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Abstract 
 

The monitoring of pollutants and greenhouse gases is crucial to support efforts by the State of 
California to improve air quality and combat climate change. Two remote sensing methods, a 
multi-axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and a Fourier 
Transform Spectrometer (CLARS-FTS) to monitor pollutants and greenhouse gases, were 
developed and deployed at JPL’s California Laboratory for Atmospheric Remote Sensing 
(CLARS) on Mt. Wilson (1673 meters asl) to scan the Los Angeles Basin. A version of the 
regional air quality model WRF-Chem for the LA basin was developed and validated for the 
2010 CalNex experiment.  

Vertical profiles of NO2 concentrations and aerosol extinction were retrieved from the MAX-
DOAS observations. MAX-DOAS HCHO/NO2 ratios show a decreased VOC sensitivity during 
the weekends compared to weekdays due to lower NO2 levels on the weekends, in agreement 
with WRF-Chem results. Elevated CH4:CO2 ratios were observed in west Pasadena and in the 
eastern LA basin by the CLARS-FTS. The annual basin total top-down CH4 emissions was 
derived to be 0.39±0.06 Tg CH4 per year, significantly larger than the bottom-up emissions. The 
preliminary annual top-down CO2 emissions of 211±12 Tg CO2/year in 2011, 230±12 Tg 
CO2/year in 2012, 212±11 Tg CO2/year in 2013, and 204±10 Tg CO2/year in 2014, were about 
10-15% greater than the CARB bottom-up CO2 emissions in 2012. 
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1. Executive Summary 

The Los Angeles basin remains one of the most polluted areas in the U.S. Air quality in the 
LA basin has been studied for several decades and observational networks as well as regulation 
policies have been put in place to alleviate its impact on human health. It has also been 
recognized that megacities, such as Los Angeles, contribute substantially to the emission of 
greenhouse gases and thus regional and global climate change. However, the policies to mitigate 
global and regional climate change have just begun to emerge, with the State of California’s 
Assembly bill AB32 at the forefront of these efforts in the U.S. Human activities and the 
associated emissions of ozone and aerosol precursors as well as greenhouse gases are the main 
cause of these environmental challenges. The monitoring of the atmospheric concentrations of 
the various trace gas as well their emission rates is thus a crucial undertaking, in particular over 
long time periods. In the case of pollutants, a network of surface stations has been established 
that provides point measurements distributed across the LA Basin. Despite the success in 
improving air quality these networks are still sparse and do not provide information of the 
vertical distribution of trace gases, which would allow a much better description of the total trace 
gas amounts and emissions. For greenhouse gases, the problem is direr as a monitoring network 
does not exist and only a few studies have focused on urban areas.  

The goal of our proposal was to develop two remote sensing methods that address these 
challenges and perform long-term measurements in the Los Angeles Basin. Both methods rely on 
the remote sensing of trace gases, one in the UV – visible wavelength range measuring NO2, 
HCHO, and aerosols, the other in the near IR measuring CO2, CH4, and CO. Both systems were 
located at JPL’s California Laboratory for Atmospheric Remote Sensing (CLARS) on Mt. 
Wilson, California. The UV-vis multi-axis Differential Optical Absorption Spectroscopy 
instrument, has been operational since Spring 2010, measuring path-integrated concentrations, 
i.e. slant column densities, of pollutants such as NO2, HCHO, as well as aerosol extinction in the 
wavelength range from 300-530nm. The instrument samples  8 consecutive elevation angles, 
from +6 to -10 degrees in 5 azimuth directions from CLARS. We developed several tools to 
analyze and interpret this long-term data set of over one million measurements. A cloud sorting 
algorithm was developed to identify measurements that are impacted by clouds above or below 
Mt. Wilson. To convert the trace gas slant column densities into concentrations and aerosol 
extinction vertical profiles, we implemented a fast radiative transfer model (RTM) that allows for 
the simulation of the effective light path through the atmosphere. The RTM was combined with a 
two-stage non-linear / linear optimal estimation inversion to derive aerosol extinction profiles 
followed by the determination of trace gas profiles. To ensure that this novel approach is indeed 
able to retrieve the vertical aerosol and trace gas profiles with sufficient accuracy, an information 
content analysis for our Mt. Wilson observational strategy was performed. In general we found 
that the remote sensing from a mountaintop approach can derive 3-4 pieces of information on 
aerosol extinction, which means that averaged extinction in 3-4 height intervals in the lower 2 
km can be derived if no other information, such as boundary layer height, is included in the 
retrieval. For NO2 five pieces of information can be retrieved, which translates into a profile with 
at least a 400-500 m vertical resolution. In both cases the retrieval will be able to at least 
determine the boundary layer average and in the case of NO2 typically provide two data points in 
the boundary layer. Example retrievals show a clear identification of the boundary layer and the 
higher aerosol and NO2 levels in the boundary layer compared to aloft. Based on this 
encouraging analysis we proceeded to derive vertical profiles of NO2 and aerosol extinction for 
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LA for a 4 year period. This data is available for model testing and to follow trends in trace gas 
and aerosol levels. Our original proposal also included analysis of SO2 and glyoxal. However, 
we found that SO2 was below our detection limit, confirming the findings of the ClaNex field 
experiment during which we observed that SO2 mixing ratios rarely exceeded 0.5 ppb. The 
analysis of glyoxal, which is considerably more challenging than those of NO2 and HCHO, is 
ongoing. However mixing ratios are also expected to be rather low. 

An exciting new application of our observations is the use of the HCHO/NO2 ratio to study 
the long-term trend of the VOC/NOx sensitivity of ozone formation in the LA Basin. Based on 
observations from the CalNex ground site, we have determined the HCHO/NO2 cross-over point 
between VOC and NOx limited ozone formation. The daily averaged HCHO/NO2 ratios from Mt. 
Wilson show a clear pattern with higher ratios, indicative of decreased VOC sensitivity, during 
the weekends, and lower ratios during the weekdays. The monthly averaged NO2 and HCHO 
DSCDs from Mt. Wilson from 2011-2013 show that this weekend effect is caused by lower NO2 
levels on the weekends. The data also shows a decrease in monthly averaged NO2 slant column 
densities during weekdays, while weekend NO2 does not seem to decrease as much. This trend, 
however, is not reflected in the long-term trend of HCHO/NO2 ratios. 

A new Fourier Transform Spectrometer called CLARS-FTS has been taking measurements 
since May 2010) on Mt. Wilson. From its mountaintop location at an altitude of 1673 meters, the 
instrument points at a programmed sequence of 28 ground target locations in the LA basin, 
recording spectra of reflected near-IR solar radiation. Column-averaged dry-air mole fractions of 
greenhouse gases (XGHG) including XCO2, XCH4, and XCO are retrieved several times per day 
for each target, with best precisions of 0.16%, 0.26% and 4.10% for XCO2, XCH4, and XCO 
respectively. Spectra from a local Spectralon scattering plate are also recorded to determine 
background (free tropospheric) column abundances above the site, with precisions of 0.09%, 
0.14% and 1.94% for XCO2, XCH4, and XCO respectively. Comparisons between measurements 
from LA basin targets and the Spectralon plate provide estimates of the boundary layer partial 
column abundances of the measured species. Using two years of observations acquired between 
September 2011 and October 2013, we derived maps of CH4:CO2 in the basin. Significant spatial 
and seasonal variability were observed due to varying emission patterns and atmospheric 
transport. A two-year integrated map of CH4:CO2 showed an elevated CH4:CO2 ratio in west 
Pasadena and in the eastern LA basin. Using the basin average CH4:CO2 ratio and the bottom-up 
CO2 emissions for the basin, we derived the annual basin total top-down CH4 emissions to be 
0.39±0.06 Tg CH4 per year, which is significantly larger than the bottom-up emissions. Using 
more than three years of observations acquired between September 2011 and October 2014, we 
derived maps of CO:CO2 in the basin. A three-year integrated map of CO:CO2 showed an 
elevated ratio in western Los Angeles basin. Larger CO:CO2 ratios were observed in summer 
compared to winter. Further investigation using an atmospheric transport model is essential to 
disentangle emission from transport processes. Using the annual trend of CO:CO2 ratio observed 
by the FTS and the bottom-up CO emissions, we derived the annual top-down CO2 emissions of 
211±12 Tg CO2/ year in 2011, 230±12 Tg CO2/ year in 2012, 212±11 Tg CO2/ year in 2013, and 
204±10 Tg CO2/ year in 2014. The top-down CO2 emissions were about 10-15% greater than the 
CARB bottom-up CO2 emissions in 2012. Spatial and temporal patterns of XCO2 in the Los 
Angeles basin observed by the CLARS-FTS are simulated by WRF-VPRM model. The model 
results have a low bias of 10% compared to that of CLARS FTS observations. Model inversion 
will be performed to derive CO2, CH4 and CO emissions in the LA basin.  
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Our original proposal aimed to use inverse 3D urban air-shed models to interpret our data. 
However, the inversion algorithms did not become available in time to apply them to our data. In 
our initial work we developed a version of the regional air quality model WRF-Chem to simulate 
and analyze meteorological conditions, as well as CO, NOx and ozone concentrations in the LA 
basin. That technique was applied and validated for the 2010 CalNex experiment (May-June 
2010). The meteorological part of the model performed well with respect to simulating the land 
sea breeze, inland pollutant transport and boundary layer heights. CO concentrations at Caltech, 
and the inland source region during the day and night were overestimated by 42%, ~20% and 30-
50% respectively. The model overestimation of CO in the basin indicated that the CO emissions 
in the model (28% reduction from NEI’05) were still too high. A 45% reduced NOx emissions 
rate relative to NEI’05 improved model performance relative to a 24% NEI reduction case for 
daytime NOx and O3 in the source region. The lower NOx emissions increased O3 by 6.8 ppb and 
2.9 ppb on weekdays and weekends respectively in the model, indicating that O3 formation in the 
basin is NOx-saturated. The relatively smaller O3 increase on weekends may indicate that 
modeled weekend O3 production is shifted to be less NOx-saturated compared to weekdays. The 
modeled weekend-to-weekday difference was much smaller than the observations with a small 
2.9 ppb O3 increase and a 16% NOx reduction. Together with overestimated NOy on weekends 
and underestimated NOy on weekdays in the basin, we conclude that a 22-26% weekend-to-
weekday difference in NOx emissions in the model is not large enough and weekend NOx 
emissions were still overestimated in the model. 

 

 
2. Introduction 

The quantification of emissions and trends in trace gas levels are crucial for our understanding 
of atmospheric air pollution, i.e. ozone and aerosol chemistry, as well as to better quantify the 
impact of greenhouse gases on our climate. Regional air quality has been studied for decades, 
and observational networks as well as regulation policies have been put in place to alleviate its 
impact on human health. However, the policies to mitigate global and regional climate change 
have just begun to emerge. Following its history as one of the most environmentally progressive 
states in the U.S., the State of California recently passed a mandate (Assembly Bill (AB) 32) that 
requires a reduction of the emissions of the major greenhouse gases to 1990 levels by 2020. That 
bill and our continued focus on air quality introduces new challenges for scientists and policy 
makers.  

Degradation of air quality and climate change is driven by anthropogenic emissions of ozone 
and aerosol precursors (NOx, CO, VOCs, and SO2) and their chemical transformations, as well as 
emissions of various greenhouse gases (CO2, CH4, N2O, and CFCs). It is thus crucial to 
accurately quantify trace gas levels, their spatial distribution, and their emissions to best support 
the development of air pollution and climate change mitigation strategies. The observation of 
those parameters presents a number of challenges. For greenhouse gases the problem is direr 
than for air pollutants since monitoring networks do not exist and only a few studies have 
focused on urban areas. In addition, measurements are often only performed at a few locations, 
introducing uncertainties into the overall emissions budget, as well as making it impossible to 
identify the major sources of those emissions. The development of improved tools for monitoring 
and studying trace gas concentrations and emissions as well as aerosol properties on larger 
spatial and temporal scales continues to be an important undertaking. 
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The current approach to monitoring air pollutants relies on a limited number of surface 
monitoring sites, while networks for greenhouse gases are only just emerging. The motivation 
for this project was to demonstrate and apply novel remote sensing methods from a mountaintop 
to provide new and unique insights into the concentrations and emissions of ozone precursors 
and greenhouse gases in the Los Angeles Basin. The observations were originally planned for a 2 
year period but, though contract extensions, ended up a period of more than 3 years. We 
originally had planned to use inverse 3D urban air-shed models to interpret our data, but the 
inversion algorithms did not become available in time to apply them to our data. However, we 
will report on some initial work in this direction.  

The two remote sensing instruments, one in the UV–visible wavelength range, the other in the 
near IR, were located at JPL’s California Laboratory for Atmospheric Remote Sensing (CLARS) 
on Mt. Wilson, California (1673 meters above sea level). Both instruments have been operating 
from May 2010 until today, although we will only discuss IR data from the mid-2011, after the 
FTS instrument was fully aligned and producing high-quality data.  

The UV-vis system is based on Multi-Axis Differential Optical Absorption Spectroscopy 
(MAX-DOAS), which measures narrow-band absorptions of pollutants such as NO2, HCHO, as 
well as aerosol extinction in the wavelength range from 300-530nm. The instrument sampled 8 
consecutive elevation angles, from +6 to -10 degrees, in 5 azimuth directions from CLARS. 
Section 3 of this report will give details on the instrument, the spectral data analysis and the 
vertical profile retrieval. The results of the MAX-DOAS observations will be discussed with 
respect to the long-term trend in NO2 as well as the trend in NOx/VOC sensitivity of ozone 
formation using the HCHO/NO2 ratio from our observations. 

The near-IR instrument is based on a novel remote sensing approach for monitoring the 
spatial and temporal distributions of greenhouse gases in the Los Angeles basin using high-
resolution spectroscopy. A new Fourier Transform Spectrometer called CLARS-FTS was 
deployed at CLARS on Mt. Wilson, California, and performed long-term measurements of 
greenhouse gases during sunny days. The instrument points at a number of ground target 
locations in the Los Angeles basin, recording spectra of reflected near-IR solar radiation. 
Column-averaged dry-air mole fractions of greenhouse gases (XGHG) including XCO2, XCH4, 
and XCO are retrieved several times per day for each target. The details of the instrument, data 
retrieval and methodology to determine GHG emissions will be described in Section 4 of this 
report. This section also presents the results of the observations, e.g. emission factors of methane 
and their spatial distribution. 

We developed a version of the regional air quality model WRF-Chem to simulate and analyze 
meteorological conditions and CO, NOx and ozone concentrations in the Los Angeles basin. This 
was originally applied to the CalNex campaign (May-June 2010) to validate the model. While 
the adjoint/inverse of the model did not become available, we will, nevertheless, briefly review 
this aspect of our project in Section 5.  

3. UV-Vis MAX-DOAS 

We operated UCLA’s multi-axis Differential Optical Absorption Spectroscopy instrument 
(MAX-DOAS) (Platt and Stutz, 2008) on Mt. Wilson. The MAX-DOAS system measures path-
averaged concentrations of NO2, HCHO, and O4 (as a proxy for aerosol extinction) using the 
absorptions in the UV and visible wavelength range. The path-averaged concentrations are 
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~0.4°C. Light collected by the scanner is focused onto a 1 mm diameter, 5m long, quartz fiber, 
which is connected to a Czerny-Turning type grating spectrometer (Acton Spectra Pro 300i, 
600g/mm grating, 200 µm width entrance slit) coupled to a Hamamatsu 1024 pixel photodiode 
array (Hoffman Messtechnik with Hamamatsu S3094 PDA).  The system has a spectral 
resolution of 0.92 nm and is thermally stabilized at 35°C, while the photodiode array is cooled to 
-20°C.  The system alternates between observation in spectral window centered in the UV at 385 
nm (320-450 nm), and a window centered in the visible at 530 nm (465-595 nm). A more in-
depth description of the UCLA MAX-DOAS can be found in Pikelnaya et al. (2007).  

