.80  
Eicosane 0.51  0.54  0.15  -0.09  0.05  0.21  0.34  -0.07  0.02  -0.10  -0.04  0.01  -0.01  0.76  
Heneicosane 0.44  0.68  0.09  -0.11  0.09  0.11  0.36  0.02  0.00  -0.19  -0.01  0.10  -0.05  0.88  
Docosane 0.55  0.41  0.08  -0.19  0.00  0.31  0.41  -0.01  0.01  -0.15  0.00  -0.06  -0.01  0.80  
Tricosane 0.49  0.57  0.12  0.00  0.12  0.38  0.29  -0.07  0.10  -0.09  -0.03  0.07  0.01  0.85  
Tetracosane 0.58  0.35  0.09  -0.01  0.13  0.60  0.08  -0.07  0.01  -0.07  -0.02  0.00  -0.07  0.87  
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Table 3 (continued) 

Chemical species 
Factor 

Communalities 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Pentacosane 0.63  0.24  0.16  0.01  0.16  0.64  -0.01  -0.09  0.07  0.01  0.03  -0.03  -0.04  0.94  
Hexacosane 0.57  0.20  0.13  0.02  0.21  0.72  -0.07  -0.06  0.06  0.07  0.02  -0.05  -0.01  0.96  
Heptacosane 0.55  0.14  0.45  0.03  0.23  0.60  -0.02  -0.03  0.07  0.08  0.00  -0.02  0.03  0.96  
Octacosane 0.55  0.21  0.23  0.04  0.33  0.63  -0.07  -0.06  0.08  0.12  -0.01  -0.07  0.04  0.94  
Nonacosane 0.31  0.01  0.84  -0.01  0.09  0.29  0.15  0.00  0.05  0.08  -0.04  0.02  0.09  0.93  
Triacontane 0.55  0.27  0.25  0.09  0.50  0.46  -0.05  -0.04  0.09  0.12  -0.04  -0.04  0.07  0.94  
Hentriacontane 0.54  0.19  0.67  0.06  0.30  0.22  0.11  -0.02  0.06  0.15  -0.04  0.02  0.06  0.95  
Dotriacontane 0.44  0.33  0.22  0.12  0.71  0.27  -0.01  -0.04  0.08  0.06  -0.07  0.00  0.02  0.96  
Tritriacontane 0.51  0.28  0.45  0.12  0.59  0.16  0.07  -0.05  0.07  0.09  -0.07  -0.01  0.04  0.96  
Tetratriacontane 0.38  0.33  0.12  0.11  0.77  0.15  0.03  -0.07  0.07  -0.01  -0.08  -0.03  0.04  0.92  
Pentatriacontane 0.37  0.17  0.15  0.11  0.81  0.12  0.03  -0.01  0.06  0.01  -0.02  0.04  0.05  0.89  
Hexatriacontane 0.04  0.29  0.09  0.12  0.83  0.02  0.14  -0.02  0.11  -0.07  -0.09  0.12  0.09  0.87  
Nonadecylcyclohexane 0.52  0.53  0.01  0.03  0.03  0.07  0.15  -0.12  -0.03  0.13  -0.04  -0.04  -0.01  0.62  
Decanoic acid -0.14  -0.09  0.12  0.04  0.03  -0.11  0.02  -0.02  -0.04  0.03  0.30  0.64  -0.03  0.56  
Dodecanoic acid 0.34  0.60  0.16  0.01  0.16  0.05  0.42  -0.17  0.08  0.01  -0.01  0.32  -0.01  0.85  
Tetradecanoic acid 0.55  0.57  0.10  0.09  0.19  0.10  0.25  -0.20  0.08  0.19  0.08  0.16  -0.11  0.88  
Pentadecanoic acid 0.42  0.58  0.21  0.14  0.23  0.03  0.14  -0.08  0.01  0.18  0.19  0.34  -0.13  0.87  
Hexadecanoic acid 0.49  0.74  0.16  0.07  0.18  0.10  0.06  -0.13  0.15  0.19  -0.03  0.02  -0.05  0.94  
Heptadecanoic acid 0.27  0.26  0.10  0.02  0.09  0.03  0.04  0.00  0.85  -0.06  -0.01  -0.05  -0.04  0.89  
Octadecanoic acid 0.40  0.77  0.16  0.06  0.18  0.14  -0.03  -0.14  0.13  0.21  -0.03  -0.04  -0.04  0.93  
Nonadecanoic acid 0.16  0.42  0.66  0.11  0.22  -0.10  -0.22  -0.05  0.03  0.04  0.11  0.03  -0.16  0.80  
Pinonic acid 0.33  0.33  0.09  0.04  0.09  -0.08  0.75  -0.15  0.02  0.02  -0.02  -0.03  -0.10  0.84  
Palmitoleic acid 0.02  0.32  0.08  0.05  0.05  0.03  -0.04  0.00  0.05  0.00  -0.08  0.70  -0.04  0.62  
Oleic acid 0.28  0.81  0.07  -0.02  0.16  0.03  0.18  0.06  0.06  -0.09  -0.05  0.16  -0.10  0.85  
Linoleic acid 0.27  0.79  0.06  -0.03  0.15  0.03  0.17  0.09  0.06  -0.14  -0.06  0.18  -0.09  0.83  
Eicosanoic acid 0.22  0.53  0.61  0.15  0.12  0.00  -0.15  0.01  0.07  0.06  -0.03  -0.09  -0.15  0.80  
Heneicosanoic acid 0.03  0.26  0.85  0.16  0.11  -0.08  -0.15  0.03  0.23  -0.07  0.05  0.02  -0.09  0.93  
Docosanoic acid 0.07  0.37  0.88  0.14  0.05  0.02  -0.06  -0.02  0.04  0.01  -0.05  -0.08  -0.06  0.95  
Tricosanoic acid 0.03  0.22  0.95  0.10  0.06  -0.01  -0.06  -0.01  0.02  0.01  0.01  0.01  -0.02  0.97  
Tetracosanoic acid 0.05  0.34  0.89  0.13  0.04  0.03  -0.03  -0.04  0.05  0.01  -0.06  -0.05  -0.03  0.93  
Pentacosanoic acid 0.00  0.21  0.92  0.11  0.11  -0.01  -0.07  0.02  0.02  0.00  0.12  0.08  -0.03  0.95  
Hexacosanoic acid 0.07  0.39  0.89  0.09  0.05  0.04  -0.01  -0.05  0.01  0.05  -0.02  -0.01  -0.02  0.97  
Heptacosanoic acid 0.07  -0.03  0.91  0.10  0.09  0.01  0.02  0.07  0.11  -0.06  0.07  0.13  0.03  0.89  
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Table 3 (continued) 