The MAX-DOAS’ hemispheric scanner was operated to look in a combination of five 
azimuth angles (147.36°, 160°, 172.45°, 182.0°, and 240°) and eight elevation angles (+6°, +3°, 
0°, -2°, -4°, -6°, -8°, and -10°), thus scanning from east to west into the boundary layer (negative 
elevation angles) and horizontally/upwards into the free troposphere (positive elevation angles) 
(Figure 3.1).   

The instrument cycles through all angle combination in sequence during the day.  A zenith 
scan is taken after each azimuth scan to provide a measurement of the stratospheric component 
of NO2 as well as to allow for a better removal of solar Fraunhofer lines in the spectral retrievals. 
Spatial scans are performed consecutively in the UV and the visible wavelength range. 
Observation from each viewing angle takes approximately one minute, and the full 
azimuth/elevation cycle for both the UV and visible light regions, including zenith scans, takes 
60-80 minutes. At night, Hg emission lines, dark-current, and electronic offset spectra are 
recorded.  

3.3. Spectral retrievals 

The MAX-DOAS measurements are based on the observations of weak trace gas absorptions 
in solar radiation collected at the various viewing directions. This retrieval requires sophisticated 
numerical methods that involve a solar reference that describes the spectral characteristics of the 
light source, i.e. the sun, the pure trace gas absorptions, and the description of scattering effects 
in the atmosphere. All of these parameters vary with wavelength. Consequently a wide range of 
wavelength intervals can be used to retrieve trace gas information. NO2 was retrieved in four 
wavelength intervals, from 323.4-350 nm, 419.5-447 nm, 464-506.9 nm, and 519.8-587.7 nm.  
HCHO was fit simultaneously alongside NO2 in the 323.4-350 nm region. O4was observed in 
three intervals, from 350-390 nm, 464-506.9 nm, and 519.8-587.7 nm.  

The retrieval was performed using a combination of a linear and nonlinear least-squares fit 
(Stutz et al, 1996, Platt and Stutz, 2008). The fit includes a Fraunhofer reference spectrum 
measured in the zenith, a simulated Ring (Raman scattering) spectrum (Vountas et al., 1998), and 
reference absorption spectra for the major trace gas species in these regions.  Each of the trace 
gas reference spectra was convoluted using the instrument function from a Hg line to simulate 
the degradation of the spectral resolution by the spectrometer. The I0 effect from the solar 
spectrum was considered in this convolution process (Aliwell et al., 2002).   O3 and NO2 
references were taken from Voigt et al. (2001) and Vandaele et al. (1998), respectively. For 
HCHO, we used the cross section of Cantrell et al (1990) and the O4 reference spectrum was 
provided by Hermans et al. (1999). The measurement spectra were allowed to spectrally stretch 
and squeeze in wavelength to correct for small spectral drift of the spectrometer. A fifth order 
polynomial was included in the fit to describe Raleigh and Mie scattering. The retrieval was 
performed with the DOASIS software package (Univ. Heidelberg).  
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Table 3.1: Wavelength Ranges and Spectral References used for the spectral retrievals of O4, 
HCHO, and NO2. Note that a zenith solar reference, ring spectra and a polynomial of degree 5 
are also included in the fit. 

Species Scan Wavelength 
Interval (nm) 

Fitted Spectral 
References 

Detection Limit 

O4 UV 350-390 NO2, O4, HCHO,  HONO 7*1041 molec2/cm5 
O4 Vis  464-506.9 NO2, glyoxal, O4, H2O 8*1041 molec2/cm5 
O4 Vis 519.8 - 587.7 NO2, O4, O3, H2O 5*1041 molec2/cm5 
HCHO UV 323.4-350 HCHO, O4, O3, HONO 5*1015 molec/cm2 
NO2 UV 323.4-350 HCHO, O4, O3, HONO 3*1015 molec/cm2 
NO2 UV 419.5-427.9 & 

432.4-447  
NO2, glyoxal, O4, H2O 1*1015 molec/cm2 

NO2 Vis 464-506.9 NO2, glyoxal, O4, H2O 1*1015 molec/cm2 
NO2 Vis 519.8 - 587.7 NO2, O4, O3, H2O 2*1015 molec/cm2 
 

Figure 3.3 shows an example of the retrieved DSCDs for one day during May 31st 2010. It 
should be noted that the DSCD error bars are too small to be visible in this graph. The data 
shows the clear separation with elevation angle and azimuth for all trace gases.  

 
 

We also attempted a retrieval of of SO2 and glyoxal, as stated in our original proposal. However SO2 
DSCDs were typically below our detection limit, which makes a retrieval of vertical profiles impossible. 
The low SO2 DSCDs confirm our observations made with our active (using a lamp) Longpath-DOAS 
system, which found that SO2 mixing ratios rarely exceeded 0.5 ppb. It should be noted that the LP-
DOAS is more sensitive that the MAX-DOAS, as the atmospheric absorption pathlength of scattered solar 

Figure 3.3: Example of O4, NO2, and HCHO DSCDs for one day, May 31st, 2010, during 
CalNex. 
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radiation in the UV region in which SO2 absorbs is much shorter and because of spectra interferences 
with the  stratospheric ozone absorptoin. 

We developed the spectral retrieval method for glyoxal, but found that its results were not reliable. 
This is likely caused by inaccuracies in the description of NO2 and water absorptions, which are strong in 
the region in which glyoxal absorbs. We are still working on optimizing this retrieval, but gave it lower 
priority compared to the analysis of NO2 and HCHO. We expect glyoxal mixing ratios to be rather low, 
which make vertical profile retrievals considerably more difficult due to the larger measurement errors. 
Because the vertical profile retrieval for SO2 and glyoxal would likely not be succesfull we decided not to 
pursue this further in the project. 

3.4. Cloud Filtering 

As with most scattered-sunlight remote sensing applications, clouds represent a challenge as 
they are highly variable and strongly impact the observations and the radiative transfer in the 
atmosphere. Considering the large data-set we have collected over the past years, we have 
developed an automated cloud filtering algorithm to identify and sort out measurements 
impacted by clouds. This algorithm was applied to the data to ensure that measurements 
considered in the trace gas concentration retrievals are not contaminated by the presence of 
clouds. In this section we will briefly describe the principles of this algorithm. 

The presence of clouds is reflected both in the O4 DSCDs and in the light intensity (photon 
count) detected by the MAX-DOAS. A unique problem for our Mt. Wilson application, for 
example compared to ground or satellite remote sensing observations, is the presence of clouds 
above and below Mt. Wilson. In short, the algorithm is based on the fact that clouds below Mt. 
Wilson are more reflective than the surface thus increasing the observed intensity, while at the 
same time blocking the view into the basin, decreasing the effective absorption light path and 
thus the O4 DSCDs. Clouds above Mt. Wilson attenuate solar radiation thus decreasing the 
intensity, while most often leaving the O4 column unchanged or increasing it slightly. It should 
be noted that, because our spectra analysis is relative to a temporally close zenith reference 
spectrum, the effect of high clouds is often reduced.  

To provide a calibration for clear skies we installed a camera at Mt. Wilson in May 2011 to 
collect images of the MAX-DOAS field of view.  The images, obtained over several months,  
were classified into three categories: “clear days” with very few to no clouds, “low cloud days” 
with partial or full cloudiness at or below 1.7 km, and “high clouds” with partial or full cloud 
coverage above Mt. Wilson. We then determined a clear day reference behavior for O4 DSCDs 
and intensity as a function of solar zenith angle for each viewing direction by fitting a second-
order polynomials to the clear sky data. A comparison of O4 DSCDs and intensity under cloudy 
conditions show distinct deviations from this polynomial (Figure 3.4). The clear-sky reference 
polynomials are generally consistent for each elevation angle for all seasons and can thus be 
applied on our entire data set.  

The statistical distribution of the clear sky days relative to the reference polynomial was 
Gaussian and was dominated by random errors. Cloudy days had a long “tail” in the statistical 
distribution relative to the reference polynomial. Consequently, the standard deviations from the 
polynomial fit of clear-sky intensity and O4 DSCDs was used as suitable cut-off values for 
cloudy observations.  Figure 3.5 shows a sketch of the cloud sorting algorithm as it was 
implemented for our data set. Figure 3.6 show the results for the cloud sorting in July 2011. 
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Figure 3.4. Example of cloud classification of MAX-DOAS O4 DSCDs (left two plots) and 
intensity observations (right two plots) and fitted polynomial for one viewing elevation angle. 
The 2nd order fit to clear sky days is the same in each plot, so that the deviation of high clouds 
and especially low clouds is clear.   
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3.5. Development of radiative transfer modeling tools 

Originally to interpret our MAX-DOAS observations, we intended to perform a direct 
comparison of the trace gas DSCDs with forward radiative transfer model calculations using the 
output of the WRF-CHEM model. We thus initially developed offline RT calculations, using a 
Monte Carlo model (McArtim, Univ. Heidelberg, Deutschmann et al., 2011), which was linked 
to WRF-CHEM. However, due to the delay in the development of the WRF-CHEM adjoint we 
decided to pursue a different approach to interpret the MAX-DOAS observations, namely using 
inverse modeling combined with the observations to derive vertical profiles of aerosol extinction 
and trace gases. We will thus not further discuss the WRF-CHEM based RT modeling efforts. 

The challenge with interpreting MAX-DOAS observations is the initially unknown absorption 
light-path in the atmosphere. While in some cases geometric light paths can be assumed, this is 
often not the case, especially in a polluted atmosphere such as that in Los Angeles. In addition to 
the well-known Rayleigh scattering effects, the presence of aerosol can impact the length of path 
reflected or scattered sunlight travels. It is thus necessary to perform additional calculations to 
convert the observed trace gas DSCDs into concentrations. Luckily information on the path the 
light takes through the atmosphere, often referred to as radiative transport, can be gained from 
the observation of the oxygen dimer, O4, which has a temporally constant concentration profile 
(proportional to the square of the oxygen concentration). Thus measured O4 DSCDs contain 
information about the various radiative transfer effects (Platt and Stutz, 2008).    

As mentioned above, the conversion of the MAX-DOAS DSCDs into trace gas concentration 
profiles requires radiative transfer calculations and inversions using optimal estimation 
techniques (Hönninger et al, 2004). Trace gas absorptions in the UV (above 320nm) and visible 
wavelength ranges are weak and in a first approximation radiative transfer is independent from 
the absorption of these trace gases. Consequently the retrieval can be subdivided into two steps 
(Platt and Stutz, 2008). First the radiative transfer, and in particular the influence of aerosol 
scattering, is determined using O4 DSCDs. Besides a description of the radiative transfer, this set 
also yields vertical profiles of aerosol extinction. This first step is computationally and 
mathematically more demanding as the underlying problem is non-linear. It thus requires 
iterative numerical methods that make multiple calls to the radiative transfer code, making this 
computationally expensive. Once the radiative transfer has been determined one can derive the 
trace gas vertical concentration profile in a second step. This step can use a linear retrieval and is 
thus less complicated.  

As part of this project, we developed the tools to perform these inversion methods to fully 
take advantage of the MAX-DOAS observations. The radiative transfer model as well as the 
inversion approach will be described in the following section. We also spent a considerable 
amount of effort to performing theoretical calculations to provide a better understanding on how 
much information on the vertical distribution of aerosol and trace gases can be derived. The 
results of these activities will be discussed in Section 3.8 

3.5.1. Radiative Transfer Model: VLIDORT 

Due to the intensive calculations that are required to retrieve continuous aerosol extinction 
and trace gas profiles for the long-term MAX-DOAS measurements, a fast radiative transfer 
model (RTM) was needed. We thus implemented and modified a version of VLIDORT, which is 
derived from the well-known first version of the Linearized Discrete Ordinate Radiative Transfer 
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(LIDORT) scalar code (Spurr et al., 2001; Spurr 2006). VLIDORT, which was developed for the 
computation of the Stokes vector components in a multi scattering multilayer medium, is a fully 
linearized RTM. It is capable of calculating the full radiance field simultaneously, including all 
of the analytic weighting functions with respect to atmospheric and surface properties (Spurr, 
2006).  The linearization makes VLIDORT very computationally efficient, while maintaining its 
accuracy. VLIDORT was validated by being compared to other RTMs prior to its 
implementation in this project. VLIDORT uses a user-defined environment, where geophysical 
atmospheric inputs such as vertical profiles (thermal, trace gases and aerosol), optical parameters 
(single scattering albedo, asymmetry function, optical thickness, phase function moments) and 
spectral properties (cross sections, wavelengths), are supplied by the user (Table 3.2). It then 
generates a set of intensities and weighting functions that allow for iterations in a multi-
parameter atmospheric retrieval with a single call of the model per step (Table 3.2). VLIDORT 
use a “pseudo-spherical” approximation of the radiative transfer equation to simulate the earth’s 
curvature, which is essential for our observations close to the limb, i.e. elevation angles close to 
zero. Further information on VLIDORT can be found in Spurr [2006]. 

 

3.6. Aerosol extinction profiles retrievals 

Typically the retrieval of aerosol extinction profiles from ground-based or satellite 
observations uses measured radiances. We initially performed tests with that approach and found 
that the radiance based retrieval worked for theoretical cases. However, the application for real 
radiance observations from Mt. Wilson was not as reliable, and was also more sensitive to the 
effects of clouds in boundary layer measurements. We thus chose to use O4 DSCD as the 
measurement vector, ݕറ, in our aerosol retrieval (Wagner et al., 2004, Friess et al., 2006). Besides 
a better reliability, this approach has other advantages. Due to the O4 vertical profile, which 
shows highest levels near the surface, the retrieval is more sensitive to the boundary layer, 
especially at low elevation angles. The retrieval is also less influenced by the effects of clouds 
that escaped the filtering process. 

Table 3.2: Input and output parameters for VLIDORT 

VLIDORT model inputs VLIDORT model outputs 

 Pressure and Temperature profile 
 O3 and NO2 profile 
 Solar geometry (Solar zenith and 

relative azimuth angle) 
 Altitude of detector 
 Viewing elevation angle 
 Aerosol optical depth profile 
 Surface albedo 
 Aerosol Single-Scattering Albedo 

(SSA) 
 Aerosol asymmetry factor 
 Absorption cross-sections (for O3, 

NO2, and O4) 
 

 Simulated Radiances, with and without 
absorbers and aerosols 

 Intensity derivative with respect to 

aerosol optical depth ቀ
డூ

ௗఛ
ቁ 

 Intensity derivatives with respect to 
trace gas absorptions (for O3, NO2, and 
O4) 
 

Calculated outside of VLIDORT: 
 Simulated slant-column densities from 

POV of detector 
 Jacobian matrices of O4 SCDs with 

respect to aerosol optical depth 

ቀ
డሾௌ஼஽ሺைరሻሿ

ௗఛ
ቁ and relative radiances  
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The theory of optimal estimation inversion techniques, which we adopted as the mathematical 
method to derive aerosol profiles, is based on the approximation of the physics of the 
measurement process by a forward model F. This model relates the measurement vector ݕറ, i.e. 
O4 DSCDs at various elevation angles, to the state vector ݔറ, i.e. the vertical profile of the aerosol 
extinction coefficients: 

റݕ     ൌ ,റݔሺܨ ܾሻ ൅  (3.1)     ߝ

Here b is the vector of parameters not optimized in the retrieval, such as albedo, aerosol 
optical properties, etc. ɛ is the error term encompassing both instrumental and model errors 
(Rodgers, 2000).  

Optimal estimation is based on the retrieval of ݔറ through minimization of the cost 
function߯ଶሺݔറሻ, which compares modeled measurement from the real measurement considering 
errors and previous (a priori) knowledge of ݔറ:  

  ߯ଶሺݔറሻ ൌ റሻݔറሺܨൣ െ റ൧ݕ
்
റሻݔറሺܨɛିଵൣࡿ െ റ൧ݕ ൅ ሾݔറ െ റݔሾ	௔ିଵࡿ	റ௔ሿ்ݔ െ  റ௔ሿ  (3.2)ݔ

 is the a priori assumption of the state vector (Rodgers, 2000). ܵɛ and ܵ௔ are the	റ௔ݔ
measurement and a priori covariance matrices, respectively, which represent the uncertainty of ݕറ 
and how well ݔറ௔	 is known.  

Since the effects of aerosols on atmospheric radiative transfer are inherently nonlinear, we 
have implemented a non-linear, numerical, iterative approach to solve the optimal estimation 
problem that is based on VLIDORT and the Levenberg-Marquardt optimization algorithm. The 
Levenberg-Marquardt method is a well-established fast optimization method with a fairly 
reliable convergence (Levenberg 1944, Marquardt, 1963). VLIDORT is called in each 
Levenberg-Marquardt optimization step, calculating a new state vector ݔపሬሬሬറ , and the Jacobian, i.e. 
the multiparameter gradient, K, which in this case is the partial derivative of each measured O4 
DSCD with respect to aerosol optical depth per altitude:  

റሻݔറሺܨሬሬറ׏     ൌ ࡷ ൌ డ௬ሬറ

డ௫റ
     (3.3) 

Each new state vector in the iteration is then calculated based on the following equation: 

 

റ௜ାଵݔ  ൌ റ௜ݔ ൅ ሾሺ1 ൅ ሿିଵܭఌିଵ்ܵܭሻܵ௔ିଵ൅ߛ ቂ்ܵܭఌିଵ ቀݕറ െ റሻቁݔറሺܨ െ ܵ௔ିଵሺݔറ௜ െ  റ௔ሻቃ (3.4)ݔ

Here  is the parameter controlling the convergence of the Levenberg-Marquardt method. If at 
each step i there is a reduction in the cost function (i.e. the difference between the modeled 
DSCD and the measured DSCD is reduced), the retrieved state is accepted as the current step, 
and the iteration is repeated.  If the cost function of the retrieved state is greater, the retrieval is 
rejected, and  is increased, widening the search area over which a solution can be found.  
Convergence is reached when one of several possible conditions is reached.  First, if the state 
vector ݔపሬሬሬറ shows a change of less than 10% in between an iterative step, it is considered to have 
converged into a final solution, as little improvement has been found to continue the iteration.  In 
addition, if after a number of iterations there is no improvement, or if  reaches too high of a 
level, the retrieval is halted and is assumed to have not reached a convergence.  
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For the trace gas profiles, as well as for the aerosol extinction profiles, errors of the retrievals 
are also determined based on optimal estimation theory. It should be noted that these errors 
combine both the uncertainty of the measurements as well the uncertainty in the a priori profiles. 

3.8. Information Content Analysis of Theoretical Retrievals 

To better understand how much information can be retrieved from our observations we 
performed an information content analysis based on optimal estimation theory (Rodgers 2000). 
This allows the quantification of the number of pieces of information in a vertical profile that can 
be retrieved. In addition this analysis describes the sensitivity of our observations to different the 
altitudes in the atmosphere. 

We calculate the gain matrix,	ܩ, which describes the sensitivity of the retrieval ݔො to the 
observations ݕറ: 

 

ܩ ൌ 	 డ௫
ො

డ௬ሬറ
ൌ መ்ܵܵܭ௘ିଵ   where   መܵ ൌ ሺ்ܵܭ௘ିଵܭ ൅ ܵ௔ିଵሻିଵ	   (3.6) 

 

Based on G we determine the averaging kernel ܣ. The averaging kernel quantifies the impact 
of each state vector element on the retrieval, i.e. in our case the sensitivity of the retrieval to each 
height: 
 

ܣ ൌ డ௫ො

డ௫റ
	ൌ 	 డ௫

ො

డ௬ሬറ

డ௬ሬറ

డ௫റ
ൌ  (3.7)    ܭܩ

 

The averaging kernels provide information about the vertical sensitivity of a given height 
interval to every altitude layer in the true atmosphere (see color-coded in the figures in this 
section.) The averaging kernel elements ideally range from 0 to 1. Elements close to 1 indicate 
that the state vector at a given height interval is highly sensitive to the atmospheric state at this 
height. Elements close to 0 suggest that no information originates from this height interval. 
Averaging kernels elements outside of the 0 – 1 range are possible, and indicate that a given 
height level is either anti-correlated to or over-sensitive to a specific altitude. Typically the 
averaging kernel for each height interval is sensitive to a wide range of altitudes, with the highest 
sensitivity corresponding to the peak of the averaging kernel. The quality of the retrieval is thus 
closely related to the shape of the averaging kernels. For example, at altitudes in which all of the 
averaging kernels are close to zero, no information can be retrieved from the measurements and 
the profile is determined by the a-priori profile. This can be the case in atmospheres with high 
aerosol extinctions close to the surface, such as in our case. 

A more simple measure of the information that can be obtained by an optimal estimation 
retrieval are the degrees of freedom (DoF). The DoF is the trace (or sum of the diagonals) of the 
averaging kernel matrix. It is often defined as the number of independent pieces of information 
that can be obtained by the retrieval, and informally acts as a scalar measure of the overall 
amount of information obtainable.  Practically it is desirable to maximize the amount of 
information, which can be indicated by having higher degrees of freedom. As a simplification 
one can interpret the DoF as the number of height intervals that can be realistically be retrieved, 
although the optimal estimation method allow for higher vertical resolutions than is implied by 
the DoF. 
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As the DoF of the retrievals depend on the measurement and a priori error we also performed 
a sensitivity calculation for these two parameters (Table 3.4). As expected the DoF decreases as 
the measurement error increases. On the other hand, the DoF increases as the a priori error 
increases as more information will be added through the retrieval.  

 

 

3.8.2. NO2 

We performed similar test for the NO2 retrievals. As NO2 retrievals are also impacted by the 
aerosol extinction profile, we also considered this parameter. The first test was performed using a 
boundary layer height of 1km (Table 3.5). As with the aerosol retrievals the DoF depends 
strongly on the a priori and measurement error. For our current measurements the error is about 
1%. Typically we use an a-priori error of 50% for our retrievals, allowing us to retrieve a 
maximum of 5 degrees of freedom in an ideal case for this viewing geometry.  

Table 3.3: Theoretical DOFs for an aerosol extinction retrieval with a 1% measurement 
error and a 20% a-priori error. 

 Aerosol Extinction Coefficient (km-1) 

0.05 0.1 0.25 0.5 1.0 

Boundary 
Layer 
Height 
(km) 

0.1 3.66 3.63 3.56 3.41 2.93 

0.5 3.65 3.61 3.49 3.15 2.64 

1.0 3.63 3.56 3.35 2.77 2.09 

1.5  3.59 3.48 2.97 2.82 2.16 

2.0 3.57 3.43 2.81 2.42 1.62 

 

Table 3.4: Dependence of the theoretical DOFs of aerosol extinction retrievals on 
measurement and a priori error. These results were derived for a 1 km high boundary 
layer with an aerosol extinction of 0.1 km-1. 

 Measurement error 

0.2% 0.5% 1% 2% 5% 

A priori 
error 

10% 3.94 3.12 2.37 1.50 0.65 

20% 4.49 3.94 3.42 2.65 1.50 

50% 4.89 4.34 3.94 3.42 2.37 

100% 5.23 4.77 4.35 3.94 3.20 

500% 5.73 5.23 4.89 4.49 3.94 
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We then used these results to determine the influence of boundary layer height, which is 
reflected in both the aerosol and NO2 profile, and in the boundary layer NO2 mixing ratios (Table 
3.6). The impact of BLH and NO2 is weak, with theoretical DoFs in the range of 4.6 – 5.3.  
 

 

Calculations were also performed to study the impact of the aerosol extinction, and thus 
atmospheric radiative transfer, on the information content of NO2. For boundary layer NO2 
mixing ratios below 50 slightly higher DoF was found for larger aerosol extinction. While this 
increase was small, and will not be further discussed here, it generally leads to lower information 
content near the surface and higher information content at the top and above the boundary layer. 

3.8.3. HCHO 

Vertical profile retrievals of HCHO are strongly impacted by the higher measurement error of 
the HCHO DOAS retrieval. Because HCHO also absorbs at somewhat shorter wavelength we 
repeated the test performed for NO2 also for HCHO (Table 3.7 and 3.8). As for NO2 the results 

Table 3.5: Theoretical DOFs from NO2 concentration retrievals by measurement and a 
priori profile error for a boundary layer aerosol extinction of 0.1 km-1 and a boundary 
layer height of 1 km 

 Measurement Error 

0.2% 0.5% 1% 2% 5% 

 

A priori 
error 

10% 4.95 4.07 3.31 2.36 1.16 

20% 5.59 4.73 4.07 3.31 2.05 

50% 6.23 5.59 4.95 4.28 3.31 

100% 6.69 6.12 5.59 4.95 4.07 

500% 6.98 6.90 6.69 6.28 5.59 

Table 3.6: Theoretical DOFs from NO2 concentration retrieval by shape of a priori estimate 
of vertical concentration profile with a boundary layer aerosol extinction of 0.1 km-1 

 NO2 boundary layer concentration (ppb) 

5 10 30 50 100 

 
 
Boundary 
Layer 
Height 
(km) 

0.1 4.62 4.75 4.94 4.98 5.01 

0.5 4.62 4.77 4.95 5.01 5.04 

1.0 4.65 4.81 5.01 5.10 5.12 

1.5 4.67 4.86 5.07 5.17 5.18 

2.0 4.73 4.96 5.20 5.31 5.27 
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depend strongly on the a-priori error. For our typical HCO measurements the error of ~5%and 
an a-priori error of 50% we are able to retrieve 2.75 - 3 degrees of freedom in an ideal case. This 
means that we should be able to at least derive boundary layer averaged HCHO mixing ratios 
and HCHO mixing ratios above the boundary layer. 

 

 
 

 

 
 

 

 

Table 3.7: Theoretical DOFs from HCHO concentration retrievals by measurement and a 
priori profile error for a boundary layer aerosol extinction of 0.1 km-1 and a boundary layer 
height of 1 km. HCHO measurement errors of 5 % are not uncommon 
 Measurement Error 

0.5% 1% 2% 5% 10% 

 

A priori 
error 

10% 3.87 3.20 2.32 1.17  0.50

20% 4.43 3.87 3.20 2.03  1.17

50% 5.31 4.63 4.04 3.20  2.32

100% 5.79 5.31 4.63 3.87  3.20

500% 6.50 6.16 5.89 5.31  4.63

Table 3.8: Theoretical DOFs from HCHO concentration retrieval by shape of a priori 
estimate of vertical concentration profile with a boundary layer aerosol extinction of 0.1 
km-1 . The calculations presented here were performed with a 5% measurement error and a 
a-priori error of 50%.  

 HCHO boundary layer concentration (ppb) 

5 10 30 50 100 

 
 
Boundary 
Layer 
Height 
(km) 

0.1 2.75 2.89 3.20 3.43  3.37

0.5 2.76 2.89 3.20 3.43  3.38

1.0 2.76 2.90 3.22 3.44  3.39

1.5 2.77 2.92 3.24 3.46  3.40

2.0 2.79 2.95 3.28 3.49  3.43
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3.9. Atmospheric Retrievals 

After performing the theoretical information content calculations, we proceeded to analyze 
our observations from Mt. Wilson.  

3.9.1. Aerosol 

The non-linear Levenberg-Marquardt iteration (Section 3.6) was used in our aerosol 
retrievals. As in the theoretical case, our measurement vector consists of the measured O4 
DSCDs from a single elevation “scan”, all taken within 15 minutes of one another. Since the 
aerosol extinction in the Los Angeles basin is highly variable, selection of an a priori profile is 
challenging. If the a priori profile deviates greatly from the real profile, the retrieval may not 
converge and thus produce unrealistic profiles. To overcome that challenge, we have adopted a 
look-up table approach for the a priori to aid the retrieval as a first step. A combination of 
vertical profiles of varying aerosol extinctions and boundary layer heights was created at all 
possible solar geometries. VLIDORT was then run in a forward mode for every combination of 
those profiles to create a lookup table of O4 DSCDs. The best a priori aerosol extinction profile 
was then selected by minimizing the difference between the look-up table and measured O4 
DSCDs. The table was calculated so that the differences between the loop-up table profiles is 
less than 50%, thus a 50% a-priori error was applied in all retrievals. Once the a priori profile is 
chosen, an aerosol extinction profile is retrieved. It should be noted that this is an iterative 
calculation and requires multiple calls to VLIDORT. It is thus the most computationally 
demanding step of the retrieval. However, we have made great progress in speeding up the 
retrieval in the past year and are now able to process a year’s worth of observations in about 10 
days on one computer.  

Figure 3.10 shows an example of an aerosol retrieval on July 2nd
, 2011. In this case, the initial 

guess of the a priori is quite good. Nevertheless, the retrieval adds about 5 pieces of independent 
information to the profile. The right panel in Figure 3.10 shows the averaging kernel of the 
retrieval. In the case of a boundary layer aerosol extinction of 0.2, the sensitivity at the ground is 
low and the highest sensitivity is at an altitude of 1-2 km. Figure 3.11 shows another example of 
an aerosol retrieval a few days earlier, on May 31st, 2011.  This is during a sunny, polluted day in 
the Los Angeles basin. Here the information content is limited to 3.6 pieces of information. 
Although the amount of information that can be retrieved decreases close to the ground, as is 
indicated by the averaging kernel, we can still obtain information down to roughly 400-500 
meters above the surface. The uncertainty of the retrieved aerosol extinction profile is to a large 
extent determined by the 50% uncertainty attributed to the a priori profiles.  

3.9.2. NO2 

The second step in our retrievals approach is the calculation of the NO2 concentration profiles 
using the previously derived aerosol extinction profile using the method (Section 3.6). Since 
retrievals are based on a linear optimization algorithm, and the information content is greater for 
the trace gas retrievals, a look-up table was not used.  

Figure 3.12 shows the result of the NO2 retrieval for July 2nd, 2011, i.e. the same measurement 
as the extinction profile shown in Figure 3.10. The number of degrees of freedom, i.e. the amount 
of information added by the retrieval, is 3.9. The profile clearly shows the expected profile, with 
elevated NO2,  (~ 24 ppb) within a nearly 700 m deep boundary layer. The averaging kernels 
show that the retrieval is sensitive from the surface to about 2 km altitude. Figure 3.13 shows 
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difference in location and the path-averaging of the MAX-DOAS data. Further analysis will be 
required to determine where the differences stem from. 

 

 
 

3.11. HCHO to NO2 ratios as marker for ozone production efficiency  

Our sensitivity studies, and the real-world retrievals, have shown that the MAX-DOAS 
DSCDs for NO2 and HCHO, i.e. the path integrated trace gas concentrations, are predominately 
due to the trace gas absorptions in the boundary layer, where their concentrations are much larger 
than in the free troposphere. We have also found from our analysis and observations during 
CalNex that both trace gases are fairly well mixed in the boundary layer. Because we are able to 
measure both compounds in the same wavelength interval (323.4-350nm) we can thus directly 
interpret the ratio of the HCHO DSCD and the NO2 DSCD as being representative of the 
boundary layer-averaged HCHO/NO2 concentration ratio. Any radiative transfer effects will be 
minimized in the HCHO/NO2 DSCD ratio. An interesting application resulting from that finding 
is the use of the HCHO to NO2 DSCDs ratio to study ozone chemistry in the Los Angeles basin 
(Duncan et al. 2010; Martin et al, 2004). This approach was originally proposed by Martin et al 
(2004) and further investigated by Duncan et al (2010), who related the HCHO/NO2 ratio to the 
VOC or NOx sensitivity of ozone formation. Based on model calculations for the Los Angeles 
area Duncan et al (2010) used HCHO/NO2 < 1 as an indicator of VOC sensitivity, i.e. reductions 
in VOCs lead to a reduction in ozone, while HCHO/NO2 > 2 were indicative of NOx sensitivity, 
i.e. NOx reductions reduce ozone formation. The HCHO/NO2 range between 1 and 2 is indicative 
of an ozone decrease upon reduction of both VOC and NOx.  