Chemical species 
Factor 

Communalities 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Octacosanoic acid 0.08  0.01  0.95  0.05  -0.03  0.09  0.14  0.02  0.04  0.00  -0.02  0.08  0.06  0.96  
Nonacosanoic acid 0.19  -0.03  0.89  0.11  0.00  0.09  0.15  0.01  0.06  0.00  -0.09  0.00  0.09  0.89  
Triacontanoic acid 0.10  -0.07  0.93  0.06  -0.02  0.10  0.18  0.03  0.04  -0.02  -0.05  0.10  0.09  0.94  
Phthalic acid 0.03  -0.09  0.23  0.86  0.11  -0.06  -0.10  0.21  -0.01  -0.07  -0.01  -0.01  -0.03  0.87  
Isophthalic acid 0.66  0.42  0.21  0.40  0.17  -0.02  -0.06  0.00  0.14  0.15  -0.06  -0.01  0.07  0.91  
Terephthalic acid 0.19  0.16  0.03  0.08  0.13  -0.04  -0.08  0.01  0.02  -0.02  0.03  -0.06  0.86  0.84  
1,2,4-Benzenetricarboxylic acid 0.43  -0.01  0.19  0.64  0.22  -0.07  -0.20  0.12  0.11  0.17  -0.09  -0.10  0.07  0.80  
Methylphthalic acid 0.30  -0.04  0.27  0.74  0.20  -0.12  -0.11  0.21  0.03  0.03  0.05  0.00  -0.04  0.84  
Succinic acid -0.23  -0.07  0.04  0.85  -0.02  0.08  0.06  0.15  -0.05  0.00  0.07  -0.05  0.03  0.82  
Glutaric acid -0.19  0.04  0.09  0.91  -0.02  0.09  0.12  0.09  0.04  0.02  0.00  0.03  0.03  0.92  
Adipic acid -0.03  0.14  0.20  0.83  0.07  0.05  0.05  0.06  0.26  0.07  -0.03  0.19  0.09  0.89  
Pimelic acid 0.12  0.18  0.34  0.52  0.09  0.08  0.14  0.00  0.55  0.04  -0.19  0.12  0.11  0.84  
Suberic acid 0.25  0.14  0.28  0.40  0.18  0.03  -0.06  -0.03  0.59  0.32  0.07  0.15  0.07  0.84  
Azelaic acid 0.58  0.16  0.27  0.30  0.17  0.01  -0.02  -0.14  0.21  0.53  0.04  -0.01  0.02  0.90  
Sebacic acid 0.28  0.05  0.27  0.13  0.09  0.07  -0.03  -0.03  0.81  0.10  0.05  -0.02  0.02  0.85  
T-3 (2,3-dihydroxy-4-oxopentanoic acid) -0.22  -0.13  0.01  0.33  -0.07  0.00  -0.10  0.72  0.03  0.17  0.04  0.04  0.10  0.75  
PNA (pinonic acid) 0.30  0.36  0.00  -0.02  0.09  -0.05  0.76  -0.11  -0.01  0.09  -0.03  -0.03  -0.05  0.84  
I-2 (2-methylthreitol) -0.17  -0.06  0.00  0.06  -0.08  0.04  0.02  -0.02  0.04  0.00  0.76  0.18  0.05  0.65  
I-3 (2-methylthreitol) -0.20  -0.05  -0.06  -0.12  -0.11  -0.03  -0.07  0.25  -0.03  0.02  0.78  -0.05  -0.05  0.75  
A-5 (3-hydroxyglutaric acid) -0.15  -0.22  0.17  0.51  0.02  -0.13  -0.17  0.62  0.04  0.00  -0.07  0.04  0.10  0.81  
PA (pinic acid) -0.09  0.09  -0.08  -0.01  -0.09  0.19  0.26  0.29  0.07  0.54  -0.26  0.01  0.06  0.59  
A-6 (2-hydroxy-4,4-dimethylglutaric acid -0.25  -0.14  0.03  0.43  -0.05  -0.08  -0.16  0.67  -0.03  -0.05  0.06  -0.05  -0.10  0.78  
A-4 (3-acetyl hexanedioic acid) -0.10  -0.15  -0.02  0.22  -0.03  -0.04  0.03  0.73  -0.07  0.22  0.21  -0.06  0.01  0.72  
A-3 (2-hydroxy-4-ispropyladipic acid) 0.26  0.02  0.03  0.05  0.00  -0.07  -0.08  0.36  0.05  0.67  0.36  0.05  -0.06  0.79  
C-1 (β-carophyllinic acid) 0.17  0.05  -0.07  0.32  0.08  0.08  -0.07  0.29  0.04  0.46  -0.15  -0.02  0.50  0.73  
Levoglucosan 0.06  0.81  0.42  0.06  0.09  0.12  -0.04  -0.14  0.10  0.15  -0.03  -0.07  0.06  0.93  
Eigenvalue 20.7  17.3  12.7  6.0  4.3  3.3  2.9  2.8  2.6  2.1  1.8  1.6  1.4   
% of Variance 22.5  18.8  13.8  6.6  4.7  3.5  3.2  3.0  2.8  2.3  2.0  1.7  1.6   
Cumulative % 22.5  41.4  55.1  61.7  66.4  69.9  73.1  76.1  79.0  81.2  83.2  84.9  86.5    
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Figure 9abcd –Comparison of non-biomass burning WSOC and potential PM2.5 secondary 
organic carbon (SOC)indicators
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Table 4. Summary of data in Figures 2-5 including key source tracers 

Site Chemical Species May 
2009 

Jun 
2009 

Jul 
2009 

Aug 
2009 

Sep 
2009 

Oct 
2009 

Nov 
2009 

Dec 
2009 

Jan 
2010 

Feb 
2010 

Mar 
2010 

Apr 
2010 

Riverside 
ECa) 0.680 0.407 0.348 0.437 0.798 0.403 0.705 0.794 0.459 0.509 0.245 0.352 
WSOCa) * 0.795 1.824 3.375 3.587 1.481 2.043 1.982 1.218 1.611 1.413 1.791 
WIOCa) * 1.447 2.073 1.975 1.481 0.960 1.497 1.640 1.167 0.851 0.501 2.470 

Central 
LA 

ECa) 0.415 0.342 0.378 0.396 0.790 1.078 1.417 1.294 1.382 0.901 0.652 0.423 
WSOCa) * 0.806 1.291 2.102 1.828 2.215 2.310 1.978 1.975 1.754 1.499 1.312 
WIOCa) * 1.183 1.836 1.837 2.013 2.117 3.183 2.827 3.669 2.632 1.760 1.038 
Levoglucosanb) 2.819 1.626 5.325 11.629 13.465 22.388 75.646 115.417 112.999 87.592 26.137 14.259 

17β(H)-21α(H)-30-
Norhopaneb) 0.099 0.098 0.154 0.123 0.205 0.235 0.322 0.277 0.330 0.242 0.146 0.106 

17α(H)-21β(H)-
Hopaneb) 0.084 0.086 0.122 0.114 0.191 0.198 0.253 0.226 0.242 0.215 0.152 0.104 

22S-Homohopaneb) 0.057 0.057 0.076 0.075 0.106 0.128 0.173 0.161 0.169 0.146 0.097 0.059 
22R-Homohopaneb) 0.046 0.050 0.061 0.057 0.086 0.108 0.141 0.131 0.140 0.128 0.082 0.047 
Benzo(b)fluorantheneb) 0.053 0.058 0.081 0.084 0.097 0.108 0.232 0.304 0.307 0.229 0.159 0.058 
Benzo(k)fluorantheneb) 0.023 0.021 0.022 0.020 0.049 0.060 0.163 0.191 0.215 0.144 0.089 0.037 
Benzo(j)fluorantheneb) 0.001 nd nd nd 0.002 0.007 0.027 0.036 0.015 0.003 nd 0.002 
Benzo(e)pyreneb) 0.038 0.038 0.048 0.045 0.103 0.115 0.239 0.263 0.308 0.224 0.158 0.063 
Benzo(a)pyreneb) ndc) nd nd 0.001 0.022 0.073 0.092 0.105 0.072 0.056 0.020 0.011 

Indeno(1,2,3-
cd)pyreneb) 0.037 0.030 0.042 0.049 0.071 0.124 0.246 0.226 0.244 0.165 0.106 0.058 

Benzo(ghi)peryleneb)  0.102 0.093 0.096 0.104 0.171 0.296 0.517 0.451 0.472 0.358 0.230 0.117 
Dibenz(ah)anthraceneb) nd nd nd nd 0.006 nd 0.006 0.008 0.009 0.002 nd nd 
Piceneb) nd nd nd nd 0.006 nd 0.004 nd 0.009 nd nd nd 
Coroneneb) 0.035 0.052 0.055 0.055 0.082 0.161 0.233 0.236 0.264 0.184 0.132 0.089 

a) Unit of microgram per cubic meters, b) Unit of nanogram per cubic meters, c) Compounds was not detected or was below detection limits, * 
Represents invalid data. 
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Table 5. Summary of previous source apportionment results for the Los Angeles Basin 

  Annual Average Studies Late Summer Studies 

  Schauer et al. 
(1996) 

Hannigan et al. 
(2005) 

MATES III - App VII 
(2008)* 

Schauer et al. 
(2002) 

Docherty et al. 
(2008) 

Time Period 1982 1982 1993 2004-06 1993 1993 2005 
Apportionment Method CMB CMB CMB CMB CMB CMB AMS-PMF 

Location Central 
LA Rubidoux Basin AVG Central LA Central 

LA Claremont Riverside 

Contributions to OC        
    Mobile Sources (%) 49 34.7 13.7 59.4 34.7 22.3 na 
    Biomass Smoke (%) 12.2 0 8.9 4.1 0 0 na 

    Other Primary Sources (%) 25.5 12.7 42.7 36.5 12.7 10.8 na 
    Secondary Organic Aerosol 

(%) 13.3 52.6 34.9 0 52.6 66.9 74 

Apportioned Primary OC (%) 86.7 47.4 65.1 100 47.4 33.1 26 
Secondary OC (%) 13.3 52.6 34.9 0 52.6 66.9 74 
* Calculated from PM2.5 mass apportionment and source profiles 
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3.2 Source Apportionment Models 

Although there have been many intercomparisons of source apportionment models, very few 
intercomparisons utilize consistent data sets and consistent apportionment objectives.  As a 
result, it is difficult to assess how well the methods agree.  In the current study, the same set of 
molecular markers have been used in a molecular marker CMB model, a molecular marker PMF 
model, and a molecular marker UNMIX model to help assess the agreement of these models and 
to elucidate potential shortcoming of both source apportionment approaches for quantifying the 
sources of carbonaceous aerosols. 