Kleinman et al. (1997) introduced a formalism to determine the sensitivity of ozone formation 
of NOx vs. VOC based on an analysis of ozone formation chemistry. They relate the cross-over 
point between the two different sensitivities to the point where the sum total radical production 

 

Figure 3.19: Comparison of the daily averaged NO2 concentrations between our NO2 
concentrations retrieved in the boundary layer, and the NO2 concentrations measured by 
the nearby Pomona ground station. 
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higher than those for the weekdays. Generally, weekends are in a more NOx sensitive regime 
than weekdays. There does not seem to be a statistical significant long-term trend in the 
HCHO/NO2 ratios. A comparison of the weekday-weekend HCHO/NO2 ratio also does not seem 
to indicate a significant change between 2011 and 2013. It thus appears that the ozone sensitivity 
regime is not substantially changing, likely due to a decrease in HCHO (or VOCs) 
accompanying the NO2 decrease. It would be interesting to further follow the HCHO/NO2 ratio 
in Los Angeles to identify how the ozone sensitivity changes in the future.  

 

 

Figure 3.22: Monthly averaged DSCDs of HCHO and NO2 and HCHO/NO2 ratio in the Los 
Angeles Basin observed from Mt. Wilson. A clear seasonal cycle can be observed in the 
HCHO and HCHO/NO2 data, with highest ratios in later Summer to early Fall. The weekend 
effect is most pronounced during the summer periods. Please note that the weekend data is 
based on fewer data points and thus shows more month to month variability. 
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Figure 3.23: Hourly average NO2 and HCHO DSCDs during 2011. Blue lines show 
weekday data, red lines show weekend data. Error bars indicate the variation in the 
observations, including those caused by radiative transfer effects. 
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Figure 3.24: Weekday/weekend monthly averaged NO2 DSCD ratio for the years 2011-
2013. The scatter in the data is caused by the higher variability in the weekend data due to 
fewer data points used in the average. Nevertheless a clear downward trend can be 
observed. 
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4. Near-IR Fourier Transfer Measurements of Greenhouse Gases 

The Los Angeles basin is a very large anthropogenic source of the important greenhouse 
gases CO2 and CH4, which contribute significantly to regional and global climate change 
(Hoornweg, 2010). Recent legislation in California, the California Global Warming Solutions 
Act (AB32), mandated a statewide cap for greenhouse gas emissions in 2020 at levels that 
prevailed in 1990 (Croes, 2012). Verifying the effectiveness of regional greenhouse gas (GHG) 
emission control requires high-precision, regional-scale measurement methods combined with 
models that capture the principal anthropogenic and biogenic sources and sinks. The existing 
California Air Resources Board (CARB) GHG measurement sites in the Los Angeles area are 
sparse, with far fewer sites than the CARB air quality network. Instruments in the network 
sample near the surface, where perturbations from local traffic sources, wind fields and planetary 
boundary layer (PBL) height changes can induce considerable variability in measured GHG 
concentrations on short time scales. McKain et al. (2012) used the coupled Weather Research 
and Forecasting – Stochastic Time-Inverted Lagrangian Transport (WRF–STILT) model to 
compare the sensitivity of surface and total column measurements of CO2 to changes in 
emissions within the Salt Lake City urban dome. Their simulations indicated that column 
measurements from the ground or space are more sensitive to emissions from the greater urban 
region than surface point measurements, and less sensitive to variability in PBL height. Thus, 
column measurements may allow for more precise estimation of anthropogenic emission trends 
in cities. Kort et al. (2012) analyzed space-based observations of the column-averaged dry-air 
mole fractions of CO2 from Greenhouse Gases Observing Satellite (GOSAT) over Los Angeles 
and Mumbai. Despite the relatively sparse spatial and temporal resolution and coverage provided 
by GOSAT, the column measurements showed statistically significant gradients between the 
cities and the surrounding areas which could be used to detect emission changes of a few percent 
per year over a 5-10 year observation period.  

Despite the advantages inherent in the measurement of integrated column abundances, 
existing satellite and ground-based remote sensing instruments do not provide the temporal and 
spatial coverage required to quantify megacity GHG emissions. The repeat cycles and swaths of 
the orbital tracks of space-based instruments in low Earth orbits (e.g. GOSAT currently in orbit, 
Orbiting Carbon Observatory-2 (OCO-2) to be launched in July, 2014) do not provide daily 
monitoring of GHG emissions over megacities. There are also very few ground-based remote 
sensing instruments for column GHG measurements. The Total Carbon Column Observing 
Network (TCCON) is a collection of ground-based Fourier Transform spectrometers recording 
direct solar spectra in the near-infrared spectral region to measure the column-averaged volume 
mixing ratio (VMR) of GHGs. However, most TCCON stations are deployed at rural sites with 
small spatial gradients in order to provide calibration/validation data for satellite missions. 
Wunch et al. (2009) estimated the emission rates of GHGs over the LA basin using 
measurements from a TCCON station that was temporarily located in Pasadena, California. 
However, since TCCON stations employ direct solar viewing geometry, the spatial coverage of a 
single spectrometer is quite limited.  This highlights the need for an approach that can produce 
daily GHG column abundance measurements over a wide spatial domain to complement other 
sensor networks in an urban air-shed.  

Here, a novel observing system that addresses the requirements for wide-area monitoring of 
GHGs to assess the impact of control measures on long-term megacity carbon emissions.  The 
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approach involves the use of a high resolution FTIR spectrometer on a mountaintop looking over 
the Los Angeles basin to record atmospheric solar absorption spectra from a number of 
geographically distributed target points. The mountaintop viewing geometry offers two 
significant advantages relative to direct solar measurements from ground sites in the boundary 
layer: enhanced sensitivity to composition changes within the boundary layer due to the long 
low-altitude optical path lengths (tens of km), and the capability to independently measure the 
composition within the free troposphere to provide background reference information. Apart 
from differences in viewing angles, the mountaintop vantage point also closely approximates the 
observations from geostationary orbit by space missions that will be launched later this decade 
(Key et al. 2012). 

This section of the report is organized as follows: Section 4.1 describes the measurement 
technique. Section 4.2 describes the data processing algorithms, examples of retrievals, and error 
analysis. Section 4.3 describes the diurnal variations of XGHG. Section 4.4 describes the spatial 
variations of XCH4:XCO2 excess in the Los Angeles basin, and estimations of GHG emission 
inventory in the Los Angeles basin. Section 4.5 describes the comparisons between the FTS 
observations and modeling results from the atmospheric 3D model, WRF-VPRM. Section 4.6 
outlines directions for future work.. 

4.1. Measurement Technique 

The California Laboratory for Atmospheric Remote Sensing (CLARS) is a NASA/Jet 
Propulsion Laboratory facility located on the grounds of Mount Wilson Observatory at 1673 
meters above sea level. A Fourier Transform Spectrometer was designed and built at Jet 
Propulsion Laboratory (JPL) for use in the measurements at CLARS. The CLARS-FTS is 
optimized for reflected sunlight measurements with high spectral resolution in the near-infrared 
(NIR) region (4,000 – 15,000 cm-1).  

Two operating modes are on the CLARS-FTS measurement schedule: Los Angeles Basin 
Surveys (LABS) and Spectralon Viewing Observations (SVO). In LABS mode, the pointing 
system stares at each ground site in the Los Angeles basin and CLARS-FTS records atmospheric 
absorption spectra over a broad spectral range (4,000 – 8,600 cm-1) using reflected sunlight as 
the light source. SVO provide the background level of GHG gases. In SVO, CLARS-FTS 
measures the greenhouse gas concentration above the CLARS site by pointing at a Spectralon 
target on the rooftop. Since the CLARS mountaintop site is located above the boundary layer, 
SVO measurements give the background trace gas abundances in the free troposphere. In the 
downward viewing geometry used in the CLARS-FTS measurements, the sunlight travels 
through the boundary layer twice: once on the way to the target and a second time from the target 
to CLARS. The resulting light path through the boundary layer is typically greater than 20 km 
which is several times longer than other commonly used viewing geometries, e.g., observing the 
direct solar beam from the surface, or measurement of surface-reflected sunlight from aircraft 
and spacecraft.  

Daily measurements from CLARS-FTS follow a pre-programmed sequence, in which the 
CLARS pointing system either directs light reflected from the targets in the Los Angeles basin 
(LABS mode) or the Spectralon plate on the rooftop of CLARS site (SVO mode) into the 
spectrometer. The sequences can be changed to accommodate the needs of special observations. 
The measurement sequence is repeated ~5-8 times daily. Details of the measurement technique 
are described in Fu et al. (2014). 
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4.2. Data Processing and Error Analysis 

4.2.1. Interferogram to Spectrum 

CLARS-FTS records single-sided interferograms with uniform-time sampling in both the IR 
and reference channels. The CLARS interferogram processing program (CLARS-IPP) converts 
interferograms (Level 1a data) into spectra (Level 1b data). The CLARS-IPP algorithm applies 
the following post-processing steps to each recorded scan: (1) converts time-domain 
interferogram to path-difference domain interferogram; (2) corrects for solar intensity variations 
(SIV); (3) corrects phase error, and (4) converts the interferogram into a spectrum using the Fast 
Fourier Transform (FFT) algorithm (Fu et al., 2014).  

A pre-screening step removes individual spectra of low quality, e.g., scenes likely 
contaminated by clouds. The cloud scene pre-screening of single-scan CLARS-FTS 
measurement is performed by comparing the intensities of spectral radiances between adjacent 
scans to identify outliers. Single-scan spectra are then co-added over a period of 3 minutes (12 
single-scan spectra), to increase the signal-to-noise ratio (for LABS >=300:1, for SVO >= 
450:1). Depending on the season, the total number of co-added spectra within a single day ranges 
from 160 to 260 repeating the number of LABS measurement sequences from 5 to 8 times.     

4.2.2. Spectrum to Slant Column Densities (SCD) of Trace Gases 

To derive slant column abundances of atmospheric trace gases from the measured absorption 
spectra, we use a modified version of the GFIT program. GFIT is derived from the Occultation 
Display Spectra (ODS) program (Norton and Rinsland, 1991), which was created for the analysis 
of Atmospheric Trace Molecule Spectroscopy Mission (ATMOS), and incorporates many 
improvements. Since the viewing geometry of CLARS-FTS measurements differs from the SVO 
viewing geometry used by TCCON, several modifications are needed. These modifications were 
applied to the GFIT February 2013 version. The modified GFIT program consists of a radiative 
transfer (RT) model coupled to a model of the solar spectrum to calculate the monochromatic 
spectrum of light that originates from the sun, passes through the atmosphere, and reflects from 
the Earth’s surface. 

We retrieve CO2, CH4, CO, and O2 using the spectral bands and the sources of spectroscopic 
parameters that are listed in Table 4.1, similar to those used by TCCON. The uncertainties of 
measured XGHG from the errors in spectroscopic parameters and other sources are estimated in 
section 4.5.2. For O2, the a priori VMR profile is constant with altitude (a dry-air VMR of 
0.2095). For CO2, CH4 and CO, the assumed a priori VMR profiles vary seasonally in agreement 
with model output from Olsen and Randerson (2004). The sensitivity of the column GHG 
retrievals to different reasonable a priori functions, is expected to be within 1% based on the 
previous study of Washenfelder et al. (2006).  

Nitrous oxide, N2O, is an important atmospheric greenhouse gas emitted primarily by 
biological processes involving plants and soils, and by biomass burning. The contribution to the 
global background from stationary and mobile combustion sources is highly uncertain and has 
been identified by CARB as a high-priority research area. CLARS-FTS measures N2O in two 
spectral windows: 4373-4471 cm-1, and 4418-4442 cm-1. The N2O retrievals are typically very 
precise, on the order of 1-2 ppbv. However, as with the other greenhouse gases that are retrieved 
by the FTS, aerosol scattering introduces a systematic error that increases with distance to the 
reflection point. Because the N2O spectral bands lie at significantly longer wavelengths than the 
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O2 band which is used to filter out measurements affected by aerosols, it is difficult to 
discriminate aerosol effects from actual atmospheric N2O enhancements, which are quite small. 
For this reason, N2O is not a standard CLARS-FTS data product at the present time. Research is 
ongoing to develop an aerosol scattering model which can provide a first-order correction to the 
N2O retrievals, and possibly provide a useable N2O data product in the near future. 
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Table 4.1:  CLARS FTS Measurement Sequence  
 Target Coordinate Target Name Measurement 

 Latitude Longitude Altitude   
index (degree) (degree) (meter)   

0 34.221 -118.057 1673 Spectralon SVO1 
1 34.069 -117.390 340 Fontana  LABS2 
2 34.081 -117.589 325 Rancho Cucamonga LABS 
3 33.951 -117.392 265 Riverside LABS 
4 33.877 -117.416 403 Lake Matt LABS 
5 33.962 -117.573 190 Norco LABS 
6 34.043 -117.725 253 Pomona LABS 
7 34.120 -117.868 217 210 Bend LABS 
8 33.868 -117.601 261 Corona LABS 
0 34.221 -118.057 1673 Spectralon SVO 
9 33.863 -117.776 97 North OC LABS 

10 34.000 -117.883 151 60 Industry LABS 
11 34.110 -117.969 134 Santa Fe Dam LABS 
12 33.678 -117.864 12 OC Airport LABS 
13 33.800 -117.883 47 Angels Stadium LABS 
0 34.221 -118.057 1673 Spectralon SVO 

14 33.722 -117.975 12 Huntington Beach  LABS 
15 33.910 -118.006 57 La Mirada LABS 
16 34.030 -118.025 77 605 and 60 LABS 
17 34.141 -118.042 155 Santa Anita Park LABS 
18 33.821 -118.195 11 Long Beach 405 LABS 
19 33.930 -118.158 30 Downey LABS 
20 34.048 -118.116 128 ELA water LABS 
0 34.221 -118.057 1673 Spectralon SVO 

21 33.810 -118.368 66 Palos Verdes LABS 
22 33.990 -118.400 8 Marina Del Rey LABS 
23 34.054 -118.305 58 Downtown Far LABS 
24 34.102 -118.234 124 Downtown Near LABS 
25 34.093 -118.470 257 Santa Monica LABS 
26 34.154 -118.273 160 Glendale LABS 
27 34.170 -118.165 293 West Pasadena LABS 
28 34.141 -118.353 170 Universal City LABS 