Table 5 summarizes some of the key source apportionment studies in the LA Basin that are used 
to represent sources of organic aerosols.  As can be seen from these results, very inconsistent 
results are obtained from the different studies that were conducted using multiple methodologies 
at different times over the past 20 years.  One key feature of several of these studies is the use of 
cholesterol to trace meat smoke.  Since these apportionment studies, there have been a number of 
research projects that have demonstrated that cholesterol levels in the atmosphere in urban and 
remote locations are too high to be uniquely from meat cooking operations and that it is not a 
good tracer for meat smoke[Dutton et al., 2010].  As a result, cholesterol is not used as a tracer 
for meat smoke in the current study. Likewise, Rutter et al. [2011] has shown that the use of 
trace elements to apportion the organic carbon associated with resuspended soil has considerable 
uncertainty due to the variability in the organic carbon in soils across urban areas.  As a result, 
the current source apportionment model seeks to use only carbonaceous components of 
particulate matter to apportion OC. 

3.2.1 Chemical Mass Balance Model 
The molecular marker CMB model was used to apportion the source of fine particle OC for each 
sample day that had valid measurements.  The source apportionment results were averaged to 
obtain monthly average source contributions that are presented in Figure 10ab and Table 6 for 
both sites.  Six sources were quantified that contribute to PM2.5 OC at the Central LA site 
including diesel engines, gasoline engines, smoking engines, wood smoke, vegetative detritus 
and other sources.  Due to co-linearity problems between the mobile sources in Riverside, only 
diesel engines and smoking vehicles mobile source profiles could be included in the model..  The 
presented smoking vehiclesshould be considered a combination of gasoline engines and smoking 
vehicles for the Riverside apportionment due to the removal of the gasoline vehicle profile, 
which was collinear with the smoking vehicle profile in the CMB model.  As expected from the 
graphs previously discussed addressing the OC, EC and tracer trends, there is a smooth seasonal 
pattern in the source contribution at the Central LA site, which is not seen at the Riverside site.  
Nonetheless, the patterns in wood smoke are very similar at both sites, with higher winter 
contributions and a peak source contribution in December.  Figure 11 shows the peak wood 
smoke events around the Christmas and New Year Holidays with very high wood smoke 
contributions compared to other periods of the year.  Clearly, these individual events are 
important for the 24-hour fine particle mass standard.  

To better relate the source apportionment results from the two sites, which are based on different 
sampling strategies, Figure 12ab compares the monthly average source apportionment results for 
both sites using only data from days in which samples were collected at the Riverside site (one-
in-six).  Though Figure 12a only has one sixth of the sample days that areshown in Figure 10a, 
the results are very similar to each other with the exception of December, which has very high 
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wood smoke on only a few days as shows on Figure 11.  These results demonstrate that there are 
significant differences in source contributions and trends in Central LA and Riverside.   

Figure 13a presents the six versions of the one-in-six day annual source apportionment averages 
for the Central LA site and indicates that the one-in-six representation of the annual average is in 
good agreement with the daily annual average.  Figure 13b shows the same data averaged by day 
of the week.  There are clear trends in biomass smoke that peak on Friday and Saturday and clear 
trends in mobile source emissions that reach a minimum on Sunday.  

Forest fires in the LA basin reported during this study period are summarized in Table 7.  
Removing these days, the monthly average source apportionment results were recalculated and 
presented in Figure 14ab and Figure 15ab along with the averages that include the forest fires for 
Central LA and Riverside, respectively.  Very little differences were observed in the monthly 
averages by removing forest fires.  To better understand the impact of forest fires and how they 
related to the CMB results, see the PMF source apportionment section of this report.   

Wintertime events with very high wood smoke were observed as indicated in Figure 11.  These 
days represent some of the highest OC concentrations and are associated with these extreme 
wood smoke events.  Thirteen days had OC concentrations greater than 8.0 µg per cubic 
meter,which is approximately 14-15 µg per cubic meter of organic compound mass.  Of the 13 
days, five were the very high wood smoke days, three had high wood smoke concentrations, 
three were impacted by forest fires, and only two of these days were not impacted by forest fires 
or high wood smoke events.  Figure 16ab and Figure 17ab compare the monthly average OC 
apportionments with and without the extreme wood smoke events and emphasize the 
improvements to reducing high OC concentrations days and the seasonal average OC 
concentrations that could be achieved by winter wood burning regulations.   
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Figure 10– Monthly average OC apportionment for Central LA and Riverside from the CMB 
Model 
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Figure 11– Time series of biomass burning at the Central LA site from the CMB Model 
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Figure 12– Monthly trends in the CMB apportionment for the 1-in-6 sampling days for both 
sampling sites 
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Figure 13ab – Comparison of the 1-in-6day PM2.5 OC source apportionment averages and the 
day of the week PM2.5 OC source apportionment averages for the Central LA site 
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Figure 14ab –Monthly trends of PM2.5 OC apportionment with and without forest fires for the 
Central LA site 
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Figure 15ab –Monthly trends of PM2.5 OC apportionment with and without forest fires for the 
Riverside site 
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Figure 16ab –Monthly trends of PM2.5 OC apportionment with and without high wood smoke 
days for the Central LAsite 
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Figure 17ab –Monthly trends of PM2.5 OC apportionment with and without high wood smoke 
days for the Riverside site 
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Table 6.Summary of monthly PM2.5 OC CMB results for the Central LA and Riverside sites [value; mean (+- standard error), unit; 
microgram per cubic meters] 

Site Month Samples Total OC Vegetative 
Detritus Wood Smoke Diesel 

Vehicles 
Gasoline 
Vehicles 

Smoking 
Vehicles CMB-Other 

Central 
LA 

May-09 28 2.10 (+- 0.12) 0.06 (+- 0.01) 0.02 (+- 0.00) 0.14 (+- 0.01) 0.12 (+- 0.01) 0.32 (+- 0.03) 1.45 (+- 0.09) 
Jun-09 28 1.99 (+- 0.11) 0.03 (+- 0.00) 0.02 (+- 0.01) 0.12 (+- 0.01) 0.12 (+- 0.01) 0.33 (+- 0.03) 1.40 (+- 0.10) 
Jul-09 31 3.13 (+- 0.14) 0.05 (+- 0.00) 0.03 (+- 0.01) 0.13 (+- 0.01) 0.12 (+- 0.01) 0.58 (+- 0.03) 2.22 (+- 0.11) 

Aug-09 31 4.85 (+- 0.45) 0.17 (+- 0.06) 0.14 (+- 0.04) 0.19 (+- 0.03) 0.17 (+- 0.02) 0.68 (+- 0.10) 3.51 (+- 0.31) 
Sep-09 30 3.84 (+- 0.27) 0.08 (+- 0.01) 0.11 (+- 0.05) 0.27 (+- 0.04) 0.25 (+- 0.07) 0.62 (+- 0.06) 2.53 (+- 0.18) 
Oct-09 29 4.33 (+- 0.38) 0.11 (+- 0.01) 0.13 (+- 0.03) 0.36 (+- 0.04) 0.32 (+- 0.05) 0.65 (+- 0.08) 2.77 (+- 0.25) 
Nov-09 28 5.49 (+- 0.27) 0.14 (+- 0.01) 0.54 (+- 0.06) 0.44 (+- 0.05) 0.66 (+- 0.06) 0.78 (+- 0.07) 2.93 (+- 0.14) 
Dec-09 29 5.59 (+- 0.44) 0.12 (+- 0.01) 2.11 (+- 0.51) 0.36 (+- 0.03) 0.71 (+- 0.06) 0.74 (+- 0.07) 1.67 (+- 0.19) 
Jan-10 27 5.71 (+- 0.37) 0.13 (+- 0.01) 1.23 (+- 0.25) 0.39 (+- 0.04) 0.75 (+- 0.06) 0.83 (+- 0.06) 2.40 (+- 0.25) 
Feb-10 27 4.39 (+- 0.37) 0.11 (+- 0.01) 0.65 (+- 0.10) 0.25 (+- 0.03) 0.53 (+- 0.06) 0.68 (+- 0.07) 2.16 (+- 0.21) 
Mar-10 26 3.26 (+- 0.25) 0.08 (+- 0.01) 0.21 (+- 0.04) 0.20 (+- 0.02) 0.41 (+- 0.04) 0.39 (+- 0.05) 1.98 (+- 0.17) 
Apr-10 27 2.30 (+- 0.17) 0.06 (+- 0.01) 0.08 (+- 0.02) 0.14 (+- 0.02) 0.17 (+- 0.02) 0.31 (+- 0.03) 1.54 (+- 0.12) 

All study period 341 3.92 (+- 0.11) 0.10 (+- 0.01) 0.46 (+- 0.06) 0.25 (+- 0.01) 0.36 (+- 0.02) 0.58 (+- 0.02) 2.23 (+- 0.06) 

Riverside 

May-09 4 3.85 (+- 0.46) 0.09 (+- 0.05) 0.11 (+- 0.09) 0.25 (+- 0.06)   0.64 (+- 0.13) 3.09 (+- 0.32) 
Jun-09 5 2.65 (+- 0.57) 0.03 (+- 0.01) 0.05 (+- 0.33) 0.14 (+- 0.05)  0.24 (+- 0.10) 0.93 (+- 0.48) 
Jul-09 5 3.64 (+- 0.37) 0.04 (+- 0.01) 0.05 (+- 0.02) 0.14 (+- 0.02)  0.54 (+- 0.09) 3.12 (+- 0.32) 

Aug-09 5 5.91 (+- 0.92) 0.05 (+- 0.01) 0.11 (+- 0.03) 0.16 (+- 0.03)  0.40 (+- 0.08) 5.36 (+- 0.86) 
Sep-09 5 5.18 (+- 0.59) 0.05 (+- 0.02) 0.08 (+- 0.02) 0.31 (+- 0.04)  0.76 (+- 0.16) 3.60 (+- 0.52) 
Oct-09 5 2.51 (+- 0.69) 0.03 (+- 0.01) 0.06 (+- 0.03) 0.18 (+- 0.07)  0.36 (+- 0.12) 1.75 (+- 0.55) 
Nov-09 5 3.49 (+- 0.62) 0.05 (+- 0.01) 0.78 (+- 0.08) 0.13 (+- 0.11)  0.21 (+- 0.18) 2.14 (+- 0.48) 
Dec-09 4 3.47 (+- 0.73) 0.05 (+- 0.01) 1.22 (+- 0.57) 0.14 (+- 0.03)  0.25 (+- 0.14) 0.68 (+- 0.56) 
Jan-10 4 2.81 (+- 0.97) 0.04 (+- 0.01) 0.82 (+- 0.60) 0.15 (+- 0.06)  0.57 (+- 0.11) 0.52 (+- 0.47) 
Feb-10 5 2.32 (+- 0.53) 0.04 (+- 0.01) 0.59 (+- 0.20) 0.17 (+- 0.04)  0.33 (+- 0.09) 1.05 (+- 0.26) 
Mar-10 5 1.64 (+- 0.45) 0.04 (+- 0.04) 0.15 (+- 0.07) 0.09 (+- 0.01)  0.33 (+- 0.09) 0.96 (+- 0.38) 
Apr-10 5 2.31 (+- 0.64) 0.05 (+- 0.01) 0.09 (+- 0.03) 0.11 (+- 0.01)  0.45 (+- 0.12) 1.83 (+- 0.50) 

All study period 57 3.29 (+- 0.22) 0.04 (+- 0.01) 0.13 (+- 0.09) 0.14 (+- 0.02)   0.40 (+- 0.04) 2.12 (+- 0.20) 
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Table 7.Five reported large wildfires in California that occurred during the study 

Fire Name County Location Loss Cost Acreage Fire Duration Date Started 
Backbone Trinity County Trinity Alps Wilderness $16,897,750  6,324  20 days July 7 2009 
Big meadow Mariposa County Foresta Community $16,947,244  7,418  25 days August 26 2009 

Knight Tuolumne County 
10 miles north of Twain Harte,  
near Mount Knight on  
the Middle Fork of the Stanislaus River 

$12,122,452  6,130  25 days July 26 2009 

La Brea Santa Barbara County 21 miles east of Santa Maria $34,888,910  89,489  44 days August 8 2009 

Station Los Angeles County Hwy 2, 1.5 miles north of USFS  
Angeles Crest Station $94,739,316  160,577  41 days August 26 2009 

Sources;1) Large Fire Cost Review for FY 2009 (US Forest Service; Secretary of Agriculture's Independent Large Cost Fire Review Panel) 
                2) California Department of Forestry and Fire Protection (http://bof.fire.ca.gov/incidents/incidents_archived) 

*From the beginning of July through late November, 63 wildfires were activated in the California during the year 2009 
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3.2.2 Positive Matrix Factorization Model 
Determination of the optimal number of factors is the critical step in PMF model whose result 
depends on the input number of factors and the imposed control values of rotation. Although 
mathematical diagnostics for the goodness of model fit and change of Q-values can be used as a 
criterion to investigate the optimal number of factors, the criterion for selecting the optimal 
solution should be determined by the interpretability of the PMF model results. Rotational 
ambiguity is a potential problem with the PMF procedure and can lead to errors in the identified 
source factors, and must be addressed to assure an optimal solution is obtained.   

In the current study, PMF was first performed using the Central LA site data to determine an 
optimal solution and then the model was used to analyze the Riverside data, which contained 
considerably less observations than the Central LA data set.  For the Central LA data, factors 
from 4 through 13 were explored and the results of 5, 6, and 7 factors led to physically 
reasonable sources in regards to the nature of the profiles and source contributions. Each of the 
extracted factors, which were very similar in the different solutions, had a distinctive group of 
associated molecular markers,which were related to a specific source category. The main 
difference between each of 5 and 6 factor models was splitting of the mobile factor in the five-
factor model into two different mobile factors in the six-factor models. Although the second 
mobile factorwas characterized by EC and hopanes, it was not clear that this factor could be 
clearly dominated by a single mobile source. In the seven-factor model, the additional factor that 
emerged was second biomass smoke, whose key chemical species was oleic acid, linoleic acid, 
and linolenic acid.  This source profile could not be adequately associated with a specific 
component of biomass burning.  For this reason, the five-factor model was chosen as the optimal 
solution for the Central LAdata set.  To investigate rotational ambiguity of the Central LA-PMF 
result, the FPEAK parameter was applied using different ranges of values from -1.0 to 1.0 and 
the results were compared to the base case solution. EC consistently contributed to the two SOC 
factors and was interpreted as an error in the derived source profiles. To pull down EC 
concentrations in the profiles, the FKEY matrix was examined by adjusting values from 3 
through 7.  EC in the anthropogenic SOC (SOC1) was completely pulled down without any other 
significant changesin the source profiles and source contributions, but the EC in the biogenic 
SOC (SOC2) factor was not impacted by the FKEY.  The final solution for the Central LA-PMF 
model included the following five factors: mobile source, wood smoke, primary biogenic 
emissions, SOC1, and SOC2.  The PMF derived source contributions of each factor are shown in 
Figure 18.  Figures 19 and 20 present the source profiles derived from the PMF model for the 
five factors in the optimized PMF model.    

The PMF model was also applied to investigate sources of the Riverside organic compounds 
using the same procedure as the Central LA-PMF. Because there was less precision and strength 
of the measurements at Riverside,PM2.5 OC contributions from four, five, and six factor PMF 
solutions were explored. The five factor model and the value of FPEAK=0.0 provided physically 
reasonable solutions. Molecular markers characterizing of each factor in the Riverside profiles 
were very similar to those of the Central LA-PMF profiles and are compared in Figures 21-22. 

Mobile Factor  

Annually, the mobile factor is characterized by high concentrations of hopanes, steranes and EC 
in both downtown and downwind LA. The resolved mobile source profile containslarger 
molecular PAHs, especially benzo(ghi)perylene, which are common in emissions from gasoline 
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powered engines.  Due to the fact that EC and other molecular markers such as hopanes and 
steranes are associated with gas and diesel emission from internal combustion engines [Schauer 
et al., 1996], these molecular markers have been used as indicatorsfor mobile sources in 
numerous CMB model studies. Moreover, the separated molecular markers group, that has far 
less EC and much higher hopanes and heavy-PAHs, has been used as an indicator to split 
different types of mobile emissions in the factor analysis based model because EC is more likely 
to be dominated by diesel emissions. But in this study, the separated mobile profiles are 
insufficient to draw distinctive characterization of mobile emissions.   

The mobile factor contributes 31% and 33% to the ambient OC in Central LA and Riverside, 
respectively (Figures 23-24 and Table 8), and also describes 51% and 14% to the apportioned EC 
and WSOC, respectively, in the downtown LA area (Figure 25). The average source 
contributions to OC from this mobile factor are compared between weekday and weekend in 
Figures 23-25. The high weekday/weekend ratio indicates that this mobile factor is dominated 
from mobile source emissions primarily operating on weekdays. The seasonal patterns for the 
absolute mass fraction of this factor are different between Central LA and Riverside.   