1Spectralon Viewing Observations  
2Los Angeles Basin Surveys  
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In order to characterize the precision of CLARS-FTS measurements, special observations 
were conducted which cycled between the Spectralon target and two nearby reflection points in 
the LA basin, Santa Anita Park (a horse racing track in the city of Arcadia) and west Pasadena. 
These targets are labeled #0, #17 and #27, respectively, in Table 4.1 and Figure 4.1). Figure 4.2 
shows typical spectral fits of CO2 bands near 1.6 m using the CLARS-FTS measurements 
pointing at Spectralon (top panels), Santa Anita Park (middle panels) and west Pasadena 
(bottom panels). The spectral fits were made using two CO2 bands (blue lines) centered at 6220 
cm-1 (noted as MW6220 thereafter) and 6339 cm-1 (noted as MW6339 thereafter) separately. The 
root mean square (RMS) of the spectral fitting residuals in both CO2 bands are reasonably close 
to the expected values since the Chi-squared tests of spectral fitting residuals yielded values 
generally within 1.3 (Figure 4.3). The RMS of spectral fitting residuals shows a dependency on 
the spectral SNR (Figure 4.3). Figure 4.4 shows the averaged spectral fitting residuals within 
MW6220 and MW6339 using the measurements over three targets on January 3rd, 2013. The co-
addition of fitting residuals reduces the random spectral noise contribution and preserves the 
systematic fitting residuals. The systematic fitting residuals were observed in the measurements 
from all LA basin targets as well as the Spectralon target. The majority of the “spikes” in the 
left panels of Figure 4.4 arise from imperfect line parameters of disk integrated solar lines and 
H2O lines, although some of the systematic residuals arise from errors in the spectroscopic 
parameters of CO2 and neglect of line mixing. In addition, uncertainties in atmospheric 
temperature, pressure and humidity profiles arising from the limited spatial/temporal resolution 
of National Center for Environmental Prediction (NCEP) data contribute to systematic residuals, 
especially for water vapor lines. Overall, the magnitude of the systematic residuals is smaller 
than 0.5% of the spectral continuum levels with peak values most often appearing at the 
wavelength of non-target species such as H2O. The imperfect spectroscopic parameters and line 
shape function affect the accuracy of retrieved GHG column amounts since they can bias the 
retrieved GHG column abundances. Most of this bias can be corrected by calibration against 
secondary measurements. Wunch et al. (2010) discussed a calibration procedure for TCCON 
measurements, which use the same spectroscopic parameters as the work that reduced the 
systematic bias for CO2 from 1.1% to 0.2% and CH4 from 2.2% to 0.4%.    
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Figure 4.2 Sample spectral fittings of CO2 bands near 1.6 m region using the CLARS-FTS 
measurements in the Spectralon viewing geometry (top panels); pointing at the Santa Anita 
Race Track, Arcadia (middle panels); or pointing at the west Pasadena (bottom panels). The 
measurements were taken on January 3rd, 2013 with a Solar Zenith Angle (SZA) of 58.62º (top 
panels), 58.39º (middle panels), and 57.89º (bottom panels) respectively. Each spectrum is from 
12 co-added scans, which were taken consecutively over 3 minutes. The spectral SNR are 532:1, 
417:1, and 227:1 from top to bottom panels, respectively. The measured radiances subtracting the 
simulated spectra, which included contributions of all trace gases and solar lines, yield the 
spectral fitting residuals. In all panels, black curves are measured spectra and blue curves are the 
estimated contribution of CO2 absorption from the spectral fittings. Contributions of other 
species in these spectral regions are not shown. 
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Figure 4.3 Root Mean Square (RMS) of spectral fitting residuals (Left panels) and spectral 
SNR (Right panels) as a function of time for the measurements of CO2 and O2 column 
densities in Spectralon viewing geometry (top panels); over the Arcadia Race Track (middle 
panels); over west Pasadena (bottom panels). Three spectral bands centered at 6220 cm-1 
(black stars, noted as MW6220 thereafter), 6339 cm-1 (blue circles, noted as MW6339 
thereafter) and 7885 cm-1 (gold triangles, noted as MW7885 thereafter) are presented, 
respectively. The spectral SNR were nearly identical over the three spectral bands in a 
measured spectrum, but varies among spectra. The measurements were performed on January 
3rd, 2013. The spectral fitting residuals were normalized by the spectral continuum levels prior 
to the computation of RMS values. The spectral fitting residuals were dominated by the 
photon shot noise. The Chi-squared tests of spectral fitting residuals yielded values generally 
within 1.3.   
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Figure 4.4: The spectral fitting residuals (left panels) and their correlation, Pearson 
correlation coefficients (R), and histograms (right panels) with MW6220 (top panels) and 
MW6339 (bottom panels) for CO2 slant column density measurements. In left panels, 
black curve is for Spectralon viewing geometry; blue curve is for west Pasadena; gold 
curve is for Arcadia Race Track. In right panels, blue stars are the correlation between 
Spectralon and west Pasadena; gold circles are the correlation between Spectralon and 
Arcadia Race Track; the black dash lines indicate the one to one correlation. The spectral 
fitting residuals were generated using the co-addition of residuals of 41 spectral fittings of 
Spectralon target, 41 spectral fittings of west Pasadena target, and 40 spectral fits of 
Arcadia Race Track target on January 3rd, 2013. The systematic residuals arise from the 
imperfect line shape function and spectroscopic parameters in addition to uncertainties of 
atmospheric pressure and temperature parameters since the magnitude and positions of 
spiky fitting residuals consistently appear in all three target scenes. However, the 
magnitude of most of systematic fitting residuals is within 0.5% of spectral continuum 
levels.  
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4.2.3. Column Average Volume Mixing Ratio of GHG in Dry Air (XGHG) 

XGHG may be calculated from the retrieved GHG column, according to  

   
GHG column

XGHG
dry air total column

      (4.1) 

where,  

   2O  column
dry air total column

0.2095
     (4.2) 

Using this expression to compute the column average GHG, VMR will improve the 
measurement precision of atmospheric GHG concentrations (Washenfelder, 2006; Fu et al., 
2008) if systematic errors in the column abundances are common to both the GHG and O2. These 
could arise from errors in the spectra, such as instrumental line shape, detector nonlinearity, or 
from errors in the calculated slant path due to uncertainty in the surface pressure, solar zenith 
angle (SZA), pointing or aerosol scattering. Errors due to non-ideal ILS are expected to be small 
because proper FTS alignment was verified by several methods as discussed in section 4.2.4. 
Detector nonlinearity may be significant when viewing very bright sources such as the Sun; this 
effect is negligible for reflected sunlight measurements such as those employed by CLARS-FTS. 
However, errors in the calculated slant path (due to errors in surface pressure, SZA or neglect of 
aerosol scattering), water vapor (for determination of dry air column mixing ratios), spectral zero 
level offsets and solar intensity variations due to thin clouds will cause uncertainties in the 
retrieved column densities of target gases and O2. Most of these errors are mitigated in the 
measurement approach and retrieval algorithms. The effect of aerosol scattering on individual 
retrievals is assessed by comparing the measured O2 column abundance with the value derived 
from the surface pressure at the target. Differences exceeding a threshold value trigger the setting 
of a data quality flag which is used in subsequent data filtering steps.  The remaining impacts are 
estimated in Section 4.2.5.  

4.2.4. Sample Retrievals from CLARS-FTS 

As an illustration of the data from the CLARS-FTS, sample results from several days of 
measurements will be shown in this section; more detailed analyses of the data will be presented 
in subsequent papers. Figure 4.5 shows the XCO2 and the differences of XCO2 between 
MW6220 and MW6339 as a function of time using the CLARS-FTS measurement over three 
targets on January 3rd, 2013. The difference in XCO2 between MW6220 and MW6339 using the 
Spectralon target (41 measurements) is 0.44 ± 0.53 ppm (1). For the measurements over 
Santa Anita Park and west Pasadena, the XCO2 values using MW6220 are also higher than those 
of MW6339. A difference between the two microwindow retrievals is a consistent feature of the 
data. CLARS-FTS, which are based on the HITRAN 2008 line list, show improvements in the 
band-to-band consistency of XCO2 compared to those which use the HITRAN 2004 line list. 
These systematic differences of retrieved XCO2 values between two spectral bands likely arise 
from systematic errors in spectroscopic parameters between the two bands and the number and 
intensity of spectral features from interfering species.  

As discussed above, SVO measurements are representative of the unpolluted free troposphere 
while LABS measurements carry the spatial and temporal signatures of boundary layer 
emissions.  
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Two spectral regions, which are centered at 5938 cm-1 (noted as MW5938 thereafter) and 
6076 cm-1 (noted as MW6076 thereafter), were utilized in measuring CH4 column abundances. 
Figure 4.6 presents sample spectral fits of CH4 measurements. The overall spectral fitting of CH4 
shows qualities similar to that of CO2 bands in terms of the RMS of spectral fitting residuals 
(Figure 4.7) and the magnitude of systematic fitting residuals (Figure 4.8). XCH4 using the 
MW6076 is generally higher than that of using MW5938. XCH4 over Santa Anita Park and west 
Pasadena show enhanced values compared to the Spectralon levels (Figure 4.9). Similar 
enhancements and diurnal variability of XCH4 were observed on other days.  

The observations of XCO utilized the measured spectral region near 2.36 m. The 
enhancement and stronger diurnal variability of XCO were seen in measurements over both 
Santa Anita Park and west Pasadena targets, compared to the Spectralon values (Figure 4.10). 
Measurement of XCO presents an extra challenge due to the weakness of the CO spectral 
features, the low solar radiance in this region and the overlap with interfering spectral lines from 
CH4 and water vapor. The broad and strong absorption features of interfering species in CO 
spectral region led to that the spectral fitting residuals for the CO bands are about a factor of two 
higher than that near 1.6 μm. And the weak CO absorption features result in lower sensitivities 
near surface compared to the measurements of CO2, CH4, and O2. Despite these problems, as 
shown in Figure 4.10, the XCO measurements provide reliable data for both LA basin targets 
and Spectralon.  

The sensitivities of CLARS-FTS measurement are characterized by their column averaging 
kernels. Figure 4.11 shows the column averaging kernels for CO2, CH4, CO, and O2 for the 
Spectralon (top panels) and Santa Anita Park (bottom panels) targets.  

4.2.5. Measurement Uncertainty of XGHG 

The uncertainties in retrieved values of column-averaged VMR for both LA basin and 
Spectralon measurements contain random and systematic components. The random component 
determines the measurement precision for XGHG retrievals. The systematic component controls 
the overall measurement accuracy.  
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Figure 4.5: XCO2 (in parts per million (ppm)) measured by CLARS-FTS with MW6220 
(black dots) and MW6339 (blue circles) on January 3rd, 2013 (left panels) and differences 
of retrieved XCO2 between the two spectral regions and the histograms (right panels) in 
the Spectralon viewing geometry (top panels), towards the Arcadia Race Track (middle 
panels); and towards west Pasadena (bottom panels). Black stars in left panels: XCO2 
obtained using the spectral region of MW6220. Compared to the background levels of 
XCO2 (top panels), XCO2 over Arcadia Race Track (middle panels) and west Pasadena 
(bottom panels) show higher values (mean ART-SV: 7.60 ppm; mean WP-SV: 6.98 ppm) 
and present stronger diurnal cycles than those measurements over CLARS site. The XCO2 
values retrieved from MW6220 are higher than those of MW6339. The mean differences 
between MW6220 and MW6339 are 0.44 ppm, 0.38 ppm, 0.78 ppm for DSV, ART and 
WP respectively. It was also appeared in the spectral analyses of the TCCON 
measurements (~0.15 ppm). Both CLARS-FTS and TCCON results, which are using 
HITRAN 2008 line list, show improvements on the band-to-band consistency of XCO2, 
compared to those of using HITRAN 2004 line list such as Figure 6 of Washenfelder et al. 
(2006) with the XCO2 using MW6220 about 0.9 ppm higher than that of MW6339. These 
systematic differences of retrieved XCO2 values between two spectral bands likely arise 
from the discrepancies of spectroscopic parameters between two spectral bands and the 
amount/intensity of spectral features of interfering species.  
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Figure 4.6: Sample spectral fittings of CH4 bands, which are centered at 5938 cm-1 (noted 
as MW5938 thereafter) and 6076 cm-1 (noted as MW6076 thereafter) using the CLARS-
FTS measurements in the Spectralon viewing geometry (Top panels); pointing at the 
Santa Anita Race Track, Arcadia (middle panels); or pointing at the west Pasadena 
(Bottom panels). The measurements were taken on January 3rd, 2013 with a Solar Zenith 
Angle (SZA) of 58.62º (top panels), 58.39º (middle panels), and 57.89º (bottom panels) 
respectively. Each spectrum is from 12 co-added scans, which were taken consecutively 
over 3 minutes. The spectral SNR are 532:1, 417:1, and 227:1 from top to bottom panels, 
respectively. The measured radiances subtracting the simulated spectra, which included 
contributions of all trace gases and solar lines, yield the spectral fitting residuals. In all 
panels, black curves are measured spectra and blue curves are the estimated contribution of 
CH4 absorption from the spectral fittings. Contributions of other species in these spectral 
regions are not shown. 



49 
 

 
 

Figure 4.7: Root Mean Square (RMS) of spectral fitting residuals (left panels) and spectral 
SNR (right panels) as a function of time for the measurements of CH4 and O2 column 
densities in Spectralon viewing geometry (top panels); over the Arcadia Race Track 
(middle panels); over west Pasadena (bottom panels). Three spectral bands centered at 5938 
cm-1 (black stars, noted as MW5938 thereafter), 6076 cm-1 (blue circles, noted as MW6076 
thereafter) and 7885 cm-1 (gold triangles, noted as MW7885 thereafter) are presented, 
respectively. The spectral SNR were nearly identical over the three spectral bands in a 
measured spectrum, but varies among spectra. The measurements were performed on 
January 3rd, 2013. The spectral fitting residuals were normalized by the spectral continuum 
levels prior to the computation of RMS values. The spectral fitting residuals were 
dominated by the photon shot noise. The Chi-squared tests of spectral fitting residuals 
yielded values generally within 1.3.  
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Figure 4.8: The spectral fitting residuals (left panels) and their correlation, Pearson 
correlation coefficients (R), and histograms (Right panels) with MW5938 (Top panels) and 
MW6076 (bottom panels) for CH4 slant column density measurements. In left panels, black 
curve is for Spectralon viewing geometry; blue curve is for west Pasadena; gold curve is 
for Arcadia Race Track. In right panels, blue stars are the correlation between Spectralon 
and west Pasadena; gold circles are the correlation between Spectralon and Arcadia Race 
Track; the black dash lines indicate the one to one correlation. The spectral fitting residuals 
were generated using the co-addition of residuals of 41 spectral fittings of Spectralon 
target, 41 spectral fittings of west Pasadena target, and 40 spectral fits of Arcadia Race 
Track target on January 3rd, 2013. The systematic residuals arise from the imperfect line 
shape function and spectroscopic parameters in addition to uncertainties in atmospheric 
pressure and temperature parameters since the magnitude and positions of spiky fitting 
residuals consistently appear in all three target scenes. However, the magnitude of most of 
systematic fitting residuals is within 0.5% of spectral continuum levels.  
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Figure 4.9: XCH4 (in parts per billion (ppb)) measured by CLARS-FTS with MW5938 (black 
dots) and MW6076 (blue circles) on January 3rd, 2013 (left panels) and differences of retrieved 
XCH4 between the two spectral regions and the histograms (right panels) in the Spectralon 
viewing geometry (top panels), towards the Arcadia Race Track (middle panels); and towards 
west Pasadena (bottom panels). Black stars in left panels: XCH4 obtained using the spectral 
region of MW5938. Compared to the background levels of XCH4 (top panels), XCH4 over 
Arcadia Race Track (middle panels) and west Pasadena (bottom panels) show higher values 
(mean ART-SV: 74.95 ppb; mean WP-SV: 71.23 ppb) and present stronger diurnal cycles than 
those measurements over CLARS site. The XCH4 values retrieved from MW6076 are higher 
than those of MW5938. The mean differences between MW6076 and MW5938 are 13.71 ppb, 
25.32 ppb, and 24.75 ppb for SV, ART and WP respectively. These systematic differences of 
retrieved XCH4 values between two spectral bands likely arise from the discrepancies of 
spectroscopic parameters between two spectral bands and the amount/intensity of spectral 
features of interfering species. 
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Figure 4.10: XCH4 (in parts per billion (ppb)) measured by CLARS-FTS with MW5938 
(black dots) and MW6076 (blue circles) on January 3rd, 2013 (left panels) and differences of 
retrieved XCH4 between the two spectral regions and the histograms (right panels) in the 
Spectralon viewing geometry (top panels), towards the Arcadia Race Track (middle panels); 
and towards west Pasadena (bottom panels). Black stars in left panels: XCH4 obtained using 
the spectral region of MW5938. Compared to the background levels of XCH4 (top panels), 
XCH4 over Arcadia Race Track (middle panels) and west Pasadena (bottom panels) show 
higher values (mean ART-SV: 74.95 ppb; mean WP-SV: 71.23 ppb) and present stronger 
diurnal cycles than those measurements over CLARS site. The XCH4 values retrieved from 
MW6076 are higher than those of MW5938. The mean differences between MW6076 and 
MW5938 are 13.71 ppb, 25.32 ppb, and 24.75 ppb for SV, ART and WP respectively. These 
systematic differences of retrieved XCH4 values between two spectral bands likely arise from 
the discrepancies of spectroscopic parameters between two spectral bands and the 
amount/intensity of spectral features of interfering species. 
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4.2.6.  Estimation of XGHG Measurement Precision 