Wood Smoke Factor 

The wood smoke factor is characterized by high contribution of levoglucosan in both sites. 
Levoglucosan was identified as a specific and general molecular marker indicator for wood 
burning [Simoneit et al., 1999]. It has been applied as a unique marker in source profiles for 
many source apportionment studies using the CMB model, and has been used as an indicator for 
the wood smoke source in PMF model studies [Jaeckels et al., 2007; Shrivastava et al., 2007; 
Zhang et al., 2009]. This factor has a strong seasonal pattern at both sites with very high 
contributions occurring in November through February and very low contributions during the 
remaining months (Figures23-24). Comparison of observed levoglucosan as an indicator of wood 
smoke and OC contributions from wood smoke in Central LA and Riverside are plotted in Figure 
26. The temporal patterns of the observed levoglucosan concentrations in Central LA and 
Riverside agree fairly well but the correlation of the PMF resolved source contributions is 
moderate, suggesting the limited number of observations of wood smoke events at the Riverside 
site may be influencing the PMF model and may be insufficient to draw conclusion about daily 
wood smoke contributions at the Riverside site.   

Annually, the wood smoke factor contributes 9% and 9% to the ambient OC in Central LA and 
Riverside, respectively, and contributes 10% and 9% to the ambient EC and WSOC, 
respectively, in Central LA area. 

Primary Biogenic Source 

Several wildfires were observed in the LA air basin during this study period, including the 
Station fire that was the largest wildfire during the fire season[Wonaschütz et al., 2011]. The 
primary biogenic source factor concentration correlated with reported wildfires.  These extreme 
events can have a significant impact on the PMF model and impact the stability of related 
factors. In order to investigate the effect of these extreme observations, the sensitivity of the 
PMF model to these events was evaluated by removing these events from the model.  When the 
forest fires events were removed from the PMF model, the resolved source profiles and average 
source contributions did not change except for the removal of theevent contributions.  Although 
this factor is clearly impacted by the forest fires, the source profile has very little levoglucosan 
and has significant contributions on days when wildfires were not observed.  For this reason, this 
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factor is likely to be impacted by several sources, such as vegetative detritus and meat cooking, 
and is combined in this factor because it is characterized by high contributions of n-alkane and n-
alkanoic acid, especially odd-alkane and odd-alkanonic acid.        

Annually, the primary biogenic emissions factor contributes 19% and 18% to the ambient OC in 
Central LA and Riverside, respectively, and contributes to 16% and 20% to the apportioned EC 
and WSOC, respectively, at the Central LA site. 

Secondary Organic Aerosols Factor 

Two factors of secondary organic aerosols were identified at both sites. The first SOC factor has 
large summer contributions and is characterized by high concentrations of phthalic acid, succinic 
acid, glutaric acid, 2,3-dihydroxy-4-oxopentanoic acid, 3-hydroxyglutaric acid and 2-hydroxy-
4,4-dimethylglutaric acid.  In contrast, the second SOC factor had peak contributions in spring 
and is characterized by high concentrations of pinonic acid, pinic acid andmethylthreitols.  The 
temporal trends of source contributions are very similar between two sites. Pinonic acid and 
methylthreitols, which are formed in the atmosphere from the oxidation of biogenic precursor 
such as α-pinene and isoprene, are used as indicators for biogenic secondary organic aerosols.  In 
contrast, 2,3-dihydroxy-4-oxopentanoic acid and phthalic acid are proposed as indicators of 
anthropogenic secondary organic aerosols[Kleindienst et al., 2007; Sheesley et al., 2004]. Thus 
SOC1 is identified as anthropogenic SOC, and SOC2 indicates biogenic SOC. 

The total annual average SOC factors contribute approximately 41% and 40% to the ambient fine 
OC in Central LA and Riverside, respectively. The SOC factors also account for 16% and 57% 
of the apportioned EC and WSOC respectively, in Central LA site.   

Figure 27 shows the comparison of OC source contributions using the molecular marker PMF 
and CMB for Central LA and Riverside.  Although the year-long average contribution to OC is 
very similar between the two sites, the correlation of daily PMF source contributions is only 
moderate.  Figure 28ashows a strong agreement between the monthly average contribution of OC 
from SOC calculated by the PMF model and the monthly average non-biomass burning WSOC.  
Figure 28b compares the unapportioned OC from the CMB model minus the biogenic source 
derived by the PMF model with non-biomass burning WSOC.  Good agreement is observed for 
all months except August and December, which are the months impacted by forest fires and 
extreme wood smoke events.   
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Figure 18– Molecular marker PMF source contributions to 5-factor model for Central LA 
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Figure 19– Molecular markers PM2.5 source profiles for 5-factor model in Central LA -Group 1 
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Figure 20– Molecular markers PM2.5 source profiles for 5-factor model in Central LA - Group 2 
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Figure 21– Comparison of molecular marker PMF source profiles for PM2.5 OC for Central LA and Riverside sites -Group 1 
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Figure 22– Comparison of molecular marker PMF source profiles for PM2.5 OC for Central LA and Riverside Sites - Group 2 
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Figure 23– Monthly average molecular marker PMF model apportionment results for Central LA 
and Riverside 



51 
 

W
ee

kd
ay

W
ee

ke
nd

W
ee

kd
ay

W
ee

ke
nd

Riverside

M
ay

 2
00

9
Ju

n 
20

09
Ju

l 2
00

9
A

ug
 2

00
9

S
ep

 2
00

9
O

ct
 2

00
9

N
ov

 2
00

9
D

ec
 2

00
9

Ja
n 

20
10

Fe
b 

20
10

M
ar

 2
01

0
A

pr
 2

01
0

A
bs

ol
ut

e 
O

C
 fr

ac
tio

n 
(%

)

0

20

40

60

80

100
Mobile
Wood Smoke
Primary Bigenic
SOC 1
SOC 2

Central LA

M
ay

 2
00

9
Ju

n 
20

09
Ju

l 2
00

9
A

ug
 2

00
9

S
ep

 2
00

9
O

ct
 2

00
9

N
ov

 2
00

9
D

ec
 2

00
9

Ja
n 

20
10

Fe
b 

20
10

M
ar

 2
01

0
A

pr
 2

01
0

A
bs

ol
ut

e 
O

C
 fr

ac
tio

n 
(%

)

0

20

40

60

80

100
Mobile
Wood Smoke
Primary Biogenic
SOC 1
SOC 2

 

Figure 24– Relative monthly average molecular marker PMF model apportionment results for 
PM2.5 OC Central LA and Riverside 
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Figure 25– Relative monthly average molecular marker PMF model apportionment results for 
PM2.5 EC and WSOC Central LA and Riverside 
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Table 8.Monthly source contributions to PM2.5 OC deduced from PMF [(mean (+- standard error), unit; microgram per cubic meters] 

Site Month Samples Mobile Wood Smoke Primary Biogenic SOC 1 SOC 2 

Central 
LA 

May-2009 28 0.33 (+- 0.06) 0.01 (+- 0.00) 0.93 (+- 0.08) 0.94 (+- 0.17) 0.35 (+- 0.05) 
Jun-2009 28 0.20 (+- 0.02) 0.00 (+- 0.00) 0.51 (+- 0.03) 0.77 (+- 0.09) 0.66 (+- 0.04) 
Jul-2009 31 0.42 (+- 0.08) 0.02 (+- 0.00) 0.72 (+- 0.08) 0.81 (+- 0.06) 0.72 (+- 0.07) 

Aug-2009 20a) 0.51 (+- 0.16) 0.03 (+- 0.01) 1.01 (+- 0.19) 1.18 (+- 0.17) 0.53 (+- 0.10) 
Sep-2009 26a) 0.93 (+- 0.21) 0.05 (+- 0.02) 0.47 (+- 0.10) 1.29 (+- 0.18) 0.76 (+- 0.08) 
Oct-2009 29 1.40 (+- 0.21) 0.26 (+- 0.05) 0.67 (+- 0.07) 0.76 (+- 0.17) 1.02 (+- 0.09) 
Nov-2009 28 2.27 (+- 0.27) 0.78 (+- 0.12) 1.03 (+- 0.08) 0.57 (+- 0.13) 0.98 (+- 0.09) 
Dec-2009 25b) 1.76 (+- 0.18) 1.34 (+- 0.20) 1.01 (+- 0.12) 0.18 (+- 0.04) 0.73 (+- 0.09) 
Jan-2010 26b) 2.38 (+- 0.26) 1.20 (+- 0.13) 0.82 (+- 0.09) 0.24 (+- 0.04) 0.98 (+- 0.09) 
Feb-2010 27 1.85 (+- 0.22) 0.47 (+- 0.10) 0.67 (+- 0.08) 0.37 (+- 0.10) 1.04 (+- 0.07) 
Mar-2010 26 1.15 (+- 0.15) 0.09 (+- 0.03) 0.38 (+- 0.06) 0.36 (+- 0.08) 1.44 (+- 0.10) 
Apr-2010 27 0.45 (+- 0.11) 0.02 (+- 0.01) 0.26 (+- 0.03) 0.44 (+- 0.11) 1.21 (+- 0.06) 

All study period 321 1.13 (+- 0.07) 0.35 (+- 0.04) 0.70 (+- 0.03) 0.65 (+- 0.04) 0.87 (+- 0.03) 

Riverside 

May-2009 4 1.53 (+- 0.37) 0.07 (+- 0.03) 1.45 (+- 0.60) 1.37 (+- 0.42) 0.10 (+- 0.02) 
Jun-2009 5 0.80 (+- 0.23) 0.12 (+- 0.09) 0.24 (+- 0.10) 1.66 (+- 0.52) 0.13 (+- 0.02) 
Jul-2009 5 0.71 (+- 0.16) 0.03 (+- 0.02) 0.39 (+- 0.13) 2.55 (+- 0.15) 0.22 (+- 0.06) 

Aug-2009 3c) 0.55 (+- 0.11) 0.03 (+- 0.02) 1.06 (+- 0.31) 1.65 (+- 0.48) 0.28 (+- 0.09) 
Sep-2009 4c) 1.85 (+- 0.35) 0.05 (+- 0.02) 0.71 (+- 0.06) 1.46 (+- 0.38) 0.41 (+- 0.10) 
Oct-2009 5 0.77 (+- 0.31) 0.05 (+- 0.03) 0.58 (+- 0.12) 0.39 (+- 0.24) 0.38 (+- 0.18) 
Nov-2009 5 1.56 (+- 0.63) 0.37 (+- 0.07) 0.64 (+- 0.16) 0.38 (+- 0.20) 0.44 (+- 0.07) 
Dec-2009 4d) 1.32 (+- 0.49) 1.04 (+- 0.29) 0.56 (+- 0.13) 0.06 (+- 0.04) 0.32 (+- 0.07) 
Jan-2010 5 0.97 (+- 0.58) 0.67 (+- 0.26) 0.36 (+- 0.10) 0.08 (+- 0.08) 0.22 (+- 0.09) 
Feb-2010 5 0.90 (+- 0.45) 0.52 (+- 0.11) 0.59 (+- 0.17) 0.27 (+- 0.07) 0.25 (+- 0.07) 
Mar-2010 5 0.37 (+- 0.11) 0.18 (+- 0.04) 0.30 (+- 0.10) 0.19 (+- 0.14) 0.96 (+- 0.36) 
Apr-2010 5 1.25 (+- 0.19) 0.06 (+- 0.01) 0.13 (+- 0.04) 0.60 (+- 0.43) 0.81 (+- 0.15) 

All study period 55 1.04 (+- 0.11) 0.27 (+- 0.05) 0.55 (+- 0.07) 0.86 (+- 0.13) 0.39 (+- 0.05) 
a) averaged without possible forest fires events including from 8/15/2009 through 8/19/2009 and from 8/26/2009 through 9/4/2009 
b) averaged without high wood smoke days including from 12/25/2009 through 12/27/2009, 12/31/2009 and 1/1/2010 
c) averaged without possible forest events including 8/17/2009, 8/29/2009, and 9/4/2009 
d) averaged without high wood smoke days including 12/27/2009 
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Figure 26– Comparison of OC source contributions from the molecular marker PMF model for 
Central LA and Riverside 
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Figure 27adcd –Comparison of monthly apportionment from the molecular marker PMF and CMB for Central LA 
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Figure 28ab –Comparison of monthly apportionment from the molecular marker PMF and CMB for Central LA 
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3.2.3 UNMIX method 
For the UNMIX model, 341 observations and 32 key molecular markers were used to investigate 
source contributions to the PM2.5 OC at the Central LA, and a total of 59 samples and 28 key 
species were available at the Riverside site. The UNMIX model results indicate that similar 
source categories are obtained for both sites and each of the UNMIX deduced factors is the same 
as each of the PMF resolved source categories. Five source categories were identified providing 
reasonably stable profiles: 1) mobile with high composition of EC and hopanes; 2) wood smoke 
with high composition of levoglucosan; 3) primary biogenic with high composition of odd-
numbered alkanes, especially nonacosane and hentriacontane, and n-alkanoic acids; 4) 
anthropogenic related SOC with high phthalic acid concentrations; and 5) biogenic related SOC 
with high pinonic acid concentrations. Annual average source contributions to the total PM2.5 
OC mass at the Central LA were as follows:  24% mobile, 6%  wood smoke, 17% primary 
biogenic emission, 34% anthropogenic SOC, and 19% biogenic SOC from the UNMIX. For the 
Riverside site, mobile, wood smoke, primary biogenic emission, anthropogenic SOC, and 
biogenic SOC contributed approximately 30%, 6%, 16%, 31%, and 16%, respectively. The 
UNMIX model is insufficient in separating mobile emission into gasoline and diesel vehicles. As 
shown in Figure 29, the daily temporal trends derived from the UNMIX and PMF models at the 
Central LA site are in good agreement with each other, but there are some days with poorer 
agreement.  Due to the fact that the PMF model uses more organic molecular markers than the 
UNMIX model, the PMF model can do a better job addressing atmospheric aging represented by 
oxidized organic compounds. 
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Figure 29– Comparison of molecular marker PMF and UNMIX source contributions to 5-factor model for Central LA 
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3.2.4 Iterated Confirmatory Factor Analysis 
Two boundary scenarios, rigid boundaries with +/- 2 times uncertainty and looser boundaries 
with +/- 5 times uncertainty, were explored to constrain elements of source profiles for the 
Central LA data.  The ICFA estimate of the species was often outside of the starting value of the 
boundaries when using relatively rigid boundaries, representing that this scenario could not 
provide a best model fit.  By using looser boundaries for constraining the profiles, elements 
estimated from PMF and elements with no a priori information about the profile elements of 
CMB (e.g., the non-identified elements of the diesel, gasoline, and smoking vehicle profile) were 
more likely located within boundaries, indicating better model fit.  For this reason, we used the 
ICFA based on the looser boundaries in this analysis.   

Figure 30 shows the daily mobile source contributions to the total PM2.5 OC deduced from 
CMB, PMF, and ICFA.  Although there are some days with poorer agreement, good agreement 
between the daily trends of total mobile source contributions for MM-ICFA, MM-CMB, and 
MM-PMF are observed.  On an annual average, the MM-CMB and MM-PMF models show very 
good agreement for the contribution of total mobile sources to PM2.5 OC of 30%, and 
reasonable agreement with the MM-ICFA mobile source contributes to PM2.5 OC of 23%.  
Figure 31 shows comparison of daily source contributions for the MM-CMB, MM-PMF, and 
MM-ICFA.  There is very good agreement between daily source contributions of wood smoke, 
SOC 1 and 2 from the MM-PMF and MM-ICFA.  The split of mobile sources between gasoline, 
diesel, and smoking engines from the MM-CMB and MM-ICFA models exhibit different 
distributions.  Given the uncertainty in the split between gasoline, diesel, and smoking vehicles 
in MM-CMB models, it is difficult to fully evaluate the accuracy of the MM-ICFA results, but 
the MM-ICFA results appear to agree with some previous estimates of the gasoline and diesel 
split.  Future sensitivity analyses and application of multi-variant models are needed to better 
evaluate the accuracy and stability of the MM-ICFA results obtained in the current study.  
Nonetheless, the results demonstrate a viable pathway to further advance the relative 
understanding of gasoline and diesel engines source contributions in atmospheric aerosols.    
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Figure 30– Mobile source comparison for molecular marker ICFA, PMF, and CMB (ICFA is black, PMF is blue, and CMB is red) 
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Figure 31– Comparison of molecular marker ICFA, PMF, and CMB source contribution (ICFA is black, PMF is blue, and CMB is 
red) 



62 
 

3.2.5 Potential Source Contribution Function 
Figure32shows the sampling locations for this study using anelevation map of the southern US, 
and Figure 33 shows cluster mean results of the total trajectories arriving at the Central LA site 
during the entire study period. The main advection patterns of air masses are characterized at 500 
m: local circulation of southeasterly flows with the relatively long air mass residence time (46%), 
westerly flows with the relatively long air mass residence time (31%), northeasterly flows of 
clockwise curvature with the relatively short air mass residence time (17%), and northwesterly 
flows with the long-range transported air masses (6%).  