The uncertainties returned by GFIT assume a Gaussian distribution of residuals from the 
spectral fits. In reality, this is usually not the case due to systematic artifacts (e.g., 
errors/omissions in the spectroscopic data base, the modeling of the instrument response, and 
uncertainty in the pointing accuracy resulting in errors in the computed optical path). These can 
dominate the spectral fitting residuals produced by GFIT. Since these artifacts are generally the 
same from spectrum to spectrum, an uncertainty calculated from the RMS spectral fit generally 
underestimates the true precision. Hence, we utilize the differences of XGHG between two 
spectral regions to estimate the precisions of CLARS-FTS measurements. These differences 
include a systematic bias coming from variations in the spectral signatures of interfering species, 
and the inconsistencies between spectroscopic parameters within these spectral regions. The 
remaining variation (1- standard deviation of the mean differences) is given by the expression, 

    (4.3) 

where,  is 1  standard deviation of the mean differences using two spectral regions, 
errMW1 and errMW2 are the measurement uncertainties/precisions of two spectral regions. The 
spectral noise and the number of spectral points are the dominant factors of measurement 
precisions. These two factors are nearly identical between MW1 and MW2 since their small 
separations (~5 - 100 cm-1) on the measured spectra and their nearly identical widths of spectral 
fitting windows (Table 4.2). The spectral noises are random, i.e., no correlation on the spectral 
noise between two adjacent spectral bands. Hence, the cross term in the right hand side of 
Equation 4.3 vanishes and Equation 4.3 can be written as  

                 (4.4) 

Table 4.3 lists the estimated measurement precisions of XCO2, XCH4, and XCO over CLARS 
site, Santa Anita Park and west Pasadena targets by applying Equation 4.4 to the XGHG 
differences using two adjacent spectral regions. The measurements of Spectralon targets on 
January 3rd, 2013 show higher precision (XCO2: 0.09%; XCH4: 0.13%; XCO: 2.00%) than the 
measurements over Santa Anita Park (XCO2: 0.14%; XCH4: 0.25%; XCO: 4.01%) and west 
Pasadena targets (XCO2: 0.24%; XCH4: 0.46%; XCO: 8.01%). The measurement precision on 
January 18th, 2013 shows characteristics similar to those on January 3rd, 2013. The low precision 
of XCO arises from the decreased spectral SNR in the spectral regions used in the measurements 
of CO slant column densities. The measurement precision shows target site dependence due to 
the differences of spectral SNR over three target sites. Overall, the high precision of CLARS-
FTS measurements is sufficient to capture the diurnal variations of XCO2, XCH4 and XCO and 
the differences among different targets over LA basin. 
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Table 4.2: Spectral range, species that have spectral signatures within the spectral range, 
and sources of spectroscopic parameters used in spectral fittings. 

Spectral Range  
cm-1 

(source of spectroscopic line parameters*) Gases to Fit 
 

Auxiliary 
Parameters to fit 

6180.0 – 6260.0  (1)CO2, 
(2)H2O, (2)HDO, (3,4)CH4 cla  ctb  fsc 

6297.0 – 6382.0  (1)CO2, 
(2)H2O, (2)HDO cl  ct  fs 

4810.0 – 4890.0  (1)CO2, 
(5)N2O, (2)H2O, (2)HDO, (6)CH4, 

(7)CO cl  ct  fs 

5880.0 – 5996.0  (3,4)CH4, 
(1)CO2, 

(2)H2O, (2)HDO DLPBFd 

6007.0 – 6145.0  (3,4)CH4, 
(1)CO2, 

(2)H2O, (2)HDO DLPBF 

4208.7 – 4257.3  (7)CO, (6)CH4,
(2)H2O, (2)HDO cl  ct  fs 

4262.0 – 4318.8  (7)CO, (6)CH4, 
(2)H2O, (2)HDO DLPBF 

7765.0 – 8005.0  (8)O2, 
(9)0O2, 

(2)H2O cl  ct  fs 

a continuum level 
b continuum tilt 
c frequency shift  
d fitting the continuum level using Discrete Legendre Polynomial Basis Functions 

(DLPBF) 
* All of the spectroscopic parameters are available in HITRAN 2008 compilation prepared 

by Rothman et al. (2009). 

(1) Toth et al. (2008) 
(2) Toth (2005) with the addition (in 2005-7) of hundreds of weak H2O lines that are visible 

in humid, high-airmass TCCON spectra. Jenouvrier et al. (2007) subsequently identified 
many of these weak lines. 

(3) GFIT (February 2013 version) includes the weak CH4 lines extending from 6180 to 
6220 cm-1 which were provided by Dr. Linda Brown  

(4) Frankenberg et al. (2008) 
(5) Toth (1999, 2000) 
(6) Brown et al. (2003) 
(7) Brault et al. (2003) 
 (8) Line list created by Andrew Orr-Ewing using the PGOPHER code, based on lab 

measurements of Newman et al. (1999). The widths were subsequently modified to be 
1.5% larger than those in Yang et al. (2005) in order to minimize the airmass 
dependence of retrieved O2 column density, as described by Washenfelder et al. (2006). 
O2 quadrupoles lines are from Gordon et al. (2010). 

 (9) The collision induced absorption (CIA) is represented by a pseudo-linelist based on fits 
to lab spectra described by Smith and Newnham (2000). The CIA is not used in the 
determination of the O2 column. It is fitted only to minimize its impact on the discrete 
O2 lines.  
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Figure 4.11: XCO (in parts per billion (ppb)) measured by CLARS-FTS with MW4233 
(black dots) and MW4290 (blue circles) on January 3nd, 2013 (left panels) and differences of 
retrieved XCO between the two spectral regions and the histograms (right panels) in the 
Spectralon viewing geometry (top panels), towards the Arcadia Race Track (middle 
panels); and towards west Pasadena (bottom panels). Compared to the background levels of 
XCO (top panels), XCO over Arcadia Race Track (middle panels) and west Pasadena 
(bottom panels) show higher values (mean ART-DSV: 48.75 ppb; mean WP-DSV: 49.70 
ppb) and present stronger diurnal cycles than those measurements over CLARS site. The 
XCO values retrieved from MW4290 are higher than those of MW4233. The mean 
differences between MW4290 and MW4233 are 9.02 ppb, 8.72 ppb, 8.62 ppb for DSV, 
ART and WP respectively. These systematic differences of retrieved XCO values between 
two spectral bands are likely arisen from the discrepancies of spectroscopic parameters 
between two spectral bands and the amount/intensity of spectral features of interfering 
species. 
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4.2.7. Estimation of XGHG Measurement Accuracy  

Systematic error sources include the uncertainties in spectroscopic line parameters, light path 
calculation uncertainties, and errors in the ILS, which affects the accuracy of CLARS-FTS 
measurements. Table 4.4 lists the estimated measurement accuracy. The uncertainties of 
measured XCO2, XCH4 and XCO arise from spectroscopic parameters, which are expected to be 
similar to those from previous studies (Washenfelder et al., 2006; Wunch et al., 2010, 2011). 
Regular HCl cell and infrared laser measurements are carried out to assess the alignment stability 
and performance of the FTS. The uncertainties in the light path computation arise from residual 
pointing errors and from the neglect of aerosol scattering in the radiative transfer calculations. As 
discussed previously, aerosol interference is reduced by using the simultaneously measured O2 
slant column density, which is proportional to the optical path length, to compute XGHG.  
 

 

4.3. Diurnal Variations of XGHG 

Figure 4.12 shows the diurnal variations of XCO2, XCH4 and XCO for the SVO 
measurements, and the Los Angeles basin, West Pasadena and Santa Anita measurements from 
around 8:30 to 16:30 local time on seven continuous days during the period of May 5 to May 11, 
2012. From May 5 to May 9, the FTS was operated in the target mode, taking alternate 
measurements among West Pasadena, Santa Anita and SVO. On May 10 and 11, standard 
measurement cycle was performed.  

 

 

Table 4.4: Estimated Measurement Accuracy1  
Error Sources XCO2 XCH4 XCO 

Spectroscopic Line Parameters, Pressure, 
Temperature Profiles2 ~ 1.1% ~ 4.0% ~ 2.0 %

Light path calculation3 < 1.0% 
< 1.0% 

 
< 1.0 %

 

Instrument line shape4 < 1.0% 
< 1.0% 

 
< 1.0% 

 

Uncertainty Priori to Calibration < 3.1 % 
< 6.0 % < 4.0 % 

1 The uncertainty was estimated prior to the CLARS-FTS calibration/validation activity. The 
discussion of measurement accuracy estimation is introduced in Section 4.5.2. 

2 Estimation were made based on the uncertainty of TCCON measurements prior to applying 
calibration factors [Wunch et al., 2010; 2011].  

3 Refer to the measured XGHG uncertainty arise from the remaining impacts of aerosol that were not 
removed by the approach of computing XGHG in section 4.3.  

4 Refer to the differences between measured and theoretical line shape functions in section 2.2.4   
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The SVO showed constant path-averaged mixing ratios of about 390 ppm XCO2, 1700 ppb 
XCH4 and 100 ppb XCO during this period. The constant diurnal pattern was observed because 
the FTS is located mostly above the planetary boundary layer, where sources are located, and 
therefore the SVO measurements do not capture variations of atmospheric CO2, CH4 and CO 
mixing ratio due to emissions in the Los Angeles basin.  

On the other hand, the West Pasadena and Santa Anita reflection points observed strong 
diurnal signals in XCO2, XCH4 and XCO with typically minimum in the early morning at around 
405-410 ppm for XCO2, 1800-1900 ppb for XCH4 and 100-150 ppb for XCO and a maximum at 
noon or in the early afternoon. Emissions of CO2, CH4 and CO in the megacity resulted in daily 
variations of 10-30 ppm XCO2, 100-200 ppb XCH4 and 100-200 ppb XCO during this period. 
Since the West Pasadena and the Santa Anita measurement paths span over 9 km and 11 km 
slant distances in the Los Angeles basin, they are able to pick up emission signatures. Despite the 
different measurement paths of the West Pasadena and the Santa Anita reflection points, the two 
showed consistency in XCO2, XCH4 and XCO in general. The buildup of XCO2, XCH4 and 
XCO in the morning and the falloff in the afternoon are due to a combination of accumulation of 
emissions and dilution/advection processes in basin. Similar diurnal patterns of XCO2, XCH4 and 
XCO (that is, peak at noon or early afternoon) have been observed in Pasadena by TCCON 
(Wunch et al., 2009). However, the column enhancements observed by TCCON are typically 

 

Figure 4.13: Diurnal variations of SVO (grey) and LABS, west Pasadena (red) and Santa 
Anita Park (blue), XCO2, XCH4 and XCO from around 8:30 to 16:30 on seven consecutive 
days in May 2012. Error bars represent the RMS of the retrieval spectral fitting residual. 
Bad data points, such as data taken in the cloudy morning of May 11, were removed from 
the filtered data set. From May 5-9, the FTS was operated in the target mode, taking 
alternate measurements among SVO, west Pasadena and Santa Anita Park. On May 10-11, 
standard measurement cycle was performed, resulting in fewer measurements from each 
target. 
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less than 2-3 ppm in XCO2 and 20-40 ppb in XCH4, due to the different measurement geometry 
from the CLARS-FTS.  

 

4.4. Top-down Estimates of CH4 Emissions  

4.4.1. CH4:CO2 Ratio Originating From Los Angeles  

Several studies have reported strong correlations between CH4 and CO2 measured in the PBL 
in source regions (Peischl et al., 2013; Wennberg et al., 2012; Wunch et al., 2009; S. Newman, 
personal communication, 2014). Slopes of CH4:CO2 correlation plots have been identified with 
local emission ratios for the two gases. Since the uncertainty in CH4 emissions is considerably 
larger than that in CO2 emissions, we may use the correlation slope to reduce the CH4 emission 
uncertainties. Based on two years of data acquired between September 1, 2011 and October 30, 
2013, we estimated the CH4:CO2 ratio originating from the megacity (Wong et al., 2014). The 
SVO observations were used as the background reference. The Los Angeles basin XCO2 and 
XCH4 excess mixing ratios above background were calculated by subtracting for SVO 
observations from the basin observations (Equation 4.5). These excess mixing ratios were related 
to emissions in the megacity.  

XGHGୣ୶ୡୣୱୱ ൌ 	XGHG୐୅୆ୗ െ 	XGHGୗ୓୚              (4.5) 

Slopes of correlation between XCH4 and XCO2 excess were 7.3±0.1 ppb CH4/ppm CO2 for 
West Pasadena and 6.1±0.1 ppb CH4/ppm CO2 for Santa Anita during this period (Figure 4.13). 
The tight correlations imply that there is not substantial difference in the emission ratio of the 
two GHGs during the measurement period from 2011 to 2013. XCH4(XS) and XCO2(XS) should be 
poorly correlated with each other if their emission ratio varies largely over time, assuming the 
correlation is mainly driven by emissions.   

Figure 4.14maps the observed correlation slopes and their uncertainties for all the 28 basin 
reflection points across the Los Angeles basin using natural neighbor interpolation. Spatial 
variations of the correlation slope were observed among the 28 reflection points in the Los 
Angeles basin, varying from 5.4 to 7.3 ppb CH4/ppm CO2, with an average of 6.4±0.5 ppb 
CH4/ppm CO2 among all the reflection points. Spatial gradients among reflection points became 
weaker as distance from Mount Wilson increased. Spatial gradients among reflection points 
became weaker as distance from Mount Wilson increased. Stronger spatial gradients were 
observed among the closer reflection points in the basin, that is, west Pasadena, Santa Anita Park 
and East Los Angeles, while weaker spatial gradients were observed among the more distant 
reflection points, such as Long Beach, Marina Del Rey and North Orange County. Measurements 
were averaged over a much longer slant path for the more distant reflection points, compared to 
the nearby reflection points, making the measurements for the more distant reflection points less 
sensitive to local/point sources. Bootstrap analysis (Efron and Tibshirani, 1993) was performed 
to make sure that the spatial variations of the correlation slopes were not a result of sampling 
bias among the 28 reflection points. The uncertainties in the correlation slopes became larger 
with increasing distance from Mount Wilson due to the decreased data quality, as the 
measurement path in the Los Angeles megacity became longer. (More data were filtered out for 
targets further from the instrument, mostly because of aerosol loading.)  
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we used the same method as in Wunch et al. 2009 and Peischl et al. 2013. That is, subtracting 
agriculture and forestry sector from the total statewide emission, then apportioned by population. 
This gave a bottom-up CH4 emission of 0.278 Tg CH4/year in the Los Angeles basin in 2011. 
Using the bottom-up emission inventory of CO2 for the Los Angeles basin and the CH4:CO2 ratio 
observed by the CLARS-FTS, we derived the CH4 emission using Equation 4.6, where 
 ,஼ுర|௧௢௣ିௗ௢௪௡ is the top-down CH4 emission inferred by the CLARS-FTS observationsܧ

 ,஼ைమ|௕௢௧௧௢௠ି௨௣ is the bottom-up CO2 emissionܧ
௑஼ுర
௑஼ைమ

|௦௟௢௣௘ is the XCH4:XCO2 excess ratio 

observed by the FTS and 
ெௐ಴ೀమ

ெௐ಴ಹర
 is the ratio of molecular weight of CO2 and CH4. The derived 

CH4 emission inventory was 0.382 Tg CH4/ year in the Los Angeles basin. The derived CH4 
emission was 37% larger than the bottom-up emission inventory in 2011.  