Areas of high probability for emissions of the anthropogenic SOC source, resolved by PSCF 
analysis appear to be located along the Central Valley and the South Coast Air Basin in 
California as seen in Figure 34. These indentified potential source regions are well matched with 
the high anthropogenic emission potentials, such as mobiles and stationary emission sources, in 
the area. In contrast, the PSCF plot for the biogenic SOC source indicates there is high 
probability of emissions from northeast of the sampling site.  Northeast of the sampling site is a 
broad distribution from rural and forested areas (Figure 35). The PSCF map shows in Figure 36 a 
high density of primary biogenic emissions located in the Central Valley and the South Coast Air 
Basin.  A primary biogenic hotspot area appears to be across the San Joaquin Valley and in the 
vicinity of the Central LA (i.e., the Angeles National Forest). These high potential source areas 
correspond to known wildfire regions and other primary biogenic emissions.  These primary 
biogenic emissions include possible soil debris and vegetative detritus. When the PSCF model 
for the primary biogenic source was applied using threshold criterion of upper 10% of source 
contributions (i.e., approximately 34 days of the total samples), there is good agreement between 
forest fire activities detected by MODIS from January 2009 through December 2009, and the 
identified potential source locations as seen Figures37 and 40. The PSCF maps for the wood 
smoke source and mobile source show the potential source areas for both sources are located 
along the northwestern inlands areas, especially in and around Death Valley, as seen in 
Figures38 and 39. While these identified source locations can increase the source contributions 
to the PM2.5 OC at the Central LA site, it is more likely to be representing advection of air 
masses than the results of known emission areas, due to the fact that localized emission regions 
in the urban area are not captured by the PSCF maps. Since multi-day single trajectory 
techniques are too coarse to resolve the local scale emission sources including mobile and wood 
smoke, there is a need for applying a multiple-particle trajectories method such as FLEXPART 
[Stohl et al., 2005] coupled with fine meteorological data (i.e., MM5 or WRF simulations).   

Overall, while backward trajectories simulated by 40 kilometer gridded meteorological data 
could not show fine spatial resolution to identify localized emission sources, the identified source 
regions from the PSCF model support the conclusion that the PMF resolved source profiles for 
the PM2.5 OC are properly separated in the present analysis.    

 



63 
 

 

Figure 32– Sampling locations and elevation map of the southern US 
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Figure 33– Cluster mean results for the total trajectories arriving at the Central LA site 
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Figure 34– Areas of high probability of the anthropogenic SOC emissions as indentified in the potential source contribution function 
(PSCF) analysis for the Central LA 
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Figure 35– Areas of high probability of the biogenic SOC emissions as indentified in the PSCF analysis for the Central LA 
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Figure 36– Areas of high probability of the primary biogenic source emissions as indentified in the PSCF analysis using threshold of 
average for the Central LA 
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Figure 37– Areas of high probability of the primary biogenic source emissions as indentified in the PSCF analysis using threshold of 
upper 10% for the Central LA 
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Figure 38– Areas of high probability of the wood smoke emissions as indentified in the PSCF analysis for the Central LA 
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Figure 39– Areas of high probability of the mobile emissions as indentified in the PSCF analysis for the Central LA 
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Figure 40– Fire counts (upper) and density mapping with temperature (bottom) detected by the 
moderate resolution imaging spectroradiometer (MODIS) from January 2009 through December 
2010 
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3.3 Water Soluble Organic Nitrogen 

As seen in Figures30 and 31, a significant amount of variability in total water soluble nitrogen 
(TN) was observed at the Central LA and Riverside study locations. Considerable variability in 
both water soluble inorganic nitrogen (Nx) and water soluble organic nitrogen (WSON) was 
observed at both sites. WSON constituted, on average, 21.7 % of TN observed at Riverside and 
comprised as much as 84.9 % and as little as 4.1 % of TN. Observed molar concentrations of 
WSON averaged 0.045 µmol m-3. The maximum observed concentration of WSON at the 
Riverside site was 0.344 µmol m-3 (Table 9). 

Concentrations of water-soluble nitrogen species at Riverside were generally higher than those 
observed in Central LA where WSON comprised 19.5% of TN. At the Central LA study site, 
WSON ranged from 0.090 to 0.001 µmol m-3 and comprised from 66.5% to 1.2% of TN (Table 
10). While significant variability in the concentration of water-soluble nitrogen species was 
observed, with the exception of a few peak events, the organic fraction of water-soluble nitrogen 
at both sites remained fairly consistent and comparable to those observed in previous studies of 
nitrogenous aerosols.  

A comparison between the temporal trends in WSON and those of bulk chemical species (Figure 
32) for Riverside reveals a strong correlation between WSON and Nx (r2 = 0.86) with no 
significant correlations observed between WSON and carbonaceous species WSOC and OC. 
Likewise, a strong correlation between WSON and Nx was observed at Central LA (r2 = 0.77 
excluding one outlier), a weak correlation between WSON and WSOC (r2 = 0.40), and no 
correlation between WSON and OC (Figure 33).  

Correlations between WSON and inorganic nitrogen species such as nitrate and ammonium have 
been observed previously in precipitation samples [Cornell et al., 1995; Jassby et al., 1994; 
Knap et al., 1986; Russell et al., 1998], and the correlations between WSON and Nx seen in 
these data suggest that the organic nitrogen observed at both sites may be the result of secondary 
organic aerosol formation, although no correlation between WSON and the OC/EC ratio (a 
general metric of secondary OC formation) was observed at either site (Figures32d and 33d). 

A statistical analysis of organic carbon apportioned to source factors determined by the PMF 
analysis and WSON concentrations was performed. Pearson product-moment correlation 
coefficients were determined for annual and seasonal comparisons between WSON and OC 
attributed to the five source factors identified by the PMF model, designated as mobile source, 
wood smoke, forest fire, secondary organic aerosol 1 (SOC 1), and secondary organic aerosol 2 
(SOC 2).  Results of these analyses can be found in Tables 10 and 11. For comparison purposes, 
correlation coefficients were also determined between WSON, Nx, and WSOC. 

Not surprisingly, WSON was most closely correlated with Nx at both Riverside (r = 0.928, p 
<0.001) and Central LA (r = 0.778, P < 0.001). The correlations between WSON and the 
secondary aerosols factor SOC 1 were also significant at Riverside (r = 0.495, p < 0.001). This 
correlation was strongest in the summer (r = 0.719, p = 0.003) and winter months (r = 0.882, p = 
0.02). WSON was also significantly correlated with SOC 2 during the winter months (r = 0.823, 
p = 0.04) and anti-correlated with SOC 2 during the summer months (r = -0.592, p = 0.03) in 
Riverside. WSON and SOC 1 were also most significantly correlated in summer (r = 0.871, p < 
0.001) and winter months (r = 0.758, p = 0.002) in Central LA.  
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In addition to the secondary organic aerosol factors, some correlations between organic nitrogen 
and the forest fire factor were observed at Riverside in the winter (r = 0.804, p = 0.009) and at 
Central LA during both the winter (r = 0.670, p = 0.009) and the spring of 2010 (r = 0.996, p = 
0.004), although the sample size for this spring period was small (n = 4).  The California 
Department of Forestry and Fire Protection reported no significant wildfires in the Los Angeles 
Basin during these periods, suggesting this factor may characterize additional/alternate sources 
of organic aerosol. 

The results of these analyses, while not conclusive, suggest that fine particulate water-soluble 
organic nitrogen in the Los Angeles Basin is primarily a result of the photo-oxidation of biogenic 
and/or anthropogenic emissions. Furthermore, the nature of the correlations between WSON and 
Nx and those between WSON and SOC appear to indicate that the photo-chemical processes 
which produce nitrate and ammonium are an important year-round source of organic nitrogen to 
the Basin, while those that produce SOC are a more seasonal contributor. The relative 
contribution of each source is currently unclear as water-soluble organic nitrogen is not 
necessarily elevated during periods in which SOC and WSON are significantly correlated.  

This work represents an initial step in understanding how the sources of fine particulate organic 
matter influence the levels of organic nitrogen observed in the Los Angeles Basin. Additional 
studies will be required before organic nitrogen can be robustly apportioned. Critical steps along 
the path to a functional organic nitrogen source-apportionment model include obtaining a more 
thorough understanding of the primary sources of organic nitrogen and the sources of secondary 
organic nitrogen precursors. The focus of much current and past work on organic aerosols has 
been on understanding the sources of organic carbon; however, given the significance of nitrogen 
deposition to the eutrophication of soils and aquatic systems and concerns over the health 
impacts of nitrogenous organic compounds, a more thorough understanding of  organic nitrogen 
sources are warranted. 
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Figure 41– Concentrations of PM2.5 water soluble organic nitrogen (WSON) at the Riverside 
site 
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Figure 42– Concentrations of PM2.5 WSON at the Central LA site 
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Figure 43– Relationship of PM2.5 WSON and PM2.5 N, WSOC, OC, and EC in Riverside 
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Figure 44– Relationship of PM2.5 WSON and PM2.5 N, WSON, OC, and EC in Central LA 
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Table 9.Speciation of water-soluble nitrogen contained in PM2.5 - Riverside and Central LA, CA 
based on 24-hour filter-based measurements. Numbers in parenthesis represent the percent of 
total water soluble nitrogen (TN) represented by the species 

Site Species Arithmetic Mean  
(µmol m-3) Max (µmol m-3) Min (µmol m-3) 

Riverside 
TN  0.198 0.588 0.022 
Nx 0.154 (78.3) 0.495 (95.9) 0.017 (15.1) 

WSON  0.045 (21.7) 0.344 (84.9) 0.029 (4.1) 

Central 
LA 

TN  0.145 0.464 0.027 
Nx 0.118 (80.5) 0.374 (98.8) 0.016 (33.5) 

WSON  0.026 (19.5) 0.090 (66.5) 0.001 (1.2) 
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Table 10.Pearson correlations between observed WSON and NX, WSOC, and PMF source factors determined for Riverside CA. Bold 
values represent statistically significant correlations (value: Correlation Coefficients (p-value)) 

  All study period Spring 2009 Summer 2009 Fall 2009 Winter 2009 Spring 2010 
Number of Samples 46 7 14 12 9 4 
Nx 0.93 ( <0.001) 0.94 ( <0.001) 0.91 ( <0.001) 0.97 ( <0.001) 0.97 ( <0.001) 0.96 ( 0.010) 
WSOC 0.41 ( 0.004) 0.27 ( 0.500) 0.48 ( 0.800) 0.75 ( 0.003) 0.81 ( 0.004) 0.91 ( 0.020) 
Mobile -0.42 ( 0.005) -0.37 ( 0.400) -0.41 ( 0.100) -0.44 ( 0.200) 0.39 ( 0.300) -0.36 ( 0.600) 
Wood Smoke 0.08 ( 0.600) 0.74 ( 0.060) -0.38 ( 0.200) 0.30 ( 0.300) -0.19 ( 0.600) -0.60 ( 0.400) 
Primary Biogenic 0.23 ( 0.100) 0.48 ( 0.300) 0.23 ( 0.400) 0.36 ( 0.200) 0.80 ( 0.009) -0.27 ( 0.700) 
SOC 1 0.50 ( <0.001) 0.74 ( 0.600) 0.72 ( 0.003) 0.30 ( 0.300) 0.88 ( 0.020)* 0.91 ( 0.090) 
SOC 2 -0.14 ( 0.400) -0.19 ( 0.700) -0.59 ( 0.030) 0.10 ( 0.700) 0.82 ( 0.040)* -0.11 ( 0.900) 
*Excludes extreme WSON events 

 

Table 11. Pearson correlations between observed WSON and NX, WSOC, and PMF source factors determined for Central LA CA. 
Bold values represent statistically significant correlations (value: Correlation Coefficients (p-value)) 

  All study period Spring 2009 Summer 2009 Fall 2009 Winter 2009 Spring 2010 
Number of Samples 54 9 15 12 14 4 
Nx 0.78 ( <0.001) 0.70 ( 0.030) 0.81 ( <0.001) 0.90 ( <0.001) 0.94 ( <0.001) -0.13 ( 0.800) 
WSOC 0.66 ( <0.001) 0.75 ( 0.020) 0.55 ( 0.030) 0.82 ( 0.001) 0.76 ( 0.002) 0.57 ( 0.400) 
Mobile 0.29 ( 0.030) -0.08 ( 0.800) -0.24 ( 0.400) 0.07 ( 0.800) 0.43 ( 0.100) 0.99 ( 0.010) 
Wood Smoke 0.14 ( 0.300) 0.01 ( 1.000) -0.24 ( 0.400) 0.27 ( 0.400) -0.14 ( 0.600) 0.91 ( 0.900) 
Primary Biogenic 0.35 ( 0.010) -0.03 ( 1.000) 0.25 ( 0.400) 0.37 ( 0.200) 0.67 ( 0.009) 1.00 ( 0.004) 
SOC 1 0.39 ( 0.030) 0.16 ( 0.700) 0.87 ( <0.001) 0.56 ( 0.060) 0.76 ( 0.002) 0.06 ( 0.900) 
SOC 2 -0.02 ( 0.900) -0.59 ( 0.100) -0.72 ( 0.003) 0.14 ( 0.700) 0.06 ( 0.800) 0.99 ( 0.010) 
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4. Summary and Conclusions 
This study advances the scientific tools used to understand the sources of organic aerosols and 
applies these tools to understand the trends in sources of organic aerosol in Southern California.  
The results have important implications to air quality management in four key areas: 1) source 
allocation of organic aerosols, 2) reducing concentrations of organic aerosols during high 
particulate matter days in Southern California, 3) reducing the annual average organic aerosol 
concentrations in Southern California, and 4) the design of atmospheric chemistry and health 
effects studies that seek to understand the sources and impacts of SOC.   These results should be 
used to design better monitoring efforts to understand the sources of organic aerosols that lead to 
unacceptable short term and long term human exposures to organic aerosols such that better 
control strategies can be developed to protect public health and for accountability of air quality 
management interventions.   

The study shows that the apportionment of mobile source emissions and biomass burning with 
molecular marker chemical mass balance models are accurate and should be used more routinely 
to study the sources of organic aerosols during short-term and long-term conditions of 
unacceptable air quality.  The molecular marker based CMB models, however, do not accurately 
quantify SOC.  Therefore, alternative methods such as non-biomass burning water soluble 
organic carbon (WSOC)or molecular marker PMF models should be used to determine SOC 
concentrations.  Although some studies in the past suggested the ability to accurately distinguish 
gasoline and diesel vehicle emissions and other subsets of mobile source tailpipe emissions with 
organic tracers, the current study further demonstrates that the apportionment of mobile source 
subcategories is highly uncertain.  Finally, the study clearly demonstrates that forest fire 
emissions are chemically very different from wood burning and the source profiles from wood 
burning should not be used to represent forest fires when assessing the impact of forest fire on 
particulate matter emissions.   

Southern California experiences a number of days with very high organic carbon concentrations 
that result from local biomass burning, forest fires, and secondary organic aerosols.  During the 
one year sampling program, thirteen days had OC concentrations greater than 8.0 µg per cubic 
meter of OC, which is approximately14-15 µg per cubic meter of organic compound mass.  Of 
these 13 days, five were the very high wood smoke days, three had high wood smoke 
concentrations, three were impacted by forest fires, and only two of these days were not 
impacted by forest fires or high wood smoke events.  Although forest fires can be considered 
outside the scope of local air quality regulation, the extreme events due to local wood smoke 
needs to be better tracked and mitigated in Southern California.   

On an annual average, the CMB and PMF models show good agreement for the contribution of 
mobile sources and biomass smoke to PM2.5 OC of 30% and 10%, respectively.  However, the 
remaining 60% of the OC from the CMB model, which has historically been assumed to be 
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dominated by SOC, was much larger than the SOC estimated from the PMF model.  PMF 
estimated the remaining OC to be approximately40% SOC and 20% primary biogenic material 
from sources that include forest fires and is believed to include food cooking emissions.  The 
SOC estimates from the PMF model were in good agreement with non-biomass burning WSOC, 
which has been shown in the past as a robust estimate of SOC.  SOC concentrations have a 
seasonal trend that reach a maximum in late spring and early summer of about 60%, and a 
minimum in December of around 20%.  It is important to note that the primary biogenic source, 
which peaks in days with large forest fires, is very different from the biomass burning source.  In 
addition, the CMB model was able to quantify vegetative detritus, which was only a very small 
component of the primary biogenic source.   

The study demonstrates that the relative composition and sources of SOC varies with season and 
the short intensive studies that seek to study the chemistry of SOC formation are unlikely to be 
representative of all periods when SOC is important to OC concentrations in Southern California.  
Future studies that seek to characterize the chemistry, precursors, and impacts of SOC in 
Southern California need to examine seasonal differences in SOC to assure future control 
strategies to mitigate SOC and organic aerosol concentrations are effective at all times of the 
year.    
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5. Recommendations 
 

1) The measurement of molecular markers in Southern California and other regions in California 
that do not comply with fine particle regulations should be conducted as part of routine 
monitoring programs to better quantify the impacts of wood smoke and mobile sources during 
extreme events and to characterize the year to year trends as a means of accountability.   

2) Effort should be directed at mitigating extreme wood smoke events in winter periods that lead 
to very high exposures to organic aerosols. 

3) Given the emerging evidence concerning the health effect of carbonaceous aerosols, more 
emphasis should be directed at reducing the sources of organic aerosols in the context of 
reducing fine particulate matter concentrations and protecting human health. 

4) Future efforts to study SOC should not only focus on summer SOC as SOC is an important 
contributor in spring and fall and is shown to have different composition and sources across 
seasons. 
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