஼ுర|௧௢௣ିௗ௢௪௡ܧ 		ൌ 		 ஼ைమ|௕௢௧௧௢௠ି௨௣ܧ 			ൈ 			
௑஼ுర
௑஼ைమ

|௦௟௢௣௘ 			ൈ 			
ெௐ಴ೀమ

ெௐ಴ಹర
           (4.6) 

Because of the spatial variations of CH4:CO2 ratio in the Los Angeles basin, the derived CH4 
emission could vary significantly. For instance, if we were to evaluate the bottom-up CH4 
emission inventory by our observations in West Pasadena only, the derived CH4 emission 
inventory for the Los Angeles basin would be overestimated by 21%, since the West Pasadena 
target observed a CH4:CO2 slope that is 21% larger than the average slope of the 28 reflection 
points.  

4.4.3. Seasonal Variability  

Seasonal spatial patterns of the XCH4:XCO2 excess ratio were observed in the Los Angeles 
basin with elevated CH4:CO2 ratio in the eastern side of the basin in summer (JJA) and fall 
(SON) seasons (Figure 4.15). These patterns were a result from variations in both CO2 and CH4 
emissions and meteorological patterns in the Los Angeles basin. Cloudy conditions in spring 
(MAM) season limited data quality for more distant measurements. Using the seasonal 
variability of the basin average CH4:CO2 ratio, we derived the seasonal CH4 emission in the 
basin (ܧ஼ுర| ௠௢௡௧௛௟௬

௧௢௣ିௗ௢௪௡
ሻ, from the seasonal XCH4:XCO2 excess ratio observed by the FTS 

(
௑஼ுర
௑஼ைమ

| ௠௢௡௧௛௟௬
஼௅஺ோௌିி்ௌ	

ሻ, the annual CARB bottom-up CO2 emission (ܧ஼ைమ| ௔௡௡௨௔௟	
௕௢௧௧௢௠ି௨௣

ሻ, the seasonal 

variability of CO2 emission provided by the Vulcan emission database ( ஼݂ைమ|௠௢௡௧௛௟௬	
௏௨௟௖௔௡

ሻ and the 

ratio of the molecular weights of the two greenhouse gases (
ெௐ಴ಹర

ெௐ಴ೀమ
ሻ	as shown in equation 4.7. 

The annual CARB bottom-up CO2 emission for the Los Angeles basin was estimated by scaling 
the California statewide emission by population. The monthly XCH4:XCO2 excess ratios were 
the slope of correlations between XCH4 and XCO2 excess ratios observed for the Los Angeles 
basin.  

|஼ுరܧ ௠௢௡௧௛௟௬
௧௢௣ିௗ௢௪௡

		ൌ 		 |஼ைమܧ ௔௡௡௨௔௟	
௕௢௧௧௢௠ି௨௣

			ൈ 		 ஼݂ைమ|௠௢௡௧௛௟௬	
௏௨௟௖௔௡

			௑஼ுర
௑஼ைమ

| ௠௢௡௧௛௟௬
஼௅஺ோௌିி்ௌ	

			ൈ 			
ெௐ಴ಹర

ெௐ಴ೀమ
     (4.7) 

 

As shown in Figure 4.16, the derived monthly CH4 emission in the basin varied from 27 to 35 
Gg CH4/month, with larger values in wintertime in general. The spatial CH4:CO2 ratio maps 
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4.5. Top-down Estimates of CO2 Emissions 

To derive CO2 emissions in the basin, CO, which is co-emitted with CO2, was used as the 
tracer. CO is a criteria air pollutant regulated by the Environmental Protection Agency (EPA). As 
a result, CO emissions are believed to be better quantified than those of CO2.  

4.5.1. CO:CO2 ratio in the basin 

Similar correlation analyses were performed between XCO excess and XCO2 excess. 
Following Wunch et al. (2009), an averaging kernel correlation was applied to our ratio due to 
the different wavebands where the two gases were retrieved. Using data acquired between 
September 2011 and October 2014, we interpolated the correlation slopes of XCO excess and 
XCO2 excess in the Los Angeles basin. Significant spatial variability in XCO excess to XCO2 
excess ratio, ranging from 3-7 ppb XCO/ ppm XCO2, was observed across the basin in this time 
period (Figure 4.18). In general, ratios were larger in the western Los Angeles basin than in the 
eastern basin. Figure 4.19 shows the seasonal pattern observed during the same period. Larger 
values of the  XCO to XCO2 excess ratio were recorded in summer than winter. Because CO and 
CO2 are co-emitted, the spatial and temporal pattern of the ratio is an indication of combustion 
efficiency combined with transport processes. Future studies using an atmospheric transport 

 
Figure 4.17: Monthly variations of Los Angeles basin averaged XCH4:XCO2 excess ratio 
(grey), Vulan CO2 emission (blue), scaled CARB bottom-up CO2 emission (red) and 
derived CH4 emission (green) in the Los Angeles basin. Purple dot indicates the CH4:CO2 
ratio observed by aircraft during CalNex 2010 (Peischl et al., 2013). 
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CO2SCD _ WRF _ VPRM  li VMRCO 2 i   Nair i  
i1

n










 LPSF CO2PSCD_CLARSFTS     (4.9) 

where, li is the geometric solar light path within the model layer i; VMRCO 2 i  is CO2 volume 

mixing ratio in the model layer i; Nair i  is the air number density in the model layer i; LPSF  is 
the light path scaling factor to account for the uncertainty of  geometric light path (e.g., 
uncertainty arisen from the scattering events);  CO2PSCD _ CLARSFTS is the CO2 partial SCD along the 
light path from 16.5 km to the top of atmosphere. Knowing the viewing geometry of each 
measurement, we applied Smit’s algorithm (Smith B. 1998) to perform Ray-tracing calculations, 
which locate the model grid boxes that are in the light path of the FTS measurement by 
providing the index of model grid box (i) and slant distance ( li). WRF-VRPM provides 

VMRCO 2 i  and Nair i . The LPSF  is determined using the following expression. 

LPSF 
O2CLARSFTS _ SCD

O2Geometric _ SCD

      (4.10) 

where, O2CLARSFTS _ SCD is oxygen gas SCD measured by CLARS FTS,  O2Geometric _ SCD is the 
oxygen gas SCD along geometric light path. 

Figure 4.21 shows the spatial-temporal distributions of the CLARS FTS observed and the 
WRF-VPRM simulated CO2 SCD in the Los Angeles basin at 8:30 am, 11:00 am, 2:30 pm, and 
4:30 pm respectively on June 20, 2010. Both measured and simulated CO2 SCDs were 
interpolated onto a regular grid by using ordinary point kriging algorithm. The time series of the 
observed and the modeled CO2 SCD for all the target points in the Los Angeles basin on this day 
are shown in Figure 4.22. The model simulations have good agreement with the FTS 
observations. The CO2 SCD values of five measurements and simulation pairs are significant 
lower than the other pairs since they are the CO2 SCDs of the SVO viewing. In general, the 
WRF-VPRM simulations have a low bias of 10% compared to that of CLARS FTS observation. 
In addition to the observations and simulations on June 20th, 2010, the spatial-temporal 
distribution of CO2 SCD on multiple days during CalNex 2010 campaign show agreement 
between observations and simulations similar to that present in Figure 4.22. Meteorological 
parameters were reproduced reasonably well in the model. One possible reason of the 
underpredicted CO2 in the model is the old CO2 emission data from 2002 that is used in the 
model. In Los Angeles, where anthropogenic CO2 emission dominates the total CO2 emission, 
the actual anthropogenic emission of CO2 in 2010 was likely to be larger than 2002, due to 
increase in fuel consumption and industrial activities. Model inversion will be performed in the 
future to estimate the CO2 emissions in the Los Angeles basin.  
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5. Modeling  

As part of this project we developed a version of WRF-Chem for the Los Angeles Basin. The 
model was run to simulate the CalNex period, and its results were compared to observations to 
gain information on the emission inventories of CO and NOx. The inversion of the model based 
on observations to determine the correction of the inventories was not possible as the WRF-
Chem adjoint did not become available in time for our project. We therefore pursued the 
alternate plan outlined in our proposal and performed the inversion directly to derive vertical 
aerosol extinction and NO2 profiles as described above. We hope to pursue our original idea once 
a WRF-Chem adjoint becomes available. The following sections briefly describe the model 
setup, model results, and comparison of the model output to the observations. The conclusions 
for the emission inventories in the LA basin derived from the comparison will be discussed. 

5.1. Model Setup 

The Weather Research and Forecasting (WRF) model coupled with online chemistry (WRF-
Chem) community model version 3.1.1 (http://www.wrf-model.org/index.php and 
http://ruc.noaa.gov/wrf/WG11/) was used with three nested domains with horizontal resolutions 
of 36, 12, and 4 km, respectively, with the finest resolution covering Southern California. 30 
vertical layers extended from the surface to 100 hPa. Boundary conditions for meteorological 
variables were obtained from the North American Regional Reanalysis (NARR) 32 km 3-hourly 
data while default boundary conditions were used for trace gases in the outmost domain. A 
summary of physical parameterization options is shown in Table 5.1.  

The simulation period is from May-June, 2010, coinciding with the CalNex observational 
period. The meteorological parameters were originally re-initialized at 00:00 UTC every three 
days to mitigate the problems of systematic error growth in long integrations (Lo et al., 2008). 
However, we found that a more frequent re-initialization of 24h improved the performance of the 
meteorological model on certain days.  
 
 

Table 5.1: WRF-Chem model configurations. 

Aerosol scheme  MOSAIC (4 bins) (Zaveri et al, 2008) 
Photolysis scheme Fast-J (Wild et al, 2000) 
Gas phase chemistry CBM-Z (Zavier et al, 1999) 
Cumulus parameterization Grell 3D ensemble scheme (Grell and Devenyi, 

2002) 
Short-wave radiation Dudhia scheme (Dudhia, 1989) 
Long-wave radiation RRTM (Mlawer et al., 1997) 
Microphysics WSM 3-class simple ice scheme (Hong et al, 2004) 
Advection scheme Runge-Kutta 3rd order 

(Wicker and Skamarock, 2002; Skamarock, 2006) 
Land-surface model  NOAH LSM  (Chen and Dudhia, 2001) 
Boundary layer scheme  YSU  (Hong et al., 2006) 
Meteorology initial and 
boundary conditions  

NARR (32-km) initialized every 2 days, nudging for 
the outmost domain (Mesinger et al., 2006) 

Initial condition for chemical 5-day spin-up  
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Table 5.2: WRF-Chem simulated (MOD) and observed (OBS) temperature, wind speed, PBLH and water 
vapor at suface sites and across basin, bias (MOD-OBS), root mean square error (RMSE), standard 
deviations (S.D.) and correlations (r2) between model results and observations.  

 
 Temperature (K degree)  Wind Speed (m/s) 
 Mean S.D. 

Bias RMSE r2 
 Mean S.D. 

Bias RMSE r2 
 OBS MOD OBS MOD  OBS MOD OBS MOD 

Caltech 292.6 293.5 4.6 5.1 0.9 2.0 0.85  1.0 2.5 0.7 1.3 1.5 1.2 0.19 
Downtown 

L.A.  
293.6 293.4 2.6 3.6 -0.2 1.7 0.81  1.84 3.43 0.43 0.96 1.59 0.99 0.02 

Fullerton 292.8 292.9 2.9 3.9 0.1 1.7 0.81  2.66 2.74 0.95 1.15 0.07 0.74 0.59 
L.A 

airport 
290.8 290.8 1.4 2.3 0.0 1.6 0.53  3.35 2.61 1.35 1.35 -0.74 0.91 0.59 

Ontario 294.9 295.9 5.3 5.7 1.0 1.8 0.90  3.31 3.79 1.59 2.18 0.48 1.12 0.76 
Riverside 295.6 297.7 6.3 6.1 2.1 1.6 0.94  3.37 3.17 1.53 1.72 -0.21 0.92 0.71 
Van Nuys 294.2 296.3 4.7 4.6 2.1 1.6 0.88  2.94 2.97 1.14 0.94 0.03 1.04 0.26 

Across basinb   

Night time 287.6 289.0 2.4 2.6 1.5 1.8 0.55  4.4 4.8 2.5 3.0 0.3 2.4 0.39 
Day time 289.8 290.4 3.9 4.8 0.6 2.0 0.84  4.6 4.1 2.2 1.6 -0.4 1.9 0.31 

a The periods are May 27-June 15, 2010 for Caltech (Pairs of data n>400), and June 4-8, 2010 for other surface sites (Pairs of  data  n > 
100).   
b The results across basin were below 3 km; five daytime flights were on May 4, 14, 16 and 19, and June 20 (Pairs of data n > 1000).; 
two nighttime flights were on June 2 and 3 (Pairs of data  n > 600). 
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Brioude et al. (2012) found that CO emissions were lower by 43±6% in L.A. County relative 
to NEI’05. While we used a 28% reduction from NEI’05 in our model study, the overestimation 
of modeled CO, both at the surface and across the basin, indicate that the CO emissions used in 
our model for the L.A. basin are still too high.  

5.3.3. NOx 

O3, NOx (=NO + NO2), NO, NO2, Ox, HCHO and HNO3 measured at the Caltech super site 
for May 27-June 15, 2010 (Figure 5.6) and CARB sites were compared to simulations with the 
baseline emission scenario (BASE_NOx). The CARB observations were also compared the 
LOW_NOx case simulations (Table 4.4 and Table 4.5). After excluding May 29-30, the day-to-
day variation and diurnal cycle of O3 was well simulated (for May 27- June 15, correlations r2 = 
0.63, pairs of data n > 470, confidence value p < 0.01) and afternoon O3 was underestimated by 
9.3 ppb (16%). Nocturnal O3 was too low by 11.7 ppb (54%) in the model, most likely due to an 
inaccurate description of the NO +O3  NO2 + O2 chemistry which is influenced by vertical 
mixing and surface NO emissions. Nocturnal Ox=O3+NO2 mixing ratios, which are conserved in 
the O3 + NO reaction, were well simulated at Caltech (Table 4.4) confirming this hypothesis.  

Day-to-day variations of NO, NO2 and NOx were captured well in the model with the 
exception of May 29-June 2. Modeled NO2 and NOx mixing ratios are 45% and 30% higher in 
the afternoon and 91% and 68% higher at night compared to the observations. HNO3 mixing 
ratios were underestimated in the mode by 5% (r2 = 0.63, n > 400), predominately during the 
night. A possible explanation is an incorrect description of N2O5 chemistry the model. The 
diurnal variation of HCHO is generally well modeled (r2 = 0.57, n > 470) but shows an average 
bias of 0.65 ppb (30%) during afternoon peak hours and 1.06 ppb (110%) at night.  
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Table 5.5: Same as Table 4.4, but for surface O3, NOx=NO+NO2 at ARB sites for May 15- June 
8, 2010. Model results are from two simultions with 45% (M1) and 24% (M2) NOx emission 
reductions respectively. Units:ppbv (pairs of data n > 500). 

 

 

Mean  Bias  RMSE  r2 

 OBS M1 M2  
M1 

- OBS 
M2 

- OBS 
 M1 M2  M1 M2 

 At single site    

O3 

North Long Beach 31.9 20.3 17.3  -11.6 -14.6  12.2 12.2  0.12 0.12 
North Main Street 28.9 22.5 17.1  -6.4 -11.8  11.6 11.0  0.57 0.56 

Reseda 41.0 34.4 31.7  -6.7 -9.3  11.4 12.0  0.61 0.57 
Riverside 43.8 38.2 32.8  -5.7 -11.1  12.5 12.0  0.70 0.71 

San Bernadino 36.4 36.8 29.7  0.4 -6.7  13.3 12.6  0.71 0.74 
El Cajon 33.7 34.4 32.6  0.7 -1.1  10.9 10.5  0.42 0.46 

20 sites Average    
Nighttime  23.8 13.9 9.4  -9.9 -14.3  16.3 18.7  0.10 0.13 

Weekday daytime 48.7 49.8 43.0  1.1 -5.7  12.4 11.9  0.48 0.51 
 Weekend daytime 62.7 54.5 51.6  -8.1 -11.1  13.2 15.4  0.70 0.64 

 At single site    

NOx 

North Long Beach 18.9 25.9 37.2  7.0 18.3  21.8 30.2  0.10 0.10 
North Main Street 30.9 30.1 45.2  -0.7 14.4  17.6 21.9  0.20 0.19 

20 sites average    
Nighttime 14.0 20.3 29.9  6.3 13.7  13.7 20.5  0.14 0.16 

Weekday daytime 14.1 12.5 15.5  -1.5 1.5  9.0 9.6  0.22 0.29 
Weekend daytime 9.1 9.0 11.3  -0.1 2.1  7.3 9.8  0.35 0.38 
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Table 5.6: WRF-Chem simulated (LOW) and WP-3D observed (OBS) daytime O3, NOy, HNO3 
and PAN in boundary layer (<1.5 km) across basin (black rectangles in Fig. 1b and 1d) on 
weekdays (May 4, 14 and 19) and weekends (May 16 and June 20). Model results are with the 
LOW_NOx emission scenario (see text for detail). Also listed are bias, root mean square error 
(RMSE), standard deviations (S.D) and correlations (r2). Units: ppb. (pairs of data n > 600).  

Species 
Mean Median 

Bias 
LOW-OBS 

RMSE
S.D. 

r2 
OBS LOW OBS LOW OBS LOW 

Weekday 
O3 55.5 53.2 55.7 51.0 -2.3 12.4 12.5 12.0 0.24 

NOy 14.5 11.0 11.5 11.0 -3.4 9.4 11.5 8.0 0.34 
HNO3 2.84 3.47 2.50 3.39 0.62 2.01 1.65 1.91 0.14 
PAN 0.63 0.82 0.62 0.72 0.19 0.48 0.29 0.55 0.24 

Weekend 
O3 72.8 56.1 73.2 53.5 -16.7 9.6 11.6 11.7 0.44 

NOy 6.6 9.3 5.8 9.0 2.7 4.7 4.8 6.7 0.51 
HNO3 2.33 2.97 2.08 2.82 0.64 1.41 1.18 1.66 0.30 
PAN 1.02 0.99 0.94 0.94 -0.03 0.44 0.60 0.69 0.60 

 

Observed and modeled surface NOx concentration showed a clear weekend effect with 
reductions from weekdays to weekends of 36% and 28%, respectively. This is reflected in the 
observations, which show a 14.0 ppb surface O3 increase from weekdays to weekends. The 
model, however, showed only a 4.7-8.6 ppb increase in ozone, underestimating weekend O3 by 
11-17%. Boundary layer airborne observations also showed significant weekend-to-weekday 
differences with an average 17.2 ppb O3 increase and 7.9 ppb (54%) NOy decreases on weekends 
(Table 5.6). The model was not able to reproduce these observations, showing only a 2.9 ppb O3 
increase and 16% NOy reduction (Table 5.5). The smaller NOy reduction in the model is also 
reflected by a positive bias in weekend NOy and HNO3 of 40% and 27%, respectively. The most 
likely explanations for these results is that weekend NOx emissions (22-26% reduction from 
weekday) are still too high in the model.  
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6. Conclusions 

Two spectroscopic remote sensing instruments have been successfully deployed at the 
California Laboratory for Remote Sensing on Mt. Wilson, overlooking the LA Basin. Both 
systems have operated since 2010 and yielded a large amount of data on pollutants and 
greenhouse gases. 

The multi-axis Differential Optical Absorption Spectroscopy instrument measured reflected 
and scattered sunlight in various viewing angles. In this report, we have primarily focused on the 
vertical dimension of those observations. We have developed the spectroscopic retrieval tools to 
derive path-averaged trace gas concentrations of NO2, HCHO, and O4 (a proxy for aerosol 
extinction). A cloud sorting algorithm was also developed and applied to exclude observations 
influenced by the presence of clouds. Most of our effort went into the development of the 
numerical tools to retrieve vertical aerosol extinction and trace gas concentration profiles from 
the observations. A combination of a fast radiative transfer model (VLIDORT) with an optimal 
estimation based inversion algorithm was found to give the best results for these retrievals. The 
retrievals are performed in a two-step process in which the aerosol extinction profile is retrieved 
first using a non-linear optimization approach, followed by a second linear step to derive the NO2 
concentration profiles. A theoretical information content analysis using this tools confirmed that 
the retrievals can derive 3-4 pieces of information on aerosol extinction and approximately 5 
pieces of information on NO2. Our approach is thus able to retrieve vertical profiles with a height 
resolution of ~400m. Example retrievals of actual observations showed that our actual retrievals 
are somewhat lower with an average of 3-4 degrees of freedom for NO2. The lower value is 
likely due non-ideal conditions that can occur in the atmosphere, such as horizontal 
inhomogeneities in the aerosol and NO2 distribution. We thus applied our approach to the 2011-
2013 observational dataset. Comparison with selected data shows a good agreement of the 
vertically integrated aerosol extinction values with total optical density from an AERONET 
station located on the Caltech campus. The comparison also identified issues for some retrievals, 
which could again be caused by non-ideal conditions in the atmosphere. Work is ongoing to 
better understand which conditions lead to these problems. Comparison with surface NO2 
measurements revealed a good agreement with our retrievals, considering the differences in 
observation strategy, i.e. the MAX-DOAS integrates in the horizontal and has a limited vertical 
resolution while the in-situ data could be impacted by local emissions. The full data-set of 
aerosol extinction and NO2 profiles will be made available to the ARB at the end of the project. 

As the quality of our instrument allowed the successful retrieval of HCHO and NO2 in a 
wavelength range that is typically not used for NO2 retrievals, we also applied a method to 
monitor ozone formation sensitivity. The HCHO/NO2 ratio was used as a proxy of ozone 
sensitivity after relating it to the more commonly used marker Ln/Q (Kleinman et al., 1997). The 
cross-over point between cross-over point between the VOC and NOx sensitive regimes for the 
HCHO/NO2 ratio was determined in collaboration with P. Stevens at the University of Indiana 
using his observations of OH, HO2, and other trace gases during the CalNex Los Angeles field 
study in 2011. A HCHO/NO2 ratio of 0.55 was identified as the cross-over point for the CalNex 
period. The daily averaged HCHO/NO2 ratios from Mt. Wilson show a clear pattern with higher 
ratios, indicative of decreased VOC sensitivity, during the weekends, and lower ratios during the 
weekdays. The monthly averaged NO2 and HCHO DSCDs from Mt. Wilson from 2011-2013 
show that this weekend effect is caused by lower NO2 levels on the weekends. The data also 
shows a decrease in monthly averaged NO2 slant column densities during weekdays, while 
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weekend NO2 does not seem to decrease as much. This trend, however, is not reflected in the 
long-term trend of HCHO/NO2 ratios. 

We have developed an automated atmospheric observatory to measure the GHG emissions 
over the Los Angeles basin. Near-infrared solar absorption spectra have been acquired 
continuously since May 2010. The slant column densities of GHG and O2, which were obtained 
from spectral fits, were utilized to compute the column-average GHG VMR (XCO2, XCH4, and 
XCO). The quality of spectral fits and the measurement precisions are estimated using the 
measurements on January 3rd and 18th, 2013 under clear sky conditions. The spectral fitting 
residuals of individual spectral segments were dominated by the random noise with RMS of 
fitting residuals being better than 0.3% and 0.5% for the measurements above the CLARS site 
and LA basin targets. The systematic fitting residuals are less than 0.5%. They are attributed to 
known uncertainty in the GHG spectroscopic line strengths and air-broadened width parameters 
and the uncertainty in the disk integrated solar spectra. Compared to the background levels, 
XCO2 over Santa Anita Park and west Pasadena show higher values (6.26 ppm and 6.11 ppm) 
and present stronger diurnal cycles than those measurements over the CLARS site. The 
precisions of retrieved XCO2, XCH4, and XCO over CLARS are 0.09%, 0.14% and 1.94%. For 
the measurements over LA basin targets (Santa Anita Park and west Pasadena), the precisions of 
retrieved XCO2, XCH4, and XCO are 0.16% and 0.22%, 0.26% and 0.48%, 4.10% and 8.04%. 
The high measurement precisions of CLARS-FTS provide the capabilities of capturing the 
diurnal variations of XCO2, XCH4, and XCO over LA basin targets and the differences among 
the LA basin targets. The calibration of XCO2, XCH4, and XCO retrievals using aircraft in-situ 
profiles will be accomplished in the near future. Using ratio analysis, the CLARS-FTS 
observations suggested that the CH4 emission inventory of the Los Angeles in 2011-2013 to be 
0.382 Tg CH4/ year, which was 37% above the bottom-up CH4 emission inventory. Seasonal 
variability in the derived CH4 emissions ranged from 27 to 35 Gg CH4/month, with larger values 
in wintertime in general. CLARS-FTS observations implied that the CO2 emissions to be 211 Tg 
CO2/ year in 2011, 230 Tg CO2/ year in 2012, 212 Tg CO2/ year in 2013, and 204 Tg CO2/ year 
in 2014. Derived CO2 emissions were 10-15% larger than the bottom-up CO2 emissions in 2012. 
Spatial and temporal patterns of XCO2 in the Los Angeles basin observed by the CLARS-FTS 
are simulated by WRF-VPRM model. The model results have a low bias of 10% compared to 
that of CLARS FTS observations. Model inversion will be performed to derive GHG emissions 
in the Los Angeles basin.  

We successfully implemented the regional air quality model WRF-Chem for the LA Basin. 
Meteorological conditions, CO and NOx were validated using the CalNex campaign (May-June 
2010). The model meteorology performed well, except during two days with unusual 
meteorological conditions, such as a stratospheric intrusion event. CO concentrations at the 
Caltech and the inland source region during the day and night were overestimated by 42%, ~20% 
and 30-50%, respectively. The high bias in CO in the basin suggests that the CO emissions (28% 
reduction from NEI’05) were still too high. A 45% reduced NOx emissions rate relative to 
NEI’05 improved model performance relative to a 24% NEI reduction case for daytime NOx and 
O3 in the source region. The lower NOx emissions increased O3 by 6.8 ppb and 2.9 ppb on 
weekdays and weekends respectively in the model, indicating that O3 formation in the basin is 
NOx-saturated. The relatively smaller O3 increase on weekends may indicate that modeled 
weekend O3 production is shifted to be less NOx-saturated compared to weekdays. The modeled 
weekend-to-weekday difference was much smaller than the observations with a small 2.9 ppb O3 
increase and a 16% NOx reduction. Together with overestimated NOy on weekends and 
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underestimated NOy on weekdays in the basin we conclude that a 22-26% weekend-to-weekday 
difference in NOx emissions in the model is not large enough and weekend NOx emissions were 
still overestimated in the model.  The results reported here have been published in Atmospheric 
Environment in 2013 (Chen et al., 2013). 
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8. Glossary 

AB32    Assembly Bill (AB) 32 

AERONET   Aerosol Robotic Network 

Ak    Averaging Kernel 

AOT    Aerosol optical thickness 

ARB    Air Resources Board 

ART    Arcadia Race Track 

ATMOS    Atmospheric Trace Molecule Spectroscopy Mission 

BASE_NOx   Baseline WRF-CHEM model case 

BL    Boundary layer 

BLH    Boundary Layer Height 

CalNex   California Nexus 2010 field experiment 

Caltech   California Institute of technology 

CARB    California Air Resources Board 

CLARS    California Laboratory for Atmospheric Remote Sensing  

CLARS-IPP    CLARS interferogram processing program 

DOAS    Differential Optical Absorption Spectroscopy 

DoF     Degrees of freedom 

DSCD    Differential slant column densities 

DSV    Direct Spectralon viewing 

EPA    Environmental Protection Agancy 

EVI     Enhanced vegetation index 

FFT     Fast Fourier Transform 

FTIR    Fourier Transform infrared 

FTS    Fourier Transform Spectrometer 

GFIT    FTS retrieval algorithm 

GHG     Greenhouse gas  

GOSAT    Greenhouse Gases Observing Satellite  

HITRAN   High-resolution transmission molecular absorption database 

IR    Infrared 

JPL    Jet Propulsion Laboratory 

LA    Los Angeles 
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LABS     Los Angeles Basin Surveys  

LOW_NOx   Low NOx WRF-CHEM model case 

LSWI     Land surface water 

MAX-DOAS     Multi-axis Differential Optical Absorption Spectroscopy 

MOD    Model 

MOPD    Maximum Optical Path Difference  

NARR     North American Regional Reanalysis 

NASA    National Aeronautics and Space Administration 

NBL    Noctunal Boundary layer 

NCEP     National Center for Environmental Prediction 

NCEP     National Centers for Environmental Prediction  

Near-IR   Near-infrared 

NEI     National Emission Inventory 

NOAA    National Oceanic and Atmospehric Administration 

OBS    Observation 

OCO-2    Orbiting Carbon Observatory-2 

PAR     Photosynthetically active radiation 

PBL     Planetary boundary layer 

PBLH     Planetary boundary layer height 

ppb/ppbv   parts per billion (volume) 

ppm/ppmv   parts per million (volume) 

RMS     Root mean square 

RMSE    Root mean square error 

RT    Radiative transfer 

RTM     Radiative transfer model  

S.D.    Standard deviation 

SCAB    South-coast Air Basin 

SCD    Slant column densities 

SNR    Signal-to-Noise ratio 

SV    Spectralon viewing 

SVO     Spectralon Viewing Observations  

SZA    Solar zenith angle 
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TCCON    Total Carbon Column Observing Network 

UCLA    University of California Los Angeles 

UTC    Coordinated Universal Time 

UV    Ultraviolet 

UV-vis    Ultraviolet - visible 

VLIDORT    Vector Linearized Discrete Ordinate Radiative Transfer 

VMR     Volume mixing ratio 

VOC    Volatile organic carbon 

WD    Weekday 

WE    Weekend 

WP    West Pasadena 

WPS     WRF Preprocessing System 

WRF    Weather Research and Forecasting (model) 

WRF-CHEM  Weather Research and Forecasting model coupled with online 
chemistry 

WRF–STILT   Weather Research and Forecasting – Stochastic    
    Time-Inverted Lagrangian Transport (model) 

WRF-VPRM    Weather Research and Forecasting model coupled to   
    Vegetation Photosynthesis and Respiration Model. 

XCH4    Column-averaged dry-air mole fractions of methane 

XCO    Column-averaged dry-air mole fractions of carbon monoxide 

XCO2    Column-averaged dry-air mole fractions of carbon dioxide 

XGHG    Column-averaged dry-air mole fractions of greenhouse gases 

 

 

 


